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ABSTRACT

Neural networks suffer from catastrophic forgetting when sequentially learning
tasks phase-by-phase, making them inapplicable in dynamically updated systems.
Class-incremental learning (CIL) aims to enable neural networks to learn different
categories at multi-stages. Recently, dynamic-structure-based CIL methods achieve
remarkable performance. However, these methods train all modules in a coupled
manner and do not consider possible conflicts among modules, resulting in spoilage
of eventual predictions. In this work, we propose a unifying energy-based theory
and framework called Bi-Compatible Energy-Based Expansion and Fusion (BEEF)
to analyze and achieve the goal of CIL. We demonstrate the possibility of train-
ing independent modules in a decoupled manner while achieving bi-directional
compatibility among modules through two additionally allocated prototypes, and
then integrating them into a unifying classifier with minimal cost. Furthermore,
BEEF extends the exemplar-set to a more challenging setting, where exemplars
are randomly selected and imbalanced, and maintains its performance when prior
methods fail dramatically. Extensive experiments on three widely used benchmarks:
CIFAR-100, ImageNet-100, and ImageNet-1000 demonstrate that BEEF achieves
state-of-the-art performance in both the ordinary and challenging CIL settings. The
Code is available at https://github.com/G-U-N/ICLR23-BEEF.

1 INTRODUCTION

The ability to continuously acquire new knowledge is necessary in our ever-changing world and
is considered a crucial aspect of human intelligence. In the realm of applicable AI systems, it
is expected that these systems can learn new concepts in a stream while retaining knowledge of
previously learned concepts. However, deep neural network-based systems, which have achieved
great success, face a well-known issue known as catastrophic forgetting (French, 1999; Golab & Özsu,
2003; Zhou et al., 2023b), whereby they abruptly forget prior knowledge when directly fine-tuned
on new tasks. To address this challenge, the class-incremental learning (CIL) field aims to design
learning paradigms that enable deep neural networks to learn novel categories in multi-stages while
maintaining discrimination abilities for previous ones (Rebuffi et al., 2017; Zhou et al., 2023a).

Numerous approaches have been proposed to achieve the goal of CIL, with typical methods falling
into two groups: regularization-based methods and dynamic-structure-based methods. Regularization-
based methods (Kirkpatrick et al., 2017; Aljundi et al., 2018; Li & Hoiem, 2017; Rebuffi et al.,
2017) add constraints (e.g., parameter drift penalty) when updating, thus forcing the model to
maintain crucial information for old categories. However, these methods often suffer from the
stability-plasticity dilemma, lacking the capacity to handle all categories simultaneously. Dynamic-
structure-based methods (Yan et al., 2021; Li et al., 2021) expand new modules at each learning
stage to enhance the model’s capacity and learn the task-specific knowledge through the new module,
achieving remarkable performance. Whereas, these methods have an intrinsic drawback. They
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Figure 1: The conceptual illustration of BEEF. The training consists of two phases: expansion and fusion.
At the expansion phase, we independently train the new module for the current task, while classifying all the
samples from prior tasks into pb and classifying all samples generated from the built-in energy-based model
into pf . At the fusion phase, the output of pb is equally added to the output of prior modules to mitigate the
task-bias and form a unifying classifier.

directly retain all learned modules without considering conflicts among modules, thus corrupting the
joint feature representation and misleading the ultimate predictions. For example, old modules not
considering the future possible updates may mislead the final prediction for new classes. This defect
limits their performance on long-term incremental tasks.

In this paper, we aim to reduce the possible conflicts in dynamic-structure-based methods and
innovatively propose to achieve bi-directional compatibility, which consists of backward compatibility
and forward compatibility. To be specific, backward compatibility is committed to making the
discrimination ability of old modules unaffected by new ones. On the contrary, forward compatibility
aims to reduce impact of old modules on the ultimate predictions when new categories emerge. By
achieving bi-directional compatibility, given a sample from a specific task, the module responsible
for the corresponding task will dominate the ultimate predictions in the ideal case.

Fig. 1 displays the BEEF training framework, which is made of two phases (Model Expansion and
Model Fusion). At the expansion phase, we assume that different modules are independent and train
them isolatedly. Then, at the fusion phase, all trained modules are combined to form a unifying
classifier. To achieve bi-directional compatibility, we introduce two additional prototypes: forward
prototype pf and backward prototype pb. The backward prototype pb is set to measure the confidence
of old classes, while the forward prototype pf aims to measure uncertainty in the open world. To
be specific, when training a new module, we set pb as the cluster prototype for all old classes and
use it to learn a task boundary between the current task and prior ones. In the meanwhile, we set pf

as the cluster prototype for samples from the unseen distributions generated through energy-based
sampling and thus use it to measure uncertainty and better capture the current distribution. We
show that BEEF can be deduced from a unifying extendable energy-based theoretical framework,
which allows us to transform the open-world problem into a normal classification problem and model
the input distribution synchronously while learning the discrimination ability. Vast experiments on
three widely-used benchmarks show that our method achieves state-of-the-art performance. Besides,
prevalent CIL methods all require a well-selected balanced exemplar-set for rehearsal, which might
be impractical due to data privacy issues (Delange et al., 2021; Ji et al., 2014) and computation cost
when choosing exemplars. Our method pushes it to a harder setting. With only randomly sampled
data from prior tasks, BEEF maintains its effectiveness while the performance of other methods
declines drastically.

2 RELATED WORK

Incremental learning. Most recent studies on incremental learning are either task-based or class-
based. The crucial difference between them is whether task-id is known at the evaluation phase (Van de
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Ven & Tolias, 2019). Our work is a class-based method, which is typically called class-incremental
learning (CIL). Prevalent CIL methods can be categorized into two classes: regularization-based, and
dynamic-structure-based. Regularization-based methods impose constraints when learning tasks.
Kirkpatrick et al. (2017); Aljundi et al. (2018) penalize the parameter drift. Li & Hoiem (2017);
Rebuffi et al. (2017); Wu et al. (2019); Zhao et al. (2020) utilize knowledge distillation (Hinton et al.,
2015) to constrain the model’s output. Douillard et al. (2020) propose a novel spatial knowledge
distillation. Zhou et al. (2022) propose the concept of forward compatible (Gheorghioiu et al., 2003;
Shen et al., 2020) and squeeze the space for known categories, thereby reserving feature space for
future categories. Dynamic-structure-based methods create new modules to enhance the capacity
for learning new tasks. Yan et al. (2021); Li et al. (2021) combine all modules together to form
a unifying classifier, but it leads to an increasing training cost. Douillard et al. (2021) applies
transformer (Dosovitskiy et al., 2020; Touvron et al., 2021) to CIL and dynamically expands task
tokens when learning new tasks. Wang et al. (2022a) proposes to dynamically expand and compress
the model based on gradient boosting (Mason et al., 1999) to adaptively learn new tasks. Liu et al.
(2021b; 2023) cleverly apply reinforcement learning in CIL to obtain univserally better memory
management strategy or hyperparameters. However, prevalent CIL approaches usually require a
well-selected class-balanced exemplar-set for rehearsal (Rebuffi et al., 2017), which has an evident
impact on their performance (Masana et al., 2020) as we verify experimentally. BEEF not only
achieves state-of-the-art performance but shows strong robustness to the choice of exemplar-set.

Energy-based learning. EBMs define probability distributions with density proportional to exp(−E),
where E is the energy function (LeCun et al., 2006). So far, the theory and implementation of EBMs
have been well studied. Xie et al. (2016) show that the generative random field model can be derived
from the discriminative ConvNet. Xie et al. (2018a; 2022) well study the cooperative training of two
generative models for image modeling and synthesis. Additionally, Nijkamp et al. (2019) propose to
treat the non-convergent short-run MCMC as a learned generator model or a flow model and show
that the model is capable of generating realistic samples. Xie et al. (2021c) propose to learn a VAE
to initialize the finite-step MCMC for efficient amortized sampling of the EBM. Xiao et al. (2021)
propose a symbiotic composition of a VAE and an EBM that can generate high-quality images while
achieving fast traversal of the data manifold. Zhao et al. (2021) propose a multistage coarse-to-fine
expanding and sampling strategy, which starts with learning a coarse-level EBM from images at low
resolution and then gradually transits to learn a finer-level EBM from images at higher resolution.
Besides, EBMs have been successfully applied in many fields such as data generation (Zhai et al.,
2016; Zhao et al., 2016; Deng et al., 2020; Du & Mordatch, 2019) with various data formats including
graph (Liu et al., 2021a), video (Xie et al., 2017; 2019), 3D volumetric shape (Xie et al., 2018b; 2020),
3D unordered point cloud (Xie et al., 2021a), image-to-image translation (Xie et al., 2021c;b), saliency
map (Zhang et al., 2022), etc., out-of-distribution detection (OOD) (Hendrycks & Gimpel, 2016; Bai
et al., 2021; Liu et al., 2020; Lee et al., 2020; Lin et al., 2021), and density estimation (Silverman,
2018; Zhao et al., 2016), etc. Wang et al. (2021) model the open world uncertainty as an extra
dimension in the classifier, achieving better calibration in OOD datasets. Grathwohl et al. (2019)
propose to model the joint distribution P(x, y) for the classification problem. Bian et al. (2022)
apply energy-based learning for cooperative games and derive new player valuation methods. Zheng
et al. (2021) propose to represent the statistical distribution within a single natural image through an
EBM framework. Xu et al. (2022) apply EBM for inverse optimal control and autonomous driving.
There have been several attempts to apply EBMs to incremental learning. Li et al. (2020) propose
a novel energy-based classification loss and network structure for continual learning. Joseph et al.
(2022) build an energy-based latent aligner that recovers the corrupted latent representation.Wang
et al. (2022b) propose anchor-based energy self-normalization classifier in incremental learning.

3 METHOD

In this section, we give a description of BEEF and how we apply EBM to CIL to learn a unifying
classifier while achieving bi-directional compatibility. In Sec. 3.1, we first introduce some basic
knowledge of CIL. In Sec. 3.2, we present the definition of energy and then deduce optimization
objective at the expansion phase. Then, to avoid the intractability of normalizing constant, we prove
a gradient equivalent objective and explain why it helps to achieve the bi-directional ability. After
that, we propose an efficient yet effective fusion strategy in Sec. 3.3. Additionally, we extend BEEF
to Stable-BEEF by allocating multiple forward prototypes and backward prototypes. The detailed
illustration and proof are provided in Appendix B.
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3.1 PRELIMINARIES

CIL aims to learn a unifying classifier from a sequence of data divided into several incremental
sessions with different class groups. At the tth incremental session, the model receives the training
dataset Dt = {(xt

i, y
t
i)}Nt=1, where xt

i ∈ Xt is an input sample and yti ∈ Yt is the corresponding label,
which is not accessible at latter sessions. Only a small amount of exemplars of previous categories
are retained in a size-limited exemplar-set Vt ⊆ ∪t−1

i=1Di. The model is expected to train on Dt ∪ Vt

and be evaluated on the test set of all known categories. At the following discussions, we focus on
the details of the tth incremental session without loss of generality. Particularly, we denote the label
spaces of all known classes and novel classes as Yo = ∪t−1

i=1Yi and Yn = Yt, respectively. |Yn| = K
and |Yo| = M , representing the number of new categories and that of old ones.

3.2 ENERGY-BASESD MODEL EXPANSION

Let hθ : X −→ ∆K+1 be the newly created module (typically as a single-skeleton CNN), where
X = ∪t

i=1Xi and ∆K+1 is a K + 1-standard simplex (i.e., K + 2 dimensional vectors with non-
negative elements that sum up to 1). Therefore, we can further decompose hθ as S ◦ F ◦ Φ, where
Φ : X −→ Rd is the non-linear feature extractor, F : Rd −→ RK+2 is a linear classifier transforming
the feature into the K + 2 - dimensional logits, and S denotes the non-linear activation function
softmax which constrains the final output on the K + 1- standard simplex. hθ(x)[k] represents the
k + 1th element of the final output. Ignoring the bias, F can be denote as a d × (K + 2) matrix
F = [ pb Fbase pf ], where Fbase with shape d×K is the base classifier for the current task, and
pb / pf is an additional prototype that measures past confidence / future uncertainty, transforming
the feature extracted from Φ into logits at index 0 / K + 1.

First, given an input-label pair (x, y) ∈ X × (Yo ∪ Yn), we define the energy Eθ(x, y) as

Eθ(x, y) =

{
− log hθ(x)[σ(y)], y ∈ Yn

− log (hθ(x)[0]/M) , y ∈ Yo
, (1)

where σ : Yn −→ 1, 2, . . . ,K is a bijection function mapping a given label to its corresponding
class index. The energy E(x, y) measures the uncertainty of predicting x’s label as y. Hence, the
definition of the energy is compatible with traditional classification definitions, since we typically use
hθ(x)[σ(y)], which is the negative exponent of the energy, to indicate the confidence of predicting
x’s label as y. Moreover, we use hθ(x)[0] to represent the overall confidence of x’s label belonging
to Yo and do not expect the new module to distinguish between the old categories. Hence, E(x, y)
for any y ∈ Yo is represented as − log (hθ(x)[0]/M). The denominator M makes the energy larger
and indicates that the current module has a larger uncertainty about old categories due to the limited
supervision for old categories from Vt.

Since Pθ(y|x) = exp(−Eθ(x,y))∑
y′ exp(−Eθ(x,y′)) and Pθ(x) =

∑
y′ exp(−Eθ(x,y

′))∑
x′

∑
y′ exp(−Eθ(x′,y′)) , the conditional probabil-

ity density and marginal probability density can be formulated as

Pθ(y|x) =

{ hθ(x)[σ(y)]∑K
k=0 hθ(x)[k]

, y ∈ Yn

hθ(x)[0]/M∑K
k=0 hθ(x)[k]

, y ∈ Yo

, Pθ(x) =

∑K
k=0 hθ(x)[k]∑

x′
∑K

k=0 hθ(x′)[k]
. (2)

We define the energy function Eθ(x) via Pθ(x) =
exp(−Eθ(x))∑
x′ exp(−Eθ(x′)) , then Eθ(x) is formulated as

Eθ(x) = − log
∑K

k=0
hθ(x)[k] . (3)

With energy functions defined above, we give proof of the derivation of our optimization objective
when training a new module and demonstrate how it works to achieve bi-directional compatibility.
Instead of simply learning a discriminator Pθ(y|x), which usually causes overconfident predicts even
when receiving samples from unseen distributions, we estimate the joint distribution Pθ(x, y)

argmin
θ

EPreal(x,y) [− logPθ(x, y)] (4)

= argmin
θ

EPreal(x) [− logPθ(x)] + EPreal(x,y) [− logPθ(y|x)] . (5)

The estimation of the joint distribution not only encourages the model to learn to distinguish all
known categories but also helps model the input distribution, thus making the model sensitive to the
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Figure 2: Learning energy manifold. The learning process of the energy manifold. The left part illustrates the
concrete workflow of model training. The middle and right part illustrate the corresponding high-level abstract
energy manifold learning process.

input distribution drift. Therefore, when unseen categories emerge, it helps those modules alleviate
overconfident predictions and reduce their impact on the ultimate predictions. However, due to
the intractability of the normalizing constant

∑
x′
∑

y′ exp(−Eθ(x
′, y′)), we optimize the gradient

equivalent objective of Eq. 4.

Theorem 3.1 (Marginal Distribution Maximum Likelihood Estimation). Defining E′
θ(x) =

− log hθ(x)[K + 1] and its corresponding marginal distribution as P′
θ(x), the optimiza-

tion of EPreal(x) [− logPθ(x)] is equivalent to that of EPreal(x)

[
− log

∑K
k=0 hθ(x)[k]

]
+

λθ̄EP′
θ̄
(x) [− log hθ(x)[K + 1]] when gradient descend is applied, where λθ̄ is the ratio of the nor-

malizing constants determined by E′
θ(x) and Eθ(x), and θ̄ means that parameters of θ is frozen (i.e.,

instances sampled from P′
θ̄
(x) are detached).

Theorem 3.2 (Conditional Distribution Maximum Likelihood Estimation). With preliminar-
ies from Thm. 3.1, the optimization of EPreal(x,y) [− logPθ(y|x)] is equivalent to that of
EPreal(x,y) [− log hθ(x)[σ

′(y)]] + µθ̄EPreal(x) [− log hθ(x)[K + 1]] when gradient descend is ap-

plied, where µθ̄ = hθ̄(x)[K+1]∑K
k=0 hθ̄(x)[k]

, σ′(y) =

{
σ(y), y ∈ Yn

0, y ∈ Yo
.

Due to the space limit, detailed proofs for Thm. 3.1 and Thm. 3.2 are deferred to Appendix A.
Combining Thm. 3.1 and Thm. 3.2, the ultimate optimization objective can be formulated as

EPreal(x)

[
− log

∑K

k=0
hθ(x)[k]

]
+ λθ̄EP′

θ̄
(x) [− log hθ(x)[K + 1]]+

EPreal(x,y) [− log hθ(x)[σ
′(y)]] + µθ̄EPreal(x) [− log hθ(x)[K + 1]] ,

(6)

which is upper bounded by

2EPreal(x,y) [− log hθ(x)[σ
′(y)]] + µθ̄EPreal(x) [− log hθ(x)[K + 1]]+

(Objective) λθ̄EP′
θ̄
(x) [− log hθ(x)[K + 1]] .

(7)

We take Eq. 7 as the eventual training objective. Here, we explain the roles of different compo-
nents and the reason why better bi-directional compatibility is achieved through optimizing this
objective. EPreal(x,y) [− log hθ(x)[σ

′(y)]] prompts the new module to accurately discriminate all
categories from current task as well as build explicit decision boundaries between current task and
prior ones. By setting pb as the special prototype for all old categories, we can better exploit the
shared structure of all old categories and reduce the risk of over-fitting, which typically results
from inadequate training samples on old categories. Given a sample from prior tasks, the new
module perceives this task boundary and reduces the confidence of its own task, so that the old
module dominates the ultimate prediction. Hence, we achieve better backward compatibility for
old categories than naively tuning the new module on all categories. EPreal(x) [− log hθ(x)[K + 1]]
encourages the module to reserve a certain degree of confidence for virtual class pf , thus measuring
the out-of-distribution uncertainty for given samples and mitigating overconfident predictions. As
shown in Fig. 2, EP′

θ̄
(x) [− log hθ(x)[K + 1]] introduces an adversarial learning process, where we

iteratively generate samples believed to have lower energies from P′
θ(x) and then update the energy

manifold to increase the energy of generated samples and decrease that of real samples. This process
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effectively enhances the modeling of the known input distribution, making in-distribution samples
have low energy and out-of-distribution data have high energy. Therefore, for a sample from unseen
distributions, the module will produce predictions with large uncertainty (hθ(x)[K + 1]) and low
confidence due to the fact that the confidence must be lower than 1− hθ(x)[K + 1]. Then, modules
created in the future to handle these unknown distributions will dominate the final prediction. Hence,
we achieve the forward compatibility for the future unseen categories.

3.3 ENERGY-BASED MODEL FUSION

Module1 Module2

𝐩𝑏Cat        Panda Butterfly  Triceratops

𝐩𝑏 acts as a soft task-discriminator

Figure 3: pb acts as a soft task-discriminator.
It alleviates the task-bias and determines the
dominant module for the ultimate prediction.

After training the new module, we aim to fuse it with
the prior ones to form a unifying classifier for all seen
categories. Assuming that we have trained a unifying
model hθo for all the old tasks and σo maps the label to
the output index of hθo , a vanilla approach to combining
the hθo and hθ is to redefine the energy function as

E{θo,θ}(x, y) =

{
− log hθo(x)[σo(y)], y ∈ Yo

− log hθ(x)[σ(y)], y ∈ Yn
. (8)

Then we have

P{θ,θo} (y|x) =


hθo (x)[σo(y)]∑M

m=1 hθo (x)[m]+
∑K

k=1 hθ(x)[k]
, y ∈ Yo

hθ(x)[σ(y)]∑M
m=1 hθo (x)[m]+

∑K
k=1 hθ(x)[k]

, y ∈ Yn

.

(9)

However, this might cause task bias. Different modules may produce predictions with different
entropies, the combined model has a tendency to modules with larger entropies. As shown in Fig. 3,
Simply combing the modules as Eq. 9 leads to misclassification due to the larger entropy in module2.
Considering that pb measures the confidence for old categories, we redefine E{θo,θ} as{

− log {hθo(x)[σo(y)] + αhθ(x)[0] + β} , y ∈ Yo

− log hθ(x)[σ(y)], y ∈ Yn
. (10)

Then we have

P{θ,θo} (y|x) =


hθo (x)[σ(y)]+αhθ(x)[0]+β∑M

m=1[hθo (x)[m]+αhθ(x)[0]+β]+
∑K

k=1 hθ(x)[k]
, y ∈ Yo

hθ(x)[σ(y)]∑M
m=1[hθo (x)[m]+αhθ(x)[0]+β]+

∑K
k=1 hθ(x)[k]

, y ∈ Yn

. (11)

We finetune α, β to minimize the negative log-likelihood on a tiny sub-dataset (exemplar-set), thus
mitigating the task bias, namly

α∗, β∗ = argmin
α,β

EPreal(x,y)

[
− logP{θ,θo}(y|x)

]
. (12)

3.4 SUMMARY OF BEEF
To conclude, we propose a two-stage training approach: expansion and fusion. The expansion
phase is intrinsically similar to naive fine-tuning, while trough our novel energy definition and
gradient-equivalent optimization simplification, we expand the original K classification model into
a K + 2 classification model through two additional prototypes (e.g. backward prototype pb and
forward prototype pf ) to achieve the bi-directional compatibility. Specifically, pb learns to measure
the confidence on old categories by acting as the cluster prototype for all old samples and thus
achieves the backward compatibility. In contrast, pf learns to measure the open world uncertainty
by acting as the cluster prototype for all samples generated by the built-in energy-based model to
achieve the forward compatibility. By means of our energy-based framework, our model is able
to learn the discrimination ability for the current task while synchronously modeling the input
distribution. At the fusion phase, the confidence of the old prototype is added to the outputs of all
old modules after passing through a learnable affine transformation, forming the ultimate prediction
on all categories. The fusion strategy alleviates the possible task bias and effectively improves the
performance compared with the naive fusion strategy in Eq. 9. Equipped with an energy-based nature,
BEEF allows for a pleasant by-product: test-time alignment. That is, we apply SGLD (Welling
& Teh, 2011) to decrease energy of given test samples. Through test-time alignment, some useful
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characteristics shared by training samples are transferred into the test sample to reduce its energy,
making it more explicit and producing more convincing predictions. We find that this process does
improve the performance in many protocols though requiring additional computational resources in
evaluation. One inevitable drawback of dynamic-based methods is that they suffer from a linearly
growing number of parameters as the number of tasks, which might violate the memory usage
limitations in CIL. Therefore, for practical usage and fair comparison, we apply the compression
strategy following FOSTER (Wang et al., 2022a) to compress the expanded dual branch model into a
single skeleton after each incremental learning session, which we call BEEF-Compress.

4 EMPIRICAL STUDIES

4.1 EXPERIMENTAL SETTINGS

Datasets. We validate our methods on widely used benchmarks of class-incremental learning CIFAR-
100 (Krizhevsky et al., 2009) and ImageNet100/1000 (Deng et al., 2009). CIFAR-100: CIFAR-100
consists of 50,000 training images with 500 images per class, and 10,000 test images with 100
images per class. ImageNet-1000: ImageNet-1000 is a large scale dataset composed of about 1.28
million images for training and 50,000 for validation with 500 images per class. ImageNet-100:
ImageNet-100 is composed of 100 classes randomly chosen from the original ImageNet-1000 dataset.

CIAFR-100 Protocol. For benchmark CIFAR-100, we evaluate two widely recognized protocols:
CIFAR-100 B0: All the 100 classes are averagely divided into 5, 10, and 20 groups, respectively,
i.e., we should train all the 100 classes gradually with 20, 10, 5 classes per incremental session. In
addition, models are allowed to save an exemplar-set to store no more than 2000 exemplars throughout
all sessions. CIFAR-100 B50: We first train half of 100 classes at the base learning stage. Then, the
rest 50 classes are averagely divided into 5, 10, and 25 groups, respectively, i.e., we should train the
rest 50 classes gradually with 10, 5, and 2 classes per incremental session. Slightly different from the
first protocol, models are allowed to store no more than 20 exemplars for each class. Therefore, after
training all the 100 classes, there are also no more than 2,000 exemplars.

ImageNet Protocol. For benchmarking ImageNet-100, we evaluate the performance on two different
incremental tasks. In the first task, we split the 100 classes averagely into 10 sequential incremental
sessions, and up to 2,000 exemplars are allowed to be stored in the exemplar-set. In the second task,
models are first trained on 50 base classes and then sequentially trained on the 10 classes at the
following incremental sessions (i.e., 5 incremental sessions totally). The same as the protocol CIFAR-
100 B50, models are allowed to store no more than 20 exemplars for each class. For benchmark
ImageNet-1000, we train all the 1000 classes with 100 classes per step (10 steps in total) with an
exemplar-set storing no more than 20,000 exemplars.

Compared methods. Our method and all baselines are implemented with Pytorch (Paszke et al.,
2017) in PyCIL (Zhou et al., 2021a). We compare BEEF to strong regularization-based methods:
iCaRL (Rebuffi et al., 2017), BiC (Wu et al., 2019), WA (Zhao et al., 2020), PodNet (Douillard
et al., 2020), and Coil (Zhou et al., 2021b). Beside, we compare to the dynamic-structure-based
method RPSNet (Rajasegaran et al., 2019), DER (Yan et al., 2021), Dytox (Douillard et al., 2021),
FOSTER (Wang et al., 2022a). Apart from the above methods, we also compare with RMM (Liu
et al., 2021b), which adjusts the memory partition strategy for new and old data. Among the compared
methods, Dytox applies stronger neural architecture (Convit (d’Ascoli et al., 2021)) and additional
data augmentation; FOSTER (Wang et al., 2022a) additionally uses the AutoAugmentation (Cubuk
et al., 2019) to enhance the sample efficiency and improve classification accuracy. RMM (Liu et al.,
2021b) achieves a better memory management strategy. With the same training memory, RMM
chooses some new samples to train and discards the rest to allow restoring more old exemplars. Note
that all these are orthogonal to the method itself, and therefore we combine the augmentation and
memory management strategy with BEEF for fair comparison with these methods, which we regard
as BEEF-Compress.
4.2 RESULTS AND ANALYSIS

Comparison with SOTAs. CIFAR-100: Table 2 , Fig. 4, and Fig. 7 summarize the experimental
results on CIFAR-100 benchmark. We can observe that BEEF/BEEF-Compress achieves state-of-the-
art performance under both B0 and B50 protocols. And more evident performance improvements
are achieved under B50 protocol. Specifically, BEEF improves average accuracy by 3.12, 3.62, 5.45
compared to DER (prior state-of-the-art dynamic-based method) under protocol B50 with 5, 10, 25
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ImageNet-100 10 steps ImageNet-1000 10 steps ImageNet-100 B50 5 steps

Methods top-1 top-5 top-1 top-5 top-1 top-5
Avg Last Avg Last Avg Last Avg Last Avg Last Avg Last

Bound - 81.50 - 95.10 89.27 - 79.89 - 81.20 81.50 - 95.10

Replay 59.21 41.00 81.67 68.44 - - - - 55.73 43.38 79.17 71.08
iCaRL 67.11 50.98 84.08 71.52 38.4 22.7 63.7 44.0 62.56 53.69 81.75 73.58
BiC 65.13 42.40 84.04 64.14 - - 84.0 73.2 66.36 49.9 83.59 70.42
WA 68.60 55.04 89.53 80.32 65.67 55.60 86.60 81.10 65.81 56.64 84.97 79.36
PodNet 64.03 45.40 84.06 68.58 - - - - 73.84 62.94 89.51 83.52
DER 77.08 66.84 92.49 88.64 66.87 58.83 88.01 81.59 77.57 71.10 93.37 91.3
DyTox 71.85 57.94 90.72 83.52 68.14 59.75 87.03 82.93 - - - -
RPSNet - - 87.90 74.00 - - - - - - - -
RMM - - - - - - - - 79.52 - - -
FOSTER 78.71 70.14 - - 68.34 58.53 - - 80.22 75.52 - -

BEEF 77.62 68.78 93.66 89.32 67.09 58.67 86.21 81.73 77.27 70.98 93.71 91.76
BEEF-Compress 79.34 71.12 93.30 88.94 - - - - 80.52 74.62 94.10 91.42

Table 1: Performance on ImageNet. We report both average and last accuracy of top-1 and top-5.

CIFAR-100 B0 CIFAR-100 B50

Methods 5 steps 10 steps 20 steps 5 steps 10 steps 25 steps
Avg Last Avg Last Avg Last Avg Last Avg Last Avg Last

Bound 80.40 - 80.41 - 81.49 - 79.89 - 79.91 - 80.37 -

Replay 60.63 43.08 59.38 41.01 58.20 38.69 52.70 41.26 43.43 36.16 41.09 37.50
iCaRL 67.60 54.23 64.64 49.52 63.51 45.12 61.79 52.04 52.69 44.64 52.10 45.57
BiC 67.63 56.22 65.38 50.79 62.38 43.08 61.68 49.19 57.04 43.82 53.61 40.38
WA 69.11 57.97 67.15 52.30 64.65 48.46 64.65 55.85 53.87 46.72 52.51 44.90
Coil 68.26 - 65.48 - 62.98 - - - - - - -
DER 71.15 62.4 69.94 58.59 67.98 53.95 68.58 61.94 66.40 58.85 60.66 49.30
RPSNet 70.5 - 68.6 - - - - - - - - -
DyTox - - 71.50 57.76 68.86 51.47 - - - - - -
RMM - - - - - - 68.86 - 67.61 - 66.21 -
FOSTER 72.54 64.55 72.81 62.54 70.65 56.28 70.10 64.01 67.94 60.44 63.83 54.31

BEEF 72.31 62.58 71.94 60.98 69.84 56.71 71.70 65.24 70.71 63.51 66.11 54.36
BEEF-Compress 73.05 62.48 72.93 61.45 71.69 57.06 71.58 64.54 71.70 61.19 64.32 54.81

Table 2: Performance on CIFAR-100. We report both the top-1 average and last accuracy.

incremental sessions. ImageNet-100/1000: Tabel 1 and Fig. 8 summarize the experimental results
on both ImageNet-100 and ImageNet-1000 benchmarks. We can observe that BEEF, especially
BEEF-Compress achieves very competitive performance compared to prior methods. Specifically,
BEEF improves average accuracy by 0.63, 0.3 under ImageNet-100 protocols. It is also worth noting
that the performance improvement of BEEF on ImageNet is relatively less significant compared to
CIFAR-100, which may be attributed to the larger and more complex nature of the ImageNet dataset,
making it more challenging to find suitable cluster prototypes as forward/backward prototypes.

Comparison under imbalanced exemplar-set. To compare the performance of different methods
with imbalanced exemplar-set, we propose three different exemplar selection strategies: exp, random,
and half-half. Refer to Appendix C.1 for details. Fig. 4 displays the average accuracy changes of
different methods after each incremental session on CIFAR-100 B50 with 5 steps. Fig. 5(c) illustrates
the performance when exemplars are randomly sampled from all the available old instances. Though
the exemplar-set is statistically balanced, prior methods encounters a performance drop and the gap
between BEEF and prior methods is enlarged. Fig. 5(b) and Fig. 5(a) illustrate the performance
changes under extreme class imbalance and sample from half classes missing, respectively. Although
the performance of prior methods declines dramatically, BEEF maintains its effectiveness under these
two imbalanced protocols. BEEF achieves more than 10% performance gain under these challenging
settings. In addition, since some classes have no exemplars stored in the exemplar-set to calculate the
class center, iCaRL based on NCM-classifier (Mensink et al., 2013) fails in the base training phase.

4.3 ABLATION STUDIES

Ablations of key components in BEEF. To verify the effectiveness of the components in BEEF, we
conduct ablation studies on CIFAR-100 B50 with 5 incremental sessions. As shown in Table 3, the
average and last accuracy gradually increase as we add more components. It is notable that after the
fusion strategy, the unifying model get a large increase. Besides, by learning energy manifolds with
the forward prototype pf and energy alignment, we can further improve the performance.
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(c) CIFAR-100 B0 5 steps
Figure 4: Performance on standard CIFAR-100 B0 protocols.
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(b) half-half: γ = 1
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Figure 5: Performance on imbalanced protocols.

Expansion Fusion
backward compatible forward compatible task discriminator energy alignment Avg Last

✓ 63.60 55.16
✓ ✓ 64.50 56.50
✓ ✓ 70.51 64.43
✓ ✓ ✓ 70.92 64.79
✓ ✓ ✓ ✓ 71.75 65.24

Table 3: Ablations of key components in BEEF. We report the average and last accuracy on CIFAR-100 B50
with 5 incremental sessions.

Sensitive study of hyper-parameters. There are three hyper-parameters in BEEF when modeling
the energy manifold: hidden layer where energy modeling, the trade-off coefficient λ, and the number
of forward prototypes F in Stable-BEEF. As shown in Fig. 6(a) we conduct experiments on three
different hidden layers for modeling the energy manifold, and the experimental results show BEEF
the robustness to the choice of different hidden layer. We also change the trade-off coefficients λ
from {0, 1e− 1, 1e− 2, 1e− 3} and the number of forward prototypes F from {1, 5, 20, 50}, and
the average accuracies on CIFAR-100 B50 with 5 incremental sessions are shown in Fig. 6(b). We
can see that with the increase of F and λ, the accuracy has an upward trend.
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Figure 6: Sensitive studies of hyper-parameters.

CONCLUSION. In this work we presented BEEF for achieving efficient class-incremental learning.
Under this framework, we efficiently train a specific module for the current task while achieving bi-
directional compatibility and fuse it with the prior model under minimal effort. BEEF is equipped with
a theoretical analysis showing that its training process is inherently the modeling of an energy-based
model. Compression strategies can be applied to address the issue of growing storage overhead.
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A PROOF FOR THM. 3.1 AND THM. 3.2

Here we provide the detailed proofs for Thm. 3.1 and Thm. 3.2.

Theorem 3.1 (Marginal Distribution Maximum Likelihood Estimation). Defining E′
θ(x) =

− log hθ(x)[K + 1] and its corresponding marginal distribution as P′
θ(x), the optimiza-

tion of EPreal(x) [− logPθ(x)] is equivalent to that of EPreal(x)

[
− log

∑K
k=0 hθ(x)[k]

]
+

λθ̄EP′
θ̄
(x) [− log hθ(x)[K + 1]] when gradient descend is applied, where λθ̄ is the ratio of the nor-

malizing constants determined by E′
θ(x) and Eθ(x), and θ̄ means that parameters of θ is frozen (i.e.,

instances sampled from P′
θ̄
(x) are detached).

Proof. Since Pθ(x) =
exp(−Eθ(x))∑
x′ exp(−Eθ(x))

, we have

EPreal(x) [− logPθ(x)] = EPreal(x) [Eθ(x)] + log
∑
x′

exp(−Eθ(x
′)) . (13)
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Take the gradient of the right part in Eq. 13, and we have

∇θ log
∑
x′

exp(−Eθ(x
′))

=
∑
x

exp(−Eθ(x))∑
x′ exp(−Eθ(x′))

∇θEθ(x)

=
∑
x

∑K
k=0 hθ(x)[k]∑

x′ exp(−Eθ(x′))
·
∇θ

∑K
k=0 hθ(x)[k]∑K

k=0 hθ(x)[k]

=
∑
x

∇θ(1− hθ(x)[K + 1])∑
x′ exp(−Eθ(x′))

=−
∑
x

∇θhθ(x)[K + 1]∑
x′ exp(−Eθ(x′))

=−
∑
x

∑
x′ exp(−E′

θ(x
′))∑

x′ exp(−Eθ(x′))
· exp(−E′

θ(x))∑
x′ exp(−E′

θ(x
′))

· ∇hθ(x)[K + 1]

exp(−E′
θ(x))

=−
∑
x

∑
x′ exp(−E′

θ(x
′))∑

x′ exp(−Eθ(x′))
· exp(−E′

θ(x))∑
x′ exp(−E′

θ(x
′))

· ∇hθ(x)[K + 1]

hθ(x)[K + 1]

=−
∑
x

Z ′
θ

Zθ
· exp(−E′

θ(x))∑
x′ exp(−E′

θ(x
′))

· ∇θ log hθ(x)[K + 1]

=− Z ′
θ

Zθ
EP′

θ(x)
[∇θ log hθ(x)[K + 1]]

=−∇θ

{
Z ′
θ̄

Zθ̄

EP′
θ̄
(x) [log hθ(x)[K + 1]]

}
.

(14)

where θ̄ represents that θ is frozen (i.e., gradients are not computed), Z ′
θ̄
=

∑
x′ exp(−E′

θ(x
′)) is

the normalizing constant for energy E′
θ(x), and Zθ is the normalizing constant for energy Eθ(x).

Hence, the objective EPreal(x) [− logPθ(x)] is equivalent to

EPreal(x)

[
− log

K∑
k=0

hθ(x)[k]

]
+ λθ̄EPθ̄(x

′) [− log hθ(x)[K + 1]] , (15)

where λθ̄ =
Z′

θ̄

Zθ̄
.

Theorem 3.2 (Conditional Distribution Maximum Likelihood Estimation). With preliminar-
ies from Thm. 3.1, the optimization of EPreal(x,y) [− logPθ(y|x)] is equivalent to that of
EPreal(x,y) [− log hθ(x)[σ

′(y)]] + µθ̄EPreal(x) [− log hθ(x)[K + 1]] when gradient descend is ap-

plied, where µθ̄ = hθ̄(x)[K+1]∑K
k=0 hθ̄(x)[k]

, σ′(y) =

{
σ(y), y ∈ Yn

0, y ∈ Yo
.

Proof. Considering the definition of Pθ(y|x) in Eq. 2, we have

EPreal(x,y) [− logPθ(y | x)]

=EPreal(x,y)

Eθ(x, y) + log
∑

y′∈Yn∪Yo

exp(−Eθ(x, y
′))


=EPreal(x,y)∩y∈Yo

[
− log

hθ(x)[0]

M

]
+ EPreal(x,y)∩y∈Yn

[− log hθ(x)[σ(y)]] +

EPreal(x)

[
log

K∑
k=0

hθ(x)[k]

]
(16)
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The gradient of EPreal(x,y)∩y∈Yo

[
− log hθ(x)[0]

M

]
with respect to θ is equal to that of

EPreal(x,y)∩y∈Yo
[− log hθ(x)[0]]. Therefore, define σ′(y) =

{
σ(y), y ∈ Yn

0, y ∈ Yo
, and the first two

components in Eq. 16 can be written in a unifying form, that is
EPreal(x,y)∩y∈Yo∪Yn

[− log hθ(x)[σ
′(y)]] . (17)

For the last component in Eq. 16, we have

∇θ log

K∑
k=0

hθ(x)[k]

=
∇θ(1− hθ(x)[K + 1])∑K

k=0 hθ(x)[k]

=− ∇θhθ(x)[K + 1]∑K
k=0 hθ(x)[k]

=− hθ(x)[K + 1]∑K
k=0 hθ(x)[k]

· ∇θhθ(x)[K + 1]

hθ(x)[K + 1]

=− hθ(x)[K + 1]∑K
k=0 hθ(x)[k]

· ∇θ log hθ(x)[K + 1]

=∇θ

{
− hθ̄(x)[K + 1]∑K

k=0 hθ̄(x)[k]
· log hθ(x)[K + 1]

}

(18)

Therefore, the Objective EPreal(x,y) [− logPθ(y | x)] is also equivalent to

EPreal(x,y) [− log hθ(x)[σ
′(y)]] + µθ̄EPreal(x) [− log hθ(x)[K + 1]] , (19)

where µθ̄ = hθ̄(x)[K+1]∑K
k=0 hθ̄(x)[k]

.

B PROOFS FOR STABLE-BEEF

As we have claimed in Sec. 3 and Sec. 4, we expand the original BEEF to have multiple backward
and forward prototypes (dubbed as Stable-BEEF), which stabilizes the training process and improves
the performance. Here we give a formal illustration of the expandable form and provide proof of it.

First, at the tth incremental session, instead of creating one backward prototype pb to measure the
confidence for all the old tasks, we create a backward prototype for each old task. This expansion
prompts the new module to learn a discriminator for each old task, thereby improving the performance
and stability of training especially when there are clear domain shifts among old tasks. Therefore,
there are t−1 backward prototypes for measuring the confidence of old tasks. Furthermore, in Stable-
BEEF, we create multiple forward prototypes during the training. Concretely, for samples generated
through the marginal distribution defined by the energy function, we assign the most-likely pseudo
labels to them. We set the number of forward prototypes to a constant number F . After introducing
these multiple prototypes, i.e., pbs and pf s, we should redefine hθ : X −→ ∆K+F+(t−2).

Given an input-label pair (x, y) ∈ ∪t
i=1Xi × ∪t

i=1Yi, we define the energy Eθ(x, y) as

Eθ(x, y) =

{
− log hθ(x)[σ(y)], y ∈ Yt

− log (hθ(x)[σ(y)]/|Yi|) , y ∈ Yi, i = 1, 2, . . . , t− 1
, (20)

where σ : ∪t
i=1Yi −→ K + F + (t− 1) maps new labels to their K class-corresponding prototypes

and maps old labels to their t− 1 task-corresponding backward prototypes.

Therefore, similar to Eq. 2, the conditional probability density and marginal probability density for
Stable-BEEF can be re-formulated as :

Pθ(y|x) =


hθ(x)[σ(y)]∑K+t−2

k=0 hθ(x)[k]
, y ∈ Yt

hθ(x)[σ(y)]

|Yi|
∑K+t−2

k=0 hθ(x)[k]
, y ∈ Yi, i = 1, . . . , t− 1

, Pθ(x) =

∑K+t−2
k=0 hθ(x)[k]∑

x′
∑K+t−2

k=0 hθ(x′)[k]
.

(21)
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And then we can induce that the energy function in Pθ(x) is formulated as

Eθ(x) = − log

K+t−2∑
k=0

hθ(x)[k] . (22)

Like Eq. 4, Stable-BEEF also estimates the joint distribution Pθ(x, y), that is

argmin
θ

EPreal(x) [− logPθ(x)] + EPreal(x,y) [− logPθ(y|x)] . (23)

And same to the original BEEF, Stable-BEEF also aims to find its gradient equivalent optimization
objective to avoid the intractable normalizing constant in the joint distribution defined by the energy
Eθ(x, y).

Theorem B.1 (Marginal Distribution Maximum Likelihood Estimation for Stable-BEEF). Defining
E′

θ(x) = − log
∑K+t−2+F

k=K+t−1 hθ(x)[k] and its corresponding marginal distribution as P′
θ(x), the

optimization of EPreal(x) [− logPθ(x)] is equivalent to that of EPreal(x)

[
− log

∑K+t−2
k=0 hθ(x)[k]

]
+

λθ̄EP′
θ̄
(x)

[
− log

∑K+t−2+F
k=K+t−1 hθ(x)[k]

]
when gradient descend is applied, where λθ̄ is the ratio of

the normalizing constants determined by E′
θ(x) and Eθ(x), and θ̄ means that parameters of θ is

frozen (i.e., instances sampled from P′
θ̄
(x) are detached).

Proof. Since Pθ(x) =
exp(−Eθ(x))∑
x′ exp(−Eθ(x))

, we have

EPreal(x) [− logPθ(x)] = EPreal(x) [Eθ(x)] + log
∑
x′

exp(−Eθ(x
′)) . (24)

Take the gradient of the right part in Eq. 24, and we have

∇θ log
∑
x′

exp(−Eθ(x
′))

=
∑
x

exp(−Eθ(x))∑
x′ exp(−Eθ(x′))

∇θEθ(x)

=
∑
x

∑K+t−2
k=0 hθ(x)[k]∑
x′ exp(−Eθ(x′))

·
∇θ

∑K+t−2
k=0 hθ(x)[k]∑K+t−2

k=0 hθ(x)[k]

=
∑
x

∇θ(1−
∑K+t−2+F

k=K+t−1 hθ(x)[k])∑
x′ exp(−Eθ(x′))

=−
∑
x

∇θ

∑K+t−2+F
k=K+t−1 hθ(x)[k]∑

x′ exp(−Eθ(x′))

=−
∑
x

∑
x′ exp(−E′

θ(x
′))∑

x′ exp(−Eθ(x′))
· exp(−E′

θ(x))∑
x′ exp(−E′

θ(x
′))

·
∇

∑K+t−2+F
k=K+t−1 hθ(x)[k]

exp(−E′
θ(x))

=−
∑
x

∑
x′ exp(−E′

θ(x
′))∑

x′ exp(−Eθ(x′))
· exp(−E′

θ(x))∑
x′ exp(−E′

θ(x
′))

·
∇

∑K+t−2+F
k=K+t−1 hθ(x)[k]∑K+t−2+F

k=K+t−1 hθ(x)[k]

=−
∑
x

Z ′
θ

Zθ
· exp(−E′

θ(x))∑
x′ exp(−E′

θ(x
′))

· ∇θ log

K+t−2+F∑
k=K+t−1

hθ(x)[k]

=− Z ′
θ

Zθ
EP′

θ(x)

[
∇θ log

K+t−2+F∑
k=K+t−1

hθ(x)[k]

]

=−∇θ

{
Z ′
θ̄

Zθ̄

EP′
θ̄
(x)

[
log

K+t−2+F∑
k=K+t−1

hθ(x)[k]

]}
.

(25)
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where θ̄ represents that θ is frozen (i.e., gradients are not computed), Z ′
θ̄
=

∑
x′ exp(−E′

θ(x
′)) is

the normalizing constant for energy E′
θ(x), and Zθ is the normalizing constant for energy Eθ(x).

Hence, the objective EPreal(x) [− logPθ(x)] is equivalent to

EPreal(x)

[
− log

K+t−2∑
k=0

hθ(x)[k]

]
+ λθ̄EPθ̄(x

′)

[
− log

K+t−2+F∑
k=K+t−1

hθ(x)[K + 1]

]
, (26)

where λθ̄ =
Z′

θ̄

Zθ̄
.

Theorem B.2 (Conditional Distribution Maximum Likelihood Estimation for Stable-BEEF). With
preliminaries from Thm. B.1, the optimization of EPreal(x,y) [− logPθ(y|x)] is equivalent to that of

EPreal(x,y) [− log hθ(x)[σ(y)]] + µθ̄EPreal(x)

[
− log

∑K+t−2+F
k=K+t−1 hθ(x)[k]

]
when gradient descend

is applied, where µθ̄ =
∑K+t−2+F

k=K+t−1 hθ̄(x)[K+1]∑K+t−2
k=0 hθ̄(x)[k]

.

Proof. Considering the definition of Pθ(y|x) in Eq. 2, we have

EPreal(x,y) [− logPθ(y | x)]

=EPreal(x,y)

Eθ(x, y) + log
∑

y′∈∪t
i=1Yi

exp(−Eθ(x, y
′))


=

t−1∑
i=1

EPreal(x,y)∩y∈Yi

[
− log

hθ(x)[σ(y)]

|Yi|

]
+ EPreal(x,y)∩y∈Yt

[− log hθ(x)[σ(y)]] +

EPreal(x)

[
log

K+t−2∑
k=0

hθ(x)[k]

]
(27)

The gradient of EPreal(x,y)∩y∈Yi

[
− log hθ(x)[σ(y)]

|Yi|

]
with respect to θ is equal to that of

EPreal(x,y)∩y∈Yi
[− log hθ(x)[σ(y)]] (i = 1, 2, . . . , t − 1) no matter whatever |Yi| is. Therefore,

the first t components in Eq. 27 can be written in a unifying form, that is

EPreal(x,y)∩y∈∪t
i=1Yi

[− log hθ(x)[σ(y)]] , (28)

where For the last component in Eq. 16, we have

∇θ log

K+t−2∑
k=0

hθ(x)[k]

=
∇θ(1−

∑K+t−2+F
k=K+t−1 hθ(x)[k])∑K+t−2

k=0 hθ(x)[k]

=−
∇θ

∑K+t−2+F
k=K+t−1 hθ(x)[k]∑K+t−2
k=0 hθ(x)[k]

=−
∑K+t−2+F

k=K+t−1 hθ(x)[k]∑K+t−2
k=0 hθ(x)[k]

·
∇θ

∑K+t−2+F
k=K+t−1 hθ(x)[k]∑K+t−2+F

k=K+t−1 hθ(x)[k]

=−
∑K+t−2+F

k=K+t−1 hθ(x)[k]∑K+t−2
k=0 hθ(x)[k]

· ∇θ log hθ(x)[K + 1]

=∇θ

{
−
∑K+t−2+F

k=K+t−1 hθ(x)[k]∑K+t−2
k=0 hθ(x)[k]

· log
K+t−2+F∑
k=K+t−1

hθ(x)[k]

}

(29)

Therefore, the Objective EPreal(x,y) [− logPθ(y | x)] is also equivalent to

EPreal(x,y) [− log hθ(x)[σ(y)]] + µθ̄EPreal(x)

[
− log

K+t−2+F∑
k=K+t−1

hθ(x)[k]

]
, (30)
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where µθ̄ =
∑K+t−2+F

k=K+t−1 hθ(x)[k]∑K+t−2
k=0 hθ(x)[k]

.

Combining Thm. 26 and Thm. 30, we get the final optimization objective

EPreal(x)

[
− log

K+t−2∑
k=0

hθ(x)[k]

]
+ λθ̄EPθ̄(x

′)

[
− log

K+t−2+F∑
k=K+t−1

hθ(x)[k]

]
+

EPreal(x,y) [− log hθ(x)[σ(y)]] + µθ̄EPreal(x)

[
− log

K+t−2+F∑
k=K+t−1

hθ(x)[k]

] (31)

Note that hθ(x)[i] ≥ 0 for all i = 1, 2, . . . ,K + t− 2 + F , and then we get

EPreal(x)

[
− log

K+t−2∑
k=0

hθ(x)[k]

]
≤ EPreal(x,y) [− log hθ(x)[σ(y)]] , (32)

E

[
− log

K+t−2+F∑
k=K+t−1

hθ(x)[k]

]
≤ E

[
− log max

k∈{K+t−1,...,K+t−2+F}
hθ(x)[k]

]
. (33)

Hence, Eq. 31 is upper bounded by

2EPreal(x,y) [− log hθ(x)[σ(y)]] + λθ̄EPθ̄(x
′)

[
− log max

k∈{K+t−1,...,K+t−2+F}
hθ(x)[k]

]
+

µθ̄EPreal(x)

[
− log max

k∈{K+t−1,...,K+t−2+F}
hθ(x)[k]

]
.

(34)

Taking Eq. 34 as the optimization objective, we expand the expansion phase in original BEEF into a
more stable form with multiple backward and forward prototypes, namely the expansion phase in
Stable-BEEF.

Here we further discuss how we achieve the expanded fusion phase in Stable-BEEF. We also assume
that we have trained a unifying model hθo for all the prior tasks and there is a σo maps labels to
output index of hθo . Considering that those t− 1 backward prototypes measures the confidence for
t− 1 prior tasks, similar to Eq. 10, we define

E{θo,θ}(x, y) =

{
− log {hθo(x)[σ(y)] + αihθ(x)[σ(y)] + βi} , y ∈ Yi, i = 1, 2, . . . , t− 1

− log hθ(x)[σ(y)], y ∈ Yt
.

(35)
Then we have

P{θ,θo} (y|x) =


hθo (x)[σ(y)]+αhθ(x)[0]+β∑M

m=1[hθo (x)[m]+αhθ(x)[0]+β]+
∑K

k=1 hθ(x)[k]
, y ∈ Yo

hθ(x)[σ(y)]∑M
m=1[hθo (x)[m]+αhθ(x)[0]+β]+

∑K
k=1 hθ(x)[k]

, y ∈ Yn

. (36)

αi and βi are obtained through the minimization of the negative log-likelihood on the exemplar-set.

C MORE EXPERIMENTAL SETTINGS

C.1 EXEMPLAR SELECTION.

As we claimed, all the prior methods assume that all the old samples are available when selecting
exemplars. Typically, they apply the exemplar selection strategy proposed in Rebuffi et al. (2017),
where exemplars are carefully selected by greedily minimizing the derivation of the feature center
between the selected exemplars and all the old samples. Besides, they assume all the old categories
are equal and store the same number of exemplars for each old class. This violates the truth in many
application scenarios, where available exemplars are usually imbalanced and even some instances
for old categories become unavailable at the following sessions. Therefore, the robustness to the
imbalance or lack of some categories is important for CIL methods. Assuming there are k old classes
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and we want to store m exemplars for each old class. We design three protocols for the imbalance
of exemplar-set: (1) half-half: in this protocol, half of k classes are allowed to store more than m
exemplars and the other half of k classes are only allowed to store less than m exemplars. Specifically,
defining the balance factor γ ∈ [0, 1], half of k classes store (1 + γ)m exemplars while the other
store (1− γ)m exemplars. (2) exp: in this protocol, we use a negative exponential sequence of length
k as the weight for each category. Specifically, the ith class has the weight exp(−γi) and its number

of exemplars is defined by
⌊

exp(−γi)∑k
j=1 exp(−γj)

· km
⌋

. (3) random: we uniformly sample km exemplars

from all available old instances. This protocol is the most similar to the original setting since the
expectation of the number of exemplars for each category is m statistically.

C.2 IMPLEMENTATION DETAILS.

For ImageNet, we adopt the standard ResNet-18 (He et al., 2016) as our feature extractor and set the
batch size as 256. The learning rate starts from 0.1 and gradually decays at milestones (170 epochs
in total). For CIFAR-100, we use ResNet-32 (He et al., 2016) as our feature extractor and set the
batch size to 128. The learning rate also starts from 0.1 and gradually decays at milestones (170
epochs in total). For both ImageNet and CIFAR-100, we use SGD with the momentum of 0.9 and the
weight decay of 5e-4 at the expansion phase. At the fusion phase, we use SGD with a momentum of
0.9 and set the weight decay to 0, and train the fused model on the exemplar-set for 60 epochs. We
apply the data augmenation following Rebuffi et al. (2017) and Wang et al. (2022a).To generating
samples from P′

θ(x) when learning the energy manifold, we use representations of real instances
as the starting point of SGLD (Welling & Teh, 2011) following Contrastive Divergence (Hinton,
2002), which can be seen as a disturbance to the original representation of the real samples. In
order to further accelerate the sampling process, we employed additional representation perturbation
strategies, including mixup (Zhang et al., 2018), rotation, etc., on the feature representations of
samples. Therefore, we are able to generate new samples rather efficiently when learning the energy
manifold. To further stabilize the training process and improve the performance, we expand the
original BEEF into Stable-BEEF with multiple backward and forward prototypes. The number of
backward prototypes is set to be the number of old tasks, and the number of forward prototypes is set
to a constant number F . The detailed illustration and proof are provided in Appendix B. Besides,
to simplify the training procedure and avoid the intractability of normalizing constants, we use a
trade-off coefficient λ to replace λθ̄ and µθ̄ in our implementation.

D MORE DISCUSSIONS

D.1 CONTRIBUTIONS OF BEEF

Our contribution is three-fold: 1) We propose a novel training paradigm for CIL: We efficiently train a
specific module for the current task while achieving bi-directional compatibility and then fuse it with
the prior model under minimal effort. 2) We provide a theoretical proof showing that the training cost
is inherently the modeling of an energy-based model 3) We achieve state-of-the-art performance with
lower training cost and maintain the performance when only randomly sampled old data is available
while other methods fail dramatically.

D.2 DIFFERENCE AND CONNECTIONS WITH PRIOR METHODS

Here we discuss the crucial difference and connections between our method and prior works. Though
Wang et al. (2021) has proposed to use an energy-based extra dimension to model the open world
uncertainty in OOD detection, it is not suitable for CIL where old categories should be considered to
alleviate forgetting. Besides, we take the joint distribution P(x, y) = P(x)P(y|x) into consideration,
which forces the model to learn discrimination (P(y|x)) and be sensitive to the input distribution
shift (P(x)) and thus modules that do not match the input distribution will capture the distribution
shift and weaken their influence on the ultimate predictions. Similar to Joseph et al. (2022), we
also utilize the energy-based model to achieve energy alignment at the evaluation phase. While our
energy-based model is inherently built at the training phase, Joseph et al. (2022) need to train an extra
energy aligner after the training phase, introducing additional training costs. Apart from that, despite
they assume that the task-ids of given samples are known in their implementation, we do not require
that. Zhou et al. (2022) cleverly utilize multiple virtual prototypes to reserve feature space for future

21



Published as a conference paper at ICLR 2023

unseen categories, thus achieving forward compatibility. Our method can be seen as a bi-directional
compatible method, with one prototype pb measuring the confidence for old categories and the other
prototype pf modeling the out-of-distribution probability.

D.3 THE ROBUSTNESS OF BEEF TO THE IMBALANCED EXEMPLAR-SET

Here we give an explanation about why BEEF demonstrates strong robustness to the imbalance of
exemplar-set. Previous methods, whether based on dynamic-structure or regularization, rely on a
unifying feature representation and classifier. When the exemplar-set is unbalanced, that is, when
the number of samples in some categories is very small or does not exist, the feature representation
and classifier of the class are damaged. Although our method still needs to fuse all modules into a
unified classifier, each module is decoupled from each other and is responsible for different tasks.
Thus, when training new tasks, even if samples of some old classes are not available, the old modules
responsible for these classes are not affected. In addition, when training new modules, we classify
all old classes into a special backward prototype. This special backward prototype aims to learn the
characteristics shared by categories in old tasks, which is insensitive to the imbalance of old samples.
In the model fusion phase, the confidence of backward prototype is uniformly added to the output of
old modules, thus acting as a soft task discriminator without affecting the predictions of old modules
on old tasks.

D.4 THE EFFICIENCY OF BEEF

Training Cost Analysis. Previous methods, whether based on knowledge distillation or dynamic
structure, require the forward propagation of old modules when learning new tasks, to achieve a
unifying classifier. Besides, with the increasing number of modules retained, dynamic-structure-based
methods suffer from increasing training costs. The training of BEEF consists of two phases, expansion
and fusion. At the expansion phase, we only need to train the newly created module independently
without the involvement of prior modules, so that the training cost at the expansion phase is equivalent
to tuning a single module and will not increase at incremental stages. Though we follow Stochastic
Gradient Langevin Dynamics (SGLD) (Welling & Teh, 2011) to generate samples from P′

θ(x) when
learning the energy manifold. However, we have made many strategies to simplify and accelerate the
process, including Contrastive Divergence, mixup, rotation, etc. At the fusion phase, we only need to
learn two factors including scale factor α and bias factor β through training on the randomly selected
exemplar-set, and therefore the training cost is minimal compared to the expansion phase.

Particularly, we compare the training cost of BEEF with the methods including the classical dynamic-
structure-based method DER (Yan et al., 2021) and regularization-based methods like iCaRL (Rebuffi
et al., 2017) and WA (Wu et al., 2019). Without loss of generality, we take the tth incremental stage
as an example. Although all the old modules are frozen in DER, the training process still requires
the forward propagation of all t − 1 old modules and the forward propagation of the new module
and then applies backpropagation to update the new module. Apart from that, DER also needs to be
the final classifier with a balanced reserved dataset. Therefore, the training process of DER at tth
incremental stage is: t × forward propagation, 1 x backpropagation, 1 × finetune classifier. Similarly,
due to the requirements of knowledge distillation in regularization-based methods like iCaRL, the
training cost is: 2 × forward propagation, 1 × backpropagation. In contrast, in BEEF, we first train
the new module in a decoupled manner, which only requires: 1× forward propagation, 1× backward
propagation. Then, the fusion phase only needs to tune two parameters with a small subset, whose
cost is minimal and is even more efficient than the process of simply tuning the final classifier in
DER. Therefore, the training cost of BEEF consists of: 1 × forward propagation, 1 × backward
propagation, 1 × finetune α and β.

Specifically, we compare the training time of BiC (regularization-based), DER (dynamic-structure-
based) and BEEF at each incremental session on CIFAR-100 B0 10 steps protocol, the results are
shown in Table. 4. We can observe that the average training time of BEEF is lower than both the
regularization-based method BiC and the dynamic-structure-based method DER.

Memory usage analysis. Here, we report the peak memory for storing the exemplars and the
learnable & frozen network parameters during the model training through all phases on B0 5 steps
protocol of Benchmark CIFAR-100 and ImageNet-100 in Table. 5. For the model parameters, we use
the type float32 to save all of them. That is, each parameter in the model takes 4 bytes of memory.
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Training time cost in each session (min)

Methods 1 2 3 4 5 6 7 8 9 10 Average
BiC 25 42 43 44 42 43 45 43 46 48 42.1
DER 25 37 43 49 53 58 66 74 78 91 57.4
BEEF 30 31 33 40 38 41 43 42 45 46 38.9

Table 4: Training time cost comparisons.

For images with width W and height H , since each image has three channels and each pixel (with
value 0-255) takes one byte, therefore each image takes 3×W ×H bytes of memory. Assuming that
we have N exemplars and the number of model parameters is M , the memory usage is calculated
as 3×W ×H ×N + 4×M . Note that the memory usage of RMM varies with different choice
of configs. For CIFAR-100, the memory usage of it varies between 9.66 MB and 24.2 MB. For
ImageNet-100, the memory usage of it varies between 378 MB to 1949 MB. We report the mean
value of them in the above table.

Peak memory usage of different methods (MB)

Benchmarks Replay iCaRL BiC PodNet FOSTER DyTox DER RMM BEEF

CIFAR-100 7.64 7.64 7.64 7.64 7.64 50.62 16.74 16.93 16.74
ImageNet-100 330 330 330 330 330 333 554 1164 554

Table 5: Peak memory usage comparisons.

E MORE EXPERIMENTAL RESULTS

E.1 DETAILED PERFORMANCE ON STANDARD CIFAR-100 B50 PROTOCOLS.

We report the detailed accuracy on standard CIFAR-100 B50 protocols with 5, 10, 25 incremental
sessions in Fig. 7. We can observe that BEEF
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(b) CIFAR-100 B50 10 steps
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(c) CIFAR-100 B50 25 steps

Figure 7: Performance on standard CIFAR-100 B50 protocols.

E.2 PERFORMANCE OF BEEF-COMPRESS WITH BACKBONES IN VARIOUS SIZES.

We report the detailed accuracy of BEEF-Compress with different backbones, including ResNet 20,
ResNet 32, ResNet 44, ResNet 56, and ResNet 110 in Table 6. We can see that the training strategy
of BEEF is consistently effective in backbones of various sizes. The accuracy of each incremental
session has an upward trend as the model becomes larger.

E.3 PERFORMANCE OF PRIOR WORK WITH FORWARD COMPATIBILITY.

Our overall training strategy is difficult to integrate with other existing CIL methods, but we find
that our proposed forward compatibility implementation can be integrated into many methods. We
experimented on the baseline regularization-based method WA and found that by implementing
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Accuracy in each session (%)

Backbones 1 2 3 4 5 6 Average
ResNet 20 77.18 74.15 70.96 65.45 61.28 58.22 67.87
ResNet 32 80.9 77.73 73.69 68.22 64.61 61.76 71.15
ResNet 44 81.54 77.87 74.10 69.42 65.67 62.06 71.78
ResNet 56 82.44 78.45 75.20 70.05 65.16 62.77 72.34
ResNet 110 83.6 79.72 75.47 70.44 65.89 63.52 73.11

Table 6: Performance of BEEF with backbones in various sizes.

forward compatibility, that is, by classifying the perturbed features sampled by the built-in energy
model into forward prototypes, we improve the performance by an evident margin. This might indicate
that through achieving forward compatibility, our model is more likely to learn a representation with
stronger generalization and transferability. We validate on CIFAR-100 B0 10 steps protocols with
ResNet-18, and here we report the detailed accuracy at each incremental session in Table. 7, where
WA+ means WA with forward compatibility.

Accuracy in each session (%)

Methods 1 2 3 4 5 6 7 8 9 10 Average
WA 89.5 78.85 75.73 71.4 68.22 64.05 62.2 57.62 55.3 53.53 67.64
WA+ 90.8 80.65 76.9 71.97 69.22 65.12 63.39 58.74 56.74 55.24 68.87

Table 7: Performance of WA w/o the forward compatibility.

E.4 DETAILED PERFORMANCE ON STANDARD IMAGENET-100 PROTOCOLS.

We report the detailed accuracy on standard ImageNet-100 in Fig. 8. We can observe that BEEF
achieves competitive performance under different ImageNet-100 protocols.
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(a) ImageNet-100 B0 10 steps
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Figure 8: Performance on ImageNet-100.

E.5 MORE RESULTS ON IMBALANCED PROTOCOLS.

We report more results on imbalanced protocols in Fig. 9. From the figure, we can observe that
even under the configuration of a more balanced exemplar-set compared to that of Fig. 5, other
methods still suffer from significant performance degradation, while BEEF achieves a much higher
average accuracy than the other methods. Specifically, in the case of half-half and γ = 0.5, BEEF
outperforms the best method by 4.25%, and in the case of exp and γ = 0.9, BEEF outperforms the
best method by 9.80%. These results further demonstrate the robustness of our method BEEF in
terms of exemplar-set selection strategy.
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(a) half-half: γ = 0.5
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Figure 9: Performance on imbalanced protocols.
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