
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FAST BLOCK ATTENTION COMPUTATION VIA DY-
NAMIC ALGORITHM

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent progress in video modeling has been largely driven by Transformer ar-
chitectures, which simulate dependency relationships across spatial patches and
temporal frames. However, compared to text or image modeling, video modeling
involves orders of magnitude more tokens, resulting in an input sequence several
orders of magnitude longer than typical NLP or image tasks, and makes the atten-
tion mechanism the primary computational bottleneck. The naive method flattens
f frames of n tokens each into length N = nf , incurring total O(n2f2) attention
cost. Prior work (e.g., radial/axial variants) attains subquadratic time only when
either the spatial or temporal dimension is small. We present a dynamic algorithm
that computes block attention in O(Tmat(n, n, n

a) f
na ) amortized running time,

where a ∈ [0, 1).

1 INTRODUCTION

Large Language models (LLMs) such as Transformer (Vaswani et al., 2017), BERT (Devlin et al.,
2019a), PaLM (Chowdhery et al., 2023), and GPT-4o (Hurst et al., 2024) have demonstrated re-
markable capabilities in natural language understanding and generation, which helps to achieve a
wide range of tasks such as language translation, sentiment analysis, and question answering. Simi-
larly, video Transformers such as TimeSformer (Bertasius et al., 2021), ViViT (Arnab et al., 2021),
and Video Swin Transformer (Liu et al., 2022) have illustrated remarkable progress in capturing
spatio-temporal dynamics, greatly advancing applications such as video understanding and editing.

The core technical foundation behind video Transformers is the spatio-temporal attention. In this
setting, attention not only works on spatial patches within individual frames but also across temporal
frames, thereby capturing spatio-temporal attention. Specifically, if the video contains f frames and
each frame is represented by n tokens, then the full sequence has length N = nf . Computing
the attention matrix requires O(N2) operations, and it is precisely this quadratic complexity that
constitutes the fundamental bottleneck in video attention. As videos typically comprise hundreds of
frames, N is often larger than in text or image tasks, rendering the attention cost prohibitively high.

To address this challenge, previous work has investigated effective and approximate attention mech-
anisms in video modeling. Axial and variants restrict attention to the spatial or temporal di-
mensions (Wang et al., 2020), while other approaches approximate the attention matrix, such as
Maxvit (Tu et al., 2022). These efforts have achieved subquadratic complexity in specific condi-
tions, but they largely focus on static attention, in which the attention matrix is computed once for a
fixed sequence.

However, video generation involves highly dynamic spatio-temporal structures, with attention
weights evolving as new frames are generated. Recomputing the full attention matrix at every step
is prohibitively expensive. Therefore, we propose a dynamic algorithm that is different from static
approximation (Zandieh et al., 2023; Alman & Song, 2023), specifically for block-structured video
attention.
Definition 1.1 (Attention). Suppose we have Q,K, V ∈ Rn×d, the static attention is defined by

Attn(Q,K, V ) := D−1AV,

where A ∈ Rn×n and diagonal matrix D ∈ Rn×n is defined as

A := exp(QK⊤), D := diag(A1n).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

But videos are not 1D. Each token now has a temporal index [f ] (frame) and a spatial index n (patch
inside the frame). Flattening [f ]× [n] into a single axis will destroy the product structure and treats
spatial and temporal neighborhoods as equally distant once they are far in the flattened order. Block
attention, on the other hand, respects the natural product index set [f ] × [n] by grouping tokens by
frame.
Definition 1.2 (Block attention). Let the number of blocks be f ∈ Z+, each block with size n × d,
and total length N := fn.

Suppose we have f query matrices Q1, Q2, · · · , Qf ∈ Rn×d, f key matrices K1,K2, · · · ,Kf ∈
Rn×d, and f value matrices V1, V2, · · · , Vf ∈ Rn×d. Let V := [V1 · · ·Vf ] ∈ RN×d.

Let (i, j) ∈ [f ] × [f ]. We use Âi,j to denote the element on i-th row and j-th column, and Â[i,j] to
denote the block on i-th row and j-th column, i.e., Â[i,j] := Â(i−1)n+[n],(j−1)n+[n] ∈ Rn×n. Then,
the block attention computation is defined by

BAttn({Qi,Ki, Vi}fi=1) := D̂−1ÂV̂ ,

where diagonal matrix D̂ ∈ RN×N and matrix Â ∈ RN×N are defined by

D̂ := diag(Â1N ), Â[i,j] := exp(QiK
⊤
j ) ∈ Rn×n.

N

N

N

d

=

d

N

n

N

=

d

dn

n

=

n

n N

N N 1

Figure 1: Computation of the BAttn({Qi,Ki, Vi}fi=1) (Definition 1.2).

Intuitively, each frame i distributes its attention mass over all frames j and their spatial patches;
within-frame (spatial) and cross-frame (temporal) interactions are captured by different blocks of
H .

Naively computing the block attention yields O(N2) = O(n2f2) time. Prior structured variants
(e.g., axial/radial patterns) achieve subquadratic time only when one axis is much smaller than the
other, leaving a wide parameter regime where full O(n2f2) persists.

An interesting property of videos is that videos exhibit strong temporal coherence: between adja-
cent frames, most spatial tokens persist with small changes, while global photometric effects (e.g.,
exposure/pan) act nearly low-dimensional. We utilize these properties, and formalize those by the
following two assumptions:
Assumption 1.3 (Difference between Ki). For all the {Ki}i∈[f−1], we assume that Ki and Ki+1

only different by a single row.

Assumption 1.4 (Rank-1 k-sparse changes in Vi). For all the {Vi}i∈[f−1], we assume Vi and Vi+1

has rank-1 k-sparse changes.

Inspired by (Brand et al., 2024), we propose a dynamic algorithm that could compute fast block
attention under above assumptions.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Theorem 1.5 (Fast block attention). For any constant a ∈ (0, 1]. Let d = O(n). Under Assump-
tion 1.3 and Assumption 1.4, where k = O(1). Then, there is a dynamic data structure that uses
O(fn2) space and supports the following operations:

• INIT({Qi ∈ Rn×d,Ki ∈ Rn×d, Vi ∈ Rn×d}fi=1). It runs in O(f · Tmat(n, d, n)) time.

• QUERY(x ∈ [n], y ∈ [n]). This operation outputs BAttn({Qi,Ki, Vi}fi=1)x,y , which is
defined in Definition 1.2, and takes O(Tmat(n, n, n

a) f
na ) amortized time.

Roadmap. In Section 2, we present the preliminary for our work. In Section 3, we review related
work. In Section 4, we introduce fast block attention algorithms in our work. Finally, we provide
the conclusion of our work in Section 5.

2 PRELIMINARY

Notation. We use R to denote the set of real number. We use Ai,j to denote the element on i-th
row and j-th column, and A[i,j] to denote the block on i-th row and j-th column, i.e., A[i,j] :=

A(i−1)n+[n],(j−1)n+[n] ∈ Rn×n. For any positive integer, we use [n] to denote set {1, 2, · · · , n}.
We use 1n to denote a length n vector whose entries are all ones. For any matrix A ∈ Rm×n, we
use exp(A) ∈ Rm×n to denote entry-wise exponential function, i.e. exp(A)i,j = exp(Ai,j). We
use Tmat(a, b, c) to denote the time to multiply an a× b matrix with a b× c matrix. Practical bound
Tmat(a, b, c) ≤ O(abc). We use ◦ to denote entry-wise product.

2.1 BLOCK ATTENTION

We first provide a handful tool for block attention calculation.

Lemma 2.1 (Block attention normalization). Let D̂ defined by Definition 1.2. Then, D̂[i,i] =
diag(Ai,∗1N ).

Proof.

D̂ = diag(A1N )

D̂[i,i] = diag(A1N )[i,i]

= diag(Ai,∗1N ),

where the first step follows from Definition 1.2, the second step take the [i, i] sub-matrix, and the
third step from basic algebra.

Then, we provide a simple algebra fact which is the core of our dynamic algorithm.

Fact 2.2 (Folklore). Given a set of vectors a1, · · · , ak ∈ Rn, and b1, · · · , bk ∈ Rn. If A =
[a1 · · · ak] , B = [b1 · · · bk] , then we have

k∑
i=1

aib
⊤
i = AB.

2.2 DYNAMIC ATTENTION

Here, we present the main theorem of (Brand et al., 2024). The dynamic algorithm of (Brand et al.,
2024) support fast computation for regular attention.

Lemma 2.3 (Dynamic attention, Theorem 4.1 of (Brand et al., 2024)). For any constant a ∈ (0, 1].
Let d = O(n). Then, there is a dynamic data structure that uses O(n2) space and supports the
following operations:

• INIT(Q,K, V ). It runs in O(Tmat(n, d, n)) time.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

• UPDATEK(i ∈ [n], j ∈ [d], δ ∈ R). This operation updates one entry in K, and it runs in
O(Tmat(n, n

a, n)/na) amortized time.

• UPDATEV(i ∈ [n], j ∈ [d], δ ∈ R). This operation takes same amortized time as K update.

• QUERY(i ∈ [n], j ∈ [d]). This operation outputs Attn(Q,K, V )i,j , which is defined in
Definition 1.1, and takes O(na) worst-case time.

3 RELATED WORK

Attention. Since the introduction of attention mechanisms in natural language processing (Vaswani
et al., 2017), it has become the core architecture in a wide range of fields, including text (Devlin
et al., 2019b; Brown et al., 2020), vision (Liu et al., 2021), and multimodality (Kim et al., 2021). In
computer vision, early work such as ViT (Dosovitskiy et al., 2020) demonstrated that self-attention
models could effectively handle image block sequences. With continuous development, including
TimeSformer (Bertasius et al., 2021), extend the Transformer to video understanding tasks and pro-
pose a time-space decomposition attention mechanism. Additionally, ViViT (Arnab et al., 2021)
extends Vision Transformer to video by factorizing spatial and temporal dimensions, while Video
Swin Transformer (Liu et al., 2022) leverages shifted windows to capture spatio-temporal depen-
dencies efficiently.

In a different recent work (Alman & Song, 2023), they focus on the bounded-entry setting with
d = O(logn) and establish conditional lower bounds for approximating attention under the as-
sumption that ∥Q∥∞, ∥K∥∞, ∥V ∥∞ ≤ B. Building on this line, (Alman & Song, 2024) gener-
alizes softmax attention to Kronecker computation. Additionally, (Brand et al., 2024) investigates
dynamic attention maintenance, giving conditional hardness results and optimal update algorithms
with amortized complexity O(nω(1,1,τ)−τ ) under sparsity assumptions. More recently, (Alman &
Song, 2025a) proposes Fast RoPE attention, which embeds the rotary positional into polynomial
evaluation, and obtains running time O(logn) instead of O(n2). In another recent work, (Alman &
Song, 2025b) proves that only sufficiently large weights, rather than skip connections, can prevent
rank collapse. Despite the notable success of prior work, the quadratic computational cost of basic
self-attention mechanisms remains a fundamental constraint, particularly in video generation tasks
where the number of tokens far exceeds that in image or text scenarios. This challenge has motivated
research on efficient attention mechanisms. To address this limitation, we investigate a structured
video attention mechanism that leverages the block structure inherent in the spatio-temporal token
to accelerate attention computation.

Dynamic Algorithm. Recently, dynamic algorithms have been widely studied in theoretical com-
puter science, with the core objective being to design data structures that efficiently preserve certain
properties of dynamically changing inputs. An outstanding example is projection maintenance,
which has been applied in convex optimization to preserve the projection matrix (Jiang et al., 2020;
van den Brand, 2021; Dong et al., 2021; Huang et al., 2022). Under these conditions, the pro-
jection matrix P = B⊤(BB⊤)−1B is typically maintained under low-rank or sparse updates of
matrix B ∈ Rm×n. In contrast, our problem of computing attention matrices in video modeling
exhibits two key differences. The first key distinction lies in the type of matrix inversion involved.
In attention mechanisms, we focus on computing the inverse of a positive diagonal matrix, while
in optimization tasks, the focus is often on the inverse of a full-rank matrix. The second major
difference is that the attention mechanism innovates element nonlinearity, such as softmax, making
it impractical to directly reuse linear update techniques. Concretely, when f is linear, computing
f(QK⊤)V can be simplified by precomputing K⊤V . However, when f is the exponential function,
this simplification is no longer valid, and K⊤V cannot be directly computed.

Motivated by these limitations, we propose a dynamic block attention algorithm. By dividing the
spatio-temporal tokens into blocks, our approach maintains precise attention computations while
leveraging an efficient update algorithm. This enables scalable attention processing for lengthy
videos, overcoming computational bottlenecks and challenges posed by evolving attention matrices.

Video Generation. In recent years, video generation has developed rapidly. Early approaches
relied on recurrent networks or 3D convolutions to capture spatio-temporal dynamics (Vondrick
et al., 2016; Kalchbrenner et al., 2017), but these methods often generate temporally inconsistent

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

results and present limited scalability. With the advent of GAN-based approaches, methods such
as MoCoGAN (Tulyakov et al., 2018) and TGAN (Saito et al., 2017) divided the visual signals of
video into content and motion to improve video generation, though training stability and long-term
coherence remained challenging. More recently, diffusion models have achieved state-of-the-art
performance in video generation. For instance, Video Diffusion Models (Ho et al., 2022b) extend
image diffusion to the temporal dimension, while architectures like Imagen Video (Ho et al., 2022a)
and Make-A-Video (Singer et al., 2023) leverage large-scale text and video datasets for text-to-video
generation.

A central component of these models is the utilisation of attention mechanisms, which enable long-
term temporal modeling. For example, TimeSformer (Bertasius et al., 2021) applied self-attention
for video understanding, while CogVideo (Hong et al., 2022) and Phenaki (Villegas et al., 2023)
leverage attention for high-fidelity text-to-video generation. Despite these advances, computing at-
tention remains computationally expensive in the video domain due to O(N2) quadratic cost across
spatial and temporal dimensions. Therefore, our work proposes a block-based video attention algo-
rithm to address the high computational cost.

4 FAST BLOCK ATTENTION

In this section, we introduce a dynamic data structure for fast block attention computation.

Proof. It trivially follows from Lemma 4.2, Lemma 4.3, Lemma 4.1.

Algorithm 1 Dynamic Data Structure for Fast Block Attention

1: data structure FASTBLOCKATTENTION ▷ Theorem 1.5
2: members
3: Q[f ] ∈ Rn×d ▷ Query token
4: K[f ] ∈ Rn×d ▷ Key token
5: V[f ] ∈ Rn×d ▷ Value token
6: M[f ] ∈ Rn×n ▷ The logits matrix, M = QK⊤

7: A[f ] ∈ Rn×n ▷ The attention matrix, A = exp(QK⊤)

8: D[f ] ∈ Rn×n ▷ The diagonal matrix,
9: C[f ] ∈ Rn×d ▷ Intermediate matrix, C = exp(QK⊤)V

10: B[f ] ∈ Rn×d ▷ Attention matrix for a block, B = D−1AV
11: ListA,[f ] ▷ List with size na

12: ListC,[f ] ▷ List with size na

13: ListD,[f ] ▷ List with size na

14: ctK,[f ], ctV,[f ] ▷ Counter for updates of K and V
15: end members
16:
17: procedure INIT({Qi,Ki, Vi}fi=1) ▷ Lemma 4.1
18: for i ∈ [f ] do
19: Qi ← Qi, Ki ← Ki, Vi ← Vi

20: Mi ← QiK
⊤
1 , Ai ← exp(QiK

⊤
1 )

21: Ci ← exp(QiK
⊤
1 )V1

22: A← exp(QiK
⊤
1 )

23: D ← diag(A1n).
24: Bi ← D−1AV1

25: ctK,i ← 0
26: ctV,i ← 0
27: end for
28: end procedure
29: end data structure

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 2 Query the block attention

1: procedure QUERY(x, y) ▷ Lemma 4.2, Lemma 4.3
2: i← ⌈ xn⌉ ▷ Identify the row
3: for j ∈ {2 · · · ⌊ yn⌋} do
4: r ← the different row between Kj and Kj−1 ▷ Assumption 1.3
5: δK ← e⊤r (Kj −Kj−1)
6: UPDATEK(i, r, δK)
7: ∆V,1,∆V,2 ← rank-1 difference between Vj and Vj−1 ▷ Assumption 1.4
8: UPDATEV(i,∆V,1,∆V,2)
9: end for

10: for j ∈ {⌊ yn⌋ · · · f} do
11: r ← the different row between Kj and Kj−1 ▷ Assumption 1.3
12: δK ← e⊤r (Kj −Kj−1)
13: UPDATED(i, r, δK)
14: end for
15: Let ∆V,1 and ∆V,2 be rectangular matrix obtained from list from ListV
16: Let (Dtmp)

−1 denote the list of diagonal matrices obtained from ListD[ctK ].GETB
17: answer1 ← (Dtmp)

−1
x (C + (∆C,1∆C,2)x,y)

18: answer2 ← (Dtmp)
−1
x Ax,∗∆V,1(∆V,2)∗,x

19: answer←
∑2

j=1 answerj
20: return answer
21: end procedure
22: end data structure

Algorithm 3 Algorithm that update K and maintain the data structure

1: data structure FASTBLOCKATTENTION ▷ Theorem 1.5
2: procedure UPDATEK(i ∈ [n], δK ∈ Rd) ▷ Lemma 4.4
3: /*For all members in the data structure, we omit the i subscript for simplicity*/
4: ctK ← ctK + 1
5: K̃i,∗ ← Ki,∗ + δ⊤K
6: (∆M )∗,i ← Q︸︷︷︸

n×d

δK︸︷︷︸
d×1

▷ ∆M only have entries in i-th column

7: (∆A)∗,i ← (A∗,i ◦ (exp((∆M )∗,i)− 1n))

8: M̃ ←M + (∆M )∗,ie
⊤
i ▷ We only update i-th column of M

9: Ã← A+ (∆A)∗,ie
⊤
i ▷ We only update i-th column of A

10: Obtain diagonal vector Dtmp from ListD[ctK −1].GETB ▷ It takes O(n) time
11: D̃ ← D−1

tmp + diag(∆A)∗,i
12: for j = 1→ n do
13: (∆D)j,j ← (Dtmp)

−1
j,j − D̃−1

j,j

14: end for
15: if ctK < na then
16: ListC [ctK − 1].(a, b)← ((∆A)∗,i ∈ Rn, V ⊤ei ∈ Rd)

17: ListD[ctK − 1].(a, b)← (∆D ∈ Rn×n, D̃−1 ∈ Rn×n) ▷ Diagonal matrices
18: else ▷ Tmat(n, n

a, d) = nω(1,1,a) time
19: RECOMPUTE() ▷ Algorithm 6. Re-compute everything
20: end if
21: /*Referesh the memory*/
22: K ← K̃
23: A← Ã
24: M ← M̃
25: end procedure
26: end data structure

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 4 Algorithm that update D and maintain the data structure

1: data structure FASTBLOCKATTENTION ▷ Theorem 1.5
2: procedure UPDATED(i ∈ [n], δK ∈ Rd) ▷ Lemma 4.5
3: /*For all members in the data structure, we omit the i subscript for simplicity*/
4: ctK ← ctK + 1
5: K̃i,∗ ← Ki,∗ + δ⊤K
6: (∆M )∗,i ← Q︸︷︷︸

n×d

δK︸︷︷︸
d×1

▷ ∆M only have entries in i-th column

7: (∆A)∗,i ← (A∗,i ◦ (exp((∆M )∗,i)− 1n))

8: M̃ ←M + (∆M )∗,ie
⊤
i ▷ We only update i-th column of M

9: Obtain diagonal vector Dtmp from ListD[ctK −1].GETB ▷ It takes O(n) time
10: D̃ ← D−1

tmp + diag(∆A)∗,i
11: for j = 1→ n do
12: (∆D)j,j ← (Dtmp)

−1
j,j − D̃−1

j,j

13: end for
14: if ctK < na then
15: ListD[ctK − 1].(a, b)← (∆D ∈ Rn×n, D̃−1 ∈ Rn×n) ▷ Diagonal matrices
16: else ▷ Tmat(n, n

a, d) = nω(1,1,a) time
17: RECOMPUTE() ▷ Algorithm 6. Re-compute everything
18: end if
19: /*Referesh the memory*/
20: K ← K̃
21: M ← M̃
22: end procedure
23: end data structure

Algorithm 5 Algorithm that update V and maintain the data structure

1: data structure FASTBLOCKATTENTION ▷ Theorem 1.5
2: procedure UPDATEV(δV,1 ∈ Rn, δV,2 ∈ Rd) ▷ Lemma 4.6
3: /*For all members in the data structure, we omit the i subscript for simplicity*/
4: ctV ← ctV +1
5: if ctV < na then
6: ListV [ctV −1].(a, b)← (δV,1, δV,2)
7: else
8: RECOMPUTE() ▷ Algorithm 6. Re-compute everything
9: end if

10: end procedure
11: end data structure

4.1 INIT

We begin by stating the running time of the initialization procedure.
Lemma 4.1 (Running time of INIT). The running time of procedure INIT (Algorithm 1) is O(f ·
Tmat(n, d, n)).

Proof. It is trivially from applying fast matrix multiplication f iterations.

4.2 QUERY

Next, we show the running time of QUERY.
Lemma 4.2 (Running time of QUERY). The running time of procedure QUERY (Algorithm 2) is
O(Tmat(n, n, n

a) f
na ).

Proof. Part 1. UPDATEK and UPDATEV. The amortized running time is O(Tmat(n, n, n
a) f

na ).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Algorithm 6 Algorithm that re-compute evreything

1: data structure FASTBLOCKATTENTION ▷ Theorem 1.5
2: procedure RECOMPUTE(i ∈ [n]) ▷ Lemma A.1, Lemma A.2
3: /*For all members in the data structure, we omit the i subscript for simplicity*/
4: Let ∆C,1 and ∆C,2 be rectangular matrix obtained from ListC
5: Let ∆V,1 and ∆V,2 be rectangular matrix obtained from ListV
6: Let ∆D(i) denote the list of diagonal matrices obtained from ListD[i].GETA

7: C̃ ← C +∆C,1 ·∆C,2 ▷ It takes Tmat(n, n
a, d) time

8: Ṽ ← V +∆V,1 ·∆V,2 ▷ It takes Tmat(n, n
a, d) time

9: ∆D ←
∑ctK

i=1 ∆D(i) ▷ it takes n1+a time
10: D̃−1 ← D−1 +∆D ▷ It takes n time
11: B̃ ← D̃−1 · C̃ ▷ This takes nd
12: /*Refresh the memory*/
13: D ← D̃, C ← C̃, B ← B̃, V ← Ṽ
14: /*Reset the counter*/
15: ctK ← 0, ctV ← 0
16: end procedure
17: end data structure

Part 2. UPDATED. The amortized running time is O(Tmat(n, n, n
a) f

na ).

Part 3. We first stack all the vectors in ListV to ∆V,1 and ∆V,2, which takes O(1) time.

Computing (Dtmp)
−1
i (C +∆C,1∆C,2)i,j takes O(na) time.

Computing ∆V,1∆V,2 takes O(na) time as ∆V,1 and ∆V,2 are k-sparse (Assumption 1.4).

Computing (Dtmp)
−1
i Ai,∗(∆V,1∆V,2)∗,j takes O(na) time as nnz((∆V,1∆V,2)∗,j) = O(1).

Hence the amortized running time is O(Tmat(n, n, n
a) f

na )

Now, we establish the correctness of QUERY.
Lemma 4.3 (Correctness of QUERY). The procedure QUERY(x, y) (Algorithm 2) outputs

BAttn({Qi,Ki, Vi}fi=1)x,y.

Proof. Let (Dtmp)
−1 denote the diagonal matrix obtained from ListD[ctK ].GETB. Let ∆V,1 and

∆V,2 be rectangular matrix obtained from ListV .

Since we know

answer1 = (Dtmp)
−1
x (C +∆C,1∆C,2)x,y,

and

answer2 = (Dtmp)
−1
x Ax,∗(∆V,1∆V,2)∗,x.

By summing them up, we get

B̃ = answer1 + answer2

= (Dtmp)
−1
x (C +∆C,1∆C,2)x,y + (Dtmp)

−1
x Ax,∗(∆V,1∆V,2)∗,y

= (Dtmp)
−1
x (AV )x,y + (Dtmp)

−1
x Ax,∗(∆V,1∆V,2)∗,y

= (Dtmp)
−1
x (AV )x,y + (Dtmp)

−1
x (A∆V,1∆V,2)x,y

= (Dtmp)
−1
x (A(V +∆V,1∆V,2))x,y

= (Dtmp)
−1
x (AVj)x,y

= diag(exp(QiK
⊤
j )i,∗1N )−1

x (exp(QiK
⊤
j )Vj)x,y

= (diag(exp(QiK
⊤
j )i,∗1N )−1 exp(QiK

⊤
j )Vj)x,y

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

= BAttn({Qi,Ki, Vi}fi=1)x,y,

where the first step combines two answers, the second step substitute for the two answers, the third
step follows from the definition of C and UPDATEK (Algorithm 3), the fourth and the fifth steps
follow from basic algebra, the sixth step follows from definition of ∆V,1, ∆V,2 and Fact 2.2, the
seventh step follows from UPDATED (Algorithm 4), the eighth step follows from basic algebra, and
the last step follows from Lemma 2.1 and Definition 1.2.

4.3 UPDATE K , V AND D

First, we show the running time of updating K.

Lemma 4.4 (Running time of UPDATEK, informal version of B.1). The procedure UPDATEK (Al-
gorithm 3) takes Part 1. Tmat(n, n, n

a) time in the worst case. Part 2. Tmat(n, n, n
a)/na time in

the amortized case.

Next, we give the running time of updating D.

Lemma 4.5 (Running time of UPDATED). The procedure UPDATED (Algorithm 4) takes Part 1.
Tmat(n, n, n

a) time in the worst case. Part 2. Tmat(n, n, n
a)/na time in the amortized case.

Proof. The proof trivially follows from Lemma B.1.

Finally, we analyze the running time of updating V .

Lemma 4.6 (Running time of UPDATEV). The procedure UPDATEV (Algorithm 5) takes Part 1.
Tmat(n, n, n

a) time in the worst case. Part 2. Tmat(n, n, n
a)/na time in the amortized case.

Proof. The proof trivially follows from Lemma B.1.

4.4 RECOMPUTE

We first give the running time of the recompute.

Lemma 4.7 (Running time of RECOMPUTE, Lemma 4.9 of (Brand et al., 2024)). The running time
of procedure RECOMPUTE (Algorithm 6) is Tmat(n, n

a, d).

Proof. For given i ∈ [n], the RECOMPUTE works same as RECOMPUTE in (Brand et al., 2024).
Then, according to Lemma A.1, the procedure runs in Tmat(n, n

a, d) time.

Then, we present the correctness of the recompute.

Lemma 4.8 (Correctness of RECOMPUTE, Lemma 4.8 of (Brand et al., 2024)). The procedure
RECOMPUTE (Algorithm 6) correctly re-compute D,C,B, V .

Proof. For given i ∈ [n], the RECOMPUTE works same as RECOMPUTE in (Brand et al., 2024).
Then, according to Lemma A.2, the procedure is correct.

5 CONCLUSION

In this work, we investigated the fundamental computational bottleneck of video attention and in-
troduced a dynamic algorithm for fast block attention. By leveraging temporal coherence within
videos for row-wise key updates and exploiting low-rank variations in value between consecutive
frames, our algorithm achieves O(Tmat(n, n, n

a) f
na ) running time, representing a significant reduc-

tion in computational cost compared to the original O(n2f2) approach. Our findings demonstrate
that dynamic block attention not only enhances efficiency theoretically but also paves the way for
new directions in scalable video modeling, particularly within generative settings where attention
must be updated frame by frame.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHIC STATEMENT

This paper does not involve human subjects, personally identifiable data, or sensitive applications.
We do not foresee direct ethical risks. We follow the ICLR Code of Ethics and affirm that all aspects
of this research comply with the principles of fairness, transparency, and integrity.

REPRODUCIBILITY STATEMENT

We ensure reproducibility of our theoretical results by including all formal assumptions, definitions,
and complete proofs in the appendix. The main text states each theorem clearly and refers to the
detailed proofs. No external data or software is required.

REFERENCES

Josh Alman and Zhao Song. Fast attention requires bounded entries. In Proceedings of the 37th
International Conference on Neural Information Processing Systems, pp. 63117–63135, 2023.

Josh Alman and Zhao Song. How to capture higher-order correlations? generalizing matrix soft-
max attention to kronecker computation. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=v0zNCwwkaV.

Josh Alman and Zhao Song. Fast rope attention: Combining the polynomial method and fast fourier
transform. arXiv preprint arXiv:2505.11892, 2025a.

Josh Alman and Zhao Song. Only large weights (and not skip connections) can prevent the perils of
rank collapse. arXiv preprint arXiv:2505.16284, 2025b.

Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, and Cordelia Schmid.
Vivit: A video vision transformer. In Proceedings of the IEEE/CVF international conference on
computer vision, pp. 6836–6846, 2021.

Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is space-time attention all you need for video
understanding? arXiv preprint arXiv:2102.05095, 2021.

Jan van den Brand, Zhao Song, and Tianyi Zhou. Algorithm and hardness for dynamic attention
maintenance in large language models. In ICML, 2024.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In Proceedings of the 34th International Conference on Neural Information
Processing Systems, pp. 1877–1901, 2020.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019a.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019b.

Sally Dong, Yin Tat Lee, and Guanghao Ye. A nearly-linear time algorithm for linear programs with
small treewidth: a multiscale representation of robust central path. In Proceedings of the 53rd
annual ACM SIGACT symposium on theory of computing, pp. 1784–1797, 2021.

10

https://openreview.net/forum?id=v0zNCwwkaV


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, G Heigold, S Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at scale. In International Conference on Learn-
ing Representations, 2020.

Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P
Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High definition
video generation with diffusion models. arXiv preprint arXiv:2210.02303, 2022a.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. In Proceedings of the 36th International Conference on Neural
Information Processing Systems, pp. 8633–8646, 2022b.

Wenyi Hong, Ming Ding, Wendi Zheng, Xinghan Liu, and Jie Tang. Cogvideo: Large-scale pre-
training for text-to-video generation via transformers. arXiv preprint arXiv:2205.15868, 2022.

Baihe Huang, Shunhua Jiang, Zhao Song, Runzhou Tao, and Ruizhe Zhang. Solving sdp faster: A
robust ipm framework and efficient implementation. In 2022 IEEE 63rd Annual Symposium on
Foundations of Computer Science (FOCS), pp. 233–244. IEEE, 2022.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Haotian Jiang, Tarun Kathuria, Yin Tat Lee, Swati Padmanabhan, and Zhao Song. A faster interior
point method for semidefinite programming. In 2020 IEEE 61st annual symposium on foundations
of computer science (FOCS), pp. 910–918. IEEE, 2020.

Nal Kalchbrenner, Aäron Oord, Karen Simonyan, Ivo Danihelka, Oriol Vinyals, Alex Graves, and
Koray Kavukcuoglu. Video pixel networks. In International Conference on Machine Learning,
pp. 1771–1779. PMLR, 2017.

Wonjae Kim, Bokyung Son, and Ildoo Kim. Vilt: Vision-and-language transformer without convo-
lution or region supervision. In International conference on machine learning, pp. 5583–5594,
2021.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin, and Han Hu. Video swin trans-
former. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 3202–3211, 2022.

Masaki Saito, Eiichi Matsumoto, and Shunta Saito. Temporal generative adversarial nets with sin-
gular value clipping. In Proceedings of the IEEE international conference on computer vision,
pp. 2830–2839, 2017.

Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, Harry
Yang, Oron Ashual, Oran Gafni, et al. Make-a-video: Text-to-video generation without text-video
data. In The Eleventh International Conference on Learning Representations, 2023.

Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang, Peyman Milanfar, Alan Bovik, and Yinxiao
Li. Maxvit: Multi-axis vision transformer. In European conference on computer vision, pp. 459–
479. Springer, 2022.

Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan Kautz. Mocogan: Decomposing motion
and content for video generation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 1526–1535, 2018.

Jan van den Brand. Unifying matrix data structures: Simplifying and speeding up iterative algo-
rithms. In Symposium on Simplicity in Algorithms (SOSA), pp. 1–13. SIAM, 2021.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st In-
ternational Conference on Neural Information Processing Systems, pp. 6000–6010, 2017.

R Villegas, H Moraldo, S Castro, M Babaeizadeh, H Zhang, J Kunze, PJ Kindermans, MT Saffar,
and D Erhan. Phenaki: Variable length video generation from open domain textual descriptions.
In 11th International Conference on Learning Representations, ICLR 2023, 2023.

Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Generating videos with scene dynamics.
In Proceedings of the 30th International Conference on Neural Information Processing Systems,
pp. 613–621, 2016.

Huiyu Wang, Yukun Zhu, Bradley Green, Hartwig Adam, Alan Yuille, and Liang-Chieh Chen.
Axial-deeplab: Stand-alone axial-attention for panoptic segmentation. In European conference
on computer vision, pp. 108–126. Springer, 2020.

Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. Kdeformer: Accelerating transformers
via kernel density estimation. In International Conference on Machine Learning, pp. 40605–
40623. PMLR, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Appendix
Roadmap. In the appendix, we first list some result from (Brand et al., 2024) in Section A. Then,
we provide some formal results of our algorithm in Section B.

A DYNAMIC ATTENTION

In this section, we present some lemmas of the dynamic algorithm in (Brand et al., 2024).

We first provide the running time of its RECOMPUTE.
Lemma A.1 (Running time of RECOMPUTE, Lemma 4.9 of (Brand et al., 2024)). The running time
of procedure RECOMPUTE (Algorithm 6) is Tmat(n, n

a, d).

Then, we provide the correctness of RECOMPUTE.
Lemma A.2 (Correctness of RECOMPUTE, Lemma 4.8 of (Brand et al., 2024)). The procedure
RECOMPUTE (Algorithm 6) correctly re-compute D,C,B, V .

B FAST BLOCK ATTENTION

In this section, we present formal version of some lemmas for our dynamic algorithms.

First we show the formal lemma of running time of UPDATEK.
Lemma B.1 (Running time of UPDATEK, formal version of 4.4). The procedure UPDATEK (Algo-
rithm 3) takes

• Tmat(n, n, n
a) time in the worst case.

• Tmat(n, n, n
a)/na time in the amortized case.

Proof. Part 1. It trivially from Lemma A.1

Part 2. If the ctK < na, we pay O(n) time. If ctK = na, we pay nω(1,1,a). So the amortized time
is

n(na − 1) + nω(1,1,a)

na
= O(nω(1,1,a)−a)

Note that, by using fast matrix multiplication and the fact that d = O(n), we have nω(1,1,a) =
Tmat(n, n

a, d). Thus we complete the proof.

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.

13


	Introduction
	Preliminary
	Block Attention
	Dynamic Attention

	Related Work
	Fast Block Attention
	Init
	Query
	Update K, V and D
	Recompute

	Conclusion
	Dynamic Attention
	Fast Block Attention

