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ABSTRACT

Wearable sensors provide abundant physiological time series, yet the principles
governing their predictive utility remain unclear. We hypothesize that temporal
resolution is a fundamental axis of representation learning, with different clinical
and behavioral outcomes relying on structure at distinct scales. To test this resolu-
tion hypothesis, we introduce HiMAE (Hierarchical Masked Autoencoder), a self-
supervised framework that combines masked autoencoding with a hierarchical
convolutional encoder–decoder. HiMAE produces multi-resolution embeddings
that enable systematic evaluation of which temporal scales carry predictive sig-
nal, transforming resolution from a hyperparameter into a probe for interpretabil-
ity. Across classification, regression, and generative benchmarks, HiMAE con-
sistently outperforms state-of-the-art foundation models that collapse scale, while
being orders of magnitude smaller. HiMAE is an efficient representation learner
compact enough to run entirely on-watch, achieving sub-millisecond inference on
smartwatch-class CPUs for true edge inference. Together, these contributions po-
sition HiMAE as both an efficient self supervised learning method and a discovery
tool for scale-sensitive structure in wearable health.

1 INTRODUCTION

Wearable sensors have emerged as a primary modality for continuous health monitoring, provid-
ing access to rich physiological and behavioral signals in free-living settings (Erturk et al., 2025).
Despite their ubiquity, the utility of wearable signals for machine learning in healthcare remains
poorly understood. Unlike images (Dosovitskiy et al., 2021; Simonyan et al., 2014; Zhou et al.,
2015; Petsiuk et al., 2018) or text (Brown et al., 2020; Li et al., 2016; Sundararajan et al., 2017;
Arras et al., 2017), physiological time series rarely admit obvious visual cues that map cleanly to
clinical outcomes, leaving open fundamental questions about which features carry predictive value.
A particularly unresolved issue concerns temporal resolution: should models operate at a single uni-
versal resolution, or do different health outcomes depend on resolution-specific structure? Clinically
actionable events can arise on second-level timescales, requiring representations that both capture
fine-grained temporal patterns and support real-time inference under the computational constraints
of wearable devices. We hypothesize that resolution is not a nuisance parameter but a fundamental
axis of physiological representation learning. We refer to this as the resolution hypothesis, which
posits that temporal granularity governs predictive performance in clinical and behavioral tasks.
In this framing, “resolution” denotes the effective temporal context over which representations are
formed—from fine-scale waveform morphology to coarse-scale dynamics spanning the whole se-
quence.

From an algorithmic perspective, much of the field defaults to transformer-based architec-
tures (Vaswani et al., 2017), implicitly assuming that flexibility and capacity outweigh inductive
bias. Yet wearable signals, while long in sequence length, are often generated by a few latent pro-
cesses driven by biological mechanisms and captured through only a handful of sensor modalities.
In this sense they are low-dimensional and highly structured. This raises the possibility that trans-
formers may not only overfit but also obscure resolution-specific structure, rather than expose it. By
contrast, hierarchical convolutional biases offer a natural mechanism for aligning architectures with
the resolution hypothesis, capturing both local detail and long-range dependencies in a principled
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Figure 1: HiMAE pre-training and evaluation pipeline. (1) Physiological sequences are split into
temporal patches. (2) Selected patches are masked randomly or contiguously. (3) A U-Net–style
CNN encoder–decoder reconstructs missing values, with loss applied only to masked regions. (4)
Multi-resolution embeddings feed linear probes for classification and regression benchmarking. (5)
Three categorized task-lists are evaluated.

way. This motivates a re-examination of architectural design choices for self-supervised learning
(SSL) on physiological time series.

In this work, we address these challenges by introducing HiMAE (Hierarchical Masked Autoen-
coder), a self-supervised pretraining framework for wearable time series that directly operational-
izes the resolution hypothesis (Figure 1). HiMAE combines the masked autoencoding paradigm
with 1D physiological signals by coupling patch-masking objectives (Wang et al., 2023) with a
U-Net–inspired encoder–decoder (Ronneberger et al., 2015). Crucially, HiMAE produces multi-
resolution embeddings, with each level of the hierarchy corresponding to a distinct temporal gran-
ularity. This design enables systematic interrogation of which resolutions carry predictive signal,
while simultaneously yielding lightweight, efficient representations. Beyond its architectural ad-
vantages, HiMAE allows us to benchmark the resolution hypothesis across 14 classification and
regression tasks. Our results reveal resolution-specific structure in wearable signals that is not read-
ily identifiable by human experts, offering new insights into both representation learning and the
interpretability of physiological time series in the time domain.

2 RELATED WORK

Self-Supervised Pretraining Objectives for Wearable Signals Wearable devices equipped with
photoplethysmography (PPG), electrocardiography (ECG), and accelerometry generate long, multi-
channel time series encoding diverse physiological and behavioral phenomena, including cardiovas-
cular dynamics (Castaneda et al., 2018), activity patterns (Yuan et al., 2024; Xu et al., 2025), sleep
cycles (Li et al., 2021; Thapa et al., 2024; Logacjov et al., 2025), and other latent processes. These
data streams are abundant, and predominantly unlabeled, making them well suited for large-scale
self-supervised learning (Kaplan et al., 2020; Bommasani et al., 2021; Zhou et al., 2024; Liang et al.,
2024).

SSL has become the dominant paradigm for wearable time-series representation learning, given the
scarcity of labeled data and the ubiquity of unlabeled signals in free-living settings (Lee & Aka-
matsu, 2025). Among SSL strategies, masked autoencoding has emerged as a central approach,
inspired by its success in vision (He et al., 2022; Vaid et al., 2023) and language modeling (De-
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vlin et al., 2019). The method randomly occludes patches of the signal and tasks the model with
reconstructing them, encouraging representations that capture latent physiological structure and tem-
poral regularities (Zhang et al., 2022a; Kong et al., 2023). Recent large-scale efforts, most notably
Google’s LSM series (Narayanswamy et al., 2024; Xu et al., 2025), rely heavily on masked au-
toencoding, establishing it as a pretraining standard for multi-modal wearable datasets. Yet despite
its effectiveness for local pattern recovery, vanilla masked autoencoding often struggles to capture
multi-resolution features unless coupled with explicitly hierarchical architectures.

In parallel, contrastive learning enforces invariance by pulling semantically similar samples together
in latent space while pushing dissimilar ones apart (Schmitt & Kuljanin, 2008; Jaiswal et al., 2020).
The central challenge for wearables is defining positive and negative pairs without labels. One so-
lution is participant-level contrastive training, where samples from the same individual are positives
and samples from different individuals are negatives, an approach adopted in Apple’s ECG and
PPG foundation models (Abbaspourazad et al., 2023) and closely related to the SimCLR frame-
work (Chen et al., 2020b). Other domain-specific innovations define pairs through physiologi-
cal priors: PaPaGei leverages PPG morphology (Pillai et al., 2024), while SleepFM extends the
paradigm across EEG, ECG, and EMG to enforce cross-modal consistency (Thapa et al., 2024).
Additional embedding-level regularizers, such as differential entropy constraints (Jing et al., 2021;
Abbaspourazad et al., 2023), further enrich learned representations. However, contrastive methods
are highly sensitive to augmentation heuristics (which are rarely physilogically meaningful), com-
putationally intensive, and limited in interpretability, providing little insight into which temporal
structures are preserved.

HiMAE departs from both flat masked and contrastive approaches in two ways. First, instead of
relying on a single-scale reconstruction or augmentation heuristics, HiMAE couples masked autoen-
coding with a hierarchical encoder–decoder that integrates information across resolutions, treating
temporal scale as an explicit dimension of representation. Second, by extracting embeddings at
multiple scales and probing them independently, HiMAE transforms SSL from a pretraining mech-
anism into a discovery tool: it directly tests which temporal resolutions carry predictive signal for
downstream tasks. In doing so, HiMAE preserves the efficiency of masked autoencoding while
introducing interpretability absent in contrastive or flat masked objectives.

Multi-scale Learning The emphasis on resolution awareness connects naturally to multi-scale
learning, where modeling temporal signals across multiple granularities has emerged as a power-
ful inductive bias. In vision, multi-scale architectures such as pyramidal CNNs and hierarchical
attention enable models to integrate fine-scale edges with coarse semantic structures, substantially
improving recognition and generation in 2D (Wang et al., 2016; Yang et al., 2016; Liu et al., 2021a;
Kusupati et al., 2024; Liu et al., 2024) and 3D (He et al., 2017; Ghadai et al., 2019; Zhang et al.,
2022b).

In time series, multi-scale methods are fewer but increasingly influential. N-HiTS (Challu et al.,
2022) improves long-horizon forecasting by allocating capacity across frequencies via hierarchical
interpolation. Pyraformer (Liu et al., 2022) leverages pyramidal attention to capture dependen-
cies over a tree of scales, while Scaleformer (Shabani et al., 2023) introduces iterative refinement
across resolutions. Pathformer (Chen et al., 2024) further adapts pathways dynamically to match
input-specific temporal dynamics. Together, these approaches highlight that temporal signals are
inherently hierarchical and that resolution carries predictive structure rather than being a nuisance
variable.

Prior multi-scale methods typically rely on fixed hierarchies or task-specific refinement stages (e.g.,
for forecasting), which constrains their generality. While HiMAE also inherits inductive biases from
convolutional design choices (e.g., step size, padding, kernel width), these parameters define recep-
tive fields rather than dictate which scales are salient. By coupling self-supervised reconstruction
with these fields, HiMAE induces a hierarchy of temporal embeddings that can be probed indepen-
dently.

3 METHODS

Hierarchical Masked Autoencoders (HiMAE) HiMAE combines masked autoencoding (Baldi,
2012; He et al., 2022) with 1-D physiological time series by coupling a patch-masking objective with
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a U-Net–style convolutional encoder–decoder (Ronneberger et al., 2015). Given an input sequence
x ∈ RC×L, we partition it into N = L/P non-overlapping patches of length P . A binary mask
m ∈ 0, 1N is sampled from a Bernoulli distribution with parameter r, indicating the masking ratio.
Masked indices are selected uniformly at random without replacement, expanded to match temporal
resolution as m′ ∈ 0, 1L, and applied to the sequence, yielding x̃ = x ⊙ (1 − m′). This masking
procedure removes substantial context, forcing the model to infer higher-order dependencies. In
addition to random masking, we also employ contiguous masking, in which adjacent patches are
removed to mimic sensor dropout similar to recent protocols showing benefits (Xu et al., 2025). Both
regimes are interleaved during pretraining to promote robustness across reconstruction settings.

The encoder fθ is a hierarchical 1D CNN composed of residual convolutional blocks with stride-2
convolutions that downsample the temporal resolution by half at each stage, expanding the receptive
field so that deeper layers capture long-range dependencies while shallow layers retain local detail.
Each residual block consists of two convolutions with kernel size 5, batch normalization (Ioffe &
Szegedy, 2015), and GELU activations (Hendrycks & Gimpel, 2023), along with a projection short-
cut when input and output dimensions differ. The decoder gϕ mirrors this structure with transposed
convolutions for upsampling and incorporates skip connections from encoder layers, concatenating
intermediate features to restore fine-grained temporal structure. All convolutions are standard 1D
operations defined over temporal windows, and striding handles subsampling directly. Intermediate
activations use GELU, while the final layer applies a tanh nonlinearity so that outputs x̂ ∈ RC×L

are bounded in [−1, 1], matching the normalized input range.

We deliberately adopt a convolutional U-Net backbone rather than a transformer-based encoder for
two reasons. First, physiological signals exhibit strong local dependencies governed by morphology
(e.g., PPG waveform shape, ECG peaks), which are naturally modeled by finite receptive fields.
Convolutions (O’Shea & Nash, 2015) encode this locality directly, whereas transformers must sim-
ulate it through restricted attention, often at higher parameter cost (Appendix H.2). Second, multi-
resolution structure is intrinsic to physiology (e.g., heartbeats unfold over milliseconds, rhythms
span seconds). A hierarchical CNN with skip connections provides an architectural bias toward
such nested timescales, aligning directly with the resolution hypothesis and being orders of mag-
nitude smaller than other proposed foundation models in this space (See Figure 2 for comparison).
In contrast, transformers emphasize global mixing, which may obscure resolution-specific structure
while consuming substantially more compute (Table 7). This rationale motivates HiMAE’s design
as not only efficient but also inductively aligned with the temporal statistics of wearable signals.

Figure 2: HiMAE is lightweight

Multi-resolution embeddings extracted from dif-
ferent levels of the hierarchy are probed inde-
pendently, with distinct linear classifiers trained
per resolution (Alain & Bengio, 2018). This de-
sign enables us to systematically evaluate which
temporal granularity carries predictive signal for
downstream tasks, rather than collapsing embed-
dings into a single latent space. Finally, choices
of patch length P and kernel size were guided
by ablations (Appendix Section F.1), which con-
firmed that P = 5 and kernel size 5 yield the best
balance between local fidelity and receptive field
expansion when all other hyperparameters were fixed.

Training minimizes a masked reconstruction loss restricted to occluded regions: LMSE(θ, ϕ) =
∥(x̂−x)⊙m′∥2

2∑L
t=1 m′

t

, where m′ ensures that gradients are only computed on masked segments. This objec-
tive estimates p(xM|xO), with M and O denoting masked and observed indices, preventing trivial
copying of visible inputs and promoting temporally coherent, multi-scale representations.

Pretraining and Evaluation Protocol PPG Sequences were sampled at fs = 100 Hz over fixed
windows of T = 10s (L = 1000 timesteps). 10 second windows were selected due to clinically
actionable events occurring in these time scales (ECG is collected at 10s intervals in clinical settings
(Shuai et al., 2016; Elgendi, 2012)) and due to our interest in real-time monitoring on edge devices.
Each signal was divided into non-overlapping patches of length P = 5 (200 patches total), and a
masking ratio r = 0.8 was applied with patterns resampled per sequence and iteration to mitigate
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overfitting (we empirically tested this masking ratio in Appendix Section F.1 with similar observa-
tions made in (Narayanswamy et al., 2024)). The encoder architecture employed channel widths
[16, 32, 64, 128], mirrored in the decoder. Optimization was performed with AdamW (Loshchilov
& Hutter, 2019) (lr = 10−3, weight decay = 10−3) using a warmup–cosine schedule (10% linear
warmup steps followed by cosine decay). Models trained up to 100k steps with batch size 2048
and early stopping triggered after 3 epochs without improvement similar to the protocols found in
(Narayanswamy et al.). Data splits followed a 90/10 (train/validation) protocol across subjects, en-
suring no identity overlap between pretraining and validation. Pretraining converged within 12 hours
when distributing training across 4 Tesla T4 GPUs using PyTorch lightning (Paszke et al., 2019).

Pretraining datasets. We construct our pretraining corpus from approximately 80,000 hours
of wearable green PPG signals, drawn from seven large-scale free world studies conducted at
REDACTED. These datasets include recordings from 47,644 participants across seven distinct wear-
able devices, capturing broad demographic, behavioral, and hardware variability in a noisy environ-
ment (See Appendix Section B for ethics considerations). Although our modeling framework is
modality-agnostic and can extend to other physiological signals such as electrocardiograms (see
Appendix F.2), we focus here on PPG due to its prevalence and the scale of available data (we lack
the same order of magnitude of ECG compared to PPG because ECG is not passively collected).
To ensure reliability, we apply a standardized preprocessing pipeline that retains only high-quality
segments, filtering by a Signal Quality Index (SQI). The retained signals are further refined using
a bandpass filter of 0.5–8 Hz (Christiano & Fitzgerald, 2003), consistent across all pretraining and
evaluation studies, to isolate physiologically relevant dynamics. Finally, signals are normalized to
the range [−1, 1] to match the output range of the tanh activation function used in our models.

4 EXPERIMENTAL DESIGN

We follow the evaluation protocol of Narayanswamy et al. (2024) and extend it into a unified bench-
mark suite spanning generative, classification (and regression tasks in Appendix F.6), along with
ablations to quantify how key architectural components interact with scaling. Across all experi-
ments, our goal is not only to assess HiMAE’s efficiency and transferability, but also to test the
resolution hypothesis: whether predictive signal concentrates at specific levels of the hierarchical
embeddings. Further analysis and results are displayed in full in Appendix Section F.

Model scaling and generative reconstruction. We first study HiMAE’s scaling properties by mea-
suring how reconstruction performance varies as a function of dataset size, number of participants,
model capacity, and training compute capacity (batch size). For each axis, we systematically sub-
sample or expand the relevant resource while holding others fixed, enabling us to isolate its contri-
bution to representation quality. Scaling is assessed through mean squared error on masked recon-
struction, which provides a direct measure of how model capacity and data availability govern loss
reduction. We also squeeze in ablations in this experiment to assess how removing skip connections,
and removing the hierarchal design affect scaling.

To complement this aggregate view, we also evaluate generative performance under three increas-
ingly challenging reconstruction regimes defined in the LSM papers (Narayanswamy et al.; Xu et al.,
2025): (i) random imputation, where patches are masked at random uniformly; (ii) temporal inter-
polation, where contiguous spans are removed to simulate sensor dropout; and (iii) temporal ex-
trapolation, where future spans are occluded and predictions must rely solely on past context. We
compute the mean squared error (MSE) for these evaluations.

Classification To assess downstream transferability and adaptability, we benchmark HiMAE on 12
binary classification tasks drawn from labeled datasets fully disjoint from our pretraining sources.
We organize these into three groups: cardiovascular outcomes, sleep staging, and abnormal labo-
ratory prediction. Cardiovascular outcomes, provide the most established benchmarks, with well-
documented links between PPG and clinical endpoints (Shabaan et al., 2020). These include hyper-
tension detection, estimating blood pressure (blood pressure regression pushed to Appendix 15 due
to poor performance across all models), and arrhythmia-related events such as Premature Ventricular
Contractions (PVCs), typically identified via electrocardiograms (ECGs). Sleep staging is another
task we include which is of high interest, given the demand for wearables to track fine-grained sleep
states despite the temporal and physiological complexity of the task (Imtiaz, 2021; Thapa et al.,
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Figure 3: HiMAE exhibits superior scaling across axes. Mean squared error decreases most
rapidly for HiMAE as data, participants, model size, and compute scale. Ablations without skip
connections confirm that both the hierarchical design and skip pathways are helpful for generative
pefromance. Grey lines indicate multiple runs whereas colored lines are average performance.

2024; Birrer et al., 2024). Laboratory predictions, on the other hand, serves as a discovery setting,
testing whether PPG contains sufficient biomarker information to separate abnormal from healthy
labs—an open question compared to patient-record benchmarks where such signals are more ex-
plicit (Kolo et al., 2024; McDermott et al., 2025). Together, these canonical and exploratory tasks
form a spectrum that enables a comprehensive evaluation of representation quality across diverse
digital health applications. All tasks are described in greater detail in Appendix Section D.

We compare HiMAE against state-of-the-art SSL methods adapted to the 1D setting for architec-
tural comparability (More details on baselines in Appendix Section E). Specifically, we include
SimCLR (Chen et al., 2020b), DINO (Caron et al., 2021), Masked Siamese Networks (MSN) (Ass-
ran et al., 2022), and a hierarchal Swin-Transformer (Liu et al., 2021b) as self-supervised baselines,
along with the Large Signal Model (LSM) (Narayanswamy et al., 2024) and PaPaGei (Pillai et al.,
2024) as established wearable foundation models. All models are evaluated under standard linear
probing, in which the encoder is frozen and a linear classifier is trained on the resulting representa-
tions to measure AUROC as the main metric to measure discriminative abilities. For all architectures
we use the full sequence embedding across the temporal dimension, without collapsing to a single
summary token, to ensure that downstream probes have access to resolution-specific information.
This setup allows us to test whether pretraining yields representations that are simultaneously trans-
ferable across tasks.

Resolution Hypothesis HiMAE produces embeddings at multiple temporal scales, and we probe
each scale independently with linear classifiers. This allows us to test whether predictive information
is concentrated at fine, intermediate, or coarse resolutions depending on the clinical endpoint. In this
way, the classification tasks serve not only as benchmarks for transfer learning, but also as controlled
tests of the resolution hypothesis (Receptive field lengths are described in Section C.1).

5 RESULTS

5.1 SCALING AND GENERATIVE BENCHMARK

Scaling: We first examine the scaling behavior in Figure 3 of HiMAE relative to baselines across
data, participants, model parameters, and compute capacity (batch size). The overall scaling trends
follow conventional expectations, error decreases monotonically with additional data, participants,
or compute. However, scaling with model parameters reveals a interesting insight. HiMAE achieves
substantially lower loss at smaller parameter capacities, while LSMs only begin to close the gap
once scaled to orders of magnitude more parameters (we chose LSM parameter count based on their
original paper (Narayanswamy et al., 2024)). This difference reflects an inductive bias. Transformer-
based LSMs, which assume global receptive fields, appear to require considerably larger model
capacity before capturing the local dynamics of the data (Further Mathematical Intuition is described
in Appendix Section H). In contrast, HiMAE’s hierarchical convolutional structure exploits spatial
and temporal locality efficiently, yielding superior performance at modest scales. This observation
reinforces the importance of architectural priors in low-capacity regimes.
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Figure 5: AUROC across downstream tasks. Highlighted shapes indicate best performing model.
HiMAE consistently matches or outperforms foundation model baselines with far fewer parameters.

Generative: Turning to generative benchmarks, HiMAE consistently outperforms all baselines
across random imputation, temporal interpolation, and temporal extrapolation tasks (Figure 4). In
terms of mean squared error, HiMAE achieves the lowest reconstruction error in every setting, in-
cluding cases with heavy missingness. This advantage persists when evaluated with R2, where the
mean-fill baseline serves as the reference. By achieving positive R2 scores even in challenging
extrapolation scenarios, HiMAE demonstrates reconstruction ability beyond naive heuristics (e.g.,
mean fill, nearest neighbor, or linear interpolation). Together, these results establish HiMAE as
a strong generative model for missing data problems, with advantages that persist across scaling
regimes and input corruption patterns.

Figure 4: Performance on generative bench-
marks. Mean squared error and R2 for random im-
putation, temporal interpolation, and temporal ex-
trapolation at varying missingness levels. Bold out-
line indicates best performing model.

Ablations: Ablation in Figure 3 and 4 fur-
ther highlights the contributions of hierarchi-
cal design and skip connections in HiMAE.
Removing either component results in in-
creased error, indicating that both are crucial
for effective representation learning. Never-
theless, even without these architectural ele-
ments, HiMAE variants remain competitive
with larger LSM model, underscoring the ro-
bustness of the approach. More importantly,
the full model exhibits improved generaliza-
tion across scaling axes (Appendix Section
F.4), suggesting that the combination of hier-
archy and skip connections facilitates better
transfer as data and compute grow.

5.2 CLASSIFICATION BENCHMARKING

Classification In Figure 5, HiMAE consistently secures the majority of wins, frequently outper-
forming or matching models that are considerably larger. This is particularly striking given that prior
work has typically relied on heavy architectures to reach similar levels of performance, highlight-
ing HiMAE’s ability to capture a broad spectrum of physiological features with a compact design.
These outcomes emphasize the model’s robustness when applied to structured, temporally depen-
dent problems that demand sensitivity to subtle variations in wearable signals.

Taken together, these results position HiMAE as the most consistently strong performer across the
benchmark suite. In cases where HiMAE does not place first it is only ∼1-2% behind the winning
model. Crucially, this level of performance is achieved with a substantially smaller model than
competing approaches, demonstrating a favorable tradeoff between efficiency and predictive power.
Rather than excelling only in isolated cases, HiMAE delivers broad, cross-domain competitiveness,
suggesting that compact models, when designed with the right inductive biases, can rival or even
surpass far larger architectures.
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HiMAE Layers Discover Resolution-Specific Structure Across Downstream Tasks
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Figure 6: HiMAE discovers task-specific structures for downstream tasks. AUROC across layers
shows that tasks rely on distinct temporal scales, highlighting HiMAE as a tool for discovering the
most informative resolution in clinical machine learning.

5.3 RESOLUTION SPECIFIC CLINICAL INTERPRETABILITY

Model Params (↓) FLOPs (↓) Memory (↓) On-device Lat. (↓)
HiMAE 1.2M 0.0647 gFLOPs 4.8 MB 0.99 ms
Efficient-Net B-1 7.8M 0.70 gFLOPs 31.1 MB 1.42 ms
Swin-Transformer 110.6M 11.89 gFLOPs 423.8 MB 2.95 ms
LSM-Base 110.6M 15.94 gFLOPs 441.3 MB 3.36 ms

Figure 7: Model efficiency and on-device inference:
Sample on-device detections on REDACTED device.
Size, compute cost, memory footprint, and CPU la-
tency (ms per sample, batch size 2048) measured over
a 10s sequence at 100Hz.

The resolution hypothesis predicts that
different health outcomes depend on dis-
tinct temporal granularities. To test this,
we analyze performance across HiMAE
layers, where each layer corresponds to a
progressively coarser resolution. Figure 6
reveals clear resolution-specific structure:
individual downstream tasks achieve max-
imal AUROC at different layers, high-
lighted by the red boundaries.

This layer-task alignment underscores two
key insights. First, temporal resolution
is not a nuisance parameter but an axis
of predictive structure: different outcomes
are best represented at different scales (we
show that collapsing an encoder decoder
still has concordant results showing that
our hierarchal model is not an artifact in
Appendix Section F.5). Second, HiMAE
naturally exposes this heterogeneity, func-
tioning as a discovery tool for identifying the most informative resolution per task. This comple-
ments conventional interpretability methods (Amann et al., 2022; Xu et al., 2023; Lee et al., 2025)
by shifting the focus from which features drive predictions to which resolutions matter. In doing so,
HiMAE operationalizes the resolution hypothesis and provides insights to tasks where the resolution
needed is not entirely clear.

5.4 CASE STUDIES

Case Study 1: On-Device Benchmarking A central novelty of HiMAE is that it is, to our knowl-
edge, the first SSL method compact enough to run entirely on-watch, rather than on phone-class
hardware. We evaluate on-device PVC detection on smartwatch-class CPUs sampled at 100 Hz
(Figure 7). HiMAE is exceptionally lightweight (1.2M parameters, 0.0647 gFLOPs, 4.8 MB) and
achieves 0.99 ms latency per sample, equivalent to processing ≈1,010 samples/s or ≈2.8 hours of
signal per minute of wall time. By contrast it shows massive performance gains against transformer
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baselines, Swin-Transformer (110M parameters, 11.9 gFLOPs, 423 MB) and LSM-Base (110M,
15.9 gFLOPs, 441 MB). HiMAE also outperforms optimized models like Efficient-Net B1 (Tan &
Le, 2020) providing context to the latency and compactness of our model. HiMAE is thus ∼3–4×
more efficient compared to transformers while fitting fully on-watch (without quantization (Jacob
et al., 2017)), enabling continuous, private inference at the point of signal collection. This prototype
is strictly for research and is not deployed commercially.

Case Study 2: HiMAE is adaptable in few shot settings

0 256 512 1024 2048 all
Shots

0.70

0.75

0.80

0.85

0.90

AU
C

PVC

HiMAE
LSM
Swin Transformer

0 256 512 1024 2048 all
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HiMAE
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Swin Transformer

Few Shot Learning Performance

Figure 8: Few-shot adaptation. HiMAE adapts
efficiently to new wearable tasks under sparse
labels indicated by curve shape over transformer
baselines.

A central challenge in the wearable domain is that
labels are scarce across tasks. Models that can
adapt quickly from generic pretraining to specific
detection tasks with limited supervision are there-
fore essential. Figure 8 illustrates this setting: Hi-
MAE provides strong representations that can be
adapted to diverse tasks such as PVC detection
or hypertension monitoring with only a handful
of labeled examples as reflected by the shape of
the learning curves on the few-shot learning ex-
periments. By reducing the supervision required
to reach high performance, HiMAE enables new
tasks to be supported on-device without the pro-
hibitive cost of large curated datasets which help
bolster its practical utility.

6 DISCUSSION

Summary. HiMAE advances wearable self supervised methods along three dimensions: (i) its flex-
ible architecture is expressly designed for multi-resolution mapping, enabling seamless adaptation
across heterogeneous tasks, (ii) by aligning task-dependent resolutions with model representations,
it not only optimizes predictive performance but also offers a window into the temporal organization
of physiological biomarkers, and (iii) by design of the compactness, it achieves the first demonstra-
tion of true on-watch inference, running entirely within smartwatch-class constraints while matching
or surpassing performance on far larger models. These results position HiMAE as an efficient repre-
sentation learner but also as a framework for interrogating which temporal resolutions carry signal.

Resolution as a structural prior. Our findings validate the resolution hypothesis and suggest a shift
in how representation learning on wearables should be conceptualized. This reframing implies that
representation learning for physiological signals should expose, rather than collapse, scale-specific
embeddings. The layer-wise AUROC profiles in Figure 6 show that predictive performance peaks
at different levels of the hierarchy depending on the task, with fine-scale embeddings capturing
short-lived physiological events and coarse-scale embeddings capturing slower behavioral phenom-
ena. By revealing this heterogeneity, HiMAE provides empirical evidence that resolution-specific
representations are essential for wearable health modeling.

From “on-device” to “on-watch.” HiMAE demonstrates that convolutional hierarchies can re-
duce model size by two orders of magnitude relative to transformer-based LSMs, enabling the first
instance of true on-watch inference. This moves the deployment frontier from phone-class to watch-
class processors, where inference occurs exactly at the point of sensing. Beyond efficiency, this shift
has consequences for privacy (data never leave the device) and for clinical viability (continuous
real-time monitoring becomes feasible).

Limitations and Future Works While we focus on PPG, the principles underlying HiMAE gen-
eralize to multimodal settings. Physiological signals are inherently multi-scale across modalities
(e.g., ECG beats, accelerometer motion cycles, EEG rhythms), and resolution-aware architectures
could expose complementary temporal signatures across them. Another limitation of our work is we
don’t handle sequences beyond 10 second windows which could unlock another breadth of tasks.
Future works also warrants a clinical validation to the discoveries made by HiMAE which could be
of significant interest to the health community.
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Gérald Simonneau, Ivan M Robbins, Maurice Beghetti, Richard N Channick, Marion Delcroix,
Christopher P Denton, C Gregory Elliott, Sean P Gaine, Mark T Gladwin, Zhi-Cheng Jing, et al.
Updated clinical classification of pulmonary hypertension. Journal of the American college of
cardiology, 54(1 Supplement S):S43–S54, 2009.

Gerald Simonneau, Michael A Gatzoulis, Ian Adatia, David Celermajer, Chris Denton, Ardeschir
Ghofrani, Miguel Angel Gomez Sanchez, R Krishna Kumar, Michael Landzberg, Roberto F
Machado, et al. Updated clinical classification of pulmonary hypertension. Journal of the Ameri-
can College of Cardiology, 62(25S):D34–D41, 2013.
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APPENDIX

A FREQUENTLY ASKED QUESTIONS

What are the main conclusions from this work? We demonstrate that convolutional architectures
benefit from inductive biases that remain advantageous for PPG signals. On our pre-training data,
our model consistently outperforms alternative baselines. Furthermore, scaling experiments across
model sizes reveal that brute-force scaling of generic architectures is possible, but less effective: our
model achieves stronger performance and scales more gracefully due to a better initialization and
inductive structure relative to other models. In addition to this inductive bias and compact design,
our contributions are two fold in the sense that our model demonstrates the first on-device model
which does not require phone level processors to run inference.

Is your pre-training dataset large enough? Our pre-training corpus was collected internally
and is of comparable scale to recent public benchmarks such as PaPaGei and Apple’s datasets.
In terms of magnitude, we position our dataset as PaPaGei (Pillai et al., 2025) < Ours <
Apple (Abbaspourazad et al., 2023) < Google (Narayanswamy et al., 2024). Thus, while not the
largest available, our dataset size is sufficiently large to validate the approach and lies within the
range of accepted practice for self supervised learning wearable models.

Why do you model at 10-second windows? We deliberately adopt 10s windows sampled at 100Hz
to balance physiological coverage with on-device feasibility. Many clinically actionable events, such
as arrhythmic beats or premature ventricular contractions, unfold on the order of seconds and require
rapid detection to enable continuous monitoring and real-time feedback. Shorter windows would
impair the model’s ability to capture meaningful temporal context, while much longer windows
would hinder low-latency inference on watch-class hardware. By constraining the receptive field to
10s, HiMAE preserves second-level resolution while remaining efficient enough to process signals
continuously under the hardware limits of edge devices. Additionally, 10-second window are a
standard protocol that are adopted in the clinical setting where ECG for example is collected and
interpreted at 10 second segments (Shuai et al., 2016).

What are the advantages of smaller models? From a research perspective, smaller models foster
inclusivity by reducing reliance on brute-force scaling of transformer-based architectures that only
industry-scale labs can realistically afford. From a deployment standpoint, compact models enable
on-device inference on constrained hardware such as wearables. This dual benefit—lower research
barriers and wider deployment potential—underscores the importance of investigating architectures
that remain competitive at modest scale.

How large is too large to deploy on a smart watch? In principle, models up to approximately
50MB can be stored and executed on modern smart watches or larger models can be quantized
(Jacob et al., 2017). In practice, however, latency and energy considerations suggest that models
exceeding roughly 10MB may already hinder real-time inference and limit commercial viability.
Additionally quantization does not do due dilligence to the original model and some level of the
model’s performance is lost. While smartphones relax these constraints, our contribution highlights
that the proposed model remains sufficiently compact to fit within the computational and storage
budgets of wearable devices such as watches, thereby supporting direct on-device deployment.

Can PPG predict abnormal laboratory results? We frame this as a binary classification task, test-
ing whether photoplethysmography signal encodes biomarkers that separate “normal” from “abnor-
mal” lab classes. Our investigation probes whether learned PPG representations capture biomarker
signatures correlated with out-of-range labs, using lightweight classifiers on frozen embeddings
with strict temporal alignment. Preliminary evidence suggests discriminative signal above chance,
but these findings are designed to be exploratory and not clinically actionable.
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B ETHICS CONSIDERATIONS

B.1 DATA PRIVACY AND CONSENT

Wearable signals capture sensitive physiological and behavioral information (Erturk et al., 2025).
Our study relies on both publicly available and proprietary (company-owned) datasets that have
been carefully vetted. These datasets include transparent disclosure of data usage, explicit opt-in
mechanisms, and the option for participants to withdraw (Perez-Pozuelo et al., 2021). Across the
seven datasets used in this study, we obtained written consent—via paper or digital waivers—that
clearly informed participants that their data may be used for commercial research purposes.

B.2 BIAS AND REPRESENTATIVENESS

Physiological signals vary across age, gender, ethnicity, health status, and socioeconomic context,
yet most existing datasets underrepresent key populations (FitzGerald & Hurst, 2017; McCradden
et al., 2020; Chen et al., 2021). Such underrepresentation risks embedding biases into foundation
models, leading to inequitable performance in downstream applications. Mitigation requires de-
liberate corpus curation, bias auditing, and systematic evaluation across diverse cohorts. In this
study, we sought to mitigate bias by incorporating a pre-training corpus drawn from a wide range
of wearable devices, collected across multiple regions of the world and over many years. However,
patient-specific demographic information is not available. We do note that our data was collected
across 4 countries including, USA, Brazil, Bangladesh, and South Korea.

B.3 CLINICAL IMPLICATIONS

Wearable foundation models are not substitutes for medical judgment. Their predictions require
regulatory approval and clinical validation before integration into healthcare practice. Without safe-
guards, model misinterpretation could lead to misdiagnosis or inappropriate treatment. Development
should involve clinical collaborators, real-world evaluations, and explicit positioning of models as
decision-support rather than diagnostic systems. In our group, ongoing collaborations aim to eval-
uate where our foundation model performs well and how it may assist in forming clinical insights.
We emphasize that no definitive clinical conclusions should be drawn from this work.

B.4 ENVIRONMENTAL IMPACT

Training generative models entails substantial computational and environmental costs (Ligozat et al.,
2022; Bender et al., 2021; Bouza et al., 2023). To minimize our footprint, we limited redundant runs,
and reused checkpoints to avoid unnecessary GPU usage. All experiments were conducted on data-
center GPUs with efficient cooling systems and renewable energy credits to reduce carbon intensity.
We emphasize that transparent reporting of compute usage and bounding resource allocation are
necessary steps toward sustainable machine learning research.
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C REPRODUCIBILITY STATEMENT

Table 1: HiMAE architecture components.

Encoder–Decoder

Layer Output Shape
Input [B, 1, T ]
EncoderConvBlock(1→16) [B, 16, T /2]
EncoderConvBlock(16→32) [B, 32, T /4]
EncoderConvBlock(32→64) [B, 64, T /8]
EncoderConvBlock(64→128) [B, 128, T /16]
EncoderConvBlock(128→256) [B, 256, T /32]
DecoderSkipBlock(256→128) [B, 128, T /16]
DecoderSkipBlock(128→64) [B, 64, T /8]
DecoderSkipBlock(64→32) [B, 32, T /4]
DecoderSkipBlock(32→16) [B, 16, T /2]
Final Deconv (16→1) [B, 1, T ]
Tanh [B, 1, T ]

EncoderConvBlock

Layer
Conv1d (k = 5, s=2, p=2)
BatchNorm
GELU
Conv1d (k = 5, s=1, p=2)
BatchNorm
Conv1d (k = 1, s=2) + BN
GELU

DecoderSkipBlock

Layer
ConvTranspose1d (k = 5, s=2, p=2, op=1)
Concat skip connection
Conv1d (k = 5, s=1, p=2)
BatchNorm
GELU
Conv1d (k = 5, s=1, p=2)
BatchNorm
GELU

Due to restrictions around data licensing and industry policies, we are unable to release the full
source code associated with HiMAE. To mitigate this limitation, we provide complete details of the
model architecture, layer configurations, and hyperparameters in Table 1. This includes all encoder,
decoder, and skip connection blocks, along with kernel sizes, strides, padding, activation functions,
and normalization layers. Together, these descriptions are sufficient to re-implement the model
faithfully in any modern deep learning framework (Paszke et al., 2019; Abadi et al., 2016; Bradbury
et al., 2018; Hannun et al., 2023). In addition, we report all training settings (e.g., optimizer, learning
rate schedule, and batch size) in the Appendix Section E to further support reproducibility. Our goal
is to ensure that, while the exact implementation cannot be shared, independent researchers can
replicate the methodology and validate the findings presented in this work.

C.1 TEMPORAL RESOLUTION AND RECEPTIVE FIELD

Let x ∈ RT be a 1D input. Each EncoderConvBlock contains two convolutions on the main
path, Conv1d(k=5, s=2) followed by Conv1d(k=5, s=1), and a 1×1 projection with stride 2 on
the residual branch. The projection does not alter the main-path receptive field but aligns the skip in
time and channel dimensions. For a stacked sequence of 1D convolutions with kernel sizes kℓ and
strides sℓ (unit dilation), we define the effective input “jump” Jℓ and receptive field Rℓ after layer ℓ
via

J0 = 1, R0 = 1, Jℓ = Jℓ−1 sℓ, Rℓ = Rℓ−1 + (kℓ − 1) Jℓ−1.

Within one encoder block the first convolution halves the temporal resolution and expands the re-
ceptive field by 4Jin, and the second adds a further 8Jin (because its stride is 1 but the jump has
already doubled). Hence a block with effective stride 2 maps (Rin, Jin) 7→ (Rout, Jout) with

Jout = 2Jin, Rout = Rin + 12 Jin.

After b encoder blocks this yields the closed form

Jb = 2b, Rb = 1 + 12

b−1∑
i=0

2i = 1 + 12(2b − 1).

Instantiating for our five encoder blocks (b = 1, . . . , 5) gives the temporal resolutions
T/2, T/4, T/8, T/16, T/32 and the cumulative receptive field at the end of the encoder of R5 = 373
input samples per output position at stride J5 = 32. Table 2 reports the resolution and cumulative
receptive field after every main-path convolution; the 1 stride-2 projections on the residual branches
are listed implicitly because they do not expand Rℓ on the forward path.
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Table 2: Temporal resolution and cumulative receptive field through the encoder. T denotes the input
length in samples. Rℓ is the receptive field after layer ℓ and Jℓ the effective input stride (“jump”).

Layer Kernel k Stride s Output length Rℓ / Jℓ
Enc1-conv1 5 2 T/2 5 / 2
Enc1-conv2 5 1 T/2 13 / 2
Enc2-conv1 5 2 T/4 21 / 4
Enc2-conv2 5 1 T/4 37 / 4
Enc3-conv1 5 2 T/8 53 / 8
Enc3-conv2 5 1 T/8 85 / 8
Enc4-conv1 5 2 T/16 117 / 16
Enc4-conv2 5 1 T/16 181 / 16
Enc5-conv1 5 2 T/32 245 / 32
Enc5-conv2 5 1 T/32 373 / 32

The figure of per-layer traces corroborates these counts: each block’s first convolution visibly halves
the temporal resolution, while the second refines features at the same scale; the cumulative growth
of Rℓ explains the progressive smoothing you observe at deeper layers, as each response aggregates
over longer input windows. If your sampling rate is fs Hz, multiply Rℓ by 1/fs to obtain the
effective temporal support in seconds.

D DATASETS

D.1 AQUISTION AND APPROVAL

(IRB numbers have been excluded due to double blind review reviewing but will be included post-
review)

All data analyzed in this study were collected under informed consent, with participants explic-
itly agreeing for their wearable-derived signals to be used in health-related research. The consent
language stated that data could be used for developing new health features and algorithms and for
inclusion in scientific publications. In particular, participants were informed that health and wellness
data such as steps, heart rate, sleep, and photoplethysmography (PPG) signals could contribute to
findings aimed at advancing general knowledge of health and science. No data used in this study
included personally identifying information such as names or email addresses. We attach a portion
of the protocols defined in our user data agreements below:

The use of these de-identified data for data usage was reviewed and classified as exempt. In addition,
because the supporting records constitute case histories and document exposure to devices, we com-
plied with the recordkeeping requirements in 21 CFR § 812.140(a)(3), including obtaining written
digital consent and dated information. Participants could withdraw at any time; such withdrawals
were documented in the case history, and data collected up to the point of withdrawal were retained
and used for the investigation in accordance with the consent and applicable regulations.

For downstream evaluations, we relied on a combination of institutional review board (IRB)-
approved datasets and publicly available resources. For instance, the PVC detection task used paired
PPG and ECG recordings to derive annotations of premature ventricular contractions, with ECG-
based labels verified both algorithmically and manually. The hypertension classification tasks were
drawn from the REDACTED and REDACTED studies, both of which collected wrist-based PPG
alongside reference blood pressure measurements under IRB-approved protocols. Sleep staging was
evaluated using the DREAMT dataset, which combines PPG with gold-standard polysomnography
annotations in individuals with and without diagnosed sleep disorders. Finally, a range of abnormal
lab test prediction tasks were derived from the REDACTED dataset, linking PPG from REDACTED
devices with clinical laboratory values for biomarkers (More details in Appendix Section D).

Across all studies, participants consented to data collection through mobile platforms that supported
eligibility screening and enrollment, provided full informed consent, and enabled seamless integra-
tion of REDACTED devices for continuous signal acquisition. Where appropriate, participants also
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reported medical histories or completed questionnaires through these platforms. All data were de-
identified and stored in accordance with the approved study protocols, ensuring compliance with
ethical and regulatory standards.

This layered consent and governance framework ensures that the data underpinning our pretraining
and evaluation tasks are both ethically sourced and scientifically robust, supporting the broader goal
of advancing health monitoring through consumer wearables such as the REDACTED Watch.

D.2 PRE-TRAINING AND GENERATIVE DATASETS

D.2.1 DEVICE DISTRIBUTION

Figure 9: Total Participants by Device. The figure displays a bar chart illustrating the distribution
of participants across different wearable devices used in the study. The y-axis is on a logarithmic
scale to better show the wide range in the number of participants

The distribution of participants and data availability highlights both the diversity of collection de-
vices and the heterogeneity of study contributions (Figure 9). At the device level, participation
is primarily sourced from REDACTED DEVICE 1 REDACTED DEVICE 2 , and REDACTED
DEVICE 3 , each contributing a lot of participants, while older models such as the REDACTED
DEVICE 4 are represented by fewer users. This heterogeneity in devices provide us with a realis-
tic and diverse set of raw wearable signals that can help us build generalizable foundation models.
The presence of entries labeled as “NA” further reflects the mixture of collection devices and the
occasional incompleteness of metadata. We note that the devices used in our study are provided by
two distributors limiting its generalizability and causing potential biases due to not having access
to other consumer wearable devices.

D.2.2 PARTICIPANT COUNTS

In terms of study based segmentation, the dataset contains a handful of large-scale cohort studies,
leading to diverse representation (Figure 10). Efforts were made to ensure representation across
studies of varying sizes. This underscores the necessity of leveraging the vast scale of high-volume
cohorts while simultaneously preserving the heterogeneity introduced by smaller studies, since both
dimensions are essential for building foundation models that truly capture the variability and com-
plexity of one-dimensional PPG signal modeling. Our data was collected across 4 countries (USA,
South Korea, Brazil, Bangladesh) though most people specific demographic information is missing.
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Figure 10: Segment Count by Study. This bar chart shows the number of data segments collected
for each study, with the y-axis on a logarithmic scale to account for the large differences in segment
counts.

D.2.3 PRE-PROCESSING PIPELINE

We operate on fixed-length windows (10 s) of raw PPG sampled at device-specific rates fs. Each
window is standardized via per-window z-scoring, x̃t = (xt − µ)/σ, to remove level and scale
effects that confound morphology-based quality metrics. To suppress gross amplitude artifacts (e.g.,
motion bursts), we compute the skewness of |x̃|, denoted γ = skew(|x̃|). Windows with heavy-
tailed amplitude distributions (γ > 2) undergo an iterative trimming procedure that discards high-
percentile excursions and recomputes γ until the distribution regularizes or a conservative floor
is reached. This stage intentionally trades recall for precision: if trimming fails to regularize the
distribution, the window is rejected.

For windows that pass amplitude checks, we impose a regularity prior using the sample autocorrela-
tion r[k] =

∑
t x̃tx̃t+k. We locate zero-crossings of r[k] near the origin and compute the dispersion

of consecutive intervals, σzc = std(∆k)/fs. Physiologically plausible pulsatile signals exhibit near-
periodic structure; we therefore require a small timing dispersion to proceed. This criterion rejects
segments whose periodicity is unstable, a signature of motion or sensor decoupling, and eliminates
short or degenerate traces by enforcing a minimum number of intervals.

Surviving windows are band-limited with a low-order Butterworth filter to the cardiac band [0.1, 2]
Hz, which removes drift and high-frequency noise without distorting pulse morphology. We then
quantify morphology via template matching against a canonical PPG waveform. Let qt ∈ [0, 1] de-
note the per-sample similarity score. We define a stringent acceptance mask mt = 1{qt > τ}
with τ ∈ {0.90, 0.95} depending on whether the amplitude distribution was already regular
(γ ≤ 2). Two complementary statistics summarize quality: a “coverage” term p = 1

T

∑
t mt,

measuring the fraction of the window that is confidently PPG-like, and an “agreement” term
a = 1

max(1,
∑

t mt)

∑
t qtmt, measuring how well accepted samples match the template. To pe-

nalize windows that have high agreement on vanishing coverage (or vice versa), we aggregate with
the harmonic mean H(a, p) = 2ap

a+p , yielding a continuous signal-quality index. A small addi-
tive term encodes whether the amplitude distribution was regular at entry, prioritizing windows that
never required trimming. Windows that fail any upstream gate (amplitude regularization, periodicity
stability, or template evaluation) are assigned null quality and excluded from downstream training.
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At corpus scale, we apply this scoring in parallel and retain only windows with high composite
quality. The resulting pretraining set emphasizes clean, consistent, periodic, and band-pass filtered
signals harmonizing across devices and sampling rates, reducing the prevalence of motion artifacts
and non-physiologic segments without relying on patient-level demographics or labels.

D.3 DOWNSTREAM EVALUATION DATA

We evaluate HiMAE across diverse downstream tasks to assess the generality of wearable PPG
representations. Rather than assuming a fixed mapping between PPG and outcomes, we exploit
HiMAE’s ability to learn hierarchical temporal features and adaptively resolve signal segments at
scales most informative for prediction. This design allows us to probe the representational value of
optical physiological signals across clinically and behaviorally relevant applications.

D.3.1 PVC DETECTION

Table 3: Stratified 80/20 Train/Test splits for PVC tasks (with per-task totals).

Task Split Negative Positive Total

PVC Detection
train 369987 (91.8%) 32832 (8.2%) 402819
test 69880 (89.7%) 8019 (10.3%) 77899
totals 439767 (91.4%) 40950 (8.6%) 480717

Premature Ventricular Contractions (PVCs) (Number Breakdowns in Table 3) are abnormal beats
arising in the ventricles (Cha et al., 2012; Kaya & Pehlivan, 2015). We use paired PPG–ECG data,
with ECG annotations generated using BeatLogic (Teplitzky et al., 2020) and manually verified.
PPG inputs are 10s non-overlapping wrist segments, pre-processed with a Savitzky–Golay filter
(Luo et al., 2005), a 0.5–4.0 Hz bandpass, normalization to [−1, 1], and exclusion of segments with
motion artifacts or disruptions > 1 s. This task evaluates whether ubiquitous PPG can approximate
arrhythmia detection typically restricted to ECG.

D.3.2 HYPERTENSION CLASSIFICATION

Table 4: Stratified 80/20 Train/Test splits for Hypertension tasks collected in a laboratory setting.

Task Split Negative Positive Total

Hypertension Classification (Lab)
train 2964 (86.7%) 454 (13.3%) 3418
test 631 (76.7%) 192 (23.3%) 823
totals 3595 (84.8%) 646 (15.2%) 4241

Table 5: Stratified 80/20 Train/Test splits for Hypertension tasks collected in a free-world setting.

Task Split Negative Positive Total

Hypertension Classification (Free World)
train 3959 (58.5%) 2812 (41.5%) 6771
test 1042 (58.8%) 731 (41.2%) 1773
totals 5001 (58.5%) 3543 (41.5%) 8544

Hypertension classification (Number Breakdowns in Tables 4, 5) relies on cuff-based references
(Simonneau et al., 2004; Giles et al., 2005; 2009; Simonneau et al., 2009; 2013; 2019). Subjects
within ±8 mmHg of the diagnostic cutoff are excluded to reduce label noise, with remaining indi-
viduals labeled hypertensive or normotensive. Each 10s PPG segment undergoes Savitzky–Golay
smoothing, 0.5–4.0 Hz bandpass filtering, normalization to [−1, 1], and artifact removal. Unlike
PVC detection, which is event-based, this task leverages PPG morphology and temporal dynamics
to reflect vascular state. These evaluations contain both hypertension data collected in a naturalistic
free world environment and within a controlled lab environment for both the hypertensive and blood
pressure regression tasks.
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D.3.3 SLEEP STAGING

Table 6: Stratified 80/20 Train/Test splits for Sleep Staging.

Task Split Wake Light Deep REM Total

Sleep Staging (4-class)
train 44829 (23.9%) 115932 (61.8%) 6696 (3.6%) 20214 (10.8%) 187671
test 11298 (23.6%) 30153 (63.1%) 1416 (3.0%) 4881 (10.2%) 47748
totals 56127 (23.8%) 146085 (61.9%) 8112 (3.4%) 25095 (10.6%) 235419

Sleep staging (Number Breakdowns in Tables 6) is evaluated on the DREAMT dataset (Wang et al.,
2024) hosted on PhysioNet (Goldberger et al., 2000), which includes overnight wristband data with
simultaneous PSG. Annotations follow AASM standards into wake, REM, NREM1, NREM2, and
NREM3, excluding missing and preparation segments. PPG is bandpass filtered (0.5–12 Hz) (But-
terworth et al., 1930), segmented into 10s windows, and normalized to zero mean and unit variance.
Performance is measured with five-fold subject-independent cross-validation. This task examines
whether PPG encodes temporal patterns sufficient for sleep stage classification. We note that sleep
staging has canonically been designed by leveraging the whole sleep cycle but we are assessing the
ability to monitor real time sleep staging from much shorter PPG segments.

D.3.4 ABNORMAL LAB TESTS

Table 7: Stratified 80/20 Train/Test splits for REDACTED tasks (with per-task totals).

Task Split Negative Positive Total

A1C
train 255 (31.6%) 553 (68.4%) 808
test 64 (31.7%) 138 (68.3%) 202
totals 319 691 1010

Hematocrit
train 1271 (77.0%) 380 (23.0%) 1651
test 305 (77.0%) 91 (23.0%) 396
totals 1576 471 2047

Hemoglobin
train 867 (81.2%) 201 (18.8%) 1068
test 208 (81.3%) 48 (18.8%) 256
totals 1075 249 1324

Platelets
train 622 (35.5%) 1129 (64.5%) 1751
test 143 (35.7%) 258 (64.3%) 401
totals 765 1387 2152

Potassium
train 731 (33.1%) 1476 (66.9%) 2207
test 167 (33.1%) 338 (66.9%) 505
totals 898 1814 2712

Sodium
train 203 (17.6%) 951 (82.4%) 1154
test 48 (17.7%) 223 (82.3%) 271
totals 251 1174 1425

WBC
train 247 (18.6%) 1082 (81.4%) 1329
test 62 (18.7%) 270 (81.3%) 332
totals 309 1352 1661

For abnormal lab test prediction, we use REDACTED Watch PPG collected at REDACTED Uni-
versity paired with clinical laboratory results. Each test is framed as a binary classification task:
outcomes are labeled negative if within the 25th percentile of lab values and the positive labels are
anything above the 75th percentile. All other labels are excluded. Preprocessing matches other
tasks. Targets include A1C, hemoglobin, hematocrit, platelets, potassium, sodium, and WBC, each
selected for established clinical relevance. This task extends evaluation beyond cardiovascular and
behavioral endpoints to systemic markers of metabolic, renal, and hematologic health. We note that
it is unclear whether PPG can predict abnormal from healthy lab values based on the PPG alone.
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Despite this, REDACTED univeristy presents us with an opportunity to discover if PPG signal can
provide digital signatures making this an exploratory task in our benchmark.

Clinical Relevance of Lab Tests Each lab test used for this analysis provides critical information
about a patient’s health status. Their inclusion in this study is based on their established role in
diagnosing or monitoring chronic conditions and acute health issues.

• A1C (Glycated Hemoglobin): Measures average blood glucose levels over the past 2–3
months. It is the primary diagnostic tool for diabetes and a key indicator for managing long-
term blood sugar control. Elevated A1C levels are linked to increased risk of cardiovascular
disease, kidney damage, and other complications.

• Hemoglobin: Oxygen-carrying protein in red blood cells. Low levels indicate anemia,
while elevated levels may suggest polycythemia vera.

• Hematocrit: Percentage of blood volume occupied by red blood cells. Used alongside
hemoglobin to assess anemia or polycythemia.

• Platelets: Critical for clotting. Low count (thrombocytopenia) increases bleeding risk;
high count (thrombocytosis) increases clot risk.

• Potassium: Essential electrolyte for nerve and muscle function. Both hypokalemia (<3.5
mEq/L) and hyperkalemia (>5.0 mEq/L) can trigger cardiac arrhythmias.

• Sodium: Regulates fluid balance and blood pressure. Abnormalities can indicate dehydra-
tion, renal disease, or endocrine disorders.

• WBC (White Blood Cells): Immune system cells. Leukocytosis (>11×109/L) indicates
infection, inflammation, or hematologic disease.
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E BASELINES AND MODEL CONFIGURATION

Self Supervised Pre-trained methods have become a dominanat paradigm for health and wellness
to study a variety of applications (Wornow et al., 2023; Thieme et al., 2023; He et al., 2024; An
et al., 2025; Lin et al., 2025). Foundation models for one-dimensional signals are predominantly re-
purposed from architectures designed for vision, with adaptations that reinterpret temporal structure
as a flattened analogue of spatial correlation. In this section we highlight our baseline models and
model configurations

E.1 BASELINES

LSM (Narayanswamy et al., 2024) introduces a large-scale foundation model trained on multi-
modal wearable sensor data. The approach emphasizes scaling laws for wearable representation
learning, leveraging a transformer-based backbone to capture temporal and cross-modal dependen-
cies. Specifically, it adopts a vision transformer architecture trained via masked autoencoding with
random masking. The model is designed as a general-purpose foundation, transferring effectively
across a range of downstream tasks in physiological sensing and human activity recognition. In our
work, we do not replicate the full multimodal design; instead, we adapt and constrain the model to
a unimodal setting.

Swin-Transformer (Liu et al., 2021a) is a hierarchical Transformer that forms multi-scale repre-
sentations by restricting self-attention to non-overlapping windows and alternating partitions with
a shifted-window scheme, which enables cross-window communication while keeping computation
near-linear in sequence length. We use this baseline as this is a direct comparison and counterpart
to our proposed hierarchical HiMAE model. For wearable sensing, we adopt a 1D adaptation that
tokenizes temporal patches and applies windowed attention along time, capturing both fine-grained
waveform morphology and longer-range dependencies.

Masked Siamese Networks (MSN) (Assran et al., 2022) learn label-efficient representations by
combining masked signal modeling with Siamese-style contrastive objectives. Instead of relying on
class labels, MSN masks portions of the input and enforces consistency between augmented views.
Architecturally, it employs a Vision Transformer encoder shared across views, while leveraging
a predictor network to stabilize training. The key idea is to couple self-distillation with masked
reconstruction to reduce sample complexity.

DINO (Caron et al., 2021) is a self-supervised framework that leverages knowledge distillation
without labels. Using a teacher-student setup, the student network is trained to match the output
distribution of the teacher under different data augmentations. Both networks are 1D-ViTs, and the
method induces cluster-like emergent properties in the learned embedding space, enabling strong
transfer performance without explicit contrastive pairs or handcrafted pretext tasks.

SimCLR (Chen et al., 2020b) establishes contrastive learning as a competitive self-supervised
paradigm. The core idea is to maximize agreement between augmented views of the same sig-
nal in a latent space while pushing apart representations of different images. This is implemented
using a ResNET encoder (He et al., 2015), a projection head, and a contrastive loss (NT-Xent (Chen
et al., 2020a)).

PaPaGei (Pillai et al., 2024) is a domain-specific foundation model designed for optical physiolog-
ical sensing, particularly photoplethysmography (PPG). It adapts ResNET-style CNN architectures
to learn robust, generalizable representations from large-scale optical physiological datasets. Pa-
PaGei releases both model weights and datasets to support reproducibility and broader adoption in
physiological signal analysis. In our work, we used their source code to benchmark their method by
pre-training on our volume of data to ensure fair comparison.
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E.2 HYPERPARAMETERS FOR HIMAE AND BASELINES

To ensure a fair comparison across models, we aligned the training setup as closely as possible
to the original implementations while maintaining consistency in optimizer choice and scheduling.
All the methods trained from scratch (HiMAE, LSM, Swin-Transformer, MSN, DINO, SimCLR)
were trained under identical optimization regimes, while PaPaGei follows its released open source
training protocol. Table 8 summarizes the key hyperparameters for all models.

Table 8: Hyperparameter Configurations for Different Models

Configuration HiMAE LSM Swin-Transformer MSN DINO SimCLR PaPaGei
Training Steps 50000 15000
Warmup Steps 2500 —
Optimizer AdamW (Loshchilov & Hutter (2017))
Opt. momentum [β1, β2] [0.9, 0.95] [0.9, 0.95] [0.9, 0.95] [0.9, 0.99] [0.9, 0.99] [0.9, 0.99] —
Base learning rate 0.001 0.005 0.005 0.001 0.004 0.001 0.0001
Batch size 2048 256
Weight decay 0.0001 —
Gradient clipping 1.0 1.0 1.0 3.0 3.0 3.0 —
Dropout 0.0 —
Learning rate schedule Linear Warmup & Cosine Decay —
Loss Function Mean Squared Error Cross Entropy Contrastive Loss
Data resolution 1 (signal) - 100 Hz (Sampling Rate) × 10 (seconds)
Augmentation Flip, Time-Warping, Noise
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F ADDITIONAL RESULTS

F.1 MODEL CONFIGURATIONS ABLATIONS

We conducted a comprehensive ablation study of HiMAE on a 100 Hz dataset comprising ten million
segments (roughly 30k hours). The experiments systematically varied architecture and hyperparam-
eters to understand their effect on reconstruction quality (Extrapolation task from our generative
benchmark in tables where it is not explicitly stated as previously done in (Narayanswamy et al.,
2024)), with multiple independent training runs averaged to reduce variance from stochastic initial-
ization and data sampling. Unless otherwise noted, all training employed AdamW with a learning
rate of 3× 10−4, cosine decay scheduling, and a batch size of 512.

Architecture. We evaluated HiMAE alongside CNN baselines across increasing network
depths, defined by the sequence of hidden channel dimensions [16, 32, 64], [16, 32, 64, 128], and
[16, 32, 64, 128, 256]. Table 9 lists the parameter counts, showing a modest growth for HiMAE
compared to CNN baselines, with the skip-connected HiMAE exhibiting slightly higher capacity
than its no-skip variant.

Table 9: Model Parameters (in K or M)

Model HiMAE-tiny HiMAE-small HiMAE-Base
Depth [16,32,64] [16,32,64,128] [16,32,64,128,256]

CNN 26.2 K 108 K 437 K
HiMAE-no skip 66.1 K 271 K 1.10 M
HiMAE 75.3 K 309 K 1.25 M

The impact of network depth on mean absolute error (MAE) and mean squared error (MSE) is sum-
marized in Table 10. Increasing depth consistently reduced both MAE and MSE for HiMAE, with
the deepest configuration yielding the lowest reconstruction error. Skip connections were critical, as
HiMAE consistently outperformed its no-skip variant across all depths.

Table 10: MAE and MSE for Different Network Depths

Model HiMAE-tiny HiMAE-small HiMAE-Base

Depth [16,32,64] [16,32,64,128] [16,32,64,128,256]

MAE ↓ MSE ↓ MAE ↓ MSE ↓ MAE ↓ MSE ↓
CNN 0.4052 0.2345 0.4177 0.2491 0.4008 0.2315
HiMAE-noskip 0.4031 0.2365 0.4006 0.2465 0.3975 0.2339
HiMAE 0.4008 0.2309 0.3892 0.2232 0.3827 0.2210

Patch Size. We varied the spatial-temporal patch sizes over 1, 5, 10, and 20. The results in Table 12
indicate that 5 provided the best trade-off between local resolution and generative performance.
Smaller patches increased flexibility but slightly degraded performance due to reduced receptive
field per token, while overly large patches caused loss of fine-grained structure.

Table 12: Model Performance for Different Patch Sizes

Model 1 5 10 20
MAE ↓ MSE ↓ MAE ↓ MSE ↓ MAE ↓ MSE ↓ MAE ↓ MSE ↓

CNN 0.4140 0.2391 0.4008 0.2315 0.4122 0.2449 0.4274 0.2613
HiMAE-noskip 0.4069 0.2398 0.3976 0.2339 0.4037 0.2462 0.4195 0.2629
HiMAE 0.3899 0.2268 0.3827 0.2210 0.3861 0.2312 0.4039 0.2479

Convolution Kernel Size. Kernel size was varied over {1, 5, 10, 20}. Table 13 shows that 5 yielded
the lowest errors across all models, suggesting moderate receptive fields match the temporal and
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spatial scales of our data. Very small kernels restricted context aggregation, while very large kernels
oversmoothed latent features.

Table 13: Model Performance Across Convolution Kernel Sizes

Model 1 5 10 20
MAE ↓ MSE ↓ MAE ↓ MSE ↓ MAE ↓ MSE ↓ MAE ↓ MSE ↓

CNN 0.4162 0.2413 0.4010 0.2309 0.4103 0.2418 0.4241 0.2576
HiMAE-noskip 0.4090 0.2427 0.3959 0.2331 0.4032 0.2440 0.4208 0.2591
HiMAE 0.3921 0.2283 0.3821 0.2206 0.3885 0.2316 0.4047 0.2485

Stride. We evaluated stride values of 2, 4, and 8 (Table 14). Smaller strides yielded the best
performance, particularly for HiMAE, by preserving high temporal resolution in early feature maps.
Performance degraded monotonically with stride increases.

Table 14: Model Performance Across Stride Values

Model 2 4 8
MAE ↓ MSE ↓ MAE ↓ MSE ↓ MAE ↓ MSE ↓

CNN 0.4016 0.2312 0.4139 0.2445 0.4318 0.2678
HiMAE-noskip 0.3976 0.2334 0.4098 0.2471 0.4272 0.2702
HiMAE 0.3829 0.2209 0.3928 0.2325 0.4103 0.2504

Masking Ratio. Finally, we explored the effect of varying the latent masking ratio in the masked
autoencoding objective for generative tasks, with ratios from 0.5 to 0.9. As shown in Table 15,
interpolation and extrapolation both improved when increasing the ratio up to 0.8, after which per-
formance degraded for interpolation and collapsed for extrapolation.

Table 15: MAE and MSE for HiMAE Across Different Masking Ratios Evaluated on Generative
Tasks

HiMAE Masking Ratio Temporal Interpolation Temporal Extrapolation
MAE ↓ MSE ↓ MAE ↓ MSE ↓

0.5 0.3972 0.2292 0.4077 0.2519
0.6 0.3889 0.2223 0.3975 0.2294
0.7 0.3848 0.2207 0.3963 0.2278
0.8 0.3796 0.2183 0.3879 0.2217
0.9 0.3818 0.2219 0.2881 0.2216

Final Selection. These controlled experiments informed the final HiMAE configuration: the deepest
architecture [16, 32, 64, 128, 256] with skip connections, patch size 5, kernel size 5, stride 2, and a
masking ratio of 0.8, which jointly achieved the best trade-off between reconstruction fidelity and
parameter efficiency.

F.2 ECG PRE-TRAINING

Table 16: Masked-reconstruction loss on ECG
masked auto encoding task.

Model MSE (↓)

HiMAE 0.148
LSM-1 (ViT) 0.162
HiMAE (no skip) 0.184
CNN 0.207

HiMAE attains the lowest masked-
reconstruction error on ECG (Table 16),
indicating that its hierarchical masking
and reconstruction inductive biases capture
reconstruction capacity beyond PPG. LSM-1
(ViT) is a close second, while the ablated
HiMAE and CNN trail, reinforcing that the
full HiMAE design transfers effectively to
the ECG domain.
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F.3 VISUALIZATION OF RECONSTRUCTIONS

We provide sample reconstructions on both ECG (Figure 11) and PPG (Figure 12) signal showcasing
that our framework works across signal modalities. In our work, we limit our analysis to PPG, since
ECG is not passively collected and obtaining paired PPG and ECG data was not attainable at scale.

Figure 11: ECG Reconstructions: ECG Sample Reconstructions for HiMAE, LSM
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Figure 12: PPG Reconstructions: PPG Sample Reconstructions for HiMAE, LSM
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F.4 SCALING RESULTS FOR GENERATIVE TASKS

Figure 13: Scaling Experiments on Generative Tasks: Evaluation on the three generative tasks.
HiMAE consistenly outperforms all model at our scale of data
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Scaling analysis. We evaluate HiMAE’s reconstruction error under participant, recording hour,
batch size, and model size scaling, following the regimes of Narayanswamy et al. (2024); Xu et al.
(2025): random imputation, temporal interpolation, and temporal extrapolation. Across all settings
HiMAE follows clean scaling law trends (Kaplan et al., 2020) and maintains a margin over LSM-1
(ViT) and CNN baselines.

The most pronounced effect is model size. At small capacities HiMAE achieves lower error than
much larger transformer baselines, highlighting the advantage of hierarchical inductive bias over
sheer parameter count. LSM-1 only begins to close the gap at orders of magnitude more parame-
ters. The transformer could surpass our HiMAE model when given a larger capacity but this again
highlights the effectiveness of the inductive bias that we are conveying.

Participant, hour, and batch size scaling follow canonical patterns. More participants and longer
recordings steadily reduce error, with HiMAE continuing to improve where baselines saturate, es-
pecially on interpolation and extrapolation.

Ablations confirm the mechanism: removing skip connections or collapsing the hierarchy to a single
scale uniformly degrades performance, with gaps widening as data or model size grow. Task diffi-
culty follows the expected order (imputation < interpolation < extrapolation), with the largest rela-
tive gaps in extrapolation, where hierarchical structure effectively lengthens usable context. Overall,
HiMAE reaches lower error at smaller scales, showing that efficiency derives from inductive bias
rather than brute force capacity.

F.5 HIERARCHAL CONCORDANCE

Layer concordance across depths. We further assess the stability of the resolution hypothesis by
comparing HiMAE trained with four versus five encoder–decoder stages (Figure 14). The resulting
heatmaps reveal that the alignment between downstream tasks and temporal resolutions is largely
preserved across depths. Cardiovascular endpoints such as PVC detection and hypertension consis-
tently achieve their best performance at finer layers, while blood related labs benefits from coarser
layers. Although minor fluctuations appear in intermediate levels, the overall hierarchy of predictive
resolutions is concordant. This suggests that the resolution–task mapping uncovered by HiMAE is
not an artifact of architectural depth, but a robust property of the representations themselves.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Figure 14: HiMAE layer concordance across encoder depths. Heatmaps compare downstream
AUROC when probing HiMAE at 4 layers (top) versus 5 layers (bottom). Despite the removal of
an encoder–decoder stage, the resolution–task alignment remains highly concordant: tasks such as
PVC detection and hypertension consistently peak at similar layers, while sleep staging benefits from
coarser representations. Minor deviations appear in intermediate layers, but the overall hierarchy of
predictive resolutions is preserved, indicating robustness of the resolution hypothesis to architectural
depth.
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Figure 15: Performance on regression benchmarks. Mean absolute error (↓) for regressing sys-
tolic and diastolic blood pressure.

F.6 REGRESSION

Continuous regression of blood pressure from wearable signals represents a canonical benchmark for
physiological monitoring, yet the task remains highly challenging (Schrumpf et al., 2021a;b; Mehta
et al., 2024). The objective is to recover systolic and diastolic pressures directly from sensor data,
a setting where accuracy demands are clinically stringent but input signals are noisy and weakly
correlated with the target (Figure 15). On the diastolic task, all approaches converge to errors on
the order of 10 mmHg across both the REDACTED and REDACTED datasets. All Foundation
Models yield similar performance, with HiMAE and LSM-1 providing marginal improvements but
no decisive advantage. The systolic task exhibits a similar profile. Across datasets, performance
saturates at errors slightly around 10 mmHg, with self-supervised approaches again clustered closely
together. Despite this performance, our model does achieve the lowest mean absolute error across 2
out of the 4 comparisons showing that the model design does achieve better performance under the
majority of scenarios. However, despite methodological advances, the achievable error floor has yet
to approach clinically useful levels (Mehta et al., 2024).
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Figure 16: Bland–Altman plot before and after fine-tuning on blood pressure regression. The
plots illustrate the agreement between predicted and reference blood pressure values, with mean bias
(solid line) and 95% limits of agreement (dashed lines). Fine-tuning substantially reduces systematic
bias and narrows the limits of agreement, indicating improved calibration and reliability of HiMAE-
derived representations for regression.

F.7 FINETUNING IMPROVES REGRESSION PERFORMANCE

Fine-tuning substantially improves the regression behavior of our blood pressure estimators, as ev-
idenced by the Bland–Altman plots in Figure 16. Prior to fine-tuning, both systolic and diastolic
predictions exhibit large variance and systematic deviations, with wide limits of agreement and bias
patterns that suggest poor calibration. After fine-tuning, the error distributions contract markedly:
variance is reduced, biases approach zero, and the limits of agreement narrow considerably. These
shifts indicate that fine-tuning not only enhances point prediction accuracy but also improves the
overall reliability of the regression component, yielding estimates that are more clinically consis-
tent with reference values. Despite this improvement, the model also indicates errors exceeding
+/- 20mmHg which again highlight a limitation in these approaches to do well on estimating blood
pressure.
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F.8 TSNE PLOTS ON LINEAR PROBES AND FINE-TUNED

Figure 17: t-SNE Visualization of Representations Before and After Fine-tuning. Two represen-
tative tasks are shown: premature ventricular contraction (top) and hypertension detection (bottom).
Each panel displays a 2D t-SNE projection of HiMAE embeddings colored by class label. Before
fine-tuning, the clusters for normal and abnormal cases overlap substantially. After fine-tuning,
the separation between classes becomes more pronounced, indicating that task-specific supervision
sharpens decision boundaries in the learned representation space.

t-SNE analysis. Figure 17 visualizes embeddings using t-SNE before and after fine-tuning. Prior
to fine-tuning, normal and abnormal samples form largely overlapping clusters, indicating that pre-
training alone does not fully separate task-specific structure. After fine-tuning, separation between
classes becomes more distinct, particularly for PVC detection, suggesting that lightweight task-
specific adaptation sharpens decision boundaries while preserving the efficiency of the pretrained
HiMAE representations. This confirms that HiMAE provides a strong initialization that benefits
from minimal supervised refinement.
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G ON-DEVICE EXPERIMENTS

G.1 INFERENCE EFFICENCY

Model Params FLOPs Memory

HiMAE 1.2M 0.0647 gFLOPS 4.8 MB
Efficient-Net 7.8M 0.70 gFLOPS 31.1 MB
Swin-Transformer 110.6M 11.89 gFLOPS 423.8 MB
LSM-Base 110.6M 15.94 gFLOPS 441.3 MB

Table 17: HiMAE is lightweight and efficient: Model size
and compute cost comparison between HiMAE and LSM.
FLOPs measured per forward pass on a 10s sequence at
100Hz.

We benchmarked the inference
efficiency of our proposed HiMAE
against the transformer baseline
(LSM-Base), measuring three
aspects: model footprint and com-
putational complexity in terms of
parameters, memory, and FLOPs
per 10-second input window at 100
Hz (Table 17); latency, defined as
mean per-sample forward-pass time
at batch size 1; and throughput,
defined as the maximum number
of samples processed per second (Table 18). All experiments were run on a Samsung Watch
Series 8. Benchmarks were run on-device, using Exynos W1000 CPUs. We also tested on a
T4 GPU for potential mobile device deployment; although the T4 is a datacenter GPU, modern
mobile processors like the Qualcomm Adreno 750 found on commercial phones are optimized for
high-performance ML and can deliver comparable efficiency (Buber & Banu, 2018; Wesolowski
et al., 2021), underscoring the practicality of on-device deployment.

Model GPU Lat. GPU Thr. CPU Lat. CPU Thr.

HiMAE 0.039 ms 25.8k/s 0.99 ms 1.2k/s
Efficient-Net 0.082 ms 12.2k/s 1.42 ms 0.704k/s
Swin-Transformer 0.704 ms 1.42k/s 2.95 ms 0.456k/s
LSM-Base 0.80 ms 1.24k/s 3.36 ms 0.298k/s

Table 18: Inference Performance: Latency (ms per sample,
batch size 2048) and throughput (samples/sec) measured over
10 s windows.

Results Despite being more
than two orders of magni-
tude smaller in parameter count,
the HiMAE consistently out-
performs the transformer base-
line across all efficiency metrics.
Between Efficient-Net (Tan &
Le, 2020), it remains marginally
better which is encouraging due
to the optimizations designed in
this model.

Model footprint: HiMAE re-
duces parameters from 110M to 0.31M (∼ 355× fewer), FLOPs from 15.94G to 0.0647G (∼ 246×
fewer), and memory from 441.3MB to 3.6MB (∼ 123× smaller). These reductions highlight that
computational savings scale with the compactness of the model, without loss of representational
capacity for the task.

Latency: HiMAE achieves substantially faster per-sample inference. On GPU, latency drops from
0.80ms to 0.039ms (∼ 20× faster), while on CPU it falls from 3.93ms to 0.99ms (∼ 4× faster). The
reduction in latency follows directly from the smaller computational footprint, reflecting a consistent
efficiency advantage.

Throughput: These improvements translate into higher throughput across hardware. On GPU,
throughput increases from 1.24k to 25.8k samples/s (∼ 21× higher), while CPU throughput rises
from 0.255k to 1.2k samples/s (∼ 5× higher). These results confirm that computational gains extend
beyond memory and FLOPs, yielding end-to-end speedups at inference time.

In summary, HiMAE achieves a favorable tradeoff between compactness and efficiency, providing
lower FLOPs, smaller memory footprint, and faster inference despite its reduced model size. It
also outperforms Efficient-Net B1 which was specially designed and optimized for performance and
compactness giving a comparison and context to our models performance.
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H ADDITIONAL THEORETICAL MOTIVATION FOR HIMAE

H.1 INTUITION AND DERIVATION OF HIMAE DESIGN

Mathematical walk-through. Let x ∈ RC×L denote a PPG sequence of length L = 1000 samples
(10 s at 100 Hz). HiMAE partitions x into N = L/P non-overlapping patches of length P , applies
a binary mask m ∈ {0, 1}N with masking ratio r, and lifts it to the sample resolution m′ ∈ {0, 1}L.
Training minimizes a reconstruction loss restricted to masked indices M :

L(θ, ϕ) =
1

|M |
∑
i∈M

∥∥xi − gϕ(fθ(x⊙m′))i
∥∥2.

Receptive field growth. The encoder fθ consists of D strided Conv1D stages, each with stride
sℓ = 2 and kernel size k = 5. Denoting by Rℓ the receptive field at depth ℓ (measured in input
samples), we obtain the recursion

R0 = 1, Rℓ = Rℓ−1 + (k − 1)
ℓ−1∏
j=1

sj = Rℓ−1 + 4 · 2ℓ−1.

Unrolling gives
Rℓ = 4 · 2ℓ − 3.

At ℓ = 4, R4 = 61 samples (≈ 0.61 s), illustrating that deeper features expand exponentially with
Θ(2ℓ), thereby constructing a natural temporal hierarchy.

Masking scale. Because reconstruction operates on patches, the smallest imputation unit is P .
Under i.i.d. masking, the expected run length of a masked region is

E[ℓmask] = P · r

1− r
.

For P = 5 and r = 0.8, this expectation is 20 samples (200 ms). Contiguous masking further
increases ℓmask, shifting the training signal toward meso-scale temporal coherence.

Scale alignment. We define the “challenge band”

S = [s, s],

where s ≈ P and s is set by the typical masked run length. Since encoder receptive fields {Rℓ}
grow exponentially, effective representation learning occurs when some Rℓ ∈ S, with shallower
layers capturing sub-band morphology and deeper layers integrating slower rhythms. This condition
ensures that different depths specialize to distinct physiological scales.

In HiMAE, the chosen hyperparameters (P = 5, k = 5, stride-2, r = 0.8) yield S on the order of
101–102 samples, which is naturally bracketed by intermediate layers (R3 = 29, R4 = 61). This
alignment explains the resolution-specific probing optima observed empirically.

H.2 WHY CNN/U-NET FOR PHYSIOLOGICAL FOUNDATION MODELS?

Transformer-based architectures (Vaswani et al., 2017; Narayanswamy et al., 2024) have emerged
as the dominant design choice for modern foundation models. Yet their application to physiological
signals reveals critical limitations. Photoplethysmography (PPG), for instance, is highly nonstation-
ary, with morphology that varies across participants. Its dynamics combine quasi-periodic rhythms
with subtle aperiodic perturbations arising from arrhythmias, vascular tone, and motion artifacts
(Nitzan & Ovadia-Blechman, 2022; Almarshad et al., 2022). Capturing such behavior requires sen-
sitivity to both fine-scale temporal structure and long-range dependencies. Transformers, which
lack built-in inductive biases for locality, often force an unfavorable trade-off: small models un-
derfit, while large models rely on brute-force capacity and incur quadratic compute overhead. In
contrast, convolutional encoder–decoders such as U-Nets directly encode locality and multiscale
structure, providing a more natural choice for compact physiological foundation models.
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Local sufficiency for masked prediction. Let (xt)
L
t=1 denote a physiological time series. Under

β-mixing with exponential decay, conditional dependence between xt and observations outside a
finite neighborhood NR(t) vanishes rapidly:

I
(
xt;xO\NR(t)

∣∣xO∩NR(t)

)
≤ ε, (1)

for all masked indices t ∈ M , with R(ε) = O(log(1/ε)). Thus the Bayes-optimal reconstruction
(Bridges et al., 2009) depends only on a finite receptive field. Convolutional architectures implement
such translation-equivariant predictors directly as confirmed by many studies (Worrall et al., 2017;
Worrall & Brostow, 2018; Kayhan & Gemert, 2020; Zhu et al., 2022). Transformers, by treating
all L positions as globally coupled, must simulate locality through restricted attention, leading to
inefficiency in both parameters and computation.

Generalization via hypothesis complexity. Denote by Hconv the class of depth-D CNNs with
kernel size k and stride s, and by Htrf width-d, H-head Transformers. Under spectral norm con-
straints, convolutional Rademacher complexity (Yin et al., 2019; Truong, 2022) scales as

Rn(Hconv) ≲
B · kC

∑D
ℓ=1

∏
j≤ℓ ∥Wj∥2√

n
, (2)

while self-attention contributes effective rank Ω(L), yielding

Rn(Htrf) ≳
B ·

√
H d

√
logL√

n
. (3)

Since physiological signals admit local optimal predictors, convolutional models achieve the same
approximation error with lower estimation error, giving smaller excess risk under low-data condi-
tions. This explains why U-Net based HiMAE attains competitive or superior downstream accuracy
relative to Transformer-based large sequence models, despite using orders of magnitude fewer pa-
rameters and FLOPs.

Approximation properties. Physiological signals exhibit multiscale, approximately shift-
invariant structure, naturally modeled in Sobolev or Besov spaces. U-Nets implement a multires-
olution analysis: downsampling by stride-s grows the receptive field as R ≍ sD, while skip con-
nections preserve fine-scale detail. By analogy with wavelet bases, a depth-D U-Net with O(D)
channels achieves approximation error O(M−m) with M parameters for functions in Bm

2,2. In con-
trast, approximating a local Toeplitz operator with self-attention requires rank r = Ω(R), rendering
Transformers parameter-inefficient for local FIR-like dynamics. This accounts for HiMAE’s design
choice of a U-Net backbone (Figure 1).

Resolution as an information axis. The resolution hypothesis posits that predictive information
in physiological signals is stratified across temporal scales. Formally, let X (r) denote a representa-
tion of the signal at resolution r (e.g., by subsampling or local averaging). The mutual information
I(X (r);Y ) with respect to a downstream target Y is generally non-monotonic in r: fine resolutions
retain morphology useful for tasks, while coarse resolutions capture dynamics relevant for circa-
dian rhythms. A model that collapses across resolutions risks discarding scale-specific sufficient
statistics.

CNN/U-Nets operationalize this by producing a hierarchy {Z(1), . . . ,Z(D)} of embeddings, where
each Z(d) corresponds to receptive field Rd ≍ sd. By the data-processing inequality,

I(X ;Y ) ≥ I(Z(1);Y ) ≥ . . . ≥ I(Z(D);Y ),

but critically, different downstream tasks may maximize I(Z(d);Y ) at different depths d. This
creates a natural testing ground for the resolution hypothesis: if task-specific performance peaks at
intermediate d⋆, then I(Z(d⋆);Y ) is locally maximal, showing that neither the finest nor coarsest
scale is universally optimal.

Transformers, in contrast, produce globally mixed representations Ztrf where scale separation is
implicit. While these embeddings may approximate I(X ;Y ) overall, they do not yield a structured
decomposition across resolutions, limiting their utility as discovery tools. By inducing explicit
scale-indexed embeddings, CNN/U-Nets make the information–resolution tradeoff observable and
probe-able.
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Compute–statistical efficiency. For sequence length L, convolutions require O(Lkd) time and
O(Ld) memory, while self-attention demands O(L2d) time and O(L2) memory. Under fixed
hardware, convolution allows larger batches or longer windows, which reduce gradient variance
in masked autoencoding pretraining. This directly improves statistical efficiency. In practice, Hi-
MAE’s convolutional encoder–decoder attains strong downstream generalization while incurring a
much smaller compute footprint than Transformer-based LSMs (Table 17).

Theoretical summary. Let fconv ∈ Hconv and ftrf ∈ Htrf denote ERM solutions under equal
parameter budgets M . Under locality,

E[L(fconv)− L⋆] ≤ c1ε+ c2
√
logL√
n

, (4)

E[L(ftrf)− L⋆] ≥ c3ε+ c4
√
logL√
n

+ c5
√
Hd√
n
, (5)

with c3 > c1 unless the number of heads grows with receptive field size R. This analysis suggests
that CNN/U-Nets achieve strictly better compute and statistical efficiency for masked-reconstruction
on physiological signals, while also aligning with the resolution hypothesis by producing embed-
dings that explicitly preserve scale-dependent information.
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