# FAST BLOCK ATTENTION COMPUTATION VIA DYNAMIC ALGORITHM

#### **Anonymous authors**

 Paper under double-blind review

#### **ABSTRACT**

Recent progress in video modeling has been largely driven by Transformer architectures, which simulate dependency relationships across spatial patches and temporal frames. However, compared to text or image modeling, video modeling involves orders of magnitude more tokens, resulting in an input sequence several orders of magnitude longer than typical NLP or image tasks, and makes the attention mechanism the primary computational bottleneck. The naive method flattens f frames of n tokens each into length N=nf, incurring total  $O(n^2f^2)$  attention cost. Prior work (e.g., radial/axial variants) attains subquadratic time only when either the spatial or temporal dimension is small. We present a dynamic algorithm that computes block attention in  $O(\mathcal{T}_{\mathrm{mat}}(n,n,n^a)\frac{f}{n^a})$  amortized running time, where  $a\in[0,1)$ .

#### 1 Introduction

Large Language models (LLMs) such as Transformer (Vaswani et al., 2017), BERT (Devlin et al., 2019a), PaLM (Chowdhery et al., 2023), and GPT-40 (Hurst et al., 2024) have demonstrated remarkable capabilities in natural language understanding and generation, which helps to achieve a wide range of tasks such as language translation, sentiment analysis, and question answering. Similarly, video Transformers such as TimeSformer (Bertasius et al., 2021), ViViT (Arnab et al., 2021), and Video Swin Transformer (Liu et al., 2022) have illustrated remarkable progress in capturing spatio-temporal dynamics, greatly advancing applications such as video understanding and editing.

The core technical foundation behind video Transformers is the spatio-temporal attention. In this setting, attention not only works on spatial patches within individual frames but also across temporal frames, thereby capturing spatio-temporal attention. Specifically, if the video contains f frames and each frame is represented by n tokens, then the full sequence has length N=nf. Computing the attention matrix requires  $O(N^2)$  operations, and it is precisely this quadratic complexity that constitutes the fundamental bottleneck in video attention. As videos typically comprise hundreds of frames, N is often larger than in text or image tasks, rendering the attention cost prohibitively high.

To address this challenge, previous work has investigated effective and approximate attention mechanisms in video modeling. Axial and variants restrict attention to the spatial or temporal dimensions (Wang et al., 2020), while other approaches approximate the attention matrix, such as Maxvit (Tu et al., 2022). These efforts have achieved subquadratic complexity in specific conditions, but they largely focus on static attention, in which the attention matrix is computed once for a fixed sequence.

However, video generation involves highly dynamic spatio-temporal structures, with attention weights evolving as new frames are generated. Recomputing the full attention matrix at every step is prohibitively expensive. Therefore, we propose a dynamic algorithm that is different from static approximation (Zandieh et al., 2023; Alman & Song, 2023), specifically for block-structured video attention.

**Definition 1.1** (Attention). Suppose we have  $Q, K, V \in \mathbb{R}^{n \times d}$ , the static attention is defined by

$$\mathsf{Attn}(Q, K, V) := D^{-1}AV,$$

where  $A \in \mathbb{R}^{n \times n}$  and diagonal matrix  $D \in \mathbb{R}^{n \times n}$  is defined as

$$A := \exp(QK^{\top}), \quad D := \operatorname{diag}(A\mathbf{1}_n).$$

But videos are not 1D. Each token now has a temporal index [f] (frame) and a spatial index n (patch inside the frame). Flattening  $[f] \times [n]$  into a single axis will destroy the product structure and treats spatial and temporal neighborhoods as equally distant once they are far in the flattened order. Block attention, on the other hand, respects the natural product index set  $[f] \times [n]$  by grouping tokens by frame.

**Definition 1.2** (Block attention). Let the number of blocks be  $f \in \mathbb{Z}_+$ , each block with size  $n \times d$ , and total length N := fn.

Suppose we have f query matrices  $Q_1, Q_2, \cdots, Q_f \in \mathbb{R}^{n \times d}$ , f key matrices  $K_1, K_2, \cdots, K_f \in \mathbb{R}^{n \times d}$ , and f value matrices  $V_1, V_2, \cdots, V_f \in \mathbb{R}^{n \times d}$ . Let  $V := [V_1 \cdots V_f] \in \mathbb{R}^{N \times d}$ .

Let  $(i,j) \in [f] \times [f]$ . We use  $\widehat{A}_{i,j}$  to denote the element on i-th row and j-th column, and  $\widehat{A}_{[i,j]}$  to denote the block on i-th row and j-th column, i.e.,  $\widehat{A}_{[i,j]} := \widehat{A}_{(i-1)n+[n],(j-1)n+[n]} \in \mathbb{R}^{n \times n}$ . Then, the block attention computation is defined by

$$\mathsf{BAttn}(\{Q_i, K_i, V_i\}_{i=1}^f) := \widehat{D}^{-1}\widehat{A}\widehat{V},$$

where diagonal matrix  $\widehat{D} \in \mathbb{R}^{N \times N}$  and matrix  $\widehat{A} \in \mathbb{R}^{N \times N}$  are defined by

$$\widehat{D} := \operatorname{diag}(\widehat{A}\mathbf{1}_N), \quad \widehat{A}_{[i,j]} := \exp(Q_i K_i^{\top}) \in \mathbb{R}^{n \times n}.$$

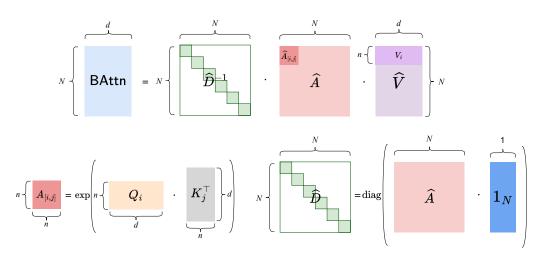


Figure 1: Computation of the BAttn( $\{Q_i, K_i, V_i\}_{i=1}^f$ ) (Definition 1.2).

Intuitively, each frame i distributes its attention mass over all frames j and their spatial patches; within-frame (spatial) and cross-frame (temporal) interactions are captured by different blocks of H.

Naively computing the block attention yields  $O(N^2) = O(n^2 f^2)$  time. Prior structured variants (e.g., axial/radial patterns) achieve subquadratic time only when one axis is much smaller than the other, leaving a wide parameter regime where full  $O(n^2 f^2)$  persists.

An interesting property of videos is that videos exhibit strong temporal coherence: between adjacent frames, most spatial tokens persist with small changes, while global photometric effects (e.g., exposure/pan) act nearly low-dimensional. We utilize these properties, and formalize those by the following two assumptions:

**Assumption 1.3** (Difference between  $K_i$ ). For all the  $\{K_i\}_{i\in[f-1]}$ , we assume that  $K_i$  and  $K_{i+1}$  only different by a single row.

**Assumption 1.4** (Rank-1 k-sparse changes in  $V_i$ ). For all the  $\{V_i\}_{i \in [f-1]}$ , we assume  $V_i$  and  $V_{i+1}$  has rank-1 k-sparse changes.

Inspired by (Brand et al., 2024), we propose a dynamic algorithm that could compute fast block attention under above assumptions.

**Theorem 1.5** (Fast block attention). For any constant  $a \in (0,1]$ . Let d = O(n). Under Assumption 1.3 and Assumption 1.4, where k = O(1). Then, there is a dynamic data structure that uses  $O(fn^2)$  space and supports the following operations:

- INIT( $\{Q_i \in \mathbb{R}^{n \times d}, K_i \in \mathbb{R}^{n \times d}, V_i \in \mathbb{R}^{n \times d}\}_{i=1}^f$ ). It runs in  $O(f \cdot \mathcal{T}_{\text{mat}}(n,d,n))$  time.
- QUERY $(x \in [n], y \in [n])$ . This operation outputs  $\mathsf{BAttn}(\{Q_i, K_i, V_i\}_{i=1}^f)_{x,y}$ , which is defined in Definition 1.2, and takes  $O(\mathcal{T}_{\mathrm{mat}}(n, n, n^a) \frac{f}{n^a})$  amortized time.

**Roadmap.** In Section 2, we present the preliminary for our work. In Section 3, we review related work. In Section 4, we introduce fast block attention algorithms in our work. Finally, we provide the conclusion of our work in Section 5.

#### 2 Preliminary

**Notation.** We use  $\mathbb{R}$  to denote the set of real number. We use  $A_{i,j}$  to denote the element on i-th row and j-th column, and  $A_{[i,j]}$  to denote the block on i-th row and j-th column, i.e.,  $A_{[i,j]} := A_{(i-1)n+[n],(j-1)n+[n]} \in \mathbb{R}^{n\times n}$ . For any positive integer, we use [n] to denote set  $\{1,2,\cdots,n\}$ . We use  $\mathbf{1}_n$  to denote a length n vector whose entries are all ones. For any matrix  $A \in \mathbb{R}^{m\times n}$ , we use  $\exp(A) \in \mathbb{R}^{m\times n}$  to denote entry-wise exponential function, i.e.  $\exp(A)_{i,j} = \exp(A_{i,j})$ . We use  $\mathcal{T}_{\mathrm{mat}}(a,b,c)$  to denote the time to multiply an  $a\times b$  matrix with a  $b\times c$  matrix. Practical bound  $\mathcal{T}_{\mathrm{mat}}(a,b,c) \leq O(abc)$ . We use  $\circ$  to denote entry-wise product.

#### 2.1 BLOCK ATTENTION

We first provide a handful tool for block attention calculation.

**Lemma 2.1** (Block attention normalization). Let  $\widehat{D}$  defined by Definition 1.2. Then,  $\widehat{D}_{[i,i]} = \operatorname{diag}(A_{i,*}\mathbf{1}_N)$ .

Proof.

$$\widehat{D} = \operatorname{diag}(A\mathbf{1}_N)$$

$$\widehat{D}_{[i,i]} = \operatorname{diag}(A\mathbf{1}_N)_{[i,i]}$$

$$= \operatorname{diag}(A_{i,*}\mathbf{1}_N),$$

where the first step follows from Definition 1.2, the second step take the [i, i] sub-matrix, and the third step from basic algebra.

Then, we provide a simple algebra fact which is the core of our dynamic algorithm.

**Fact 2.2** (Folklore). Given a set of vectors  $a_1, \dots, a_k \in \mathbb{R}^n$ , and  $b_1, \dots, b_k \in \mathbb{R}^n$ . If  $A = [a_1 \dots a_k], B = [b_1 \dots b_k]$ , then we have

$$\sum_{i=1}^{k} a_i b_i^{\top} = AB.$$

#### 2.2 Dynamic Attention

Here, we present the main theorem of (Brand et al., 2024). The dynamic algorithm of (Brand et al., 2024) support fast computation for regular attention.

**Lemma 2.3** (Dynamic attention, Theorem 4.1 of (Brand et al., 2024)). For any constant  $a \in (0, 1]$ . Let d = O(n). Then, there is a dynamic data structure that uses  $O(n^2)$  space and supports the following operations:

• INIT(Q, K, V). It runs in  $O(\mathcal{T}_{mat}(n, d, n))$  time.

- UPDATEK $(i \in [n], j \in [d], \delta \in \mathbb{R})$ . This operation updates one entry in K, and it runs in  $O(\mathcal{T}_{mat}(n, n^a, n)/n^a)$  amortized time.
- UPDATEV $(i \in [n], j \in [d], \delta \in \mathbb{R})$ . This operation takes same amortized time as K update.
- QUERY $(i \in [n], j \in [d])$ . This operation outputs  $Attn(Q, K, V)_{i,j}$ , which is defined in Definition 1.1, and takes  $O(n^a)$  worst-case time.

#### 3 RELATED WORK

Attention. Since the introduction of attention mechanisms in natural language processing (Vaswani et al., 2017), it has become the core architecture in a wide range of fields, including text (Devlin et al., 2019b; Brown et al., 2020), vision (Liu et al., 2021), and multimodality (Kim et al., 2021). In computer vision, early work such as ViT (Dosovitskiy et al., 2020) demonstrated that self-attention models could effectively handle image block sequences. With continuous development, including TimeSformer (Bertasius et al., 2021), extend the Transformer to video understanding tasks and propose a time-space decomposition attention mechanism. Additionally, ViViT (Arnab et al., 2021) extends Vision Transformer to video by factorizing spatial and temporal dimensions, while Video Swin Transformer (Liu et al., 2022) leverages shifted windows to capture spatio-temporal dependencies efficiently.

In a different recent work (Alman & Song, 2023), they focus on the bounded-entry setting with  $d = O(\log n)$  and establish conditional lower bounds for approximating attention under the assumption that  $\|Q\|_{\infty}, \|K\|_{\infty}, \|V\|_{\infty} \leq B$ . Building on this line, (Alman & Song, 2024) generalizes softmax attention to Kronecker computation. Additionally, (Brand et al., 2024) investigates dynamic attention maintenance, giving conditional hardness results and optimal update algorithms with amortized complexity  $O(n^{\omega(1,1,\tau)-\tau})$  under sparsity assumptions. More recently, (Alman & Song, 2025a) proposes Fast RoPE attention, which embeds the rotary positional into polynomial evaluation, and obtains running time  $O(\log n)$  instead of  $O(n^2)$ . In another recent work, (Alman & Song, 2025b) proves that only sufficiently large weights, rather than skip connections, can prevent rank collapse. Despite the notable success of prior work, the quadratic computational cost of basic self-attention mechanisms remains a fundamental constraint, particularly in video generation tasks where the number of tokens far exceeds that in image or text scenarios. This challenge has motivated research on efficient attention mechanisms. To address this limitation, we investigate a structured video attention mechanism that leverages the block structure inherent in the spatio-temporal token to accelerate attention computation.

**Dynamic Algorithm.** Recently, dynamic algorithms have been widely studied in theoretical computer science, with the core objective being to design data structures that efficiently preserve certain properties of dynamically changing inputs. An outstanding example is projection maintenance, which has been applied in convex optimization to preserve the projection matrix (Jiang et al., 2020; van den Brand, 2021; Dong et al., 2021; Huang et al., 2022). Under these conditions, the projection matrix  $P = B^{\top}(BB^{\top})^{-1}B$  is typically maintained under low-rank or sparse updates of matrix  $B \in \mathbb{R}^{m \times n}$ . In contrast, our problem of computing attention matrices in video modeling exhibits two key differences. The first key distinction lies in the type of matrix inversion involved. In attention mechanisms, we focus on computing the inverse of a positive diagonal matrix, while in optimization tasks, the focus is often on the inverse of a full-rank matrix. The second major difference is that the attention mechanism innovates element nonlinearity, such as softmax, making it impractical to directly reuse linear update techniques. Concretely, when f is linear, computing  $f(QK^{\top})V$  can be simplified by precomputing  $K^{\top}V$ . However, when f is the exponential function, this simplification is no longer valid, and  $K^{\top}V$  cannot be directly computed.

Motivated by these limitations, we propose a dynamic block attention algorithm. By dividing the spatio-temporal tokens into blocks, our approach maintains precise attention computations while leveraging an efficient update algorithm. This enables scalable attention processing for lengthy videos, overcoming computational bottlenecks and challenges posed by evolving attention matrices.

**Video Generation.** In recent years, video generation has developed rapidly. Early approaches relied on recurrent networks or 3D convolutions to capture spatio-temporal dynamics (Vondrick et al., 2016; Kalchbrenner et al., 2017), but these methods often generate temporally inconsistent

results and present limited scalability. With the advent of GAN-based approaches, methods such as MoCoGAN (Tulyakov et al., 2018) and TGAN (Saito et al., 2017) divided the visual signals of video into content and motion to improve video generation, though training stability and long-term coherence remained challenging. More recently, diffusion models have achieved state-of-the-art performance in video generation. For instance, Video Diffusion Models (Ho et al., 2022b) extend image diffusion to the temporal dimension, while architectures like Imagen Video (Ho et al., 2022a) and Make-A-Video (Singer et al., 2023) leverage large-scale text and video datasets for text-to-video generation.

A central component of these models is the utilisation of attention mechanisms, which enable long-term temporal modeling. For example, TimeSformer (Bertasius et al., 2021) applied self-attention for video understanding, while CogVideo (Hong et al., 2022) and Phenaki (Villegas et al., 2023) leverage attention for high-fidelity text-to-video generation. Despite these advances, computing attention remains computationally expensive in the video domain due to  $O(N^2)$  quadratic cost across spatial and temporal dimensions. Therefore, our work proposes a block-based video attention algorithm to address the high computational cost.

#### 4 FAST BLOCK ATTENTION

216

217

218

219

220

221

222

223224

225

226

227

228

229

230231232

233234

235236237

238239240

In this section, we introduce a dynamic data structure for fast block attention computation.

*Proof.* It trivially follows from Lemma 4.2, Lemma 4.3, Lemma 4.1.

## Algorithm 1 Dynamic Data Structure for Fast Block Attention

```
241
               1: data structure FASTBLOCKATTENTION
                                                                                                                                                 ⊳ Theorem 1.5
242
               2: members
243
                         Q_{\lceil f \rceil} \in \mathbb{R}^{n \times d}
               3:
                                                                                                                                                  244
                         K_{[f]} \in \mathbb{R}^{n \times d}
               4:
                                                                                                                                                     245
                         V_{[f]} \in \mathbb{R}^{n \times d}
                                                                                                                                                  5:
246
                         M_{[f]} \in \mathbb{R}^{n \times n}
                                                                                                                     \triangleright The logits matrix, M = QK^{\top}
247
               6:
                         A_{[f]} \in \mathbb{R}^{n \times n}
                                                                                                         \triangleright The attention matrix, A = \exp(QK^{\top})
248
               7:
                         D_{[f]} \in \mathbb{R}^{n \times n}
249
               8:
                                                                                                                                    ▶ The diagonal matrix,
                         C_{[f]} \in \mathbb{R}^{n \times d}
250
                                                                                                       \triangleright Intermediate matrix, C = \exp(QK^{\top})V
               9:
251
                         B_{[f]} \in \mathbb{R}^{n \times d}
                                                                                                 \triangleright Attention matrix for a block, B = D^{-1}AV
             10:
252
                         \operatorname{List}_{A,[f]}
                                                                                                                                           \triangleright List with size n^a
             11:
253
                         \operatorname{List}_{C,[f]}
                                                                                                                                           \triangleright List with size n^a
             12:
                         \operatorname{List}_{D,[f]}
             13:
                                                                                                                                           \triangleright List with size n^a
254
                                                                                                                   \triangleright Counter for updates of K and V
             14:
255
                         \operatorname{ct}_{K,[f]},\operatorname{ct}_{V,[f]}
             15: end members
256
             16:
257
             17: procedure INIT(\{Q_i, K_i, V_i\}_{i=1}^f)
                                                                                                                                                   ⊳ Lemma 4.1
258
                         for i \in [f] do
             18:
259
                                Q_i \leftarrow Q_i, K_i \leftarrow K_i, V_i \leftarrow V_i
             19:
260
             20:
                                M_i \leftarrow Q_i K_1^{\top}, A_{\underline{i}} \leftarrow \exp(Q_i K_1^{\top})
261
             21:
                                C_i \leftarrow \exp(\bar{Q}_i K_1^\top) V_1
262
             22:
                                A \leftarrow \exp(Q_i K_1^{\top})
263
                                D \leftarrow \operatorname{diag}(A\mathbf{1}_n).
             23:
                                B_i \leftarrow D^{-1}AV_1
264
             24:
                                \operatorname{ct}_{K,i} \leftarrow 0
265
             25:
             26:
                                \operatorname{ct}_{V,i} \leftarrow 0
266
             27:
                         end for
267
             28: end procedure
268
             29: end data structure
269
```

```
270
              Algorithm 2 Query the block attention
271
               1: procedure QUERY(x, y)
                                                                                                                                   ⊳ Lemma 4.2, Lemma 4.3
272
                          i \leftarrow \lceil \frac{x}{n} \rceil

    ▶ Identify the row

               2:
273
               3:
                          for j \in \{2 \cdots \lfloor \frac{y}{n} \rfloor\} do
274
                                r \leftarrow the different row between K_j and K_{j-1}
               4:
                                                                                                                                               ▶ Assumption 1.3
275
               5:
                                \delta_K \leftarrow e_r^{\top}(K_j - K_{j-1})
276
                                 UPDATEK(i, r, \delta_K)
               6:
277
                                 \Delta_{V,1}, \Delta_{V,2} \leftarrow \text{rank-1 difference between } V_i \text{ and } V_{i-1}
               7:
                                                                                                                                               ▶ Assumption 1.4
278
                                 UPDATEV(i, \Delta_{V,1}, \Delta_{V,2})
               8:
279
               9:
                          end for
                          for j \in \{\lfloor \frac{y}{n} \rfloor \cdots f\} do r \leftarrow the different row between K_j and K_{j-1}
              10:
                                                                                                                                               ▶ Assumption 1.3
              11:
281
                                 \delta_K \leftarrow e_r^{\top} (K_j - K_{j-1})
              12:
282
                                 UPDATED(i, r, \delta_K)
              13:
283
              14:
284
                          Let \Delta_{V,1} and \Delta_{V,2} be rectangular matrix obtained from list from List<sub>V</sub>
              15:
285
                          Let (D_{\rm tmp})^{-1} denote the list of diagonal matrices obtained from List<sub>D</sub>[ct<sub>K</sub>].GETB
              16:
286
                          answer<sub>1</sub> \leftarrow (D_{\text{tmp}})_x^{-1}(C + (\Delta_{C,1}\Delta_{C,2})_{x,y})
answer<sub>2</sub> \leftarrow (D_{\text{tmp}})_x^{-1}A_{x,*}\Delta_{V,1}(\Delta_{V,2})_{*,x}
              17:
287
              18:
288
                          answer \leftarrow \sum_{j=1}^{2} \text{answer}_{j}
              19:
289
              20:
                          return answer
290
              21: end procedure
291
              22: end data structure
292
293
              Algorithm 3 Algorithm that update K and maintain the data structure
294
295
                1: data structure FASTBLOCKATTENTION
                                                                                                                                                     ⊳ Theorem 1.5
296
                    procedure UPDATEK(i \in [n], \delta_K \in \mathbb{R}^d)
                                                                                                                                                       ⊳ Lemma 4.4
               3:
                          /*For all members in the data structure, we omit the i subscript for simplicity*/
297
               4:
                          \operatorname{ct}_K \leftarrow \operatorname{ct}_K + 1
298
                          \widetilde{K}_{i,*} \leftarrow K_{i,*} + \delta_K^{\top} \\ (\Delta_M)_{*,i} \leftarrow \underbrace{Q}_{n \times d} \underbrace{\delta_K}_{d \times 1}
               5:
299
                                                                                                              \triangleright \Delta_M only have entries in i-th column
               6:
300
301
                          (\Delta_A)_{*,i} \leftarrow (A_{*,i} \circ (\exp((\Delta_M)_{*,i}) - \mathbf{1}_n))
302
303
                          M \leftarrow M + (\Delta_M)_{*,i} e_i^{\mathsf{T}}
               8:
                                                                                                                  \triangleright We only update i-th column of M
304
                          \widetilde{A} \leftarrow A + (\Delta_A)_{*,i} e_i^{\mathsf{T}}
               9:
                                                                                                                    \triangleright We only update i-th column of A
              10:
                          Obtain diagonal vector D_{\text{tmp}} from \text{List}_D[\text{ct}_K - 1]. GETB
                                                                                                                                           \triangleright It takes O(n) time
306
                          \widetilde{D} \leftarrow D_{\mathrm{tmp}}^{-1} + \mathrm{diag}(\Delta_A)_{*,i} for j = 1 \rightarrow n do
              11:
307
              12:
308
                                (\Delta_D)_{j,j} \leftarrow (D_{\text{tmp}})_{i,j}^{-1} - \widetilde{D}_{i,j}^{-1}
              13:
              14:
                          end for
310
                          if \operatorname{ct}_K < n^a then
              15:
311
                                \operatorname{List}_C[\operatorname{ct}_K - 1].(a, b) \leftarrow ((\Delta_A)_{*,i} \in \mathbb{R}^n, V^{\top} e_i \in \mathbb{R}^d)
              16:
312
                                \operatorname{List}_D[\operatorname{ct}_K - 1].(a, b) \leftarrow (\Delta_D \in \mathbb{R}^{n \times n}, \widetilde{D}^{-1} \in \mathbb{R}^{n \times n})
              17:
                                                                                                                                           Diagonal matrices
313
                                                                                                                      \triangleright \mathcal{T}_{\mathrm{mat}}(n, n^a, d) = n^{\omega(1, 1, a)} time
              18:
314
                                RECOMPUTE()
                                                                                                              ▶ Algorithm 6. Re-compute everything
              19:
315
              20:
                          end if
316
              21:
                          /*Referesh the memory*/
317
              22:
                          K \leftarrow K
                          A \leftarrow A
318
              23:
              24:
                          M \leftarrow M
319
              25: end procedure
```

321 322 323 26: end data structure

```
324
            Algorithm 4 Algorithm that update D and maintain the data structure
325
             1: data structure FASTBLOCKATTENTION
                                                                                                                              ⊳ Theorem 1.5
326
             2: procedure UPDATED(i \in [n], \delta_K \in \mathbb{R}^d)
                                                                                                                                ⊳ Lemma 4.5
327
                      /*For all members in the data structure, we omit the i subscript for simplicity*/
328
             4:
                      \operatorname{ct}_K \leftarrow \operatorname{ct}_K + 1
             5:
                      K_{i,*} \leftarrow K_{i,*} + \delta_K^{\perp}
330
                      (\Delta_M)_{*,i} \leftarrow \underbrace{Q}_{n \times d} \underbrace{\delta_K}_{d \times 1}
             6:
                                                                                             \triangleright \Delta_M only have entries in i-th column
331
332
             7:
                       (\Delta_A)_{*,i} \leftarrow (A_{*,i} \circ (\exp((\Delta_M)_{*,i}) - \mathbf{1}_n))
333
                      M \leftarrow M + (\Delta_M)_{*,i} e_i^{\mathsf{T}}
             8:
                                                                                                 \triangleright We only update i-th column of M
334
                      Obtain diagonal vector D_{\text{tmp}} from \text{List}_D[\text{ct}_K - 1]. GETB
             9:
                                                                                                                      \triangleright It takes O(n) time
335
                      \widetilde{D} \leftarrow D_{\mathrm{tmp}}^{-1} + \mathrm{diag}(\Delta_A)_{*,i}
            10:
336
            11:
                      for j=1 \rightarrow n do
337
                            (\Delta_D)_{j,j} \leftarrow (D_{\rm tmp})_{j,j}^{-1} - \widetilde{D}_{j,j}^{-1}
            12:
338
                      end for
            13:
339
                      if \operatorname{ct}_K < n^a then
            14:
340
                           \operatorname{List}_D[\operatorname{ct}_K - 1].(a, b) \leftarrow (\Delta_D \in \mathbb{R}^{n \times n}, \widetilde{D}^{-1} \in \mathbb{R}^{n \times n})
                                                                                                                      Diagonal matrices
            15:
341
                                                                                                    \triangleright \mathcal{T}_{\text{mat}}(n, n^a, d) = n^{\omega(1,1,a)} \text{ time}
            16:
342
            17:
                            RECOMPUTE()

    ▷ Algorithm 6. Re-compute everything

343
            18:
                      end if
344
            19:
                      /*Referesh the memory*/
345
            20:
                      K \leftarrow K
346
            21:
                      M \leftarrow M
347
            22: end procedure
348
            23: end data structure
349
350
            Algorithm 5 Algorithm that update V and maintain the data structure
351
             1: data structure FASTBLOCKATTENTION
                                                                                                                              ⊳ Theorem 1.5
352
             2: procedure UPDATEV(\delta_{V,1} \in \mathbb{R}^n, \delta_{V,2} \in \mathbb{R}^d)
                                                                                                                                ⊳ Lemma 4.6
353
                      /*For all members in the data structure, we omit the i subscript for simplicity*/
             3:
354
             4:
                      \operatorname{ct}_V \leftarrow \operatorname{ct}_V + 1
355
                      if \operatorname{ct}_V < n^a then
             5:
356
                            \operatorname{List}_V[\operatorname{ct}_V - 1].(a, b) \leftarrow (\delta_{V,1}, \delta_{V,2})
             6:
357
             7:
                      else
358
             8:
                            RECOMPUTE()

    Algorithm 6. Re-compute everything

             9:
                      end if
            10: end procedure
360
            11: end data structure
361
362
           4.1 INIT
364
365
            We begin by stating the running time of the initialization procedure.
366
           Lemma 4.1 (Running time of INIT). The running time of procedure INIT (Algorithm 1) is O(f \cdot I)
367
            \mathcal{T}_{\mathrm{mat}}(n,d,n)).
368
369
           Proof. It is trivially from applying fast matrix multiplication f iterations.
                                                                                                                                               370
371
           4.2 QUERY
372
373
           Next, we show the running time of QUERY.
374
           Lemma 4.2 (Running time of QUERY). The running time of procedure QUERY (Algorithm 2) is
375
           O(\mathcal{T}_{\mathrm{mat}}(n,n,n^a)\frac{f}{n^a}).
376
```

*Proof.* Part 1. UPDATEK and UPDATEV. The amortized running time is  $O(\mathcal{T}_{mat}(n, n, n^a) \frac{f}{n^a})$ .

#### 378 **Algorithm 6** Algorithm that re-compute evreything 379 ⊳ Theorem 1.5 1: data structure FASTBLOCKATTENTION 380 ⊳ Lemma A.1, Lemma A.2 2: **procedure** RECOMPUTE $(i \in [n])$ 381 /\*For all members in the data structure, we omit the i subscript for simplicity\*/ 382 Let $\Delta_{C,1}$ and $\Delta_{C,2}$ be rectangular matrix obtained from List<sub>C</sub> 5: Let $\Delta_{V,1}$ and $\Delta_{V,2}$ be rectangular matrix obtained from List<sub>V</sub> 384 Let $\Delta_D(i)$ denote the list of diagonal matrices obtained from List<sub>D</sub>[i].GETA 6: $\tilde{C} \leftarrow C + \Delta_{C,1} \cdot \Delta_{C,2}$ $\triangleright$ It takes $\mathcal{T}_{\mathrm{mat}}(n, n^a, d)$ time 386 $\widetilde{V} \leftarrow V + \Delta_{V,1} \cdot \Delta_{V,2}$ $\triangleright$ It takes $\mathcal{T}_{\mathrm{mat}}(n, n^a, d)$ time 8: 387 $\begin{array}{l} \Delta_D \leftarrow \sum_{i=1}^{\operatorname{ct}_K} \Delta_D(i) \\ \widetilde{D}^{-1} \leftarrow D^{-1} + \Delta_D \end{array}$ $\triangleright$ it takes $n^{1+a}$ time 9: 388 10: $\triangleright$ It takes n time 389 $\widetilde{B} \leftarrow \widetilde{D}^{-1} \cdot \widetilde{C}$ 11: $\triangleright$ This takes nd390 12: /\*Refresh the memory\*/ 391 $D \leftarrow \widetilde{D}, C \leftarrow \widetilde{C}, B \leftarrow \widetilde{B}, V \leftarrow \widetilde{V}$ 13: 392 /\*Reset the counter\*/ 14: 393 $\operatorname{ct}_K \leftarrow 0, \operatorname{ct}_V \leftarrow 0$ 15: 394 16: end procedure 395 17: end data structure 397 **Part 2.** UPDATED. The amortized running time is $O(\mathcal{T}_{mat}(n, n, n^a) \frac{f}{n^a})$ . 399 **Part 3.** We first stack all the vectors in List<sub>V</sub> to $\Delta_{V,1}$ and $\Delta_{V,2}$ , which takes O(1) time. 400 401 Computing $(D_{\rm tmp})_i^{-1}(C + \Delta_{C,1}\Delta_{C,2})_{i,j}$ takes $O(n^a)$ time. 402 Computing $\Delta_{V,1}\Delta_{V,2}$ takes $O(n^a)$ time as $\Delta_{V,1}$ and $\Delta_{V,2}$ are k-sparse (Assumption 1.4). 403 Computing $(D_{\text{tmp}})_i^{-1} A_{i,*}(\Delta_{V,1} \Delta_{V,2})_{*,i}$ takes $O(n^a)$ time as $\text{nnz}((\Delta_{V,1} \Delta_{V,2})_{*,i}) = O(1)$ . 404 405 Hence the amortized running time is $O(\mathcal{T}_{mat}(n, n, n^a) \frac{f}{n^a})$ 406 407 Now, we establish the correctness of QUERY. 408 **Lemma 4.3** (Correctness of QUERY). The procedure QUERY(x, y) (Algorithm 2) outputs 409 410 $\mathsf{BAttn}(\{Q_i, K_i, V_i\}_{i=1}^f)_{x,y}.$ 411 412 *Proof.* Let $(D_{\text{tmp}})^{-1}$ denote the diagonal matrix obtained from $\text{List}_D[\text{ct}_K]$ .GETB. Let $\Delta_{V,1}$ and 413 $\Delta_{V,2}$ be rectangular matrix obtained from List<sub>V</sub>. 414 Since we know 415 416 answer<sub>1</sub> = $(D_{\text{tmp}})_{x}^{-1}(C + \Delta_{C,1}\Delta_{C,2})_{x,y}$ 417 and 418 419 answer<sub>2</sub> = $(D_{tmp})_x^{-1} A_{x,*} (\Delta_{V,1} \Delta_{V,2})_{*,x}$ . 420 By summing them up, we get 421 422 $\widetilde{B} = \text{answer}_1 + \text{answer}_2$ 423 $= (D_{\text{tmp}})_{x}^{-1} (C + \Delta_{C,1} \Delta_{C,2})_{x,y} + (D_{\text{tmp}})_{x}^{-1} A_{x,*} (\Delta_{V,1} \Delta_{V,2})_{*,y}$ 424 $= (D_{\text{tmp}})_{x}^{-1} (AV)_{x,y} + (D_{\text{tmp}})_{x}^{-1} A_{x,*} (\Delta_{V,1} \Delta_{V,2})_{*,y}$ 425 426 $= (D_{\text{tmp}})_{x}^{-1} (AV)_{x,y} + (D_{\text{tmp}})_{x}^{-1} (A\Delta_{V,1}\Delta_{V,2})_{x,y}$ 427 $= (D_{\text{tmp}})_{x}^{-1} (A(V + \Delta_{V1}\Delta_{V2}))_{x,y}$ 428 $=(D_{\rm tmp})_r^{-1}(AV_i)_{x,y}$ 429 430 $= \operatorname{diag}(\exp(Q_i K_i^{\top})_{i,*} \mathbf{1}_N)_x^{-1} (\exp(Q_i K_i^{\top}) V_i)_{x,y}$

 $= (\operatorname{diag}(\exp(Q_i K_i^{\top})_{i,*} \mathbf{1}_N)^{-1} \exp(Q_i K_i^{\top}) V_i)_{x,y}$ 

432 = BAttn $(\{Q_i, K_i, V_i\}_{i=1}^f)_{x,y}$ , 433 434 where the first step combines two answers, the second step substitute for the two answers, the third step follows from the definition of C and UPDATEK (Algorithm 3), the fourth and the fifth steps 435 follow from basic algebra, the sixth step follows from definition of  $\Delta_{V,1}$ ,  $\Delta_{V,2}$  and Fact 2.2, the 436 seventh step follows from UPDATED (Algorithm 4), the eighth step follows from basic algebra, and 437 the last step follows from Lemma 2.1 and Definition 1.2. 438 439 4.3 UPDATE K, V AND D440 441 First, we show the running time of updating K. 442 **Lemma 4.4** (Running time of UPDATEK, informal version of B.1). The procedure UPDATEK (Al-443 gorithm 3) takes Part 1.  $T_{mat}(n, n, n^a)$  time in the worst case. Part 2.  $T_{mat}(n, n, n^a)/n^a$  time in 444 the amortized case. 445 446 Next, we give the running time of updating D. 447 Lemma 4.5 (Running time of UPDATED). The procedure UPDATED (Algorithm 4) takes Part 1. 448  $\mathcal{T}_{\mathrm{mat}}(n,n,n^a)$  time in the worst case. Part 2.  $\mathcal{T}_{\mathrm{mat}}(n,n,n^a)/n^a$  time in the amortized case. 449 450 *Proof.* The proof trivially follows from Lemma B.1. 451 452 453 Finally, we analyze the running time of updating V. 454 Lemma 4.6 (Running time of UPDATEV). The procedure UPDATEV (Algorithm 5) takes Part 1. 455  $\mathcal{T}_{\mathrm{mat}}(n,n,n^a)$  time in the worst case. **Part 2.**  $\mathcal{T}_{\mathrm{mat}}(n,n,n^a)/n^a$  time in the amortized case. 456 457 *Proof.* The proof trivially follows from Lemma B.1. 458 459 4.4 RECOMPUTE 460 461 We first give the running time of the recompute. 462 **Lemma 4.7** (Running time of RECOMPUTE, Lemma 4.9 of (Brand et al., 2024)). The running time 463 of procedure RECOMPUTE (Algorithm 6) is  $\mathcal{T}_{mat}(n, n^a, d)$ . 464 465 *Proof.* For given  $i \in [n]$ , the RECOMPUTE works same as RECOMPUTE in (Brand et al., 2024). 466 Then, according to Lemma A.1, the procedure runs in  $\mathcal{T}_{\mathrm{mat}}(n,n^a,d)$  time. 467 468 469 Then, we present the correctness of the recompute. 470 Lemma 4.8 (Correctness of RECOMPUTE, Lemma 4.8 of (Brand et al., 2024)). The procedure 471 RECOMPUTE (Algorithm 6) correctly re-compute D, C, B, V. 472 473 *Proof.* For given  $i \in [n]$ , the RECOMPUTE works same as RECOMPUTE in (Brand et al., 2024). 474 Then, according to Lemma A.2, the procedure is correct. 475 476 CONCLUSION 477 478 479 In this work, we investigated the fundamental computational bottleneck of video attention and introduced a dynamic algorithm for fast block attention. By leveraging temporal coherence within 480 videos for row-wise key updates and exploiting low-rank variations in value between consecutive 481 frames, our algorithm achieves  $O(\mathcal{T}_{\text{mat}}(n, n, n^a) \frac{f}{n^a})$  running time, representing a significant reduc-482 tion in computational cost compared to the original  $O(n^2f^2)$  approach. Our findings demonstrate 483 that dynamic block attention not only enhances efficiency theoretically but also paves the way for 484 new directions in scalable video modeling, particularly within generative settings where attention 485 must be updated frame by frame.

### ETHIC STATEMENT

This paper does not involve human subjects, personally identifiable data, or sensitive applications. We do not foresee direct ethical risks. We follow the ICLR Code of Ethics and affirm that all aspects of this research comply with the principles of fairness, transparency, and integrity.

#### REPRODUCIBILITY STATEMENT

We ensure reproducibility of our theoretical results by including all formal assumptions, definitions, and complete proofs in the appendix. The main text states each theorem clearly and refers to the detailed proofs. No external data or software is required.

#### REFERENCES

- Josh Alman and Zhao Song. Fast attention requires bounded entries. In *Proceedings of the 37th International Conference on Neural Information Processing Systems*, pp. 63117–63135, 2023.
- Josh Alman and Zhao Song. How to capture higher-order correlations? generalizing matrix softmax attention to kronecker computation. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=v0zNCwwkaV.
- Josh Alman and Zhao Song. Fast rope attention: Combining the polynomial method and fast fourier transform. *arXiv preprint arXiv:2505.11892*, 2025a.
- Josh Alman and Zhao Song. Only large weights (and not skip connections) can prevent the perils of rank collapse. *arXiv preprint arXiv:2505.16284*, 2025b.
- Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, and Cordelia Schmid. Vivit: A video vision transformer. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 6836–6846, 2021.
- Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is space-time attention all you need for video understanding? *arXiv preprint arXiv:2102.05095*, 2021.
- Jan van den Brand, Zhao Song, and Tianyi Zhou. Algorithm and hardness for dynamic attention maintenance in large language models. In *ICML*, 2024.
- Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. In *Proceedings of the 34th International Conference on Neural Information Processing Systems*, pp. 1877–1901, 2020.
- Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language modeling with pathways. *Journal of Machine Learning Research*, 2023.
- Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019a.
- Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019b.
- Sally Dong, Yin Tat Lee, and Guanghao Ye. A nearly-linear time algorithm for linear programs with small treewidth: a multiscale representation of robust central path. In *Proceedings of the 53rd annual ACM SIGACT symposium on theory of computing*, pp. 1784–1797, 2021.

- Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, G Heigold, S Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. In *International Conference on Learning Representations*, 2020.
  - Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High definition video generation with diffusion models. *arXiv preprint arXiv:2210.02303*, 2022a.
  - Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J Fleet. Video diffusion models. In *Proceedings of the 36th International Conference on Neural Information Processing Systems*, pp. 8633–8646, 2022b.
  - Wenyi Hong, Ming Ding, Wendi Zheng, Xinghan Liu, and Jie Tang. Cogvideo: Large-scale pre-training for text-to-video generation via transformers. *arXiv preprint arXiv:2205.15868*, 2022.
  - Baihe Huang, Shunhua Jiang, Zhao Song, Runzhou Tao, and Ruizhe Zhang. Solving sdp faster: A robust ipm framework and efficient implementation. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pp. 233–244. IEEE, 2022.
  - Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint arXiv:2410.21276*, 2024.
  - Haotian Jiang, Tarun Kathuria, Yin Tat Lee, Swati Padmanabhan, and Zhao Song. A faster interior point method for semidefinite programming. In 2020 IEEE 61st annual symposium on foundations of computer science (FOCS), pp. 910–918. IEEE, 2020.
  - Nal Kalchbrenner, Aäron Oord, Karen Simonyan, Ivo Danihelka, Oriol Vinyals, Alex Graves, and Koray Kavukcuoglu. Video pixel networks. In *International Conference on Machine Learning*, pp. 1771–1779. PMLR, 2017.
  - Wonjae Kim, Bokyung Son, and Ildoo Kim. Vilt: Vision-and-language transformer without convolution or region supervision. In *International conference on machine learning*, pp. 5583–5594, 2021.
  - Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 10012–10022, 2021.
  - Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin, and Han Hu. Video swin transformer. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 3202–3211, 2022.
  - Masaki Saito, Eiichi Matsumoto, and Shunta Saito. Temporal generative adversarial nets with singular value clipping. In *Proceedings of the IEEE international conference on computer vision*, pp. 2830–2839, 2017.
  - Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, Harry Yang, Oron Ashual, Oran Gafni, et al. Make-a-video: Text-to-video generation without text-video data. In *The Eleventh International Conference on Learning Representations*, 2023.
  - Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang, Peyman Milanfar, Alan Bovik, and Yinxiao Li. Maxvit: Multi-axis vision transformer. In *European conference on computer vision*, pp. 459–479. Springer, 2022.
  - Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan Kautz. Mocogan: Decomposing motion and content for video generation. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 1526–1535, 2018.
  - Jan van den Brand. Unifying matrix data structures: Simplifying and speeding up iterative algorithms. In *Symposium on Simplicity in Algorithms (SOSA)*, pp. 1–13. SIAM, 2021.

- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Proceedings of the 31st International Conference on Neural Information Processing Systems*, pp. 6000–6010, 2017.
- R Villegas, H Moraldo, S Castro, M Babaeizadeh, H Zhang, J Kunze, PJ Kindermans, MT Saffar, and D Erhan. Phenaki: Variable length video generation from open domain textual descriptions. In 11th International Conference on Learning Representations, ICLR 2023, 2023.
- Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Generating videos with scene dynamics. In *Proceedings of the 30th International Conference on Neural Information Processing Systems*, pp. 613–621, 2016.
- Huiyu Wang, Yukun Zhu, Bradley Green, Hartwig Adam, Alan Yuille, and Liang-Chieh Chen. Axial-deeplab: Stand-alone axial-attention for panoptic segmentation. In *European conference on computer vision*, pp. 108–126. Springer, 2020.
- Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. Kdeformer: Accelerating transformers via kernel density estimation. In *International Conference on Machine Learning*, pp. 40605–40623. PMLR, 2023.

we provide some formal results of our algorithm in Section B.

DYNAMIC ATTENTION In this section, we present some lemmas of the dynamic algorithm in (Brand et al., 2024). We first provide the running time of its RECOMPUTE. Lemma A.1 (Running time of RECOMPUTE, Lemma 4.9 of (Brand et al., 2024)). The running time of procedure RECOMPUTE (Algorithm 6) is  $\mathcal{T}_{\mathrm{mat}}(n, n^a, d)$ . Then, we provide the correctness of RECOMPUTE. Lemma A.2 (Correctness of RECOMPUTE, Lemma 4.8 of (Brand et al., 2024)). The procedure RECOMPUTE (Algorithm 6) correctly re-compute D, C, B, V. FAST BLOCK ATTENTION In this section, we present formal version of some lemmas for our dynamic algorithms. First we show the formal lemma of running time of UPDATEK. **Lemma B.1** (Running time of UPDATEK, formal version of 4.4). The procedure UPDATEK (Algo-rithm 3) takes •  $\mathcal{T}_{mat}(n, n, n^a)$  time in the worst case. •  $\mathcal{T}_{mat}(n,n,n^a)/n^a$  time in the amortized case. *Proof.* **Part 1.** It trivially from Lemma A.1 **Part 2.** If the  $\operatorname{ct}_K < n^a$ , we pay O(n) time. If  $\operatorname{ct}_K = n^a$ , we pay  $n^{\omega(1,1,a)}$ . So the amortized time  $\frac{n(n^a - 1) + n^{\omega(1,1,a)}}{n^a} = O(n^{\omega(1,1,a) - a})$ Note that, by using fast matrix multiplication and the fact that d = O(n), we have  $n^{\omega(1,1,a)} =$  $\mathcal{T}_{\mathrm{mat}}(n, n^a, d)$ . Thus we complete the proof. LLM USAGE DISCLOSURE LLMs were used only to polish language, such as grammar and wording. These models did not contribute to idea creation or writing, and the authors take full responsibility for this paper's content. 

**Appendix** 

**Roadmap.** In the appendix, we first list some result from (Brand et al., 2024) in Section A. Then,