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ABSTRACT

We investigate the mechanisms underlying a range of list-processing tasks in LLMs,
and we find that they have learned to encode a compact, causal representation of a
general filtering operation that mirrors the generic “filter” function of functional
programming. Using causal mediation analysis on a diverse set of list-processing
tasks, we find that a small number of attention heads, which we dub filter heads,
encode a compact representation of the filtering predicate in their query states at
certain tokens. We demonstrate that this predicate representation is general and
portable: it can be extracted and reapplied to execute the same filtering operation
on different collections, presented in different formats, languages, or even in tasks.
However, we also identify situations where LMs can exploit a different strategy
for filtering: eagerly evaluating if an item satisfies the predicate and storing this
intermediate result as a flag directly in the item representations. Our results reveal
that transformer LMs can develop human-interpretable implementations of abstract
computational operations that generalize in ways that are surprisingly similar to
strategies used in traditional functional programming patterns.

1 INTRODUCTION

When asked to find the fruit in a list, language models reveal a surprisingly systematic mechanism:
they don’t solve each filtering task anew, but instead encode predicates into portable representations.
This neural representation of “is this a fruit?” can be extracted from one context and applied to a
different list, presented in a different format, in a different language, and to some extent to a different
task. These abstract, reusable operations suggest that transformers develop modular computational
primitives rather than task-specific heuristics.
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Figure 1: A filter head [35, 19] in Llama-70B encodes a compact representation of the predicate “is this fruit?”
(a) Within a prompt psrc to find a fruit in a list, we examine the attention head’s behavior at the last token “:” (b)
The head focuses its attention on the one fruit in the list. (c) We examine the same attention head’s behavior
in a second prompt pdest searching a different list for a vehicle (d) and we also examine the behavior of the
head when patching its query state to use the qsrc vector from the source context. (e) The head attends to the
vehicle but then (f) redirects its attention to the fruit in the new list after the query vector is patched. (g) A sparse
set of attention heads work together to conduct filtering over a wide range of predicates; these filter heads are
concentrated in the middle layers (out of 80 layers in Llama-70B).
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To understand this phenomenon systematically, we turn to Marr’s three levels of analysis (Marr,
1982). At the computational level, we identify what is being computed: the selection of elements
satisfying a predicate. At the algorithmic level, we reveal how this is achieved: through a three
phase computation corresponding to a map, filter, and reduce, occurring in that order. The map step
is equivalent to populating the latents of the items in a list with the right associations or semantic
information, a step that is documented in prior literature (Geva et al., 2023; Meng et al., 2022).
In this work we focus on the non-trivial computation step, filter, that follows after map. At the
implementation level, we reveal how filtering is implemented in LMs: through specialized attention
heads, which we dub filter heads, that encode predicates as geometric directions in query space. We
find that these heads, concentrated in the middle layers of the LM, remain largely shared even as the
specific predicate varies. This framework allows us to move beyond simply observing that models
can filter, to understanding the explicit mechanisms through which list-processing operations emerge
from the transformer architecture.

Our analysis yields three key insights:

Localized Mechanism. The list processing algorithm is implemented in a consistent set of localized
components: a set of attention heads that we call filter heads. These heads encode a “compiled”
representation of the predicate as query states at specific tokens — typically where the LM is required
to produce its answer. These query states interact with the key states that carry semantic information
of the list items, producing attention patterns that select the items satisfying the predicate.

Generalization. These filter heads are not specific to a single predicate, but can encode a distribution
of predicates. And this encoding is sufficiently abstract that it can be extracted from one context and
transported to another context to trigger the same filtering operation on a different collection of items,
presented in a different format, in a different language, even in a different reduce task that follows
after the filtering step.

Computational Redundancy. Additionally, our investigations reveal that LMs can perform filtering
in two complementary ways: lazy evaluation via filter heads vs eager evaluation by storing is_match
flags directly in the item latents. This dual implementation strategy mirrors the fundamental lazy/eager
evaluation strategies in functional programming (Henderson & Morris Jr, 1976; Friedman et al.,
1976). This second route reveals a broader principle in neural computations: transformer LMs can
maintain multiple pathways for the same operation (McGrath et al., 2023; Wang et al., 2022) and can
dynamically select between them based on what information is available.

We validate these findings through experiments across six different filter-reduce tasks of varying
complexity, each requiring the LM to filter based on different information before performing a reduce
step to provide a specific answer. We test the portability of the “compiled" predicate across different
presentation format, language, and tasks. We conduct ablation studies to confirm the necessity of
filter heads while performing filter operations. Finally, we demonstrate that the learned predicate
representations can serve as zero-shot probes for concept detection, offering a training-free alternative
to traditional linear probing methods.

2 METHOD

2.1 BACKGROUNDS AND NOTATIONS

Language Model. An autoregressive transformer language model, M : X → Y over a vocabulary
V , maps a sequence of tokens x = {x1, x2, . . . , xn | x ∈ V} to y ∈ R|V|, which is a probability
distribution over the next token continuation of x. Internally, M has L layers, where the output of the
ℓth layer is computed as, hℓ = hℓ−1 +mℓ +

∑
j≤J a

ℓj . Here, mℓ is the output of the MLP , and
aℓj is the contribution of jth attention head. For an individual head, its contribution to hℓ at token
position t is computed as:

aℓjt =W ℓj
OV ·Attn(qt,K) (1)

where qt = hℓ−1
t W ℓj

Q , K =hℓ−1
≤t W

ℓj
K , and Attn(qt,K) = softmax

(
qtK

T

√
dk

)
Here, ≤ t denotes all tokens up to the current token t. Following Elhage et al. (2021), we combine
the value projection W ℓj

V and out projection W ℓj
O in a single W ℓj

OV . From here onward we will denote
the jth attention head at layer ℓ as [ℓ, j].
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Filter Tasks. In functional programming, the filter operation is used to select items from a
collection that satisfy specific criteria. filter takes two arguments: the collection, and a predicate
function that returns a boolean value indicating whether an item meets the criteria. Formally:

filter(C, ψ) = {c ∈ C | ψ(c) is True} (2)
where C = {c1, c2, . . . , cn} is a collection of items

and ψ : X → {True,False} is the predicate function
To study how language models implement filtering, we design a suite of filter-reduce tasks T . For
each task τ ∈ T , we construct a dataset Dτ containing prompts {p1, p2, . . . , pm}. Each prompt
pi = P(C, ψ) represents a natural language expression of a specific filter-reduce operation, where P
denotes the verbalization function that converts the formal specification into natural language. Figure 1
shows a concrete example, and we include additional examples from each task in Appendix A.

2.2 FILTER HEADS

We observe that, for a range of filtering tasks, specific attention heads in the middle layers of Llama-
70B consistently focus their attention on the items satisfying a given predicate, ψ. See Figure 1
(more in Appendix K) where we show the attention distribution for these filter heads from the last
token position. From Equation (1), we know that this selective attention pattern emerges from the
interaction between the query state at the last token (q−1) and the key states from all preceding tokens(
K≤t = {k1, k2, . . . , kt}

)
. We employ activation patching (Meng et al., 2022; Zhang & Nanda,

2023) to understand the distinct causal roles of these states.

To perform activation patching, we sample two prompts from Dτ : the source prompt, psrc =
P(Csrc, ψsrc) and the destination prompt, pdest = P(Cdest, ψdest), such that the predicates are
different (ψsrc ̸= ψdest), and the collections are mutually exclusive (Csrc ∩ Cdest = ∅). We ensure
that there is at least one item ctarg ∈ Cdest, that satisfies ψsrc.

Figure 1 illustrates our activation patching setup with an example. For a filter head [ℓ, j] we analyze
its attention pattern on three different forward passes.

source run M(psrc): We run the LM on the source prompt psrc and cache the query state for
[ℓ, j] at the last token position, qℓj−1, hereafter denoted as qsrc for brevity.

destination run M(pdest): The LM is run with pdest.

patched run M(pdest)[← qsrc]: We run the LM with pdest again, but we replace the query state
at the last token position for head [ℓ, j], qℓj−1 with qsrc cached from the source run.

The attention patterns for the head [ℓ, j] from the three forward passes for an example prompt pair are
depicted in Figure 1(b), (e), and (f) respectively. In the source and destination runs, the head attends
to the items that satisfy the respective predicates. But in the patched run, the filter head [ℓ, j] shifts its
attention to the item in Cdest that satisfies ψsrc. Patching qsrc is enough to trigger the execution of
ψsrc for this head in a different context, validating that qsrc encodes a compact representation of ψsrc.

Notably, we cache the query states before the positional embedding (Su et al., 2024) is applied, while
Attn(qt,K) in Equation (1) is calculated after the position encoding is added. This indicates that
filter heads are a category of semantic heads (Barbero et al., 2024) with minimal sensitivity to the
positional information.

2.3 LOCATING FILTER HEADS

Now we introduce the methodology to systematically locate these filter heads within a LM.

Activation Patching with DCM. While analyzing attention patterns can provide valuable insights,
attention patterns can sometimes be deceptive (Jain & Wallace, 2019) as they may not give insights
into the underlying causal mechanisms of the LM (Grimsley et al., 2020). To address this issue,
we perform causal mediation analysis with the activation patching setup discussed in Section 2.2 to
isolate the heads carrying the predicate representation. We want to find a set of heads that causes the
score (logit or probability) of the target item ctarg to increase in the patched run.

We begin by patching the attention heads individually and selecting the heads that maximize the logit
difference of ctarg in the patched run vs the destination run, logit[← qsrc](ctarg)− logit(ctarg). We
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use logits instead of probabilities as logits have a more direct linear relationship with the influence
caused by the intervention (Zhang & Nanda, 2023).

However, we find that patching a single filter head is often not a strong enough intervention to exert
influence over the final LM behavior because other filter heads, in addition to backup mechanisms
(Wang et al., 2022; McGrath et al., 2023), may work against the intervention and rectify its effects.
To address this issue, we learn a sparse binary mask over all the attention heads, similar to in De Cao
et al. (2020) and Davies et al. (2023). We cache the query states for the source run M(psrc) and
destination run M(pdest), and then perform the following interchange intervention over the query
states of all the attention heads in the patched run:

qℓj−1 ← maskℓj ∗ qℓjsrc + (1−maskℓj) ∗ qℓjdest (3)

Here, qℓj−1 denotes the query state of head [ℓ, j] at the last token position; qℓjsrc and qℓjdest are the query
states of the same head at last token from M(psrc) and M(pdest), respectively. The mask maskℓj

is a binary value learned with an objective to maximize the logit of ctarg in the patched run. We
use a sparsity regularizer to ensure that the mask is sparse (i.e., only a few heads are selected). In
Figure 1(g) we mark the filter heads selected for one of our filtering tasks, SelectOne — Obj, with
their individual average indirect effect (AIE) of promoting the logit of ctarg.

Causality. If the filter heads we have identified fully capture a compact representation of the
predicate ψ in their query states that the LM uses to perform the filtering operation, then transferring
qsrc from M(psrc) to M(pdest) should be causally influential: it should cause the LM to select ctarg,
the item in Cdest that satisfies ψsrc. We introduce a causality score to quantify the collective causal
influence of the selected filter heads.

c∗ = argmax
c∈Cdest

(
M

(
pdest

)[
qℓj−1 ← qℓjsrc

∣∣ ∀[ℓ, j] ∈ H])
t

Causality
(
H, psrc, pdest

)
= 1

[
c∗

?
= ctarg

]
(4)

where H is the set of all selected filter heads

We run the LM on pdest and patch the query state of only the selected heads at the last token position
with their corresponding query states cached from M(psrc). We then check if the LM predicts ctarg
as the most probable item in the LM’s output distribution among all items in Cdest.
Notably, while finding the heads we do not care if the heads exhibit the attention behavior illustrated
in Figure 1. But, we notice that the aggregated attention pattern of the identified heads consistently
align with the selective attention pattern for filtering (see Appendix K for some examples).

3 EXPERIMENTS

We now empirically test the role of filter heads in different settings to validate our claims.

Models. We study autoregressive transformer LMs in our experiments. Unless stated otherwise,
all the reported results are for Llama-70B (Touvron et al., 2023). We include additional results for
Gemma-27B (Team et al., 2024) in Appendix H.

Datasets. To support our evaluation, we curate a dataset consisting of six different tasks that all
require the LM to perform filtering, followed by a reduce step to provide a specific answer. Each
task-specific dataset Dτ contains a collection of items categorized in different categories (e.g. fruits,
vehicles, ... in Obj type), as well as different prompt templates for questions specifying the predicate
and the reduction task (e.g. How many [category]s are in this list?). When we curate a prompt for the
task, we sample the collection from the items in Dτ and fill in the template with the target predicate.
The tasks are listed in Figure 3, and see Appendix A for example prompts from each task.

Implementation Details. For each task we locate the filter heads using the method detailed in Sec-
tion 2.3 on 1024 examples. During localization we perform the interchange operation (Equation (3))
only at the last token, but for evaluation we consider last 2 tokens ({“\Answer”, “:” }) to reduce
information leakage. We also calculate qsrc as a mean of n source prompts achieved from a single psrc
by changing the index of csrc in Csrc

1. While sampling the counterfactual prompts, we ensure that the
1This slightly increases the causality by removing the order information. See Appendix F.
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Figure 2: Filter heads retain a causality close
to 0.8 even with 7 distractors in the collections
of the destination prompt.

Table 1: Causality of filter heads on SelectOne
tasks. Heads identified using object-type filtering
(e.g., find the fruit) generalize to semantically dis-
tinct predicates like profession identification (find
the actor).

Filtering Task Causality ∆logit

Object Type 0.863 +9.03

Person Profession 0.836 +7.33
Person Nationality 0.504 +5.04
Landmark in Country 0.576 +7.02
Word rhymes with 0.041 +0.65

answer for the source prompt, destination prompt, and the target answer for the patched prompt are
all different from each other. All the reported scores are evaluated on a draw of 512 examples where
the LM was able to correctly predict the answer. In some cases we include ∆logit, the logit difference
of ctarg in the patched run versus the destination run, as a softer metric to causality from Equation (4).

3.1 PORTABILITY/GENERALIZABILITY WITHIN TASK

Following the approach detailed in Section 2.3, we identify the filter heads on the SelectOne task for
object categorization. While localizing these heads we use English prompts that follow a specific
format: the items are presented in a single line and the question specifying the predicate is presented
after the items. We test whether the filter heads identified with this format generalize to various
linguistic perturbations and SelectOne tasks that require reasoning with information of different
semantic type. We evaluate generalization using the causality score (Equation (4)).

Information Types. Table 1 shows that filter heads identified on object categorization maintain high
causality even in entirely different semantic domains — notably, identifying people by profession
shows comparable causality despite the semantic shift. The filter heads also retain non-trivial causality
for person-nationality and landmark-country associations, with causality improving by approximately
10 points when we include prefixes which prime the LM to recall relevant information in the item
representations (see Appendix G).

However, the predicates captured by these filter heads show poor causality in situations that require
reasoning with non-semantic information, such as identifying rhyming words. This indicates that
the filter heads play a causal role specifically in situations that require filtering based on semantic
information rather than non-semantic properties like phonological similarity or letter counting.

Size of the collection, C In Figure 2 we plot the causality of filter heads by varying the number of
distractor items in the list. The figure shows that the heads are not very sensitive to the size of the
collection, retaining high causality even with 7 distractors.

Table 2: Portability of predicate representations across linguistic variations. The predicate vector qsrc is
extracted from a source prompt and patched to destination prompts in (a) different languages, (b) different
presentation formats for the items, and (c) placing the question before or after presenting the collection.

To

From English Spanish French Hindi Thai

English 0.863 0.893 0.779 0.928 0.951

Spanish 0.857 0.877 0.775 0.875 0.891

French 0.938 0.932 0.793 0.931 0.9473

Hindi 0.920 0.920 0.885 0.918 0.957

Thai 0.897 0.928 0.887 0.940 0.943

From single line bulleted

single line 0.863 0.842
bulletted 0.840 0.848

From after before

after 0.863 0.580

before 0.398 0.020

To

To

(a)  Cross-lingual transfer

(b)  Across option presentation style

(c)  Placement of the question

Linguistic Variations. We test whether predicate representations remain causal under linguistic
perturbations by extracting qsrc from one prompt format and applying it to destination prompts with

5
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(a) Heads evaluated across tasks (b) Transferring          across tasks

Figure 3: Generalization across different tasks. (a) shows whether the heads identified with one task (rows)
maintain causal influence in another task (columns). (b) shows how portable are the predicate representation
is across tasks. The predicate rep qsrc is cached from one source task example (e.g., find the fruit in SelectOne
task) was patched to an example from another destination task (e.g., count the vehicles in Counting task). The
heatmap shows causality scores — whether the LM correctly performs the destination task with the transferred
predicate (e.g., count the fruits). For both (a) and (b) the values in the diagonal grid show within task scores.

different presentation styles, or even languages. Table 2(a) and (b) demonstrate remarkable robustness:
the same filter heads maintain high causality across different item presentation formats, and even
cross-lingual transfer. This invariance to surface-level variation confirms that filter heads encode
abstract semantic predicates rather than pattern-matching on specific linguistic forms. However, we
also observe that when the question is presented before the items, the filter heads show poor causality
(see Table 2(c)). We find that this is because in the question-before case the LM relies more on a
complementary implementation of filtering, which we discuss in Section 5 and in Appendix B. All the
other results presented in this section are calculated on prompts following the question-after format.

3.2 PORTABILITY/GENERALIZABILITY ACROSS FILTER-REDUCE OPERATIONS

To understand the scope of filter head usage, we examine their participation across six filter-reduce
tasks of different complexity. Each of these tasks require the LM to perform a separate reduce step
to produce an answer in a specific format. We measure whether the heads identified from one task
maintain their causality when tested on another task.

Figure 3(a) reveals two distinct patterns. First, transferring the heads across the four tasks —
SelectOne, SelectOne(MCQ), SelectFirst, and SelectLast — show high causality scores (≥ 70%2)
among them, which indicate a high overlap of the same filter heads. In contrast, Counting shows an
interesting asymmetric pattern: while Select* heads fail on the Counting task, Counting heads show
partial generalization to the Select* tasks — suggesting that Counting does share some common
sub-circuit with Select* tasks, while having a more complex mechanism, likely involving additional
circuits for specialized aggregation, that we have not yet identified. CheckPresence heads show poor
causality even within the task, indicating that the LM possibly performs this task in an alternate way
that can bypass the filtering sub-circuit.

We also test the portability of the predicate information encoded in qsrc by transferring it across tasks,
Figure 3(b). SelectFirst and SelectLast tasks show notably poor cross-task transfer of the predicate,
even though the filter heads retain high within-task causality. This suggests that, in qsrc the predicate
information is possibly entangled with task-specific information. Otherwise, predicate transfer scores
(Figure 3b) mirror the head transfer scores (Figure 3a) with slightly lower values.

Our findings suggest that filter heads form a foundational layer for a range of reduce operations,
with simpler selection tasks relying primarily on this mechanism while more complex aggregation
tasks build additional computation on top of it. This insight aligns with Merullo et al. (2023) that
transformer LMs use common sub-circuits (filter heads) across different (filter-reduce) tasks.

2Except the heads from SelectOne-MCQ, possibly because selecting MCQ-options is computationally
simpler than to output the filtered item.
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Table 3: LM performance on filtering tasks drops sig-
nificantly when filter heads are ablated. These heads
constitute < 2% of the heads in the LM. Evaluated on
512 samples that the LM predicts correctly without any
ablation (baseline 100%).

Task(#Heads) LM Acc (Heads Abl)
Filter Random

SelectOne (79) 22.5% 100%
SelectOne(MCQ) (45) 0.4% 100%
SelectFirst (81) 13.1% 97.3%
SelectLast (145) 9.22% 99.4%
Count (64) 89.80% 99.19%
CheckExistence (21) 98.61% 99.2%

Table 4: Filter heads play a distinct causal role dur-
ing filtering tasks. Table shows the causality of filter
heads with other type of heads documented in litera-
ture. None of the other head types match the causality
of filter heads in the SelectOne task. To keep our com-
parisons fair we keep the number of heads equal (79)
for every head type.

Head Type Causality ∆logit

Filter 0.863 +9.03

Function Vector 0.00 −3.20
Concept 0.00 −1.37
Induction 0.00 −3.23
Random 0.00 −0.96

3.3 NECESSITY OF FILTER HEADS

We seek to understand to what extent the LM relies on filter heads during these filter-reduce tasks. To
assess their importance, we perform ablation studies.

We ablate an attention head [ℓ, j] by modifying its attention pattern during the forward pass so that
the last token can only bring information from the <BOS> token3. Previous works (Geva et al., 2023;
Sharma et al., 2024) have investigated if critical information flows through a certain attention edge
with similar attention knock-out experiments. The results in Table 3 reveal a dramatic performance
drop for the Select* tasks when filter heads are ablated, despite these heads comprising less than
2% of the model’s total attention heads — confirming their critical importance for the Select* tasks.
In contrast the performance for Counting and CheckExistence do not drop significantly due to this
ablation, again indicating that these tasks do not fully rely on the filter heads.

To determine whether filter heads represent a novel discovery or merely overlap with existing attention
head categories previously documented in the literature, we compared their functionality against
such head categories. Specifically, we measure the causality of Function Vector heads (Todd et al.,
2023), Concept heads (Feucht et al., 2025), and Induction heads (Olsson et al., 2022). As shown in
Table 4, none of these previously identified head types exhibit the distinctive causal role of filter heads,
confirming that filter heads are a unique and previously unrecognized component of transformer LMs.

4 KEY STATES CARRY ITEM SEMANTICS FOR FILTERING

To understand how the predicate-encoding query states in the filter heads implement filtering via
interacting with the key states from previous tokens, we design another activation patching experiment.

Scooter

Bindera. 

b. 

c. 

d. 

e. 

Peach

Watch

Phone

Figure 4: Swapping the key
states of the items in addition
causes the filter head to redirect
its focus to an unrelated item.

Approach. To isolate the contribution of key states, we designed
a two-part intervention that combines query patching with key swap-
ping. We select two items (ctarg, cother) from Cdest such that ctarg
satisfies ψsrc, but not ψdest; and cother doesn’t satisfy either of the
predicates.

The intervention proceeds as follows. For a filter head [ℓ, j], we
patch the qsrc from the source prompt (as before). Then we swap
the key states between ctarg and cother within the same forward
pass. Figure 4 illustrates this key swapping. After this key-swapping
intervention, the filter head [ℓ, j] redirects its focus from ctarg (
Figure 1(f)) to cother (Figure 4-right).

Result. We consider this 2-step intervention to be causally effective if the LM assigns highest
probability to cother among the items. On the SelectOne object categorization task, we achieve a
causality score of 0.783 (432/552 examples) with ∆logit = 8.2591 ± 3.352, confirming that key
states indeed encode the semantic properties that predicates evaluate. For experimental simplicity, we
restrict this analysis to only single-token items.

3for the LM tokenizers that do not add a <BOS> token by default, we prepend <BOS> manually.
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This result confirms our mechanistic hypothesis: filter heads implement filtering through a key-query
interaction where queries encode "what to look for" (the predicate) and keys bring "what is there"
(item properties) from the corresponding item latents (hℓ−1).

5 WHAT HAPPENS IF THE QUESTION COMES before THE OPTIONS?

In Table 2(c) we see that if we simply reverse the order of the question and the collection to ask the
question before presenting the items, the causality scores drop to almost zero. Our investigations
reveal that this seemingly innocent ordering change fundamentally alters the computational strategy
available to the LM. When the question comes first, the transformer can perform eager evaluation:
as each item is processed, the model can immediately evaluate whether it satisfies the predicate and
store this information as an is_match flag in the item’s latents. And, at the final token, rather than
performing the predicate matching operation via filter heads, the LM can simply retrieve items based
on pre-computed flags. If this hypothesized flagging mechanism is true, then manipulating this flag
should result in predictable outcomes in the LM’s behavior. We find evidence for this alternative
mechanism through a series of carefully designed activation patching experiments. We illustrate the
core experiment setup in Figure 5, while we leave the detailed analysis to Appendix B.

Which one is the vehicle?
Options: Watch, Peach, Truck, Monkey, Knife.
\nAns:

Which One is the fruit?
Options: Watch, Peach, Truck, Monkey, Knife.
\nAns:

Watch Peach Truck Monkey Knife
✓❌ ❌❌❌

(a)

(b)
0 10 20 30 40 50 60 70 80

Layer

10

12

14

16

18

20

L
og
it

Figure 5: Testing for answer flags in question-first prompts. We perform a two-part intervention to determine
whether the model stores filtering decisions as flags in item representations. (a) We patch the residual states
at the final two token positions ("\nAns" and ":") from a source prompt psrc to a destination prompt pdest at
a single layer. (b) Additionally, for an item c ∈ Cdest, we replace its hidden representations across all layers
with those from a prompt pdiff containing a different predicate ψdiff ̸∈ {ψsrc, ψdest}. We use a different pdiff (with
different ψdiff) per item in Cdest. Crucially, we ensure that exactly one item cflag (distinct from both the source and
destination answers) carries the is_match flag from its corresponding pdiff. Right panel shows results for the
SelectOne-Obj task with (a) applied per layer in conjunction with (b) for all layers. After this 2-step intervention
the LM consistently selects cflag in early layers, confirming the LM’s reliance on pre-computed answer flags
stored in the item representations. And, in later layers (a) simply brings over the decision from the source run.

However, filter heads remain partially active even in question-first examples. Table 2(c) also shows
that caching qsrc from question-first prompts and patching to question-after prompts gives non-trivial
causality scores, though lower than our original setup. This suggests filter heads can still partially
encode the predicate information in question-first settings, but this “filter head”-based mechanism
competes with, and is typically overshadowed by, the flag-based mechanism.

The co-existence of these two filtering strategies: on-demand filtering through filter heads and
precomputing the flags and storing them in the item latents, echoes the lazy versus eager evaluation
strategies in functional programming from Henderson & Morris Jr (1976). This also shows how
transformer LMs can maintain multiple redundant pathways for the same operation (McGrath et al.,
2023; Wang et al., 2022) and can dynamically select between them based on task demands and
information availability.

6 APPLICATION: A LIGHT-WEIGHT PROBE WITHOUT TRAINING
The predicate information encoded by the filter heads can be leveraged for a practical use-case:
zero-shot concept detection through training-free probes.

Since filter heads encode predicates as query states that interact with key-projected item repre-
sentations to perform filtering, we can repurpose this mechanism for classification. To detect
whether a representation h belongs to a particular concept class (e.g., animal, vehicle), we cre-
ate filter prompts for each class: pcls = P(C, ψis_cls) and collect the query states qcls from a
filter head [ℓ, j]. Then we classify h by finding the class whose qcls has the maximum affinity.
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Probe Accuracy of [35, 19]
Logit Lens Baseline

0.81 ± 0.02 

Figure 6: Training-free probe using filter head
[35, 19]. Accuracy across layers on 238 objects
spanning 16 classes from the SelectOne-Object
dataset. Final token is used for multi-token items.
Compared against using the embedding vectors of
LM decoder as class probes.

ŷ = argmax
cls

(
qcls ·WK

ℓ,jh
)

(5)

Where WK
ℓ,j is the key projection from the head [ℓ, j].

Figure 6 demonstrates that this approach achieves
strong classification performance without any train-
ing, validating that filter heads learn generalizable
concept representations that can be extracted and
applied as probes. See Appendix K.3 where we il-
lustrate how filter heads can utilized to detect other
concepts such as the presence of false information or
certain sentiment in free-form text.

7 RELATED WORKS

Attention Head Studies. Previous works have identified specialized attention heads that serve
distinct computational roles. Olsson et al. (2022) discovered induction heads that implement pattern
matching and copying, while Feucht et al. (2025) have identified heads that copy concepts instead of
individual tokens. Todd et al. (2023) have found function vector heads that encode task representations
that are transportable across contexts. Filter heads are an addition to this class of attention heads that
show distinct functional specialization.

LM Selection Mechanisms. A few empirical studies have explored the selection mechanism in
LMs, primarily in MCQA settings. Tulchinskii et al. (2024) identifies “select-and-copy” heads based
on their attention pattern that focus on “\n” after a correct item in a question-first MCQ format.
Lieberum et al. (2023) also identify attention heads that attend to the correct MCQ label/letter and
show that these “correct label” heads encode the ordering ID of the presented options. Wiegreffe et al.
(2024) showed that attention modules in the middle layers promote the answer symbols in a MCQA
task. Unlike these works focused on MCQA settings, in this paper we investigate list-processing in
general and find a set of filter heads implement predicate evaluation that generalize across formats,
languages, and even different reduction operations.

Symbolic Reasoning in Neural Networks. Recently researchers have been increasingly interested
in the question of whether transformer LMs can develop structed symbolic-style algorithmic behavior.
Yang et al. (2025) discuss how LMs can implement an abstract symbolic-like reasoning through
three computational stages: with early layers converting tokens to abstract variables, middle layers
performing sequence operations over these variables, and then later layers accessing specific values
of these variables. Meng et al. (2022) and Geva et al. (2023) also notice similar stages while the LM
recalls a factual association. Several works have documented mechanisms/representations specialized
for mathematical reasoning (Nanda et al., 2023; Hanna et al., 2023; Kantamneni & Tegmark, 2025)
and variable binding (Feng & Steinhardt, 2023; Prakash et al., 2025).

Our paper continues this tradition of validating Smolensky (1991)’s assertion that distributed repre-
sentations in connectionist systems can have “sub-symbolic” structures, with symbolic structures
emerging over the interaction between many units. In this work we study a specific symbolic ab-
straction — filtering in list processing — which is a fundamental abstraction for both symbolic
computation and human reasoning (Treisman, 1964; Johnson-Laird, 1983).

8 DISCUSSION

In this work, we have identified and characterized filter heads — specialized attention heads that
implement filtering operations in autoregressive transformer LMs. These heads encode the filtering
criteria (predicates) as compact representations in their query states of specific tokens. This encoding
can be extracted and then transported to another context to trigger the same operation. We also identify
that, based on information availability, the LM can use an eager implementation of filtering by storing
flags directly on the item latents. These dual and complimentary filtering implementations mirror
the lazy vs eager evaluation from functional programming. This convergence between emergent
neural mechanisms and human-designed programming primitives suggests that certain computational
patterns arise naturally from task demands rather than architectural constraints. Cataloging such
universal computational primitives and how they are realized may help us understand how AI systems
perform complex reasoning.
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ETHICS

This research investigates the internal computational mechanisms of LMs through mechanistic in-
terpretability techniques, contributing to the scientific understanding of transformer architectures.
Our identification of filter heads advances LMs transparency by revealing how models implement
functional programming primitives, though we acknowledge that interpretability findings do not di-
rectly translate to safety improvements without additional work. The causal mediation techniques we
develop could potentially be applied to study more sensitive model capabilities, requiring responsible
application and consideration of dual-use implications in future research on mechanisms related to
deception or manipulation. Our experiments require significant computational resources that may
limit reproducibility to well-resourced institutions, though we commit to releasing code and datasets
to facilitate broader access. While our findings about filter heads appear robust across different
tasks and languages, we caution against overgeneralizing to other domains without validation, as
mechanistic interpretability remains early-stage and our understanding of component interactions is
incomplete.

REPRODUCIBILITY

We ran all experiments on workstations with either 80GB NVIDIA A100 GPUs or 48GB A6000
GPUs, using the HuggingFace Transformers library (Wolf et al., 2019) and PyTorch (Paszke et al.,
2019). We used NNsight (Fiotto-Kaufman et al., 2024) for our patching experiments. The codes and
the dataset produced in this work will be made publicly available.
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A EXAMPLE PROMPTS FROM OUR DATASET

A.1 DIFFERENT TASKS

Select One – Type of Object

“Options: Bus, Peach, Scooter, Phone, Pen
Find the fruit in the options presented
above.
Answer:”

Expected LM Output: “ Peach”

Select One – Type of profession

“Options: Neymar, Hillary Clinton, Clint
Eastwood
Who among these people mentioned above is
an actor by profession?
Answer:”

Expected LM Output: “ Clint”

Select One – Type of nationality

“Options: Ronaldinho, Brad Pitt, Jet Li,
Ken Watanabe
Who among these people mentioned above is
from China?
Answer:”

Expected LM Output: “ Jet”

Select One – Location of landmark
“Options: Cabo San Lucas Arch, Plaza de
Armas Cusco, Mont Saint-Michel
Which of these landmarks is in Peru?
Answer:”

Expected LM Output: “ Plaza”

Select One — Rhyme

“Options: blue, debt, bright, sting, sake
Which of these words rhymes with glue?
Answer:”

Expected LM Output: “ blue”

Select One (MCQ)
“a. Banana
b. Paperclip
c. Oven
d. Dress
e. Church
f. Bench
Which among these objects mentioned above
is a clothing?
Answer:”

Expected LM Output: “ d”

Select First
“Options: Church, Scarf, Pendant, Slow
cooker, Temple
What is the first building from the list
above?
Answer:”

Expected LM Output: “ Church”

Select Last
“Options: Horse, Anklet, Golf ball, Cow,
Necklace
What is the last animal in this list
above?
Answer:”

Expected LM Output: “ Cow”

Counting

“Options: Trombone, Flute, Guitar, Train,
Car
How many vehicles are in this list?
Answer:”

Expected LM Output: “ Two”

Check Existence
“Options: Refrigerator, Museum, Notebook,
Toaster, Juicer
Do you see a kitchen appliance in the list
above?
Answer:”

Expected LM Output: “ Yes”
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A.2 LINGUISTIC PERTURBATIONS

A.2.1 ITEM PRESENTATION

Single Line

“Options: House, Blender, Willow,
Ambulance, Piano, Wrestling mat.
Which among these objects mentioned above
is a kitchen appliance?
Answer:

Expected LM Output: “ Blender”

Bulleted
“* Temple
* Air fryer
* Basketball
* Willow
* Van
* Harmonica
Which among these objects mentioned above
is a vehicle?
Answer:”

Expected LM Output: “ Van”

A.2.2 QUESTION PLACEMENT

Question After

“Options: Elephant, Maple, Toilet, Camera,
Juicer, Mall.
Which among these objects mentioned above
is a bathroom item?
Answer:”

Expected LM Output: “ Toilet”

Question Before

“Which object from the following list is
a music instrument?
Options: Printer, Highlighter, Ukulele,
Chair, Mirror, Locket.
Answer:”

Expected LM Output: “ Uk”

A.2.3 FROM A DIFFERENT LANGUAGE

Spanish

“Opciones: Lirio, Colchoneta de lucha,
Escritorio, Portátil, Refrigerador,
Sandía.
¿Cuáles de estos objetos mencionados
anteriormente son un(a) electrónica?
Respuesta:”

Expected LM Output: “ Port”

French
“Options : Aigle, Pastèque, Accordéon,
Baignoire, Ciseaux, Bibliothèque.
Lequel de ces objets mentionnés ci-dessus
est un(e) fourniture de bureau ?
Réponse :”

Expected LM Output: “ d”
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B DUAL IMPLEMENTATION OF FILTERING IN LMS: QUESTION BEFORE VS
AFTER

Our analysis reveals that transformer LMs employ distinct computational strategies for filtering
depending on whether the question specifying the predicate precedes or follows the collection. We
briefly discussed this in Section 5 and here we provide our detailed analysis.

Figure 7: Example of counterfactual prompt pair used to
understand the effect of patching residual latents.

Table 2(c) shows that filter heads are min-
imally causal when patched from question-
before to question-before prompt, even
when both follow the same prompt tem-
plate and item presentation style. To under-
stand this better, we perform a multi-step
causal mediation analysis.

Similar to the patching setup detailed in
Section 2.2, we consider two prompts —
psrc and pdest. The prompts psrc and pdest
have different predicates (ψsrc ̸= ψdest)
and sets of items (Csrc ∩ Cdest = ∅). But both prompts follow the question-before format (or both
follow the question-after format). See Figure 7 for an example of the two prompts.

In the patched run M(pdest)[← hℓ], we cache the residual stream latents at the last two tokens ({\Ans,
:}) for a layer ℓ from the source run M(psrc) and patch them to their corresponding positions in the
destination run M(pdest). We perform this for all layers ℓ ∈ {1, . . . , L} and track the scores (logits)
of five tokens:

1. csrc : correct answer of the source prompt, csrc ∈ Csrc | ψsrc(csrc)

2. cdest : correct answer of the destination prompt, cdest ∈ Cdest | ψdest(cdest)

3. ctarg : the item in the collection in the destination prompt that satisfies the predicate of the
source prompt, ctarg ∈ Cdest | ψsrc(ctarg)

4. coid : the item in the destination collection that shares its index with csrc in the source
collection, coid ∈ Cdest | index(coid, Cdest) = index(csrc, Csrc). We also make sure that coid
does not satisfy either predicate, ¬ψsrc(coid)∧¬ψdest(coid). This token is supposed to capture
if the residual states carry information about the positional information or order IDs (Feng
& Steinhardt, 2023; Prakash et al., 2025) of csrc.

5. crand : a random item in the destination collection that does not satisfy either predicate and
is different from all the other four tokens.
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Figure 8: Dual implementation of filtering in LMs. In both question-before and question-after formats ctarg
(blue) shows elevated scores after patching the residual state at middle layers. But in the question-before format
that score is never strong enough to dominate ctarg (green). The violet line shows scores for coid, the item that
shares the same index in Cdest with csrc in Csrc, which also shows elevated scores in middle layers, although not as
pronounced as ctarg.
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We curate the source and destination prompts such that all five tokens are distinct and perform this
experiment for both the question-before and question-after settings. We plot the results in Figure 8
and make the following observations.

O1: In both question-before and question-after settings, the score of ctarg (blue) increases in middle
layers (30-55) where we identify the filter heads to be. However in the question-before setting,
that score is never strong enough to dominate cdest (green). While in the question-after setting
ctarg becomes the highest scoring token among the four, achieving ∼ 70% causality in these
critical layers.

O2: We notice a bump in the score of coid (violet) in the middle layers, although it is not as pronounced
as ctarg. This suggests that residual latents in these layers also contain the positional/order
information of csrc. This has been observed in Feng & Steinhardt (2023) and Prakash et al.
(2025). We also notice a slight bump in the score of crand (gray).

O3: If the patching is performed in late enough layers (> 60) it copies over the final decision (red)
from the source run.

The distinction between the trends of ctarg and cdest in Figure 8a indicate that the LM relies on an
alternate mechanism, more than the one involving the filter heads, to perform filtering in a prompt
where the question is presented before the items. We hypothesize that the question appearing before
the collection allows the LM to perform eager evaluation: storing an is_match flag for each item in
the collection when they are processed. If this is true then manipulating the is_match flag should
cause predictable changes in the LM behavior in the question-first setting, while the question-after
setting should not be sensitive to such manipulations.

Options:

…

Peach (*)

…

Answer

:

Peach

…

…

Find the fruit ( … … … )

Figure 9: Ablating the is_match flag. For an item (e.g
“Peach”) in the collection, we cache the residual stream la-
tents corresponding to the tokens of that item from a neutral
prompt (e.g. any text w/o any predicate that contains the
word “Peach”). Then in a separate pass, we replace the la-
tents corresponding to that item in the original prompt with
the cached latents. This effectively removes any information
about whether that item satisfies the predicate or not.

Effect of ablating the is_match flag. If
the LM is indeed using the is_match flag
to perform filtering in question-before set-
tings, we would expect that ablating this
flag would significantly degrade perfor-
mance.

To test this hypothesis, we ablate the
is_match flag in an item by replacing
all the residual stream latents of the to-
kens of that item with their correspond-
ing latents cached for the same item in a
neutral prompt (see Figure 9 for details).
When we perform this ablation for each
of the items in the collection, we indeed
see a significant drop in LM performance
for the question-before setting, while the
performance remains mostly unchanged for
the question-after setting (see Table 5).

This experiment supports our hypothesis
that the question-before setting allows the
LM to eagerly evaluate whether an item
satisfies the predicate or not, store this in-
termediate result in the residual latents of the items as it processes the collection, and relies on that to
make the final decision. We also notice that the question-after setting shows minimal sensitivity to
this flag-ablation, which suggests that the processing of items do not rely on the context here: the
LM populates the semantics (enrichment in Geva et al. (2023)) of each item in a context independent
manner first, and then applies the predicate to perform filtering when the question is presenter after.

Table 5: Effect of ablating is_match. Eval-
uated on 512 examples from the SelectOne
task.

Ques Place W/o is_match Acc

Before 46.09%
After 96.06%

Effect of swapping the is_match flag between two items.
Our most decisive evidence comes from swapping the
is_match flag between items: if we swap the is_match
flag stored in cpos that satisfies the predicate with cneg that
does not satisfy the predicate, we should expect the LM to
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Which one is the vehicle?
Options: Watch, Peach, Truck, Monkey, Knife.
\nAns:

Which one is a furniture?
Options: …,      , …
\nAns:

Watch

Peach

Truck Knife
✔❌ ❌❌❌

(a)

(b)

Which one is the fruit?
Options: Watch, Peach, Truck, Monkey, Knife.
\nAns:

Which one is an animal?
Options: …,       ,…
\nAns:

Monkey

Figure 10: Counterfactual patching setup to swap the is_match flag. We perform a two-part intervention to
determine whether the model stores filtering decisions as flags in item representations. (a) We patch the residual
states at the final two token positions (“\nAns” and “:”) from a source prompt psrc to a destination prompt pdest
at a single layer. (b) Additionally, for an item c ∈ Cdest, we replace its hidden representations across all layers
with those from a prompt pdiff containing a different predicate ψdiff ̸∈ {ψsrc, ψdest}. We use different pdiff (with
different ψdiff) per item in Cdest. Crucially, we ensure exactly one item cflag (distinct from both the source and
destination answers) carries the is_match flag from its corresponding pdiff.

change its answer from cpos to cneg if it is relying on the is_match flag. We set up another activation
patching experiment to test this hypothesis illustrated in Figure 10, which is a more elaborate version
of Figure 5. We perform a 2 part intervention:

I1: Similar to Figure 7, we consider two prompts psrc and pdest that follow the same format, either
question-before or question-after, but with different predicates, ψsrc ̸= ψdest. However, now they
operate on the same collection of items, Csrc = Cdest = C. We perform the same intervention,
patching the residual stream latents at the last two token positions from M(psrc) to M(pdest) for a
layer ℓ. And we track the scores of csrc, cdest, crand as defined before. Notice that as the collections
are the same, ctarg = coid = csrc.

I2: In addition, we choose another item cflag ∈ C that is different from csrc, cdest, crand and perform
the following intervention to make sure that only cflag carries the is_match flag while none of the
other items do. In order to achieve that we cache cflag’s latents from an alternate prompt pflag with
a predicate ψflag which is satisfied by cflag, ψflag(cflag). Then in the patched run, we replace the
latents corresponding to cflag in M(pdest) with the cached latents from M(pflag). This makes sure
that cflag now carries the is_match flag.
Similarly, to make sure that an item c′ ∈ C\{cflag} does not carry the is_match flag, we cache
its latents from another example p′ with a predicate ψ′ such that ¬ψ′(c′). Then we replace the
latents corresponding to c′ in M(pdest) with the cached latents from M(p′). We perform this for
all items in C\{cflag}. This effectively ensures that only cflag carries the is_match flag while all
other items do not. See Figure 10 for an illustration.

In Figure 11 we plot the results of this experiment for both question-before and question-after settings.
For a layer ℓ, I1 is applied for only that layer, without or with I2, which is applied to all layers.

As expected, we see that in the question-after setting applying I2 with I1 is almost indistinguishable
from just applying I1. I2 has minimal effect because the LM cannot rely on the is_match flag when
the question comes after.

However, in the question-before setting, we observe that the score trend of cflag (violet) and cdest
(green) almost swap their positions in only I1 versus when I2 is applied in addition. With the
flag-swap intervention I2, the LM systematically picks cflag as the answer in the early layers. This
further validates our hypothesis that the LM is relying on the is_match flag to make the final decision
in the question-before setting.
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(b) Question after collection

(a) Question before collection

Figure 11: Effect of swapping the is_match flag between items. The figures on the left shows the effect of
patching only the residual states (Figure 7) and figures on the right are when we additionally swap the is_match
with another item (Figure 10). The pair of figures on the top shows both cases in the question-before format
(a). We observe that cflag becomes of top scoring item when the patching is performed in early layers. But this
swapping of flags has no effect in the question after case, pair of figures on the bottom (b).

We do not claim that the LM only relies on the is_match flag in the question-before setting. The fact
that we see a bump in the score of ctarg (blue) in Figure 8 and patching qsrc from question-before to
question-after prompts has non-trivial causality (see Table 2c) indicates that the LM does carry the
predicate information in middle layers even in the question-before setting, although not strongly as in
the question-after setting.

This dual filtering implementation strategy — lazy evaluation via filter heads versus storing eager
evaluation information with is_match flag — exemplifies a broader principle in neural computation:
transformer LMs can maintain multiple pathways for core operations, dynamically selecting strategies
based on what information is available. And the fact that filter heads still remain partially active
even in the question-first setting shows that these mechanisms operate in parallel rather than mutual
exclusion.

C DIFFERENT APPROACHES FOR LOCATING THE FILTER HEADS

In this section we discuss the different approaches we explored to identify the filter heads.

Filter Score. To capture the filtering behavior of the heads based on their attention pattern, we
design a filter score that quantifies the extent to which a head focuses its attention on the elements
satisfying the predicate ψ over other elements in C.

FilterScore([ℓ, j], C, ψ) = scoreℓj(c | ψ(c))− max
¬ψ(c)

(
scoreℓj(c)

)
(6)

where, scoreℓj(c) =
∑
t∈c

Attn[ℓ,j](q−1, t)

While calculating FilterScore we make sure that there is only one item c ∈ C such that ψ(c) is true.
The FilterScore then select heads based on how much they focus their attention on the correct item
over the most attended incorrect item. The score function sums up the attention scores over all tokens
in an item c to account for multi-token items. Note that the score is calculated based on the attention
pattern at the last token of the prompt (“:”).

We notice that heads in a range of middle layers exhibit stronger filtering behavior compared to those
in the earlier or later layers.
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Figure 13: Location of filter heads in Llama-70B. (a) shows the individual FilterScore for each head: how much
they attend to the correct option over others. (b) shows the indirect effect: how much patching qsrc from a single
head promote the predicate target. The filter heads identified with Section 2.3 are marked with black borders.
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Figure 12: Collective causality of 79
filter heads identified with FilterScore,
CMA, and CMA with DCM. Evaluated
on the same 512 examples from the Se-
lectOne task

Activation Patching (w/o DCM). We can patch the attention
heads individually and quantify their indirect effect at mediat-
ing the target property in the patched run. Todd et al. (2023)
and Feucht et al. (2025) identified Function Vector heads and
Concept heads with this approach. Specifically, for each head
[ℓ, j] we patch qsrc from the source run to the destination run
with the method detailed in Section 2 and check its effect on
boosting the score (logit) of the target item, ctarg. The indirect
effect is measured as logit[← qsrc](ctarg)− logit(ctarg).

In Figure 12 we compare the causality of heads identified with
the 3 approaches on the SelectOne task.

D VECTOR
ALGEBRA WITH PREDICATE REPRESENTATION

We explore the geometric properties of the predicate represen-
tation qsrc by examining its behavior under vector arithmetic
operations. Specifically, we investigate when we compose two predicates (find the fruit and find the
vehicle) by adding their corresponding qsrc vectors, does this resulting vector represent a meaningful
combination of the two predicates?

Adding predicate representations results in disjunction of the predicates. If we add the qsrc
vectors of two sources prompts with different predicates, psrc1 = P(C1, ψ1 = is_fruit) and psrc2 =
P(C2, ψ2 = is_vehicle), we find that the resulting vector qcomposed = qsrc1 + qsrc2 can be used on a
destination prompt pdest = P(C3, ψ3 /∈ {is_fruit, is_vehicle}) to execute the disjunction of the two
predicates (i.e., find the fruit or vehicle) in C3. The setup is illustrated in Figure 14 with an example
from the SelectOne task.

We conduct this experiment for the SelectOne task. We compose qcomposed with two prompts and
curate pdest such that there is only item ctarg in Cdest that satisfies the composed predicate ψsrc1∪ψsrc2.
We patch qcomposed to the destination run and consider the intervention to be successful if the LM
thinks ctarg is the most probable item. We achieve a causality score of 0.6523 (334 out of 512) with
logit of ctarg increased by 6.75± 3.94 after the intervention.

This shows that the predicate representations are compositional, allowing for the construction of more
complex predicates through simple vector operations.

E DISTINGUISHING ACTIVE FILTERING FROM ANSWER RETRIEVAL

Our identification of filter heads raises two critical questions about their computational role. First, do
these heads actively perform filtering, or do they merely attend to items that were already filtered
by earlier layers? Second, do they encode the abstract predicate (e.g., "is a fruit") or simply match
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d.1 

d.2 Gold reference

(a)

(b)

(c)

Figure 14: Aggregated attention pattern of the filter heads from the last token position, with the composition
setup. The predicate encoding qsrc is collected from 2 prompts, (a) psrc1 = P(C1, ψ1 = is_fruit) and (b)
psrc2 = P(C2, ψ2 = is_vehicle). Their addition qcomposed is patched to the destination run. The resulting
attention pattern shown in (d.1) indicates that now filter heads select the items in pdest that satisfy ψsrc1 ∪ ψsrc2.
(d.2) shows the attention pattern for a gold prompt with the disjunction predicate.

specific answers from context? To establish that filter heads actively perform filtering rather than
passively attending to pre-filtered results, we designed causal intervention experiments where query
states carrying predicate information are transferred between prompts. The consistent ability of
these transferred queries to trigger the transported filtering operation on entirely different collections
demonstrates that the heads actively apply predicates rather than simply reading pre-computed results.

E.1 DO THESE HEADS MERELY MATCH WITH A PRE-COMPUTED ANSWER?

A more subtle concern is whether these heads encode abstract predicates or simply store concrete
answers. For instance, when the source prompt asks to “find the fruit” with answer “Plum”, does
the query state encode the predicate “find the fruit” or the specific item “Plum”? In the destination
prompt, “Plum” would naturally show higher similarity to “Apple” (another fruit) than to “Watch” (a
non-fruit), potentially explaining the selective behavior we observe in the attention pattern.

To resolve this ambiguity, we designed a critical experiment: we use source prompts that contain
predicates but no valid answers. We observe that even in such cases, the filter heads retain their high
causality of 0.80 (410 out of 512 examples from the SelectOne task, ∆ctarg = 8.08± 3.1). Combined
with our ablation studies in Section 3.3, these experiments demonstrate the crucial role of filter heads
in actively participating in filtering, rather than simply mediating the pre-filtered items.

F AVERAGING qsrc TO REMOVE THE ORDER ID

While in Appendix E we make the case that filter heads encode predicates rather than specific answers,
our error analysis reveals that sometimes filter heads do transfer the position of the answer in the
source prompt.

When examining cases where our intervention fails, we find that the model sometimes selects the item
at the same position as the original answer in the source prompt. Figure 8 also shows elevated scores
for items matching the source answer’s position coid in critical layers, although not as high as ctarg.
This suggests that the LM also encodes the positional information or order ID (Feng & Steinhardt,
2023; Prakash et al., 2025) of csrc alongside the predicate. A probable explanation for this is: as these
filter heads are distributed across a range of layers, patching qsrc from filter heads in later layers may
bring over specific contribution from the filter heads in earlier layers.

To isolate the predicate signal from this positional bias, we use a simple trick: averaging the
query states across multiple source prompts. We produce n variations of the same source prompt
psrc = P(Csrc, ψsrc) by changing the index of the correct answer csrc. Figure 15 illustrates this idea.
This trick improves our causality scores, also shown in Figure 15.
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Options: Cherry, Knife, Pen, Ambulance.
Which one is a fruit in this list?
\nAns:

Options: Knife, Cherry, Pen, Ambulance.
Which one is a fruit in this list?
\nAns:

Options: Knife, Pen, Cherry, Ambulance.
Which one is a fruit in this list?
\nAns:

Options: Knife, Pen, Ambulance, Cherry.
Which one is a fruit in this list?
\nAns:

w/o Avg Avg
0.0

0.2

0.4

0.6

0.8

1.0

0.79
0.86

Figure 15: Averaging qsrc to remove the order ID information. This simple trick improves the causality scores
by 7 to 10 points across the board. Causality scores presented for 512 examples from SelectOne task.

G ADDING A PRIMING PREFIX HELPS WITH CAUSALITY.

Table 1 shows that filter head causality varies across information types for the same SelectOne task.
Notably, tasks requiring recalling a person’s nationality and the location of a landmark show lower
causality scores.

Following Amini & Ciaramita (2023), we provide contextual priming and check the causality in these
cases. In a question-after format, if before presenting the items we add a prefix that explicitly instructs
the LM to recall relevant information, we can achieve approximately a 10-point improvement in
causality scores. This experiment further validates the hypothesis that filter heads work better when
the relevant semantic information required for filtering is already present in the item latents.

Table 6: Priming the context helps improve the causality score.

Filtering Task W/O Priming With Priming Priming Prefix

Person Nationality 0.504 (258/512) 0.625 (320/512)
Recall the nationality of
these people:\n

Landmark in Country 0.576 (295/512) 0.670 (343/512)
Recall which country these
landmarks are located in:\n

H SUMMARY OF RESULTS IN GEMMA

We replicated all of our experiments for Gemma-27B and we observe that the scores mostly align
with Llama-70B scores. At this moment we don’t have all the scores for Gemma-27B. We will
include them in future revisions.

H.1 WITHIN TASK GENERALIZABILITY

Table 7: Causality of filter heads on SelectOne tasks. Heads identified using object-type filtering generalize to
semantically distinct predicates like profession identification. Compare with Llama-70B scores in Table 1.

Filtering Task Causality ∆logit With Priming

Object Type 0.824 +9.95 -

Person Profession 0.770 +9.10 -
Person Nationality 0.305 +5.98 0.404
Landmark in Country 0.410 +6.48 0.455
Word rhymes with 0.018 +0.12 0.037

H.2 ACROSS TASK GENERALIZEBILITY
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Figure 16: Task generalizability of the filter heads. Compare with Figure 3a.

H.3 DUAL IMPLEMENTATION IN QUESTION BEFORE VS QUESTION AFTER
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Figure 17: Effect of patching the residual latents in Gemma-27B. Compare with Figure 8.
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Figure 18: Effect of swapping the is_match flag between items in Gemma-27B. Compare with Figure 11.
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I USAGE OF LLMS

Proprietery LLMs services with black-box access such as claude.ai and gemini.google.com were
used as a general purpose assist tool, which is allowed as per the ICLR 2026 author guideline. We
have used such LLMs to polish some of the writings in this paper. We have also used LLMs to get
more items for our dataset and translating the prompts to other languages.

J LIMITATIONS

Our investigation of filtering mechanisms in LLMs, while revealing important insights, has several
limitations

Task Coverage. We examined only six filter-reduce tasks, which may not capture the full diversity
of filtering strategies employed by LLMs. Even within our six tasks we identified that the filter
heads do not show high causality in the CheckPresence task, indicating that the LM uses alternate
mechanism for certain filtering operations. The consistent prompt templates we used enable us to
scale up our controlled experiment setup, but they may have biased us towards specific computational
strategies inside the LM. LMs may adapt their filtering approach based on what information is
available in ways that our limited task set and prompting strategies cannot fully reveal.

LM Coverage. We identified filter heads in Llama-70B and Gemma-27B models. The fact that we
were able to identify similar mechanisms in two models of different sizes, from different families,
trained on different datasets echos the idea of Evolutionary Convergence from Morris (2006): distantly
related organisms (e.g. vertibrate and cephalopods) independently evolve similar adaptations (e.g.
eyes) in response to similar environmental pressure.

However, such convergence is not guaranteed across all LMs. Notably, findings from Zhong et al.
(2023) suggest that identical architectures trained on different datasets can potentially develop
different implementations for the same operation. LMs from other families may develop a mechanism
that does not make use of such filter heads. Additionally, we restrict our analysis to fairly larger
LMs. It is possible that smaller LMs, where parameter constraints might enforce higher head-level
superposition, entangle the predicate representation may get entangled with other unrelated stuff in
the query states. Therefore, we might not see the distinct head-level causal role of filter heads we get
in larger LMs.

Implementation. Our tasks are designed such that we can determine whether an answer is correct
based on what the LM predicts as the next token. While curating a prompt we ensure that none of the
items share a first token with each other. In all of our experiments we also ensure that the answer
of the source prompt, destination prompt, and the target answer of the transported predicate are all
different, in order to ensure that patching does not merely copy over the answer. However, this choice
of validating with only the first predicted token has potentially restricted us from exploring other
tasks that have a similar filter-reduce pattern of operation. Most of the causality scores we report in
this paper were calculated on a single trial with a 512 examples sampled randomly. It is possible that
these scores will change slightly on a different trial.

K QUALITATIVE ATTENTION PATTERNS OF FILTER HEADS

K.1 TYPICAL FILTER HEAD BEHAVIOR

The following are cases where the model clearly attends to the option which corresponds to the given
predicate.
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1293
1294
1295
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Select One Select One (MCQ)

Select First Select Last

Counting Check Existence

K.2 FILTER HEADS ARE SENSITIVE TO SEMANTIC INFORMATION

The following are cases where the model is prompted with tasks which require non-semantic knowl-
edge, and the the filter head attention pattern is noisy.

Rhymes With Number of Letters

First Alphabetically Last Alphabetically

K.3 MORE EXAMPLES FROM THE APPLICATION

We demonstrate a practical utility of filter heads in detecting the presence of certain concepts in the
text: identifying false information and detecting sentiment.

We curate a paragraph/free-form text that mix factual and false statements about a topic. We break
the text into sentences and then append a question asking the LM to identify the false information.
We visualize the aggregated attention pattern of the filter heads, which focus on the last token of the
false statements. To aid visualization we draw a red line underlining the sentences whose last token
gets attention score exceeding a preset threshold.

We apply the same approach to sentiment analysis using movie reviews containing both positive and
negative sentences.
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Lie Detector 1

Lie Detector 2

Negative Sentiment Detector 1

Negative Sentiment Detector 2
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L FILTER HEADS IN LLAMA-70B

Layer Head Indirect Effect

35 19 3.546021
39 45 1.353394
35 17 1.306396
31 38 1.114380
35 40 0.611328
35 20 0.443115
31 39 0.340698
35 18 0.281738
29 56 0.208984
42 31 0.154541
28 40 0.151733
29 61 0.141235
36 47 0.128540
34 6 0.110474
37 30 0.106079
35 23 0.104248
31 33 0.098511
33 18 0.098145
29 57 0.076416
37 39 0.073608
34 33 0.068726
35 27 0.052734
35 28 0.052734
28 45 0.050049
33 30 0.042725
39 35 0.038818
38 19 0.028809
38 49 0.022949
36 44 0.022461
36 17 0.018066
50 34 0.017456
36 54 0.017090
37 36 0.016479
37 16 0.011108
36 52 0.010376
36 22 0.003052
32 12 0.001953
38 51 -0.001221
45 1 -0.001953
37 7 -0.003296

Layer Head Indirect Effect

35 5 -0.003418
39 36 -0.003418
30 62 -0.004272
32 48 -0.004395
31 40 -0.005005
35 36 -0.011719
32 19 -0.013794
33 23 -0.014160
33 46 -0.017456
37 3 -0.021362
29 62 -0.030029
47 17 -0.036133
31 0 -0.036743
38 50 -0.042847
42 30 -0.043091
31 37 -0.055786
37 0 -0.061890
33 21 -0.063599
37 4 -0.067749
36 40 -0.068481
49 1 -0.069824
35 22 -0.079346
29 60 -0.085938
49 7 -0.087402
33 43 -0.096558
31 36 -0.100586
31 32 -0.109375
49 5 -0.162842
42 28 -0.172974
31 43 -0.183960
37 28 -0.188232
49 4 -0.216553
34 1 -0.247803
38 23 -0.250610
34 45 -0.252563
47 18 -0.437988
39 44 -0.486816
35 42 -0.770020
39 41 -0.843811

Table 8: Indirect effect scores for filter heads, sorted in descending order.
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