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Abstract

Backpropagation provides a generalized configu-
ration for overcoming catastrophic forgetting. Op-
timizers such as SGD and Adam are commonly
used for weight updates in continual learning and
continual pre-training. However, access to gra-
dient information is not always feasible in prac-
tice due to black-box APIs, hardware constraints,
or non-differentiable systems, a challenge we re-
fer to as the gradient bans. To bridge this gap,
we introduce ZeroF low, the first benchmark de-
signed to evaluate gradient-free optimization al-
gorithms for overcoming forgetting. ZeroFlow
examines a suite of forward pass-based methods
across various algorithms, forgetting scenarios,
and datasets. Our results show that forward passes
alone can be sufficient to mitigate forgetting. We
uncover novel optimization principles that high-
light the potential of forward pass-based methods
in mitigating forgetting, managing task conflicts,
and reducing memory demands. Additionally, we
propose new enhancements that further improve
forgetting resistance using only forward passes.
This work provides essential tools and insights to
advance the development of forward-pass-based
methods for continual learning.

1. Introduction

Catastrophic forgetting remains one of the major challenges
on the path to artificial general intelligence (AGI) (Hadsell
et al., 2020; Zhou et al., 2023b), i.e., models tend to forget
previously learned tasks when trained on new ones on time-
evolving data flow (Feng et al., 2022b). This phenomenon
is commonly seen across various tasks, including continual
learning (CL) (Wang et al., 2023), fine-tuning of foundation
models (FMs) (Sun et al., 2025; Yuan et al., 2024), and
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Figure 1: Illustrations of ZeroFlow. New tasks (or down-
stream tasks) arrive sequentially, the gradient bans block the
model from learning and memorizing using backpropaga-
tion. ZeroFlow overcome this issue via forward passes.

continual pre-training (CPT) (Shi et al., 2024; Zhu et al.,
2024b), etc. Among them, optimization algorithms play a
crucial role, e.g., SGD has become the default choice during
CL (van de Ven et al., 2022), while Adam is frequently seen
in fine-tuning FMs (Luo et al., 2023; Zhu et al., 2024a).
These optimization algorithms in tandem with various meth-
ods (ranging from regularization and rehearsal strategies to
architectural changes) rely on gradient information to avoid
forgetting (Zhou et al., 2023c; Bian et al., 2024). Nonethe-
less, in real-world scenarios, gradient information is not
always available or computable (i.e., the gradient bans), like,
Scenario i: large language models as a service (LLMaaS)
and black-box APIs. Scenario ii: hardware systems that do
not support principled backpropagation. Scenario iii: Al for
science with non-differentiable underlying systems.

In other words, Scenario i implies that pretrained models
are monetized (Miura et al., 2024) (model owners do not
publicly release their pretrained models but instead the ser-
vice), i.e., only the inputs and outputs are accessible (Gan
et al., 2023; Sun et al., 2022). Scenarios ii/iii implies that
the limitations prevent or restrict the execution of backprop-
agation (Lillicrap et al., 2020), i.e., extremely high memory
demands (Mangrulkar et al., 2022), unsupported systems
and hardware (Jabri & Flower, 1992), or non-differentiable
functions, etc (Tavanaei et al., 2019; Gu et al., 2021). The
above means that typical methods for overcoming forgetting
are not available because backpropagation is banned, as
Figure 1. This yields the primary question to be explored,
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Figure 2: ZeroFlow Evaluation Results of Catastrophic Forgetting. We visualize the evaluation results of 2 models
(EASE (Zhou et al., 2024b) and APER (Zhou et al., 2023a)) in several ZeroFlow dimensions (average accuracy over all
tasks and a forgetting metric). For comprehensive numerical results, please refer to Table 1.

(Q) Could we establish a benchmark under gradient bans for
overcoming catastrophic forgetting, and explore the overlooked

optimization principles?

To tackle (Q), a natural idea is to use the forward pass-based
method (Hinton, 2022; Baydin et al., 2022; Ren et al., 2022)
instead of backpropagation to overcome forgetting. The
zeroth-order (ZO) optimization methods (Flaxman et al.,
2004; Nesterov & Spokoiny, 2017; Malladi et al., 2023;
Ghadimi & Lan, 2013), as representative methods, are well-
suited to this issue due to their relaxed information require-
ments, as they rely only on function values rather than gra-
dients. Under gradient bans, DECL and DFCL (Yang et al.,
2024) first attempt to overcome forgetting from a stream of
APIs, but they focus on synthetic data level rather than opti-
mization. Therefore, it remains elusive whether benchmark
studies using gradient-free methods can mitigate forgetting.

In this work, we explore several Zeroth-order optimization
methods on dynamic data Flow (as shown in Figure 1),
examining their performance across various forgetting sce-
narios, model types, and evaluation metrics. Through a
detailed analysis, we reveal the overlooked potential of
forward passes and various ZO methods in overcoming
catastrophic forgetting. This benchmark study offers an
easier way to overcome forgetting and helps reveal the pros
and cons of these methods in alleviating forgetting. Ex-
tended from the gained insights, we introduce three new
enhancement variants that further improve ZO optimization
to overcome catastrophic forgetting. Simply put, we can
mitigate forgetting more effectively and efficiently using
only forward passes.

Our rationale for choosing the ZO optimization algorithms
to overcome forgetting for the following two key consid-
erations: (i) implementation cost minimization, that is, we
expect minimal modifications to existing optimizers. (ii)
theory of diversity, that is, we expect to cover diverse op-
timization methods. These considerations ensure that our
benchmark is comprehensive and simplified. And, an ap-

pealing property is that we need only forward passes to be
enough to overcome forgetting. Maybe, once is all it takes!

To sum up, our contributions are listed below,

(i) We propose the first benchmark ZeroFlow for over-
coming forgetting under gradient bans. This benchmark
includes our investigations into 7 forward pass optimization
algorithms, several forgetting scenarios and datasets with
varying complexity, and task sequences (as Figure 2).

(i1) Through this benchmark, we uncover overlooked opti-
mization principles and insights into how forward passes
can mitigate forgetting. These include the role of forward
passes in managing task conflicts and the trade-offs between
forgetting and memory efficiency. We proved that catas-
trophic forgetting can be overcome in an easier way!

(iii) Apart from a comprehensive evaluation of catastrophic
forgetting, we introduce three enhancement techniques,
which further improve the performance and efficiency of
just forward passes to overcome forgetting.

2. Literatures

Catastrophic forgetting. Catastrophic forgetting occurs
across various tasks, including CL, fine-tuning of FMs,
and CPT (Zhou et al., 2023b; Wang et al., 2023; Zhuang
et al., 2022a; Luo et al., 2023). To mitigate this issue,
various methods have been proposed (Aojun et al., 2025;
Jeeveswaran et al., 2023; Sun et al., 2023b; Li et al., 2024).
In CL, methods range from regularization and rehearsal
strategies to architectural changes (Zhuang et al., 2023; Bian
et al., 2024; Lu et al., 2024). Lately, pre-trained models
(PTM) further advanced these methods due to their strong
generalization (Yuan et al., 2022; Feng et al., 2022a), as
seen in PTM-based CL (Zhou et al., 2024a). All these meth-
ods share a common goal: achieving an optimal balance
between learning plasticity and memory stability (Wang
et al., 2023). In FMs, catastrophic forgetting often arises
from overfitting to small fine-tuning datasets during CPT or
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fine-tuning (Luo et al., 2023; Zhu et al., 2024a). Common
techniques to address this include learning rate adjustment,
parameter-efficient fine-tuning, mixed data strategies, and
instruction tuning (Luo et al., 2023; Zhang et al., 2025). Ad-
ditionally, as foundational models increasingly gain multi-
modal capabilities, the complexity of catastrophic forgetting
also intensifies (Zhao et al., 2024a; Zhu et al., 2024a).

Optimization for catastrophic forgetting. Two broad cate-
gories of optimization methods exist for overcoming forget-
ting, (i) Standard Optimization. SGD and the Adam family
are frequently employed to investigate catastrophic forget-
ting (Hadsell et al., 2020; Masana et al., 2022). For instance,
in CL, various CL methods predominantly utilize the SGD
optimizer for standard evaluations (van de Ven et al., 2022;
Sun et al., 2023a; Zhou et al., 2024c). In fine-tuning the
LLM, the Adam series is commonly used to observe forget-
ting phenomena (Luo et al., 2023; Zhu et al., 2024a). Some
works explored orthogonal spaces with these standard opti-
mizers to alleviate forgetting (Lopez-Paz & Ranzato, 2017;
Feng et al., 2022c; Saha et al., 2020), such as OGD (Fara-
jtabar et al., 2020), and GPM (Saha et al., 2020). Moreover,
other works (Farajtabar et al., 2020; Chaudhry et al., 2018;
Lopez-Paz & Ranzato, 2017) modified the gradients in the
standard optimization process to align the learning spaces
of new and old tasks, such as Uni-Grad (Li et al., 2024).
The core of these efforts (Deng et al., 2021; Shi et al., 2021)
is to find an equilibrium between learning and forgetting
in optimization. (ii) Sharpness-aware Optimization. This
series of methods (He et al., 2019; Foret et al., 2020; Zhong
et al., 2022; Zhuang et al., 2022b) has gained attention due
to the effectiveness of the flat minimum in mitigating for-
getting (Li et al., 2024; Kong et al., 2023; Cha et al., 2021;
Mehta et al., 2023). Methods such as FS-DPGM (Deng
et al., 2021), F2M (Shi et al., 2021), DFGP (Yang et al.,
2023), SAM-CL (Tung et al., 2023) overcome forgetting in
the flatness areas of different configurations. C-Flat (Bian
et al., 2024) proposed a CL-friendly general optimization
framework, that holds promise as a baseline optimizer for
overcoming forgetting.

Our work. The works mentioned above are all rooted
in a gradient feedback mechanism. Such mechanisms are
powerless against catastrophic forgetting without explicit
gradient information. Our work overcomes forgetting only
via forward pass instead of gradient feedback.

3. Exploring Zeroth-Order Optimization to
Overcome Forgetting

C.1. Zeroth-Order Optimization

Zeroth-order (ZO) optimization has been extensively studied
over the years within the realms of numerical computation
and approximation algorithms. It functions as an alterna-

Algorithm 1 Genetic formulation of ZO optimization

Require: Initialized model parameters 8y € © C R4, train-
ing dataset D = {(x;,y:)}%, € X x Y, empirical loss
function £, learning rate 7);, gradient perturbation vector
&, and descent direction computation ¢(-)

1: while 6; not converged do
2:  Sample mini-batch B from D
3 Step 1. ZO gradient estimation:
4 & = VL, B)
5.  Step 2. Descent direction computation:
6:  hy=¢({&}i1)
7. Step 3. Parameter updating:
8 Orp1 =0 —m-hy
9. t=t+1
10: end while
Ensure: Updated model 6,

tive solution for estimating descent directions in scenarios
where first-order (FO) gradients are either inaccessible or
infeasible to compute. Considering a deep learning model
parameterized with # € © C R?, and given a mini-batch 3
extracted from the training dataset D = {(x;,y;)}™ ;. Let
L(6; B) denote the empirical loss, then the genetic formula-
tion of ZO optimization follows Algorithm 1.

1) ZO gradient estimation. Randomized Gradient Estima-
tion (RGE (Nesterov & Spokoiny, 2017)) and Coordinate-
wise Gradient Estimation (CGE (Berahas et al., 2022)) per-
turb the model using &, which is generated either from a
random unknown distribution (in RGE) or by modifying in-
dividual coordinates (in CGE), and then observe the changes
in the loss function £ after each perturbation, step by step,
to provide a reliable gradient estimate. However, due to their
reliance on slow single-direction perturbation, these meth-
ods are not well-suited for deep learning tasks, as perform-
ing a full perturbation in high-dimensional parameter spaces
is time-consuming. For instance, typical vision models like
ResNet trained on ImageNet have over 25 million param-
eters. Performing per-dimension perturbations over such
a large parameter space renders ZO-based querying highly
inefficient. Standard Simultaneous Perturbation Stochastic
Approximation (SPSA(Spall, 1992)) improves efficiency
by generating pairs of symmetric vectors and perturbing in
multiple directions simultaneously, as follows,

L0+ €£;B) — L(0 — €;B)

—1
9¢ &M

VL9, B) =

Where € is a positive scaler and ¢ is recommended to follow
a symmetric distribution with finite inverse moments (e.g.,
the Rademacher distribution). The symmetric distribution
ensures unbiased exploration of perturbations in both posi-
tive and negative directions of parameters at each step. And
the finite inverse moments property guarantees that the steps
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are well-controlled, avoiding excessively large steps due to
¢~! drawn from the distribution (e.g., E[1/|¢|P] for some
large p), which would otherwise lead to an unstable opti-
mization process. In practical implementations for models
with a large number of parameters (e.g., MeZO (Malladi
et al., 2023) in LLMs (Zhao et al., 2024b)), Gaussian noise
with zero mean induces substantial perturbations, thereby
enhancing exploration across the parameter space and fa-
cilitating the escape from local minima. This methodology
achieves gradient estimation with only two objective func-
tion evaluations, rendering its computational cost indepen-
dent of input dimensionality. Such computational efficiency
has established SPSA as a preferred method for addressing
the complexities of high-dimensional deep learning tasks.
While increasing g in ¢-SPSA can improve stability in the
update direction, setting ¢ = 1 is sufficient for pretrained
LLMs (Malladi et al., 2023).

2) Descent direction computation. In unconstrained op-
timization for deep learning, the last gradients h; gener-
ally coincide with the estimated ZO gradients g; (e.g., ZO-
SGD (Ghadimi & Lan, 2013), ZO-SCD (Lian et al., 2016)).
To reduce approximation errors, ZO-SGD-Sign (Liu et al.,
2019) applies an element-wise sign(-) operation. Addi-
tionally, ZO-SVRG (Liu et al., 2018), inspired by variance
reduction methods in first-order optimization, adjusts the
update step by using estimated gradients from previous train-
ing examples. CARS (Kim et al., 2021) adaptively selects
the smallest function value in each iteration, which helps
maintain monotonicity during optimization.

3) Parameter updating. Normally, for most ZO methods,
parameters are updated in a similar way with FO optimizers,
and the learning rate 7, is set to constant. Except for the
special design for achieving some constraint prerequisites,
several methods make an effort to strike a balance between
converge speed and accuracy. ZO-AdaMM (Chen et al.,
2019) uses an adaptive learning rate and refines gradient es-
timation by incorporating momentum from past information.
This approach is particularly effective in handling complex
and evolving optimization landscapes, where the function’s
behavior may vary over time or be hard to capture with
straightforward gradient approximations.

C.2. Zeroth-Order Optimization for Catastrophic
Forgetting

Rationality. ZO optimization leverages the function values
of the forward passes to approximate FO gradients, making
it feasible to avoid gradient bans. This feature enables
seamless integration into common forgetting scenarios, such
as CL. We explore it in the following three categories.

1) Memory-based methods maintain a repository of exem-
plars from previous tasks and dynamically adjust the overall
loss function by combining these stored samples with new
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Figure 3: Trajectory of FO and ZO Optimization during
Overcoming Forgetting. The trajectory is taken when
using the total loss from both tasks (cyan) and the gradients
from each individual task at fixed points during optimization
(red and ). The trends of ZO optimization hold the
potential to manage forgetting and learning.

data based on learning progress.

1

Ncontext

1
‘Ctotal = Ni‘ccuT + (1 - )£7'eplaya (2)

context
where Niontert TEpresents the number of contexts encoun-
tered so far. In Experience Replay (Rolnick et al., 2019),
both components use classification loss based on their re-
spective data distributions, so ZO gradients can be expressed
as VL, and @ﬁreplay respectively. However, in the
emerging generative replay workflows (Shin et al., 2017),
Equation (2) may introduce additional loss for the training
of generators. In this case, the generator can be trained
using standard backpropagation or in conjunction with ZO
training without FO gradients.

ii) Extension-based methods can be divided into fixed and
dynamic architectures. Fixed architectures separate model
parameters for specialized context learning, while dynamic
architectures expand the model size during adaptation. Both
approaches mitigate forgetting from the model’s perspective
and enable model-agnostic ZO solutions.

iii) Regularization-based methods penalize significant
changes to parameters important for old tasks or maintain
the output distribution with respect to previous inputs. The
template loss function is given by

£total = Ecur + aﬁregp (3)

where « is a coefficient hyperparameter. The FO gradients
from dual objectives (Lcur for adaptation and Lreg for
preservation) drive optimization toward their respective op-
tima, achieving inter-task equilibrium. Notably, ZO gradient
estimates, though obtained in a noisy environment, exhibit
comparable optimization behavior.

As shown in Figure 3, we visualize and compare the op-
timization trajectories of ZO and FO methods under the
learning—memory trade-off dynamics in continual learning.
The objective is defined over two-dimensional parameters,
with axes specified in Appendix A.2. The striking similarity
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Table 1: zeroFlow Evaluation on CIFAR-100, ImageNet-A, CUB and OmniBenchmark. This table compares average
accuracy, final accuracy, and forgetting measures of 2 models, and 4 forgetting scenarios. More intuitive trend please see
Figure 2. All ZO optimizations use a query budget of ¢ = 1. Bold indicates the best accuracy achieved among ZeroF low.

Method | Optimizer | Strate CIFAR-100 CUB ImageNet-A OmniBenchmark
P 24 Avg  Last Fgt Avg  Last Fgt Avg  Last Fgt Avg  Last Fgt
FO 9123 8596 7.32 | 89.31 8376 9.61 | 6124 51.02 10.84 | 7473 67.40 15.11
SGD Z0 78.62 6840 15.64 | 88.94 8291 8.08 | 57.87 4832 11.08 | 73.50 66.60 17.78
Sign | 83.21 7588 10.58 | 89.81 84.61 8.10 | 59.15 4931 11.77 | 73.81 6675 17.21
Conserve | 8222 75.88 893 | 89.21 8342 1031 | 58.61 4858 1241 | 77.07 70.73 14.87
EASE FO 90.56 84.82 7.69 | 8444 77.10 10.51 | 59.60 47.20 19.08 | 7427 6628 15.63
Adam Z0 8336 76.09 10.16 | 89.49 84.14 8.67 | 5890 4872 1235 | 76.15 69.69 15.87
a Sign | 83.14 7601 10.44 | 89.82 84.65 821 | 5897 48.85 1220 | 77.12 71.08 14.68
Conserve | 82.15 75.65 924 | 89.82 84.61 840 | 59.23 48.85 12.81 | 77.19 70.99 14.68
- Forward | 8226 76.05 874 | 89.26 83.67 9.35 |57.76 4819 11.03 | 77.00 70.74 14.99
FO 8231 7621 733 | 90.56 85.16 5.19 | 59.50 49.37 991 | 7861 7221 7.87
SGD Z0 8233 7621 736 | 90.53 8520 5.12 | 59.58 4951 10.02 | 78.60 7221 7.85
Sign | 82.32 7623 7.32 | 9042 8528 496 | 59.65 49.77 9.89 | 78.60 7226 .78
Conserve | 8231 7621 7.33 | 90.62 8528 505 | 59.68 49.70 10.18 | 78.61 7221 7.87
APER FO | 8231 7621 733 | 90.56 85.16 5.19 | 59.60 49.77 10.06 | 76.60 7221 7.85
Adam Z0 82.12 7545 747 | 9033 8431 601 | 58.89 4924 932 | 7844 7210 7.87
Sign | 82.01 75.60 7.38 | 89.86 84.18 599 |57.82 4812 972 | 7826 72.05 7.5
Conserve | 8221 7598 7.34 | 89.96 8448 590 | 57.86 47.53 10.00 | 78.61 7221 7.87
\ - | Forward | 82.32 7622 732 | 8947 8338 624 | 5825 4799 9.62 | 77.61 7145 787

between the two trajectories highlights the potential of ZO
optimization in effectively balancing learning and forgetting,
thereby motivating our further investigation.

Potential. The intrinsic optimization mechanism of ZO
exhibits particular promise in continual learning scenar-
i0s. Intuitively, ZO perturbs parameters using random or
coordinate-wise directional vectors and observes changes
in the evaluation function, effectively optimizing within a
noisy environment. This approach enables small parameter
modifications to yield significant impacts on target objec-
tives, resulting in distinctive gradient estimations compared
to FO optimization. Notably, while ZO methods do not
explicitly incorporate sharpness regularization terms, they
naturally facilitate the exploration of flat regions in parame-
ter space. The influence of optimizing flat regions with ZO
approaches in continual learning can be summarized in two
main manifolds: (i) For previous tasks, the noise-induced
parameter robustness enhances resilience against perturba-
tions from new task adaptation; (ii) For new tasks, empirical
evidence suggests that convergence to flat minima generally
leads to lower generalization error.

Risk. Although ZO demonstrates superior generalization
abilities, its practical performance is limited by optimiza-
tion strategies and the complexity of the optimization setting.
Despite significant efforts to reduce convergence error, op-
timizing models from scratch in high-dimensional space
remains challenging due to slow convergence speed (propor-
tional to the parameter dimension d). For instance, origin
CGE-based ZO training for a model with 12k parameters

takes 70.32 hours in DeepZero (Chen et al., 2023). Such
computational demands render from scratch training imprac-
tical for high-dimensional CL models, particularly those
employing expansion-based architectures. Consequently,
we focus our discussion on leveraging ZO optimization to
overcome forgetting within a pre-training context.

4. ZeroFlow Benchmark

This section delves into the empirical performance of
ZO optimization in overcoming catastrophic forgetting.
Our ZeroF low benchmark evaluates average performance
across incremental stages, final-stage accuracy, forgetting,
and efficiency, while accounting for dataset complexity and
model diversity.

D.1. Benchmark Setups

Forgetting scenarios, schemes, and models. We conduct
evaluations under a standard catastrophic forgetting setting,
namely class incremental learning. For this purpose, we
investigate two state-of-the-art schemes: EASE and APER.
Both models are initialized with ViT-B/16 pretrained on
ImageNet-1K (IN1K), and are subsequently fine-tuned on
four downstream tasks of varying complexity—ranging
from standard benchmarks such as CIFAR-100 and CUB,
to more challenging datasets like ImageNet-A and Om-
niBenchmark, which exhibit a large domain gap from the
pretraining distribution (Zhou et al., 2024a;c). Follow-
ing (Zhou et al., 2023a), each dataset is evenly split into 10
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, and % denote the minima for

the new, old, and both tasks, respectively. The trajectory is taken when using the total loss from both tasks (cyan).

incremental tasks by class. For instance, OmniBenchmark
contains 300 classes, with 30 classes introduced at each
stage. No memory is permitted for storing past examples.

Benchmark setup and details. To evaluate the applica-
tion of ZeroF low in forgetting scenarios, we include the
methods described in Section C.1, specifically ZO (Ghadimi
& Lan, 2013), Sign (Liu et al., 2019), and Conserve (Kim
et al., 2021; Zhang et al., 2024), in comparison with their
FO counterparts using SGD and Adam optimizers (Chen
et al., 2019). Additionally, as highlighted in (Zhang et al.,
2024), Forward-Grad (Baydin et al., 2022) which relies
on forward mode automatic differentiation, potentially be-
comes a missing but competitive forward pass baseline. In a
nutshell, ZeroFlow covers 7 forward pass-based methods:
Z0-SGD, ZO-SGD-Sign, ZO-SGD-Conserve, ZO-Adam,
Z0-Adam-Sign, ZO-Adam-Conserve, Forward-Grad. Un-
less otherwise specified, the query budget is fixed to 1 for
efficiency. Notably, here we consider generating one set of
perturbation vectors for the entire model as one query. In
other words, we usually require 2 forward propagations for
two-point finite difference gradient estimations.

Evaluation metrics. Overall, we adopt two categories of
evaluation metrics in ZeroFlow: accuracy and efficiency.
The accuracy metrics include average accuracy across all
tasks, final-task accuracy, and a forgetting score (BWT in
Appendix B.5). The efficiency metrics encompass memory
usage (GPU), query budget, and runtime. Together, these
metrics provide insights into the resource demands of ZO
optimization for mitigating forgetting.

D.2. Evaluation Results of ZeroFlow

ZeroF low evaluation on continual learning. In Table 1,
we evaluate the performance of different BP-free and BP-

based (FO-SGD and FO-Adam) methods in a typical forget-
ting scenario (continual learning). We use two SOTA models
as examples (EASE (Zhou et al., 2024b) and APER (Zhou
et al., 2023a)) and investigate SGD and Adam optimizers,
7 forward pass-based methods, and four commonly used
datasets. Several observations are listed below,

First, the performance of ZO method is comparable to or
even surpasses that of the FO method across almost all for-
getting metrics and datasets. However, as will be shown
later, the FO method requires significantly more memory
overhead. This suggests that forward passes alone can ef-
fectively mitigate forgetting, and the ZO method offers a
simpler, more efficient alternative. In some cases, such
as with ZO-Adam and ZO-SGD on OmniBenchmark, ZO
methods even outperform FO methods.

Second, Forward Grad demonstrates competitive perfor-
mance when compared to other ZO and FO methods. Un-
like typical ZO methods, Forward Grad utilizes a unique
forward pass mechanism, making it a promising baseline
for future studies. A more intuitive trend in overcoming
forgetting refer to Figure 6. These observations motivate
further exploration into the effectiveness of ZO method.

ZeroF low helps manage memory and runtime. In Ta-
ble 2, we compare the efficiency of various ZO and FO
optimizers in mitigating catastrophic forgetting, focusing
on two key aspects: memory cost (in GB) and runtime
cost (in seconds). First, naive ZO optimization reduces
memory usage by approximately fivefold compared to FO
optimization. Moreover, ZO methods reduce runtime per
iteration by around 50% relative to FO, significantly improv-
ing their practicality for overcoming forgetting. Notably,
we regenerate the perturbation vectors for model parameters
iteratively by storing random seeds. This degrades the vec-
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Table 2: Memory Cost (GB) and Runtime Cost (s) of
Each Optimizer on 3 Forgetting Scenarios. The per-epoch
runtime in seconds (s). ZO-SGD w/ query budgetg = 1,4
and all other optimizers w/ query budget ¢ = 1.

Optimizer |Memory | CIFAR-100 CUB ImageNet-A
FO-SGD 12.08 GB 59.3s 16.1s 12.2s
Z0O-SGD (g = 1) 2.41 GB 32.4s 8.3s 6.8s
Z0-SGD (g = 4) 2.41 GB 111.7s  28.7s 18.0s
Z0-SGD-Sign 2.41 GB 32.4s 8.3s 6.8s
Z0O-SGD-Conserve| 2.41 GB 70.1s 15.7s 12.4s
Forward-Grad 3.94 GB 45.9s 11.1s 9.0s
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Figure 5: Performance Comparison under Different
Query Mumbers. Both optimizers show improved per-
formance as query numbers increase.

tor granularity from full-model to per-layer level, thereby
further reducing the memory required for forward evalua-
tions in ZeroFlow, at the cost of additional runtime for
regenerating the vectors. Second, the ZO and Sign variants
demonstrate comparable efficiency in both memory and run-
time. Although increasing the number of queries can impact
runtime efficiency, it does not compromise memory advan-
tages. Third, Conserve also demonstrates efficient memory
management, although its runtime is approximately twice as
long as that of naive ZO. This may partly explain its stronger
performance in some scenarios, as shown in Table 1. Fi-
nally, the Forward Gradient method requires more memory
than other ZO-based approaches because it involves comput-
ing gradients via the Jacobian-vector product (JVP), which
necessitates storing all intermediate activations during the
forward pass. For models like ViT, this includes large at-
tention maps and other intermediate representations. In
contrast, naive ZO methods only require two forward passes
on perturbed inputs and avoid storing these intermediate
values, resulting in much lower memory usage.

Trade-off between performance and query number. As
shown in Figure 5, we investigate the impact of query num-
bers on optimization performance, comparing SGD and
Adam optimizers in the zeroth-order setting. Both optimiz-
ers demonstrate improved performance as query numbers

Forward

CIFAR-100 ==== CUB

ImageNet-A == - OmniBenchmark

(a) EASE on last accuracy (b) APER on last accuracy

Figure 6: ZeroFlow Evaluation Results for Forgetting.
We visualize the evaluation of 2 models in last-task accuracy.

increase across {1,2,4,8,16,32}, suggesting that additional
function evaluations enable more accurate gradient estima-
tion. The results suggest that in scenarios where function
evaluation costs are manageable, higher query numbers can
yield substantially better performance, with Adam being
particularly effective at leveraging the additional gradient
information for enhanced optimization outcomes.

5. Insights and Discussions

As shown in Figure 4, we visualized the optimization trajec-
tories of both forward passes and backpropagation methods.
Our analysis reveals several key insights:

Convergence behavior across optimizer families. In Fig-
ure 4, both FO and ZO methods demonstrate successful con-
vergence to the minima of new and old knowledge spaces,
regardless of whether they use Adam or SGD as their base
optimizer. This convergence consistency validates our theo-
retical foundation.

Distinct trajectory characteristics of FO and ZO. FO ap-
proaches (Figure 4a, 4f) show smoother optimization paths
due to their access to exact gradient information. In contrast,
Z0O methods demonstrate varying degrees of exploration
behavior through trajectory jitter. This exploration pattern is
particularly pronounced in ZO-Adam variants compared to
Z0O-SGD variants, indicating that the base optimizer choice
significantly influences the exploration-exploitation trade-
off during optimization.

Path characteristics in ZO optimization. Comparing base
Z0 methods with their ¢ = 4 counterparts (Figure 4b vs
4c, Figure 4g vs 4h), we observe that increasing query num-
bers leads to smoother trajectories, suggesting that more
queries help provide more stable gradient estimates. The
Sign variants (Figure 4d, 41) demonstrate more pronounced
oscillations in their trajectories, particularly visible in the
Z0-Adam-Sign case. In contrast, the conservative variants
(Figure 4e, 4j) maintain relatively stable paths that better
balance between the old and new task minima.

Distinct characteristics between optimizer families.
Adam-based approaches (Figure 4a—4e) demonstrate more
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Figure 7: Effectiveness of Hybrid ZO in Overcoming Forgetting. In Hybrid ZO, backward benefits from forward passes.

Table 3: Effectiveness of Historical Estimation in Miti-
gating Forgetting. Proportion of 0% denotes that the plain
optimizer ZO-SGD. Bold indicates the best performance.

Metrics | Proportion

| 0% | 20% | 40% | 60% | 80%
Avg 57.87 58.90 58.76 58.34 57.83
Last 48.32 49.04 48.84 48.42 48.10
Fgt 11.08 11.79 11.78 11.60 11.57

oscillatory trajectories with frequent direction adjustments,
indicating a more dynamic exploration of the loss land-
scape. In contrast, SGD-based methods (Figure 4f—4j) ex-
hibit smoother and more stable trajectories, suggesting a
more gradual progression toward the optimization objective.
These distinct optimization patterns could influence how
each method balances between preserving old task knowl-
edge and adapting to new tasks.

6. New Enhancement to Mitigate Forgetting

In ZO optimization, the estimation of the gradients relies on
a finite difference of the objective function. We set query
budget ¢ = 1 in the benchmark for efficiency. However,
limited queries cannot capture the accurate ZO directions.
When the model learns tasks sequentially, the high variance
inherent in ZO gradient estimation poses a critical chal-
lenge. Though increasing query numbers can stabilize the
gradient estimates, it leads to prohibitive overhead Thus, ex-
ploring variance-reduced optimization algorithms is crucial
for ZO-based CL. Specifically, we propose 3 enhancements
to stabilize the ZO optimization process:

Enhancement 1: Hybrid ZO to overcome forgetting.
While ZO methods does not explicitly minimize sharpness,
it stabilizes optimization by approximating gradients and
assessing the rate of change in loss function through pertur-
bations. This indirect approach helps reduce the curvature
of the loss landscape, steering the optimization away from
sharp and unstable regions. This insight motivates us to
investigate Hybrid ZO method. Figure 7 illustrates results

0.0 20
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Figure 8: Variation in Function Values of Forward Passes.
Function values for new tasks is highlighted in red, old tasks
is highlighted in green.

hybrid ZO. We first use FO to coarsely optimize to a local
minimum (first 140 or 160 epochs) and then refine the solu-
tion by searching for flatter regions around it using ZO (last
30 or 60 epochs). As the first two subfigures in Figure 7, ZO
provides only limited gains to FO. This is because FO inher-
its strong generalization from the pretrained backbone but
loses its generalization ability quickly after two incremental
stages. In later stages, ZO helps to remedy the vulnera-
bilities of backbone trained by FO, leading to significant
enhancements compared to the FO baseline.

Enhancement 2: Leverage historical information to over-
come forgetting. When learning new tasks, models lever-
age previously learned parameters while prioritizing the
preservation of crucial parameters for old tasks. To mitigate
interference from new tasks, we propose reweighting old
task gradients with historical gradients, which can stabilize
perturbations caused by low query loops in ZO optimiza-
tion. Figure 8 illustrates the function value trajectories for
both old and new tasks. While FO optimization shows
smooth convergence toward the global optimum, ZO opti-
mization exhibits a more volatile path. Notably, objectives
related to old tasks demonstrate smaller changes in both
magnitude and variance. This observation motivates us to
stabilize the optimization by reducing changes to old gradi-
ents through a linear combination with historical gradients:
Jotd = (1 — &) gord + QGnistorical, Where larger « indicates
greater reliance on historical information for stability, at the
cost of reduced contrast with new task gradients.
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Table 4: Effectiveness of Sparsity-induced Estimation in Overcoming Forgetting. Proportion of 0% denotes the plain

Z0O-SGD. Bold indicates the best performance.

Ratio ‘ 0% 10% 20% 30% 40% 50% 60% 70% 80%  90%
Avg | 57.87 59.17 59.46 59.29 5939 5945 59.26 5939 59.38 59.47
Last | 48.32 48.58 49.05 48.72 4891 4924 49.11 49.05 49.11 49.24
Fgt 11.08 12.65 12.17 1276 12,53 1237 1236 12.54 1246 12.33

Table 5: Ablation Studies on the Effectiveness of Combining Enhancements.

Optimizer | Hybrid Historical ~ Sparsity | Avg Last
FO-SGD | - - - | 6124 51.02
- - - 57.87 48.32

v 61.40(+3.53)  51.34(+3.02)

70-SGD v 58.90(+1.03) 49.04(+0.72)

v 59.47(+1.60) 49.24(+0.92)

v v v 62.07(+4.20)  51.94(+3.62)

In Table 3, we validate the effectiveness of historical esti-
mation in mitigating catastrophic forgetting. Modest pro-
portions of historical information (e.g., 20%, 40%, 60%))
outperform ZO-SGD (0%), effectively controlling perturba-
tions while maintaining a low query budget (¢ = 1).

Enhancement 3: Sparsity-induced estimation helps to
overcome forgetting. In ZO optimization, the gradients
for new tasks are often highly uncertain due to the approx-
imation nature of the gradient estimation. To reduce this
variance, we implement random sparsification by creating
a seed-based mask and setting gradients outside the mask
to zero. By reducing the number of non-zero gradient com-
ponents, we aim to stabilize the optimization process and
mitigate the noise in gradient updates.

In Table 4, we report the performance of sparsity-induced
Z0 in overcoming forgetting. The sparsity level is varied in
this experiments, ranging from 10% to 90%. We observe
that the sparse technique improves the average and last ac-
curacy across all scales, which implies that forgetting is
effectively controlled. The reduction in volatility can be
attributed to the sparse strategy yielding smoother gradient
estimates compared to plain ZO-SGD, effectively bounding
variance to a low level and thus mitigating forgetting. More-
over, the robust performance across different sparsity ratios
provides strong evidence for the efficacy of variance control
in addressing forgetting.

Complementary Enhancements: The results in Table 5
demonstrate that the proposed enhancements are not mutu-
ally exclusive and can be effectively integrated. Specifically,
FO training can substantially benefit from subsequent fine-
tuning with hybrid ZO optimization, as illustrated in Fig-
ure 7. Notably, the inherent instability of ZO with large step

fluctuations can sometimes facilitate escaping local minima
and encourage broader exploration, which in turn benefits
FO convergence. Furthermore, incorporating historical gra-
dients and sparsity perturbations contributes to mitigating
forgetting and stabilizing the optimization process.

7. Conclusion

This paper introduces ZeroF low, a benchmark study that
probes a series of forward pass-based methods for overcom-
ing catastrophic forgetting. This work resorts to an easier
way (no need for backpropagation and activation storage) to
overcome forgetting. Concretely, our benchmarks include
various forward pass-based methods, forgetting scenarios,
and evaluation metrics. We also reveal the overlooked opti-
mization principles for overcoming forgetting via forward
passes. Based on these insights, we propose two easier and
better enhancement to overcome forgetting and extend the
application of related methods easily.
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Supplementary Material

A. Experimental Details

In this section, we provide an overview of zeroth-order optimization algorithms and the function settings used for the
trajectory analysis.

A.1. Concise Overview of Zeroth-Order Estimation

Zeroth-order optimization aims to minimize/maximize an objective function f : R™ — R without derivative information.
The core problem is formulated as mingegn L(6), where 6 denotes the optimization variable. To enable gradient-based
updates, Simultaneous Perturbation Stochastic Approximation (SPSA(Spall, 1992)) is a commonly used technique to
approximate gradients by perturbing the input variables. Specifically, the gradient @L(Q) at point 6 is estimated as:
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where € ~ A/(0, I) is a random perturbation vector, and € > 0 is a small perturbation step size (typically adjusted during
optimization).

Z.0-SGD(Ghadimi & Lan, 2013): Using the gradient estimator @L(H, &; B), zeroth-order algorithms, such as ZO-SGD,
follow the iterative update rule: A
Orp1 = 0p — 1 - VL(etvgt;B)v ©)

where 7 is the learning rate at step £. ZO-SGD bypasses explicit gradient computation through local function evaluations,
making it suitable for high-dimensional, non-convex optimization problems.

Z0-SGD-Sign(Liu et al., 2019): A variant of ZO-SGD, known as ZO-SGD-Sign, improves upon the original approach by
approximating the gradient direction using the sign of the gradient estimate. The update rule becomes:

Orr1 = 0, — e - sign(VL(0;,&; B)), (6)
where sign(-) denotes the element-wise sign function. This approach often leads to faster convergence in some problems
where the magnitude of the gradient is not as important as its direction.

Z.0-SGD-Conserve(Bergou et al., 2020): ZO-SGD-Conserve is another variant that conservatively selects the update
direction by locally comparing three candidate points, rather than directly committing to a single gradient step. The update
rule for this method is:
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This method mitigates overly aggressive updates by evaluating possible directions and choosing the one that locally
minimizes the objective function.

Z70-Adam(Zhang et al., 2024): ZO-AdaMM (Chen et al., 2019) is the first attempt to apply the Adam family (specifically
AMSGrad(Reddi et al., 2019)) to zeroth-order (ZO) optimization algorithms, providing convergence guarantees for both
convex and nonconvex settings. The update rule is given by:
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In our implementation, we simply replace SGD with Adam for convenience, referring to this variant as ZO-Adam. Neverthe-
less, we also provide a reference implementation of the original oracle ZO-AdaMM algorithm.

Forward Gradient Descent (FGD)(Baydin et al., 2022): FGD replaces backpropagation with forward-mode automatic
differentiation to estimate gradient directions using Jacobian-vector products (JVPs). Instead of computing full gradients via
reverse-mode automatic differentiation (AD), FGD samples probe vectors to construct unbiased estimators of the gradient
direction. A typical FGD update step is:

df (9)
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where v; is a random probe vector (e.g., Rademacher or Gaussian), and JVPy, (v;) represents the forward-mode gradient
approximation in direction v;. FGD enables training when reverse-mode AD is impractical or unavailable, and offers
flexibility for hardware or software systems that only support forward execution. We denote Forward as FGD throughout
this paper.

A.2. Function Settings

Following the setup in CAGrad (Liu et al., 2021), we visualize the optimization behavior of first-order (FO) and zeroth-order
(ZO) methods in mitigating forgetting. Specifically, we consider a two-dimensional parameter space 6 = (01, 0) € R2,
with the following task-specific loss functions: L1(0) = ¢1(0) f1(0) + c2(0)g1(0) for the old task ( ), and Ly (6) =
c1(0) f2(0) + c2(0)g2(0) for the new task (red). The parameter point is initialized at [-8.5, —5] to be closer to old tasks,
facilitating better adaptation to them. The contour plot in Figure 3 illustrates the overall objective function defined as
L(6) = L1(0) + Lo(0), where the x- and y-axes correspond to 61 and 6, respectively.

f1(0) = log (max (|0.5(—6; — 7) — tanh(—65)], 5 x 107°)) +6,

f2(6) = log (max (|0.5(—6; + 3) — tanh(—6> +2)|, 5 x 107%)) +6,
(0472 +0.1(6 - 8)>
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¢1(0) = max (tanh(0.5 - 63), 0), ¢2(f) = max (tanh(—0.5-65), 0).

B. Additional Results

B.1. Comprehensive Analysis of Memory Usage on ZeroFlow

120 mmm Batchsize—64 B9 FO-SGD In this subsection, we provide a detailed comparison of
Batch size = 128 B2 ZO-SGD g memory usage during incremental learning to demon-
2 100 = E:tﬁ: :Z:?g " 24 GB/Beundary 7 strate the storage efficiency of ZeroFlow (ZO-SGD)
<) £ compared to its counterpart, FO-SGD. Figure 9 illustrates
% 80 the peak memory usage of MEMO when trained on the
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o ViT-B/16-IN1K model, which is subsequently fine-tuned
‘é 40 8 with batch sizes ranging from 64 to 512. The experimental
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20 8 First, doubling the training batch size significantly in-
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Task more GPU resources. For instance, completing the entire

incremental training process on FO requires 1, 2, 3, and

Figure 9: Comparison of Memory Usage between FO-SGD 6 GPUs, respectively, for batch sizes of 64, 128, 256, and

and ZO-SGD with Different Batch Sizes. A denotes the 512, with each GPU equipping with 24GB of memory. In

increase in memory usage of the final task compared to the  contrast, ZO-SGD training consistently requires only one
initial one. GPU resource.
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Second, as training progresses, the memory demands for larger batch sizes increase rapidly. For FO, the memory consumption
for 512 batches at stage 5 grows by 30.08 GB compared to the initial stage. In contrast, ZO-SGD shows a modest increase
of only 3.92 GB, maintaining a low growth rate. As training advances, the memory efficiency of ZO-SGD becomes more
pronounced, especially for model-expansion based CL models.

B.2. More Observations on Optimization Trajectories during Overcoming Forgetting
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Figure 10: The Trajectory of Different Optimization during Overcoming Forgetting. The first and last two rows are
trained for 100k steps with learning rates of 0.001 and 0.01, respectively. Red denotes the minimum of new task, orange
denotes the minimum of old task. The cyan trajectory taken when using the total loss from both tasks.

In this subsection, we present a different scenario where the model is initialized at a local minimum 61, 6, = {—4.0,5.0},
surrounded by intricate valleys, but training with different learning rate as shown in Figure 10. For a learning rate of
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0.001, the first-row subfigures demonstrate that Adam using both FO and ZeroF low stagnate in the valley. Even with bias
correction, the Adam optimizer still fails to escape the local region without sufficient momentum. However, ZO-Adam-Sign
seems to successfully optimize towards the region around the global minimum. Unlike ZO-Adam, ZO-Adam-Sign applies
the gradient using a sign function, which outputs either +1 or -1 depending on the gradient direction. This discrete update
method, which lacks continuous gradient information, causes ZO-Adam-Sign to take larger, step-like jumps. Particularly
in the early stages, where gradient information is sparse or noisy, this leads to more fluctuations and introduces greater
randomness in the optimization process, helping it to cross over the valleys. The second-row subfigures use SGD as the base
optimizer. We observe that, except for ZO-SGD-Sign, both ZeroFlow and FO-SGD converge effectively. This can be
attributed to SGD’s simple update rule based on function values. Notably, FO-SGD escapes the valley by leaping to a higher
and flatter region, while ZeroFlow demonstrates the ability to traverse beneath valleys. With a higher learning rate of
0.01, FO-Adam, ZO-Adam with four queries, and ZO-Adam-Sign escape the local region more easily. However, ZO-Adam
still stagnates along the valley, demonstrating the stabilizing effect of multiple query loops. Similarly, ZO-Adam-Conserve
suffers from the risk of an overly conservative strategy. ZO-SGD also fails to converge to the optimum due to gradient
explosion caused by the large learning rate. In contrast, ZeroFlow shows minimal degradation despite its inherent
randomness.

As a result, the behavior of ZeroFlow—sometimes escaping the valley but failing to converge to the optimum, and
sometimes getting trapped with low query counts but not with higher ones—highlights the trade-off between randomness
and stability during updates. With larger search loops, lower learning rates, and more stable update steps, the model becomes
increasingly prone to getting stuck in local minima, especially in continual learning scenarios where balancing old and new
tasks introduces additional complexity.

B.3. Extra Evaluation on Memory Replay Methods

We further evaluate the performance of ZeroFlow when applied to a representative replay-based method (MEMO (Zhou
et al., 2023c), replay buffer = 2000), to demonstrate its broader applicability. As shown below, ZeroFlow consistently
remains stable in mitigating forgetting. Notably, although the average accuracies exhibit slight gaps compared to FO
methods, the accuracies at the final stage progressively approach or even surpass those of the FO baselines on the CIFAR-100
dataset.

Table 6: Accuracy Results on MEMO.

CIFAR-100 ImageNet-A
Avg Last Avg Last

FO 87.43 79.66 | 53.15 38.97
70 85.92 79.00 | 46.87 25.81

Method | Optimizer | Strategy

SGD Sign | 8572 79.10 | 5331 38.18
Conserve | 85.86 79.20 | 47.20 28.51
MEMO FO | 8645 76.17 | 54.06 4154
7O | 8586 78.59 | 5270 39.01
Adam

Sign 86.16 76.38 | 53.10 39.82
Conserve | 85.89 77.71 | 53.20 39.57

- Forward | 84.63 76.32 ‘ 53.59 40.64

B.4. Memory and Time Efficiency on Larger Transformers

To assess the scalability of ZeroFlow, we evaluated its efficiency on two larger vision transformers, ViT-L/16 and ViT-H/14.
As shown below, ZeroFlow consistently offers substantial memory savings across all model sizes. Notably, even when
using ZO-SGD-Sign, the runtime remains faster than that of standard FO optimization.

B.5. Longer Task Sequence

To further assess robustness, we evaluate performance on an extended task sequence consisting of 20 tasks. As shown below,
ZeroF low continue to deliver comparable performance. Additionally, following (Wang et al., 2024), we additionally
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Table 7: Evaluation on lager transformers.

Optimizer ViT-B/16 . ViT-L/16 . ViT-H/14 .
Memory|, Runtime| | Memory{, Runtime{ | Memoryl, Runtimel}

FO-SGD 12.08GB 59.3s 33.27GB 65.0s 78.09GB 190.1s
Z0-SGD (g=1) 2.41GB 32.4s 3.77GB 47.0s 6.45GB 118.7s
Z0-SGD (q=4) 2.41GB 111.7s 3.77GB 178.3s 6.45GB 442.6s
Z0-SGD-Sign 2.41GB 32.4s 3.77GB 48.7s 6.45GB 119.3s
Z0-SGD-Conserve | 2.41GB 70.1s 3.77GB 108.9s 6.45GB 222.3s
Forward 3.94GB 45.9s 5.82GB 142.0s 9.85GB 372.5s

Table 8: Additional Experimental Results of EASE on 20 Sequential Tasks.

Method | Optimizer | Strategy | Avg  Last ‘FWT BWT

FO 87.32 80.20 | -6.89  -6.79
70 82.65 7598 | -8.33 -7.71

SGD Sign | 8347 7613 | 801 -7.22
Conserve | 82.20 7594 | -8.64 -7.93
EASE FO | 8667 78.19 | 717 -6.80
7O | 8407 7689 | -7.92 -7.19
Adam

Sign 84.16 7690 | -7.95 -7.20
Conserve | 83.82 76.76 | -8.04 -7.07

- Forward ‘82.84 76.32 | -8.25 -10.84

adopt the FWT and BWT metrics to assess the overall performance of ZeroFlow. FWT (Forward Transfer) quantifies the
average influence of prior knowledge on the learning of new tasks, while BWT (Backward Transfer) measures the average
influence of learning new tasks on the performance of previously learned K — 1 tasks.

K —1
1 _ 1
FWT = - ;(aj,j —;), BWT = ;(am —aj ) (10)

Here, a; ; denotes the accuracy on task j after training on the k-th dataset, and a; represents the accuracy of a random
initialized model trained only on dataset ID;.
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