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ABSTRACT

Fine-tuning is an effective approach for adapting a pre-trained language model
to downstream tasks, but it incurs a high computational cost. To achieve an ex-
tremely efficient task adaptation, |[Phang et al| (2022) have proposed to use an
auxiliary hypernetwork to generate task-specific weights without any backpropa-
gation. A hypernetwork can generate weights for parameter-efficient fine-tuning
(PEFT) modules, such as prefixes (Li & Liang,[2021) and LoRAs (Hu et al.,[2021)),
for any unseen task based on a few task-specific demonstration examples, at the
cost of a single forward pass. However, hypernetwork training is challenging.
Firstly, it is sample inefficient due to the under-exploitation of the dependencies
between PEFT weights across layers. Secondly, it exhibits training instability
due to the high diversity of few-shot demonstration inputs. To address these lim-
itations, we propose a novel hypernetwork training approach, named HART. It
exploits layerwise dependencies by autoregressively generating weights for indi-
vidual layers, and stabilizes the training by regularizing the consistency between
weights generated based on different demonstrations. We train the hypernetwork
on a diverse collection of tasks (Wang et al.,2022bj;|Sanh et al., 2021)) and evaluate
its performance on unseen tasks. HART notably outperforms |Phang et al.| (2022)
on both T5-Large and T5-XL models.

1 INTRODUCTION

Pre-trained large language models (LLMs) have demonstrated remarkable capabilities on various
tasks (Zhang et al., |2022a; Ouyang et al.,|2022; Bubeck et al., 2023; Touvron et al., 2023} /Wei et al.}
2022a). While fine-tuning is an effective approach for adapting pre-trained models to specific tasks,
it incurs significant computational costs, which further escalates with the increasing model size. In
contrast, in-context learning (ICL) can quickly generalize a pre-trained model to unseen tasks by
conditioning the model’s inference on a few demonstration examples (Wang et al.,|2022a; |Wei et al.,
2022b; [Zhou et al., 2022} Xie et al., [2021; Min et al.l 2022)). However, without fine-tuning, the
model weights lack the adaptability to each task.

To achieve an extremely fast adaptation to unseen tasks, |Phang et al.| (2022) have proposed a hyper-
network approach. A hypernetwork is a text-to-weight generator, which learns a universal mapping
across a large collection of tasks from few-shot demonstration examples to parameter-efficient fine-
tuning (PEFT) module weights of a pre-trained model, such as the weights of prefixes (L1 & Liang,
2021)), LoRAs (Hu et al.} [2021)) and adaptors (Houlsby et al.,|2019). Consequently, when provided
with several few-shot demonstration examples from an unseen task, the hypernetwork can gener-
ate the PEFT parameters for that task. Compared to iteratively fine-tuning task-specific parameters
from scratch, generating these parameters requires only a single forward pass, thereby facilitating
an extremely fast adaptation to various unseen tasks.

The hypernetwork adopts an encoder-decoder Transformer architecture, in which the decoder gener-
ates parameters conditioned on the encoded demonstration examples. To train such a hypernetwork,
the decoder generates a hidden state at each training iteration, which is then projected, by differ-
ent MLPs, into the weight spaces of different layers in the pre-trained model (referred to as “the
main model”). Then the hypernetwork is optimized based on the main model’s prediction loss on a
training example.
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Figure 1: The bi-directional self-attention
map averaged by attention heads in the last
layer of the hypernetwork decoder. The in-
put key/query is a sequence of hidden states,
each responsible for learning PEFT parame-

Figure 2: An illustrative comparison between non-
autoregressive (left) and autoregressive (right) param-
eter generation schemes. Hg..: the hypernetwork de-
coder; z: a learnable input state; h;: the hidden state

ters at a corresponding layer. Our experiment at the [-th decoding step; ¢;: the PEFT parameters for
is conducted using T5-Large model (Raffel the [-th layer. L: the number of layer in the pre-trained
et all 2020) on P3 (Sanh et al, 2021). model.

However, such a training scheme faces several limitations. One limitation is its low sample effi-
ciency due to its heavy reliance on MLPs. Firstly, each MLP is assigned to learn parameters for a
specific layer, based on a state that is shared among all layers. This implies that the entire respon-
sibility of modeling the specificities of different layers fall upon the MLPs. However, the decoder,
which has a greater capacity to capture layer-specific information in high-dimensional spaces, is not
utilized to its fullest potential. Secondly, each MLP operates independently, rendering this design
incapable of leveraging the potential structured dependencies between weights at different layers,
which could serve as useful inductive biases during weight generation. In multi-layer networks, it
is plausible to expect structured dependencies between weights across layers due to the structured
dependencies between each layer’s inputs: each layer only takes inputs from its preceding layer.
To validate this hypothesis, we train the decoder to generate a sequence of hidden states using bi-
directional attention, with each state responsible for learning the weights for an individual layer.
Figure [I] presents the attention map across all states, revealing that each layer primarily attends to
its two preceding layers, emphasizing its immediate predecessor. This observation confirms the ex-
istence of strong dependencies between weights at adjacent layers, an unexploited inductive bias for
weight generation. Both the underutilization of the decoder’s capabilities and underexploitation of
the layerwise dependency impair the sample efficiency. As a result, the representation power of the
generated parameters is compromised, leading to the underfitting of the main model.

To improve the sample efficiency, we propose a novel autoregressive parameter generation scheme
as illustrated in Figure 2] Specifically, the decoder generates a sequence of hidden states autore-
gressively, with each state responsible for learning PEFT parameters of a corresponding layer. This
allows each state to be learned through a layer-specific transformation modeled by the decoder.
Furthermore, since each state is generated conditioned on its preceding state, the dependencies be-
tween adjacent layers are explicitly enforced, thereby introducing a proper inductive bias into the
generation process. By capturing the layer-specificity and exploiting the layer-dependencies, the
autoregressive scheme improves the expressiveness of the generated parameters.

Another challenge in hypernetwork training is its instability, which arises from the high diversity
of inputs. As each input is a randomly selected sequence of demonstrations, considerable variation
can occur across iterations, leading to significant variance in generated parameters. This variance
destabilizes the main model’s prediction loss and the hypernetwork training process (Figure ). To
resolve this issue, we propose a local consistency regularization method. This method discourages
significant deviations in parameters generated between consecutive iterations, thereby stabilizing the
gradient computation and the hypernetwork training process.

Finally, we propose HART, a novel Hypernetwork training scheme that incorporates both
AutoRegressive parameter generation and local consistency regularizaTion. We train the hyper-
network on diverse tasks and evaluate its generalizability on unseen tasks. Specifically, HART
outperforms HyperTuning (Phang et al., |2022) by 1.6 points on the Super-Naturallnstructions task
collection (S-NI, Wang et al.| (2022b))) and by 3.6 points on the P3 task collection (Sanh et al.| [2021)
using the T5-XL model (Raffel et al.| 2020). Additionally, thorough analysis confirms that HART
generates well-fitted parameters and enhances the stability of hypernetwork training.
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2 PRELIMINARIES

2.1 IN-CONTEXT LEARNING

In-Context learning (ICL) considers inferencing a pre-trained model on an unseen task based on
a few demonstration examples (Liu et al., | 2021; Wang et al., |2022a; |Wei et al.|, 2022b}; Zhou et al.,
2022). Such an approach significantly outperforms zero-shot inference by leveraging the distribution
of few-shot demonstrations as a task-specific prior for model prediction (Min et al., [2022;|Xie et al.}
2021). Specifically, the model takes a concatenated input of the few-shot demonstrations and a query
to generate the response. Each input is written in a natural language template, such as a task-specific
prompt or instruction, allowing the model to better interpret and follow the task intention.

Multi-task In-Context Fine-tuning. Due to the lack of weight adaptation, ICL significantly un-
derperforms fine-tuning. To mitigate this gap, researchers have proposed to in-context fine-tune the
pre-trained model on diverse training tasks before ICL (Min et al., 2021} [Sanh et al., [2021}; [Wang
et al., [2022b; (Chung et al., [2022). Formally, we consider a pre-trained model denoted as M (-; 6)
parameterized by 6, and a set of training tasks denoted as 7. At each training iteration, a task 7
is sampled in proportion to the task size from 7. Then, a query denoted as x, its corresponding
response denoted as y, and K > 0 demonstration input-output pairs denoted as {(zx, yx)}1i_, are
sampled from the task distribution D7. The model is optimized based on the following objective:

mgin ETGT{(Myyk)}szla(Ivy)NDTE(M([d : x}; 0)7 y)’ M

where ¢ denotes the task loss and d := [z1 : y1 : ... : Tk : Yk | denotes a concatenation of K -shot
demonstrations. In prompted fine-tuning, x,y and d will be mapped to the prompted forms (Sanh
et al., 2021} Min et al., |2021). In instruction fine-tuning, d will be appended to a task definition
(Wang et al.} 2022b; |Chung et al.| 2022).

2.2 HYPERNETWORK

Parameter Efficient Fine-tuning (PEFT) introduces a minimal set of parameters, termed “PEFT
parameters”, to each layer of the pre-trained model and fine-tunes only these parameters while keep-
ing the pre-trained model frozen (Li & Liang|2021;Hu et al., 2021;|Houlsby et al.,|2019). Although
PEFT attains adaptability comparable to standard fine-tuning (Ding et al.,2022), it incurs significant
costs from full-model gradient backpropagation.

Hypernetworks. A hypernetwork is an auxiliary model trained to generate weights for a main model
(Stanley et al., | 2009; Ha et al., 2016). Phang et al.| (2022) have proposed to use a hypernetwork to
generate PEFT parameters for a pre-trained model. With a few demonstration examples from a new
task, the hypernetwork can generate task-specific parameters, enabling the main model to conduct
zero-shot inference on task-related queries. An advantage of this method is that, in contrast to PEFT,
task adaptation requires only one forward pass, thereby cutting the backpropagation costs. When
weighted against ICL, this method translates context into PEFT parameters, supporting zero-shot
inference and improving task adaptability through task-specific weight adjustments.

The hypernetwork is trained in the multi-task in-context fine-tuning setting. Specifically, we denote
a hypernetwork parameterized by £ as H(+;&). At each training iteration, the hypernetwork takes
the K -shot demonstrations d as input and generates the PEFT parameters. The main model takes
in the query = and generates the response y using the PEFT parameters. The hypernetwork is then
optimized based on the main model’s prediction loss:

M E 7 (0 ), (o.9)~0r UM (@36, H(d: ©)) ). @

Parameter Generation in Hypernetworks. The hypernetwork employs a Transformer encoder to
encode the demonstrations and a Transformer decoder to conditionally generate parameters based on
the encoded demonstrations. Specifically, we denote the decoder as Hec(+; £dec ). At the ¢-th train-
ing iteration, the decoder takes in a learnable token z(*) € R1*m where d,, is the hypernetwork’s
hidden dimension. It then generates a hidden state h(*!) € R'*®» through one decoding step:

B = Haeo (=0 €0, ), 3)
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where e(*) denotes the encoded demonstration The generated hidden state is then projected into
L sets of PEFT parameters through L learnable MLP layers:

o = mLpy(h®) VI € [L], @

where qbl(t) € R% denotes the PEFT parameters generated for the I-th layer of the main model,
which consists L layers.

3 METHOD

The parameter generation scheme in hypernetworks underexploits the layerwise dependencies and
exhibits training instability. To address these issues, we propose HART, which exploits layerwise
dependencies through autoregressive parameter generation and stabilizes training through local con-
sistency regularization.

3.1 AUTOREGRESSIVE PARAMETER GENERATION

We propose to autoregressively generate the PEFT parameters for different layers in the main model.
At the t-th training iteration, the hypernetwork decoder generates L hidden states through L decod-
ing steps. Each state is generated conditioned on its preceding state, and is responsible for learning
the weight space of the corresponding layer. At the first decoding step, the decoder takes in a learn-
able token, z(t), and generates the first hidden state, h(t), following Eq.

hgt) = Hyee(2®; f(t) ).

dec

At the second decoding step, the decoder takes in hgt) and generates the second hidden state, hgt).
This procedure is repeated for L decoding steps:

MO = B0 €0) ort =21,

Then we learn L MLP layers to project these L hidden states into L sets of PEFT parameters,
respectively, following Eq. f

o =mLp () Wi e L),

where gbl(t) denotes the set of PEFT parameters generated for the [-th layer of the main model. We
can then compute the main model’s prediction loss as:

Lonea(§Y) = (M (2930, {6 }iz1),y™). 5)
where / is defined in Eq

The autoregressive generation scheme allows us to leverage a powerful decoder, instead of relying
on MLPs, to model layer-specific transformations. Furthermore, this scheme exploits the strong
dependencies between weights at adjacent layers as observed in Figure |1} thereby introducing a
proper inductive bias into the generation process.

By exploiting the decoder’s capabilities and the layerwise dependencies, the autoregressive genera-
tion scheme achieves a greater sample efficiency than the original scheme. As a result, the generated
parameters are more expressive, leading to a better-fitted main model.

3.2 LocAL CONSISTENCY REGULARIZATION

We further propose to encourage the PEFT parameters generated at consecutive training iterations
to not deviate significantly from each other. At the ¢-th iteration, we compute the local consistency
loss as:

Lot (€D =mse([p ..o AP Y b)),
where £ (£1)) = 0, MSE(-, -) denotes the mean squared error, and [hg') IR hg)] € RExdm jg

the concatenation of the sequence of generated hidden states. Finally, we optimize the hypernetwork
based on the sum of the prediction loss and the consistency loss using an SGD-type algorithm:

€D €9 = Vet (Lpreal€) + Lesn(€1)),

"We omit e(®) for the rest of the paper to simplify the notations.
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where L0 (£®) is defined in Eq.

By encouraging consistency between states generated at consecutive iterations, we mitigate drastic
changes in the generated parameters arising from highly diverse inputs. This improves the smooth-
ness of the main model, stabilizing both gradient computations and hypernetwork training.

4 EXPERIMENTS
We evaluate HART on several commonly used large-scale multi-task NLP benchmarks.
4.1 SUPER-NATURALINSTRUCTIONS (S-NI)

Dataset. Super-Naturallnstructions (S-NI, |[Wang et al.| (2022b))) consists of 1616 tasks spanning
76 diverse categories, including translation, question answering and sentiment analysis, etc. Each
task is associated with an expert-written task definition, a set of input-output pairs as positive and
negative demonstrations, and a set of input-output pairs as training queries and responses. For each
task, we construct the input to the hypernetwork as the concatenation of the task definition and
two fixed positive demonstrations, denoted as “Def+2Pos”. This input format has been observed to
outperform other formats (Wang et al., 2022b). Following |Phang et al.|(2022)), we select the English
tasks for training and evaluation. We evaluate the generation performance of the main model on the
held-out test set using the ROUGE-L metric.

Model initialization. All our experiments are conducted based on the LM-adapted TS5 models
(version 1.1, Lester et al.|(2021)). TS models are encoder-decoder Transformer-based models pre-
trained using web-scale text-to-text corpus (Raffel et al., ZOZOE We consider two model scales:
T5-Large (770M) and T5-XL (3B). For experiments on the T5-Large/XL, we initialize both the
hypernetwork and the main model with the T5-Large/XL unless otherwise stated. We only keep the
first 8 decoder layers (out of 24) in the hypernetwork for training efficiency. We randomly initialize
the MLP layers.

Training. We freeze the main model and multi-task fine-tune the hypernetwork. The hypernetwork
takes in input in the Def+2Pos format and generates the prefixes for the layerwise key and value rep-
resentations (Li & Liang| [2021)). We further adopt a fusion-in-decoder strategy, originally designed
for question answering tasks (Izacard & Gravel 2020} Ye et al.). [Ivison et al.| (2022) has validated
its effectiveness for hypernetworks, where the main model’s decoder attends to the concatenated
outputs from both the hypernetwork’s encoder and the main model’s encoder.

We fine-tune the hypernetwork for 10k steps in T5-Large experiments and 20k steps in T5-XL
experiments. We use the Adam-8bit optimizer (Kingma & Bal [2014} Dettmers et al., [2021) with a
learning rate of 5 x 10~5 and a batch size of 256. We select o € {1, 10, 20}. Further implementation
details are deferred to Appendix [8.1]

Inference. For each task in the held-out test set, the hypernetwork takes in input in the Def+2Pos
format and generates a set of prefixes. The main model then predicts all task queries using this single
set of prefixes and the fused output from both encoders.

Full Fine-tuning Baselines. We list as references the baselines for fine-tuning the full model:

o FT-Zero-Shot. We multi-task fine-tune a model, which predicts the response to a query.

o FT-Few-Shot. We multi-task in-context fine-tune a model, which takes the concatenation of the
task definition, two fixed positive demonstrations and a query as input, and predicts the response.

o Tk-Instruct (Wang et al.| |2022b) mainly differs from FT-Few-Shot in that each positive demon-
stration is further followed by an expert-written explanation.

o HINT (Ivison et al. |2022) is a hypernetwork approach where the hypernetwork and the main
model share weights and are jointly fine-tuned. It consists of two stages: 1) The hypernetwork is
pre-trained on the C4 corpus (Raffel et al.| [2020). Each input string is split into three random-length
chunks. The hypernetwork takes the first chunk as input to generate PEFT parameters. The main
model takes the second chunk as input to predict the third chunk. 2) The hypernetwork and the main
model share weights and are jointly in-context multi-task fine-tuned.

Parameter Efficient Fine-tuning (PEFT) Baselines. We compare with baselines for fine-tuning
the PEFT parameters:

’LM-adapted T5 models further improve T5 models in activation function, dropout, parameter sharing and
data filtration. We will omit “LM-adapted” when referring to the T5 models for the rest of the paper.
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e LoRA. Hu et al.| (2021) propose to add a pair of rank-decomposition weight matrices to each
attention weight matrix and only fine-tune these matrices. We apply LoRA to FT-Few-Shot.

o Prefix-Tuning. |Li & Liang (2021) propose to prepend a prefix to each key and value representation
in attention modules and only train the prefixes. We apply Prefix-Tuning to FT-Few-Shot.

o HyperTuning-PT Phang et al.|(2022) is a hypernetwork approach where the hypernetwork is fine-
tuned while the main model is frozen. Similar to HINT, HyperTuning also consists of two stages: 1)
The hypernetwork is pre-trained on the C4 corpus (“PT” stands for pre-training). Each input string
is split into four chunks of predefined length. The hypernetwork takes the first and fourth chunk as
input to generate PEFT parameters. The main model takes the second chunk as input to predict the
third chunk. 2) The hypernetwork is in-context multi-task fine-tuned (Eq. [2).

o HyperTuning is our re-implementation of HyperTuning-PT where we remove the hypernetwork
pre-training and adopt the fusion-in-decoder strategy.

Comparison of the Hypernetwork Approaches. Table |I| summarizes the differences between
HART, HyperTuning-PT and HINT. Compared with HINT, HART unties the weights between the
hypernetwork and the main model. While weight-sharing fine-tunes both models jointly and there-
fore achieves performance close to full fine-tuning, weight-untying can search for better PEFT pa-
rameters through leveraging a stronger hypernetwork (as we will see in Table [2). Furthermore,
weight-freezing retains the benefits of conventional PEFT methods, e.g., it prevents catastrophic
forgetting and saves the storage cost.

Compared with HINT and HyperTuning-PT, HART introduces autoregressive parameters generation
and local consistency regularization. HART removes the hypernetwork pre-training to accommo-
date the computational budget, and adds the fusion-in-decoder approach to alleviate the resulting
performance degradation (Table [6)). We remark that the hypernetwork pre-training would be com-
plimentary to HART.

Table 1: Comparison of HINT, HyperTuning-PT and HART.

Method Untie | Autoregressive Pre-train Adopt Fusion
weights generation hypernetwork | -in-decoder
HINT (Ivison et al.}[2022) No No Yes Yes
HyperTuning-PT (Phang et al.|[2022) Yes No Yes No
HART Yes Yes No Yes

Main Results. Table [2| and Table [3| show the evaluation results of the T5-Large and T5-XL main
models on the S-NI held-out test set, respectively. HART achieves an improvement of 1.6 points
over HyperTuning in both the T5-Large and T5-XL experiments, demonstrating the effectiveness
of autoregressive decoding and consistency regularization strategies. Compared with Prefix-Tuning
and LoRA, HART achieves around 3 points of gain, suggesting that the PEFT parameters learned
by HART are more generalizable than those learned by conventional PEFT methods.

We further use the Flan-T5-Large as the initialization to train the hypernetwork (the main model
is still initialized as a T5-Large model). Flan-T5-Large is a T5-Large model instruction fine-tuned
on the Flan collection (Chung et al., 2022), a more comprehensive and diverse task collection than
SN-I. By leveraging a stronger hypernetwork, the performance of the main model increases by 2.8
points, outperforming the best full fine-tuning baseline by 1.6 points. This suggests that we can
leverage the capability of a stronger auxiliary model to generate more expressive PEFT parameters
than those could possibly be learned based on the main model.

4.2 PuUBLIC POOL OF PROMPTS (P3)

Dataset. Public Pool of Prompts (P3,Sanh et al.[{(2021)) is a collection of prompted English datasets
covering 62 tasks. Each task consists of a set of input-output pairs formatted in manually-written
prompt templates. P3 was originally collected for the zero-shot setting, so it does not contain a
demonstration set. Therefore, at each iteration, we sample 16 prompts from the training set and con-
catenate them to form the hypernetwork input, denoted as ”’16-Shots”. We evaluate the main model
on the held-out validation set using the multiple-choice scoring of accuracy. All model initialization,
training and inference configurations follow Sectiond.1]

Full Fine-tuning Baselines: FT-Zero-Shot, FT-Few-Shot and HINT. In FT-Zero-Shot, the input
to the main model is a single prompted query. In FT-Few-Shot, the input is constructed as a concate-
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Table 2: Evaluation results of the T5-Large main model on the S-NI held-out test set. For HART-
FLAN-TS5, we use the FLAN-T5-Large as the initial model to train the hypernetwork. Otherwise,
we use the T5-Large as the initial model.

Method \ Avg. ROUGE-L

Full Fine-tuning
FT-Zero-Shot 40.6
FT-Few-Shot 47.6
Tk-Instruct (Wang et al.||2022b) 48.0

Parameter-Efficient Fine-tuning (PEFT)
Prefix-Tuning (Li & Liang![2021) 42.6
LoRA (Hu et al.||2021) 429
HyperTuning-PT (Phang et al.|[2022) 43.5
HyperTuning 45.2
HART 46.8
HART-FLAN-T5-Large 49.6

Table 3: Evaluation results of the T5-XL main model on the S-NI held-out test set. For all hypernet-
work approaches, we use the T5-XL as the initial model to train the hypernetwork.

Method | Avg. ROUGE-L

Full Fine-tuning
FT-Zero-Shot 46.6
FT-Few-Shot 54.0
Tk-Instruct (Wang et al.|[2022b) 54.3
HINT (Ivison et al.][2022) 53.2

Parameter-Efficient Fine-tuning (PEFT)
Prefix-Tuning(Li & Liang|[2021) 47.1
LoRA (Hu et al.||2021) 47.7
HyperTuning-PT (Phang et al.|[2022) 48.6
HyperTuning 48.8
HART ‘ 50.4

nation of 16 prompts and a prompted query. We also list the result of the T0-3B model as reported
in|Sanh et al.| (2021), which was trained with FT-Zero-Shot on the complete P3 data collection.

Parameter Efficient Fine-tuning (PEFT) Baselines: LoRA, Prefix-Tuning, HyperTuning-PT
and HyperTuning. All baselines adopt the 16-Shots input format.

Main Results. Table[d]and Table[5|show the evaluation results of T5-Large and T5-XL main models
on the P3 held-out validation set, respectively. HART achieves 2.0 and 3.6 points of improvement
over HyperTuning in the T5-Large and T5-XL experiments, respectively. However, as observed,
HyperTuning underperforms HyperTuning-PT by 1.6 points in the T5-Large experiments and 5.6
points in the T5-XL experiments. We suspect that this is because the P3 collection is difficult to
fit. In this case, the fusion-in-decoder approach becomes less effective as the encoder is too weak
to extract representations that are meaningful, and hypernetwork pre-training becomes critical to
facilitate the model convergence. Despite a lower baseline, HART still outperforms conventional
PEFT methods and achieves performance comparable to the full fine-tuning baselines.

5 ANALYSIS

In this section, we justify the design choices for HART. All experiments herein utilize a T5-Large
model for initializing both the hypernetwork and the main model.

5.1 ABLATION STUDY

Table [6] shows an ablation study of autoregressive parameter generation and local consistency reg-
ularization on the S-NI held out test set and the P3 held-out validation set. Starting with Hyper-
Tuning, we first remove the hypernetwork pre-training stage, then incorporate the fusion-in-decoder
approach, and sequentially introduce the proposed strategies. We observe that autoregressive param-
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Table 4: Evaluation results of T5-Large main model on the P3 held-out validation set. For all
hypernetwork approaches, we use the TS5-Large as the initial model to train the hypernetwork.

Method | ANLI HSwag CB COPA RTE WiC WSC WGD Avg.
Full Fine-tuning
FT-Zero-Shot 334 280 630 779 71.1 508 61.0 534 548
FT-Few-Shot 353 27.5 68.6 705 752 51.7 621 522 554
Parameter-Efficient Fine-tuning (PEFT)
Prefix-Tuning (Li & Liang|[2021) 33.1 26.1 539 678 605 498 547 514 497
LoRA (Hu et al.[[2021) 31.8 26.3 486 614 713 515 630 511 50.6
HyperTuning-PT(Phang et al.|[2022) | 33.4 323 60.1 739 715 51.1 63.0 511 54.6
HyperTuning 334 28.5 594 686 679 506 628 529 53.0
HART | 336 284 702 70.1 722 503 623 530 550

Table 5: Evaluation results of the T5-XL main model on the P3 held-out validation set. For all
hypernetwork approaches, we use the T5-XL as the initial model to train the hypernetwork.

Method | ANLI HSwag CB COPA RTE WiC WSC WGD Avg.
Full Fine-tuning
TO0-3B (Sanh et al.|[2021) 334 273 454 728 646 506 649 509 549
FT-Zero-Shot 39.9 294 645 880 808 517 607 579 59.1
FT-Few-Shot 379 309 676 905 766 512 633 61.1 599
HINT (Ivison et al.|2022) 41.6 303 760 888 842 514 595 60.1 654
Parameter-Efficient Fine-tuning (PEFT)
Prefix-Tuning (Li & Liang|[2021) 383 312 614 824 786 526 570 543 570
LoRA (Hu et al.[[2021) 37.3 2777 542 775 746 539 583 516 544
HyperTuning-PT (Phang et al.|[2022) | 38.7 336 696 884 795 531 576 56,6 59.6
HyperTuning 36.8 266 546 794 768 523 548 508 54.0
HART | 378 285 667 808 794 505 595 571 576

eter generation contributes over a one-point gain on both benchmarks, with local consistency adding
an additional gain of approximately 0.5 points.

Table 6: Ablation study of the proposed components on the S-NI held out test set and the P3 held-out
validation set.

Method S-NI P3
Avg. ROUGE-L | Avg. Score

HyperTuning-PT 435 54.6

- Continual Pre-training 25.3 50.9

+ Fusion-in-Decoder (HyperTuning) 45.2 53.0

+ Autoregressive Parameter Generation 46.4 543

+ Local Consistency Regularization (HART) 46.8 55.0

S-NI, T5-Large P3, T5-Large

141 Method 1.67
éﬁ — w{o Autoreg
2 1.2 with Autoreg 1.4
E ‘
<
£ 1.0 %WWW 1.2

00 25 50 75 100 00 25 50 75 100
Training Steps (k) Training Steps (k)

Figure 3: The main model prediction losses with and without using autoregressive parameter gener-
ation on the S-NI and the P3 training sets.
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5.2 AUTOREGRESSIVELY GENERATED PARAMETERS FIT BETTER

Figure [3| shows the main model’s prediction losses with and without autoregressive parameter gen-
eration on the S-NI and the P3 training sets. We present the loss curves corresponding to the ex-
periments at the third and the fourth rows in Table[6] without regularizing the local consistency. By
using autoregressively generated parameters, the training loss converges faster, suggesting that the
parameters better fit the training data. Further analysis is deferred to Appendix [8.2]

5.3 LoCAL CONSISTENCY REGULARIZATION REDUCES LOSS VARIANCE

Figure [] shows the main model’s prediction losses with and

without local consistency regularization the P3 training set. P3, T5-Large
We present the loss curves corresponding to the experiments 51
at the fourth and the last rows in Table [6] Local consistency Method
regularization alleviates the loss spikes and reduces the loss g 4 — W{ o Cst. Reg.
variances, suggesting the training is more stable. Further anal- S 5 with Cst. Reg.
ysis is deferred to Appendix [8.3] El

£ 24
6 RELATED WORKS AND DISCUSSIONS E ly Ml 1J W 'w H i
Efficient Generalization to Unseen Tasks. Recent research l " 4 ‘ d ‘ ‘ W
have explored efficient methods for adapting pre-trained LLMs 0-
to unseen tasks. One stream of research focuses on construct- 0

Trammg Steps (k)

ing inputs that can provide useful task-specific priors for model
inference, including techniques such as prompt retrieval (Shi| . .
et al.| [2023; (Cheng et al., 2023)), prompt optimization (Deng Elgure 4: Th? main quel prechc-
et al 12022} Diao et al., 2022) and demonstration selection (Liu| tion losses with and without using
ct al, 2021; [Zhang et al,[2022b). While these methods bypass 10¢al consistency regularization on
the costly weight updates, their performance is highly sensitive the P3 training set.

to the specific inputs used (Min et al.,|2021). Another stream of

research focuses on task-specific weight adaptation, exploring

gradient-free methods as lightweight alternatives to gradient-

based approaches like fine-tuning and PEFT. |Chronopoulou et al.| (2023)); Huang et al.| (2023) have
proposed composing the weights of a new task by selecting relevant tasks and linearly combining
their task-specific weights. While this approach is simple, it requires a pre-existing pool of task-
specific weights, and the expressiveness of the composed weights may be constrained by the task
pool. [Phang et al.| (2022); [Ivison et al.[ (2022); Mu et al.| (2023) have proposed using a meta model
to generate task-specific weights or representations given related context. While the meta model
may find more expressive weights, training such a meta model is challenging. Techniques like meta
model pre-training (Phang et al.l 2022; [Ivison et al., [2022)), and weight-sharing between the meta
model and the pre-trained model (Ivison et al., 2022} [Mu et al.l |2023), are crucial for achieving
training stability. Our work also aligns with this direction, offering new regularization scheme.

Conditional Generation of DNN Weights. Hypernetworks generally refer to the method of using
one network to evolve another. The method draws inspiration from evolutionary computation, which
suggests that massive brain connections exhibit structured patterns, representable by a composition
of a small set of genotypes. Subsequently, existing works train hypernetworks as compositions of
functions, each capturing specific weight structures, based on inputs containing information about
weight structures (e.g., weight coordinates) (Stanley et al., 2009; Koutnik et al., |2010j [Fernando
et al.,[2016} [Ha et al.,|2016)). Generating high-dimensional weights in LLMs can be more challeng-
ing due to their complicated structures. In such cases, conditioning on information about weight
structures can be more useful but is often overlooked in recent approaches. While our work exploits
layerwise dependencies, there are more structures yet to be leveraged. For example, we may better
initialize the mapping from the hypernetwork’s latent space to the target weight space by pre-training
it to predict the weight structures of existing LLMs.

7 CONCLUSION

To achieve an extremely efficient task adaptation, we propose a novel hypernetwork training ap-
proach, HART. HART incorporates an autoregressive decoding scheme to exploit layerwise depen-
dencies and consistency regularization technique to improve training stability, allowing the hyper-
network to generate more expressive task-specific parameters for pre-trained models.
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8 APPENDIX

8.1 IMPLEMENTATION DETAILS
8.1.1 HYPERNETWORK ARCHITECTURE

The hypernetwork takes the encoder-decoder TS Transformer architecture (Raffel et al., [2020). T5-
Large and T5-XL models each consists of a 24-layer encoder and a 24-layer decoder. T5-Large has
a hidden dimension of 1024 and T5-XL has a hidden dimension of 2048. For training efficiency, we
adopt the first 8 layers of the decoder to initialize the hypernetwork’s decoder.

8.1.2 PARAMETER GENERATION IN DETAILS

In Sections 2 and 3, We introduce the parameter generation schemes for HyperTuning (Phang et al.,
2022) and HART with some simplifications for presentation clarity. In this section, we provide the
full details in their prefix generation schemes.

Notations. We denote the length of the prefix to be generated as p, which is set to be 32 in both
methods. We denote the hidden dimension of both the hypernetwork and the main model as d,,,
which is 1024 in T5-Large and 2048 in T5-XL. We denote the number of layers in both the main
model’s encoder and decoder as L, which is 24 in both T5-Large and T5-XL.

Parameter Generation in HyperTuning. In HyperTuning, the input to the hypernetwork’s de-
coder is a learnable embedding with 2p as the sequence length, denoted as z € R?P*%m At each
forward pass, the decoder takes in z and generates a hidden state h € R?P* % using bi-directional
self-attention following Eq.[3] The decoder conditions on the few-shot demonstration examples by
crossly attending to the hypernetwork’s encoder’s output representation.

For each layer of the main model, two layer-specific MLPs would be learned to project the hidden
state h to the key and value prefixes, respectively. In other words, for a 2L-layer main model,
there are 4L MLPs. Each MLP consists of a layer normalization, 2 linear projections each with a
dimension of R%mXdm and a tanh non-linear activation.

We denotes the MLP that learns the key/value prefix for the [-th layer of the encoder/decoder as

! I l I ~ I
MLPenc,key(')’ MLPenc,value(')’ MLPdec,key(')’ and MLPdec,value(')’ respectlvely. MLPenC,key(') and
MLPL . aie(-) Would take A: p,:] € RP*% as input and produce ¢, o, and ¢l ya1ye» bOth in

RP*dm as the key and value prefixes for the I-th layer of the encoder. Similarly, MLP éccykcy(-) and

MLPfieC‘mlue(-) would take h[—p :,:] € RP*%m a5 input and produce gbfiec’key and qﬁéec’value as the
key and value prefixes for the [-th layer of the decoder.

For training efficiency, {MLPénC key}lL:1 share the weights of their first linear projections.

{MLP! 7 {MLPlderey}lL:l and {MLP' }E_ | share their weights in a similar fash-

enc,value dec,value
101.

Parameter Generation in HART. In HART, the input to the hypernetwork’s decoder is a learnable
embedding with 2 as the sequence length, denoted as z € R?*%m_ At each forward pass, the decoder
takes in z and autoregressively decodes a sequence of hidden states Ay, ..., hr, each with dimension
R2*dm  The decoder conditions on the few-shot task-specific demonstration examples by crossly
attending to the hypernetwork’s encoder’s output representation.

For each layer of the main model, two layer-specific MLPs would be learned to project the hidden
state h to the key and value prefixes, respectively. Each MLP consists of a layer normalization,
2 linear projections and a tanh non-linear activation. The first linear projection is of dimension
R *Pdm and the second is of dimension R%m X dm

Following the same notations from HyperTuning, MLP' (-) and MLP!

enc,key enc,value(') would take
h[: 1,:] € R as input. After their first linear projections, the intermediate outputs are of dimen-
sion RP%m . We further reshape the intermediate outputs into the dimension RP*%m  which is then

projected by their second linear projections into (bénc,key and ¢énc,value’ the key and value prefixes
for the [-th layer of the encoder. Both prefixes are of dimension RP*%=_ Similarly, MLPéec’key()

and MLPldec7value(~) would take h[—1 :,:] € R% as input and produce gbéec’key and (;SldeC,VM% as the
key and value prefixes for the [-th layer of the decoder.
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For training efficiency, {MLPéHC key}le share the weights of their first linear projections.

{mLP! W, {MLPéeCJ{ey}lL:1 and {MLP! }E£ | share their weights in a similar fash-

enc,value dec,value
on.

Remark regarding Weight Sharing and Input Sharing in MLPs. We remark that in HyperTun-
ing and HART, the MLPs are not completely independent across layers because they share the same
input hidden state and the first linear projection layers. Such input and weight sharing indeed al-
low MLPs to learn the pattern of layerwise dependency through training, but they need to learn it
from scratch. In contrast, autoregressive decoding allows the hypernetwork to directly exploit the
layerwise pattern without learning. This pattern is an useful inductive bias that improves the sample
efficiency during training.

8.1.3 TRAINING DETAILS

Multi-task Training Data Sampling. We follow the multi-task in-context fine-tuning setting from
MetalCL (Min et al} |2021). At each training iteration, we first randomly sample a task from the
training task pool, and then randomly sample K shot demonstration examples and one training ex-
ample from this task. During inference, for each task, we use a fixed set of demonstration examples
for all test queries. For P3 training data, we exclude tasks with average sequence lengths longer than
320 tokens to fit more prompts into the input following [Phang et al.| (2022).

Fusion-in-decoder. We further adopt a fusion-in-decoder strategy, originally designed for question
answering tasks (Izacard & Grave, 2020; |Ye et al.). This strategy requires the decoder to attend to
concatenated representations of multiple encoded input contexts. Ivison et al.[(2022) has validated its
effectiveness for hypernetworks. Specifically, at each forward pass, we prepend the hypernetwork’s
encoder output to the main model’s encoder output, and require the main model’s decoder to attend
to such a fused representation in the cross attention module. This approach is adopted in both the
training and inference stages.

Hyperparameters. We fine-tune the hypernetwork for 10k steps in T5-Large experiments and 20k
steps in T5-XL experiments. For both model experiments, we use the Adam-8bit optimizer (Kingma
& Ba, 2014} Dettmers et al., [2021)) with a learning rate of 5 x 10~° and a batch size of 256. We
adopt a linear decay learning rate schedule. We select o € {1,10,20}. We set the maximum input
sequence length for the hypernetwork as 1024 and the prefix length as 32. For the main model,
we set the maximum input and target sequence length as 384 and 128. We adopt the same input
sequence length and target sequence length during inference.

We use deepspeed library for distributed training and inference. The T5-Large experiments are
conducted on 8 Nvidia 32G V100 GPUs and T5-XL experiments are conducted on 8 Nvidia 80G
A100 GPUs.

8.2 ADJACENT LAYERS EXHIBIT STRONGER DEPENDENCY

Table [/| shows the evaluation results under different decoding schemes: 1) generate a single
layer-shared state (HyperTuning); 2) generate layer-specific states autoregressively for a randomly-
chosen, fixed order of layers; 3) generate layer-specific states autoregressively from the top layer to
the bottom layer; 4) generate layer-specific states autoregressively from the bottom layer to the top
layer (HART). All experiments are conducted without regularizing the local consistency. We can
observe that 2), 3) and 4) achieve noticeable improvements upon 1), demonstrating the benefit of
utilizing the capabilities of the decoder. Furthermore, 5) outperforms 3), suggesting that exploiting
the underlying problem structure improves the sample efficiency.

8.3 VISUALIZING CONSISTENCY REGULARIZED PARAMETERS

Figure [5 (Left) showcases the value of L. with and without local consistency regularization on
the S-NI training set. We can observe that the generated parameters no longer change drastically
across iterations after applying local consistency regularization. Figure [5 (Right) shows the t-SNE
plot of the hidden states generated for different layers with and without applying local consistency
regularization on four P3 held-out test tasks. One observation is that, with or without regularization,
the states generated for different tasks are clustered, while the states generated for different layers are
scattered. This suggests that layer-specific weight structure maybe more distinct than task-specific
weight structure. Another observation is that, after applying consistency regularization, the states
generated for different layers become more diverse.
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Table 7: Evaluation results of the T5-Large model on S-NI test set with PEFT parameters generated
under different layerwise dependencies. *The result is obtained by averaging over three different
randomly-chosen orders.

Generate Multiple Layerwise S-NI
Layer-specific States? Dependency Avg. ROUGE-L
No N/A (HyperTuning) ‘ 45.2
Yes, autoregressively  Depend on one random, fixed layer* 45.5
Yes, autoregressively ~ Depend on the next layer 45.8
Yes, autoregressively ~ Depend on the previous layer (HART) 46.4
S-NI, TS-Large P3, T5-Large
Method 20 e * + . Method
, 03 —— w/o Cst. Reg. ¥ g = w/o Cst. Reg.
3 with Cst. Reg. 107 * & with Cst. Reg.
oy * Task
g 0.2+ 07 44 # *
s - o ANLI
g 01 10 + * = Hellaswag
© 201 * + . + = WiC
+ Winograde
0-07 T T T T T T T * T T
500 1000 1500 2000 20 10 0 10 20
Training Steps Generated PEFTs at All Layers

Figure 5: Left: The value of L. with and without local consistency regularization on the S-NI
training set. Right: The t-SNE plot of the hidden states generated for different layers with and
without applying local consistency regularization on four P3 held-out test tasks.

15



	Introduction
	Preliminaries
	In-Context Learning
	Hypernetwork

	Method
	Autoregressive Parameter Generation
	Local Consistency Regularization

	Experiments
	Super-NaturalInstructions (S-NI)
	Public Pool of Prompts (P3)

	Analysis
	Ablation Study
	Autoregressively Generated Parameters Fit Better
	Local Consistency Regularization Reduces Loss Variance

	Related Works and Discussions
	Conclusion
	Appendix
	Implementation Details
	Hypernetwork Architecture
	Parameter Generation in Details
	Training Details

	Adjacent Layers Exhibit Stronger Dependency
	Visualizing Consistency Regularized Parameters


