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ABSTRACT

Recent progress in video modeling has been largely driven by Transformer ar-
chitectures, which simulate dependency relationships across spatial patches and
temporal frames. However, compared to text or image modeling, video modeling
involves orders of magnitude more tokens, resulting in an input sequence several
orders of magnitude longer than typical NLP or image tasks, and makes the atten-
tion mechanism the primary computational bottleneck. The naive method flattens
f frames of n tokens each into length N = nf , incurring total O(n2f2) attention
cost. Prior work (e.g., radial/axial variants) attains subquadratic time only when
either the spatial or temporal dimension is small. We present a dynamic algorithm
that computes block attention in O(Tmat(n, n, n

a) f
na ) amortized running time,

where a ∈ [0, 1).

1 INTRODUCTION

Large Language models (LLMs) such as Transformer (Vaswani et al., 2017), BERT (Devlin et al.,
2019a), PaLM (Chowdhery et al., 2023), and GPT-4o (Hurst et al., 2024) have demonstrated re-
markable capabilities in natural language understanding and generation, which helps to achieve a
wide range of tasks such as language translation, sentiment analysis, and question answering. Simi-
larly, video Transformers such as TimeSformer (Bertasius et al., 2021), ViViT (Arnab et al., 2021),
and Video Swin Transformer (Liu et al., 2022) have illustrated remarkable progress in capturing
spatio-temporal dynamics, greatly advancing applications such as video understanding and editing.

The core technical foundation behind video Transformers is the spatio-temporal attention. In this
setting, attention not only works on spatial patches within individual frames but also across temporal
frames, thereby capturing spatio-temporal attention. Specifically, if the video contains f frames and
each frame is represented by n tokens, then the full sequence has length N = nf . Computing
the attention matrix requires O(N2) operations, and it is precisely this quadratic complexity that
constitutes the fundamental bottleneck in video attention. As videos typically comprise hundreds of
frames, N is often larger than in text or image tasks, rendering the attention cost prohibitively high.

To address this challenge, previous work has investigated effective and approximate attention mech-
anisms in video modeling. Axial and variants restrict attention to the spatial or temporal di-
mensions (Wang et al., 2020), while other approaches approximate the attention matrix, such as
Maxvit (Tu et al., 2022). These efforts have achieved subquadratic complexity in specific condi-
tions, but they largely focus on static attention, in which the attention matrix is computed once for a
fixed sequence.

However, video generation involves highly dynamic spatio-temporal structures, with attention
weights evolving as new frames are generated. Recomputing the full attention matrix at every step
is prohibitively expensive. Therefore, we propose a dynamic algorithm that is different from static
approximation (Zandieh et al., 2023; Alman & Song, 2023), specifically for block-structured video
attention.
Definition 1.1 (Attention). Suppose we have Q,K, V ∈ Rn×d, the static attention is defined by

Attn(Q,K, V ) := D−1AV,

where A ∈ Rn×n and diagonal matrix D ∈ Rn×n is defined as

A := exp(QK⊤), D := diag(A1n).
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But videos are not 1D. Each token now has a temporal index [f ] (frame) and a spatial index n (patch
inside the frame). Flattening [f ]× [n] into a single axis will destroy the product structure and treats
spatial and temporal neighborhoods as equally distant once they are far in the flattened order. Block
attention, on the other hand, respects the natural product index set [f ] × [n] by grouping tokens by
frame.
Definition 1.2 (Block attention). Let the number of blocks be f ∈ Z+, each block with size n × d,
and total length N := fn.

Suppose we have f query matrices Q1, Q2, · · · , Qf ∈ Rn×d, f key matrices K1,K2, · · · ,Kf ∈
Rn×d, and f value matrices V1, V2, · · · , Vf ∈ Rn×d. Let V := [V1 · · ·Vf ] ∈ RN×d.

Let (i, j) ∈ [f ] × [f ]. We use Âi,j to denote the element on i-th row and j-th column, and Â[i,j] to
denote the block on i-th row and j-th column, i.e., Â[i,j] := Â(i−1)n+[n],(j−1)n+[n] ∈ Rn×n. Then,
the block attention computation is defined by

BAttn({Qi,Ki, Vi}fi=1) := D̂−1ÂV̂ ,

where diagonal matrix D̂ ∈ RN×N and matrix Â ∈ RN×N are defined by

D̂ := diag(Â1N ), Â[i,j] := exp(QiK
⊤
j ) ∈ Rn×n.
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Figure 1: Computation of the BAttn({Qi,Ki, Vi}fi=1) (Definition 1.2).

Intuitively, each frame i distributes its attention mass over all frames j and their spatial patches;
within-frame (spatial) and cross-frame (temporal) interactions are captured by different blocks of
H .

Naively computing the block attention yields O(N2) = O(n2f2) time. Prior structured variants
(e.g., axial/radial patterns) achieve subquadratic time only when one axis is much smaller than the
other, leaving a wide parameter regime where full O(n2f2) persists.

An interesting property of videos is that videos exhibit strong temporal coherence: between adja-
cent frames, most spatial tokens persist with small changes, while global photometric effects (e.g.,
exposure/pan) act nearly low-dimensional. We utilize these properties, and formalize those by the
following two assumptions:
Assumption 1.3 (Difference between Ki). For all the {Ki}i∈[f−1], we assume that Ki and Ki+1

only different by a single row.

Assumption 1.4 (Rank-1 k-sparse changes in Vi). For all the {Vi}i∈[f−1], we assume Vi and Vi+1

has rank-1 k-sparse changes.

Inspired by (Brand et al., 2024), we propose a dynamic algorithm that could compute fast block
attention under above assumptions.
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Theorem 1.5 (Fast block attention). For any constant a ∈ (0, 1]. Let d = O(n). Under Assump-
tion 1.3 and Assumption 1.4, where k = O(1). Then, there is a dynamic data structure that uses
O(fn2) space and supports the following operations:

• INIT({Qi ∈ Rn×d,Ki ∈ Rn×d, Vi ∈ Rn×d}fi=1). It runs in O(f · Tmat(n, d, n)) time.

• QUERY(x ∈ [n], y ∈ [n]). This operation outputs BAttn({Qi,Ki, Vi}fi=1)x,y , which is
defined in Definition 1.2, and takes O(Tmat(n, n, n

a) f
na ) amortized time.

Roadmap. In Section 2, we present the preliminary for our work. In Section 3, we review related
work. In Section 4, we introduce fast block attention algorithms in our work. Finally, we provide
the conclusion of our work in Section 5.

2 PRELIMINARY

Notation. We use R to denote the set of real number. We use Ai,j to denote the element on i-th
row and j-th column, and A[i,j] to denote the block on i-th row and j-th column, i.e., A[i,j] :=

A(i−1)n+[n],(j−1)n+[n] ∈ Rn×n. For any positive integer, we use [n] to denote set {1, 2, · · · , n}.
We use 1n to denote a length n vector whose entries are all ones. For any matrix A ∈ Rm×n, we
use exp(A) ∈ Rm×n to denote entry-wise exponential function, i.e. exp(A)i,j = exp(Ai,j). We
use Tmat(a, b, c) to denote the time to multiply an a× b matrix with a b× c matrix. Practical bound
Tmat(a, b, c) ≤ O(abc). We use ◦ to denote entry-wise product.

2.1 BLOCK ATTENTION

We first provide a handful tool for block attention calculation.

Lemma 2.1 (Block attention normalization). Let D̂ defined by Definition 1.2. Then, D̂[i,i] =
diag(Ai,∗1N ).

Proof.

D̂ = diag(A1N )

D̂[i,i] = diag(A1N )[i,i]

= diag(Ai,∗1N ),

where the first step follows from Definition 1.2, the second step take the [i, i] sub-matrix, and the
third step from basic algebra.

Then, we provide a simple algebra fact which is the core of our dynamic algorithm.

Fact 2.2 (Folklore). Given a set of vectors a1, · · · , ak ∈ Rn, and b1, · · · , bk ∈ Rn. If A =
[a1 · · · ak] , B = [b1 · · · bk] , then we have

k∑
i=1

aib
⊤
i = AB.

2.2 DYNAMIC ATTENTION

Here, we present the main theorem of (Brand et al., 2024). The dynamic algorithm of (Brand et al.,
2024) support fast computation for regular attention.

Lemma 2.3 (Dynamic attention, Theorem 4.1 of (Brand et al., 2024)). For any constant a ∈ (0, 1].
Let d = O(n). Then, there is a dynamic data structure that uses O(n2) space and supports the
following operations:

• INIT(Q,K, V ). It runs in O(Tmat(n, d, n)) time.

3
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• UPDATEK(i ∈ [n], j ∈ [d], δ ∈ R). This operation updates one entry in K, and it runs in
O(Tmat(n, n

a, n)/na) amortized time.

• UPDATEV(i ∈ [n], j ∈ [d], δ ∈ R). This operation takes same amortized time as K update.

• QUERY(i ∈ [n], j ∈ [d]). This operation outputs Attn(Q,K, V )i,j , which is defined in
Definition 1.1, and takes O(na) worst-case time.

3 RELATED WORK

Attention. Since the introduction of attention mechanisms in natural language processing (Vaswani
et al., 2017), it has become the core architecture in a wide range of fields, including text (Devlin
et al., 2019b; Brown et al., 2020), vision (Liu et al., 2021), and multimodality (Kim et al., 2021). In
computer vision, early work such as ViT (Dosovitskiy et al., 2020) demonstrated that self-attention
models could effectively handle image block sequences. With continuous development, including
TimeSformer (Bertasius et al., 2021), extend the Transformer to video understanding tasks and pro-
pose a time-space decomposition attention mechanism. Additionally, ViViT (Arnab et al., 2021)
extends Vision Transformer to video by factorizing spatial and temporal dimensions, while Video
Swin Transformer (Liu et al., 2022) leverages shifted windows to capture spatio-temporal depen-
dencies efficiently.

In a different recent work (Alman & Song, 2023), they focus on the bounded-entry setting with
d = O(logn) and establish conditional lower bounds for approximating attention under the as-
sumption that ∥Q∥∞, ∥K∥∞, ∥V ∥∞ ≤ B. Building on this line, (Alman & Song, 2024) gener-
alizes softmax attention to Kronecker computation. Additionally, (Brand et al., 2024) investigates
dynamic attention maintenance, giving conditional hardness results and optimal update algorithms
with amortized complexity O(nω(1,1,τ)−τ ) under sparsity assumptions. More recently, (Alman &
Song, 2025a) proposes Fast RoPE attention, which embeds the rotary positional into polynomial
evaluation, and obtains running time O(logn) instead of O(n2). In another recent work, (Alman &
Song, 2025b) proves that only sufficiently large weights, rather than skip connections, can prevent
rank collapse. Despite the notable success of prior work, the quadratic computational cost of basic
self-attention mechanisms remains a fundamental constraint, particularly in video generation tasks
where the number of tokens far exceeds that in image or text scenarios. This challenge has motivated
research on efficient attention mechanisms. To address this limitation, we investigate a structured
video attention mechanism that leverages the block structure inherent in the spatio-temporal token
to accelerate attention computation.

Dynamic Algorithm. Recently, dynamic algorithms have been widely studied in theoretical com-
puter science, with the core objective being to design data structures that efficiently preserve certain
properties of dynamically changing inputs. An outstanding example is projection maintenance,
which has been applied in convex optimization to preserve the projection matrix (Jiang et al., 2020;
van den Brand, 2021; Dong et al., 2021; Huang et al., 2022). Under these conditions, the pro-
jection matrix P = B⊤(BB⊤)−1B is typically maintained under low-rank or sparse updates of
matrix B ∈ Rm×n. In contrast, our problem of computing attention matrices in video modeling
exhibits two key differences. The first key distinction lies in the type of matrix inversion involved.
In attention mechanisms, we focus on computing the inverse of a positive diagonal matrix, while
in optimization tasks, the focus is often on the inverse of a full-rank matrix. The second major
difference is that the attention mechanism innovates element nonlinearity, such as softmax, making
it impractical to directly reuse linear update techniques. Concretely, when f is linear, computing
f(QK⊤)V can be simplified by precomputing K⊤V . However, when f is the exponential function,
this simplification is no longer valid, and K⊤V cannot be directly computed.

Motivated by these limitations, we propose a dynamic block attention algorithm. By dividing the
spatio-temporal tokens into blocks, our approach maintains precise attention computations while
leveraging an efficient update algorithm. This enables scalable attention processing for lengthy
videos, overcoming computational bottlenecks and challenges posed by evolving attention matrices.

Video Generation. In recent years, video generation has developed rapidly. Early approaches
relied on recurrent networks or 3D convolutions to capture spatio-temporal dynamics (Vondrick
et al., 2016; Kalchbrenner et al., 2017), but these methods often generate temporally inconsistent

4
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results and present limited scalability. With the advent of GAN-based approaches, methods such
as MoCoGAN (Tulyakov et al., 2018) and TGAN (Saito et al., 2017) divided the visual signals of
video into content and motion to improve video generation, though training stability and long-term
coherence remained challenging. More recently, diffusion models have achieved state-of-the-art
performance in video generation. For instance, Video Diffusion Models (Ho et al., 2022b) extend
image diffusion to the temporal dimension, while architectures like Imagen Video (Ho et al., 2022a)
and Make-A-Video (Singer et al., 2023) leverage large-scale text and video datasets for text-to-video
generation.

A central component of these models is the utilisation of attention mechanisms, which enable long-
term temporal modeling. For example, TimeSformer (Bertasius et al., 2021) applied self-attention
for video understanding, while CogVideo (Hong et al., 2022) and Phenaki (Villegas et al., 2023)
leverage attention for high-fidelity text-to-video generation. Despite these advances, computing at-
tention remains computationally expensive in the video domain due to O(N2) quadratic cost across
spatial and temporal dimensions. Therefore, our work proposes a block-based video attention algo-
rithm to address the high computational cost.

4 FAST BLOCK ATTENTION

In this section, we introduce a dynamic data structure for fast block attention computation.

Proof. It trivially follows from Lemma 4.2, Lemma 4.3, Lemma 4.1.

Algorithm 1 Dynamic Data Structure for Fast Block Attention

1: data structure FASTBLOCKATTENTION ▷ Theorem 1.5
2: members
3: Q[f ] ∈ Rn×d ▷ Query token
4: K[f ] ∈ Rn×d ▷ Key token
5: V[f ] ∈ Rn×d ▷ Value token
6: M[f ] ∈ Rn×n ▷ The logits matrix, M = QK⊤

7: A[f ] ∈ Rn×n ▷ The attention matrix, A = exp(QK⊤)

8: D[f ] ∈ Rn×n ▷ The diagonal matrix,
9: C[f ] ∈ Rn×d ▷ Intermediate matrix, C = exp(QK⊤)V

10: B[f ] ∈ Rn×d ▷ Attention matrix for a block, B = D−1AV
11: ListA,[f ] ▷ List with size na

12: ListC,[f ] ▷ List with size na

13: ListD,[f ] ▷ List with size na

14: ctK,[f ], ctV,[f ] ▷ Counter for updates of K and V
15: end members
16:
17: procedure INIT({Qi,Ki, Vi}fi=1) ▷ Lemma 4.1
18: for i ∈ [f ] do
19: Qi ← Qi, Ki ← Ki, Vi ← Vi

20: Mi ← QiK
⊤
1 , Ai ← exp(QiK

⊤
1 )

21: Ci ← exp(QiK
⊤
1 )V1

22: A← exp(QiK
⊤
1 )

23: D ← diag(A1n).
24: Bi ← D−1AV1

25: ctK,i ← 0
26: ctV,i ← 0
27: end for
28: end procedure
29: end data structure

5
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Algorithm 2 Query the block attention

1: procedure QUERY(x, y) ▷ Lemma 4.2, Lemma 4.3
2: i← ⌈ xn⌉ ▷ Identify the row
3: for j ∈ {2 · · · ⌊ yn⌋} do
4: r ← the different row between Kj and Kj−1 ▷ Assumption 1.3
5: δK ← e⊤r (Kj −Kj−1)
6: UPDATEK(i, r, δK)
7: ∆V,1,∆V,2 ← rank-1 difference between Vj and Vj−1 ▷ Assumption 1.4
8: UPDATEV(i,∆V,1,∆V,2)
9: end for

10: for j ∈ {⌊ yn⌋ · · · f} do
11: r ← the different row between Kj and Kj−1 ▷ Assumption 1.3
12: δK ← e⊤r (Kj −Kj−1)
13: UPDATED(i, r, δK)
14: end for
15: Let ∆V,1 and ∆V,2 be rectangular matrix obtained from list from ListV
16: Let (Dtmp)

−1 denote the list of diagonal matrices obtained from ListD[ctK ].GETB
17: answer1 ← (Dtmp)

−1
x (C + (∆C,1∆C,2)x,y)

18: answer2 ← (Dtmp)
−1
x Ax,∗∆V,1(∆V,2)∗,x

19: answer←
∑2

j=1 answerj
20: return answer
21: end procedure
22: end data structure

Algorithm 3 Algorithm that update K and maintain the data structure

1: data structure FASTBLOCKATTENTION ▷ Theorem 1.5
2: procedure UPDATEK(i ∈ [n], δK ∈ Rd) ▷ Lemma 4.4
3: /*For all members in the data structure, we omit the i subscript for simplicity*/
4: ctK ← ctK + 1
5: K̃i,∗ ← Ki,∗ + δ⊤K
6: (∆M )∗,i ← Q︸︷︷︸

n×d

δK︸︷︷︸
d×1

▷ ∆M only have entries in i-th column

7: (∆A)∗,i ← (A∗,i ◦ (exp((∆M )∗,i)− 1n))

8: M̃ ←M + (∆M )∗,ie
⊤
i ▷ We only update i-th column of M

9: Ã← A+ (∆A)∗,ie
⊤
i ▷ We only update i-th column of A

10: Obtain diagonal vector Dtmp from ListD[ctK −1].GETB ▷ It takes O(n) time
11: D̃ ← D−1

tmp + diag(∆A)∗,i
12: for j = 1→ n do
13: (∆D)j,j ← (Dtmp)

−1
j,j − D̃−1

j,j

14: end for
15: if ctK < na then
16: ListC [ctK − 1].(a, b)← ((∆A)∗,i ∈ Rn, V ⊤ei ∈ Rd)

17: ListD[ctK − 1].(a, b)← (∆D ∈ Rn×n, D̃−1 ∈ Rn×n) ▷ Diagonal matrices
18: else ▷ Tmat(n, n

a, d) = nω(1,1,a) time
19: RECOMPUTE() ▷ Algorithm 6. Re-compute everything
20: end if
21: /*Referesh the memory*/
22: K ← K̃
23: A← Ã
24: M ← M̃
25: end procedure
26: end data structure

6
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Algorithm 4 Algorithm that update D and maintain the data structure

1: data structure FASTBLOCKATTENTION ▷ Theorem 1.5
2: procedure UPDATED(i ∈ [n], δK ∈ Rd) ▷ Lemma 4.5
3: /*For all members in the data structure, we omit the i subscript for simplicity*/
4: ctK ← ctK + 1
5: K̃i,∗ ← Ki,∗ + δ⊤K
6: (∆M )∗,i ← Q︸︷︷︸

n×d

δK︸︷︷︸
d×1

▷ ∆M only have entries in i-th column

7: (∆A)∗,i ← (A∗,i ◦ (exp((∆M )∗,i)− 1n))

8: M̃ ←M + (∆M )∗,ie
⊤
i ▷ We only update i-th column of M

9: Obtain diagonal vector Dtmp from ListD[ctK −1].GETB ▷ It takes O(n) time
10: D̃ ← D−1

tmp + diag(∆A)∗,i
11: for j = 1→ n do
12: (∆D)j,j ← (Dtmp)

−1
j,j − D̃−1

j,j

13: end for
14: if ctK < na then
15: ListD[ctK − 1].(a, b)← (∆D ∈ Rn×n, D̃−1 ∈ Rn×n) ▷ Diagonal matrices
16: else ▷ Tmat(n, n

a, d) = nω(1,1,a) time
17: RECOMPUTE() ▷ Algorithm 6. Re-compute everything
18: end if
19: /*Referesh the memory*/
20: K ← K̃
21: M ← M̃
22: end procedure
23: end data structure

Algorithm 5 Algorithm that update V and maintain the data structure

1: data structure FASTBLOCKATTENTION ▷ Theorem 1.5
2: procedure UPDATEV(δV,1 ∈ Rn, δV,2 ∈ Rd) ▷ Lemma 4.6
3: /*For all members in the data structure, we omit the i subscript for simplicity*/
4: ctV ← ctV +1
5: if ctV < na then
6: ListV [ctV −1].(a, b)← (δV,1, δV,2)
7: else
8: RECOMPUTE() ▷ Algorithm 6. Re-compute everything
9: end if

10: end procedure
11: end data structure

4.1 INIT

We begin by stating the running time of the initialization procedure.
Lemma 4.1 (Running time of INIT). The running time of procedure INIT (Algorithm 1) is O(f ·
Tmat(n, d, n)).

Proof. It is trivially from applying fast matrix multiplication f iterations.

4.2 QUERY

Next, we show the running time of QUERY.
Lemma 4.2 (Running time of QUERY). The running time of procedure QUERY (Algorithm 2) is
O(Tmat(n, n, n

a) f
na ).

Proof. Part 1. UPDATEK and UPDATEV. The amortized running time is O(Tmat(n, n, n
a) f

na ).

7
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Algorithm 6 Algorithm that re-compute evreything

1: data structure FASTBLOCKATTENTION ▷ Theorem 1.5
2: procedure RECOMPUTE(i ∈ [n]) ▷ Lemma A.1, Lemma A.2
3: /*For all members in the data structure, we omit the i subscript for simplicity*/
4: Let ∆C,1 and ∆C,2 be rectangular matrix obtained from ListC
5: Let ∆V,1 and ∆V,2 be rectangular matrix obtained from ListV
6: Let ∆D(i) denote the list of diagonal matrices obtained from ListD[i].GETA

7: C̃ ← C +∆C,1 ·∆C,2 ▷ It takes Tmat(n, n
a, d) time

8: Ṽ ← V +∆V,1 ·∆V,2 ▷ It takes Tmat(n, n
a, d) time

9: ∆D ←
∑ctK

i=1 ∆D(i) ▷ it takes n1+a time
10: D̃−1 ← D−1 +∆D ▷ It takes n time
11: B̃ ← D̃−1 · C̃ ▷ This takes nd
12: /*Refresh the memory*/
13: D ← D̃, C ← C̃, B ← B̃, V ← Ṽ
14: /*Reset the counter*/
15: ctK ← 0, ctV ← 0
16: end procedure
17: end data structure

Part 2. UPDATED. The amortized running time is O(Tmat(n, n, n
a) f

na ).

Part 3. We first stack all the vectors in ListV to ∆V,1 and ∆V,2, which takes O(1) time.

Computing (Dtmp)
−1
i (C +∆C,1∆C,2)i,j takes O(na) time.

Computing ∆V,1∆V,2 takes O(na) time as ∆V,1 and ∆V,2 are k-sparse (Assumption 1.4).

Computing (Dtmp)
−1
i Ai,∗(∆V,1∆V,2)∗,j takes O(na) time as nnz((∆V,1∆V,2)∗,j) = O(1).

Hence the amortized running time is O(Tmat(n, n, n
a) f

na )

Now, we establish the correctness of QUERY.
Lemma 4.3 (Correctness of QUERY). The procedure QUERY(x, y) (Algorithm 2) outputs

BAttn({Qi,Ki, Vi}fi=1)x,y.

Proof. Let (Dtmp)
−1 denote the diagonal matrix obtained from ListD[ctK ].GETB. Let ∆V,1 and

∆V,2 be rectangular matrix obtained from ListV .

Since we know

answer1 = (Dtmp)
−1
x (C +∆C,1∆C,2)x,y,

and

answer2 = (Dtmp)
−1
x Ax,∗(∆V,1∆V,2)∗,x.

By summing them up, we get

B̃ = answer1 + answer2

= (Dtmp)
−1
x (C +∆C,1∆C,2)x,y + (Dtmp)

−1
x Ax,∗(∆V,1∆V,2)∗,y

= (Dtmp)
−1
x (AV )x,y + (Dtmp)

−1
x Ax,∗(∆V,1∆V,2)∗,y

= (Dtmp)
−1
x (AV )x,y + (Dtmp)

−1
x (A∆V,1∆V,2)x,y

= (Dtmp)
−1
x (A(V +∆V,1∆V,2))x,y

= (Dtmp)
−1
x (AVj)x,y

= diag(exp(QiK
⊤
j )i,∗1N )−1

x (exp(QiK
⊤
j )Vj)x,y

= (diag(exp(QiK
⊤
j )i,∗1N )−1 exp(QiK

⊤
j )Vj)x,y

8
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= BAttn({Qi,Ki, Vi}fi=1)x,y,

where the first step combines two answers, the second step substitute for the two answers, the third
step follows from the definition of C and UPDATEK (Algorithm 3), the fourth and the fifth steps
follow from basic algebra, the sixth step follows from definition of ∆V,1, ∆V,2 and Fact 2.2, the
seventh step follows from UPDATED (Algorithm 4), the eighth step follows from basic algebra, and
the last step follows from Lemma 2.1 and Definition 1.2.

4.3 UPDATE K , V AND D

First, we show the running time of updating K.

Lemma 4.4 (Running time of UPDATEK, informal version of B.1). The procedure UPDATEK (Al-
gorithm 3) takes Part 1. Tmat(n, n, n

a) time in the worst case. Part 2. Tmat(n, n, n
a)/na time in

the amortized case.

Next, we give the running time of updating D.

Lemma 4.5 (Running time of UPDATED). The procedure UPDATED (Algorithm 4) takes Part 1.
Tmat(n, n, n

a) time in the worst case. Part 2. Tmat(n, n, n
a)/na time in the amortized case.

Proof. The proof trivially follows from Lemma B.1.

Finally, we analyze the running time of updating V .

Lemma 4.6 (Running time of UPDATEV). The procedure UPDATEV (Algorithm 5) takes Part 1.
Tmat(n, n, n

a) time in the worst case. Part 2. Tmat(n, n, n
a)/na time in the amortized case.

Proof. The proof trivially follows from Lemma B.1.

4.4 RECOMPUTE

We first give the running time of the recompute.

Lemma 4.7 (Running time of RECOMPUTE, Lemma 4.9 of (Brand et al., 2024)). The running time
of procedure RECOMPUTE (Algorithm 6) is Tmat(n, n

a, d).

Proof. For given i ∈ [n], the RECOMPUTE works same as RECOMPUTE in (Brand et al., 2024).
Then, according to Lemma A.1, the procedure runs in Tmat(n, n

a, d) time.

Then, we present the correctness of the recompute.

Lemma 4.8 (Correctness of RECOMPUTE, Lemma 4.8 of (Brand et al., 2024)). The procedure
RECOMPUTE (Algorithm 6) correctly re-compute D,C,B, V .

Proof. For given i ∈ [n], the RECOMPUTE works same as RECOMPUTE in (Brand et al., 2024).
Then, according to Lemma A.2, the procedure is correct.

5 CONCLUSION

In this work, we investigated the fundamental computational bottleneck of video attention and in-
troduced a dynamic algorithm for fast block attention. By leveraging temporal coherence within
videos for row-wise key updates and exploiting low-rank variations in value between consecutive
frames, our algorithm achieves O(Tmat(n, n, n

a) f
na ) running time, representing a significant reduc-

tion in computational cost compared to the original O(n2f2) approach. Our findings demonstrate
that dynamic block attention not only enhances efficiency theoretically but also paves the way for
new directions in scalable video modeling, particularly within generative settings where attention
must be updated frame by frame.
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Appendix
Roadmap. In the appendix, we first list some result from (Brand et al., 2024) in Section A. Then,
we provide some formal results of our algorithm in Section B.

A DYNAMIC ATTENTION

In this section, we present some lemmas of the dynamic algorithm in (Brand et al., 2024).

We first provide the running time of its RECOMPUTE.
Lemma A.1 (Running time of RECOMPUTE, Lemma 4.9 of (Brand et al., 2024)). The running time
of procedure RECOMPUTE (Algorithm 6) is Tmat(n, n

a, d).

Then, we provide the correctness of RECOMPUTE.
Lemma A.2 (Correctness of RECOMPUTE, Lemma 4.8 of (Brand et al., 2024)). The procedure
RECOMPUTE (Algorithm 6) correctly re-compute D,C,B, V .

B FAST BLOCK ATTENTION

In this section, we present formal version of some lemmas for our dynamic algorithms.

First we show the formal lemma of running time of UPDATEK.
Lemma B.1 (Running time of UPDATEK, formal version of 4.4). The procedure UPDATEK (Algo-
rithm 3) takes

• Tmat(n, n, n
a) time in the worst case.

• Tmat(n, n, n
a)/na time in the amortized case.

Proof. Part 1. It trivially from Lemma A.1

Part 2. If the ctK < na, we pay O(n) time. If ctK = na, we pay nω(1,1,a). So the amortized time
is

n(na − 1) + nω(1,1,a)

na
= O(nω(1,1,a)−a)

Note that, by using fast matrix multiplication and the fact that d = O(n), we have nω(1,1,a) =
Tmat(n, n

a, d). Thus we complete the proof.

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.
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