
Triplet Interaction Improves Graph Transformers:

Accurate Molecular Graph Learning with Triplet Graph Transformers

Md Shamim Hussain 1 Mohammed J. Zaki 1 Dharmashankar Subramanian 2

Abstract

Graph transformers typically lack third-order in-

teractions, limiting their geometric understanding

which is crucial for tasks like molecular geom-

etry prediction. We propose the Triplet Graph

Transformer (TGT) that enables direct commu-

nication between pairs within a 3-tuple of nodes

via novel triplet attention and aggregation mecha-

nisms. TGT is applied to molecular property pre-

diction by first predicting interatomic distances

from 2D graphs and then using these distances

for downstream tasks. A novel three-stage train-

ing procedure and stochastic inference further

improve training efficiency and model perfor-

mance. Our model achieves new state-of-the-art

(SOTA) results on open challenge benchmarks

PCQM4Mv2 and OC20 IS2RE. We also obtain

SOTA results on QM9, MOLPCBA, and LIT-

PCBA molecular property prediction benchmarks

via transfer learning. We also demonstrate the

generality of TGT with SOTA results on the trav-

eling salesman problem (TSP).

1. Introduction

Recent works have demonstrated the effectiveness of trans-

former (Vaswani et al., 2017) architectures across various

data modalities. Originally developed for textual data, the

transformer has since been adapted to image (Dosovitskiy

et al., 2020) and audio (Child et al., 2019), achieving state-

of-the-art (SOTA) results. More recently, pure graph trans-

formers (GTs) (Ying et al., 2021; Hussain et al., 2022; Park

et al., 2022) have emerged as a promising architecture for

graph-structured data, outperforming prior approaches in-
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volving localized convolutional/message-passing graph neu-

ral networks (MPNNs). First applied to molecular graphs,

GTs have shown superior performance on diverse graph

datasets including super-pixel and citation networks, and

have been used to solve problems like vehicle routing (Liu

et al., 2023) and the traveling salesman (TSP) problem (Hus-

sain et al., 2022). This success is attributed to the ability

of GTs to model long-range dependencies between nodes,

overcoming the limitations of localized architectures.

Graph transformers utilize global self-attention to enable

dynamic information exchange among node representations.

Additionally, since graph topology and edge representations

are as crucial as node representations for many tasks, the

Edge-augmented Graph Transformer (EGT) (Hussain et al.,

2022) introduces dedicated edge channels that are updated

across layers, enabling new pairwise (i.e., both existing

and non-existing edge) representations to emerge over con-

secutive layers. This explicit modeling of both node and

edge embeddings benefits performance on both node-centric

and pairwise/link prediction tasks. However, although EGT

allows information flow between node and pair representa-

tions, it lacks direct communication between pairs. Instead,

neighboring pairs can only exchange information via their

common node, creating a bottleneck. This limits the expres-

sivity of the model by allowing only 2nd-order interactions

(Joshi et al., 2023). As shown by Li et al. (2024) 3rd-order

interactions in the form of direct communication between

neighboring pairs, i.e., within a 3-tuple of nodes is important

for understanding important geometric concepts like angles.

In particular, 3D molecular geometry plays a vital role in de-

termining chemical properties. While molecular graphs rep-

resent atoms as nodes and bonds as edges (“2D” structure),

the relative positions of atoms in 3D space crucially influ-

ence quantum mechanical attributes like orbital energies and

dipole moments and also other properties like solubility and

interactions with proteins. Accordingly, prior works (Stärk

et al., 2022; Liu et al., 2021b) have shown that incorporating

3D geometry significantly improves performance on molec-

ular property prediction. Geometric GNNs like GemNet

(Gasteiger et al., 2021) rely on input features derived from

the ground truth 3D geometry to predict molecular prop-

erties. However, determining ground truth 3D geometries

1



Triplet Interaction Improves Graph Transformers

requires expensive quantum chemical simulations, present-

ing computational barriers for large-scale inference. In this

work, we explicitly learn to predict the molecular geometry

using only 2D topological information. Specifically, we

train a model to predict interatomic distances, serving as

geometric input to the downstream chemical property pre-

diction task. This is a paradigm shift from the traditional

approach of 3D to 2D transfer learning (Stärk et al., 2022)

or relying on less accurate 3D geometry (Fang et al., 2021).

We introduce a novel 3rd-order interaction mechanism in

the form of triplet interactions that enable direct communi-

cation between neighboring pairwise representations. This

improves the expressivity of popular 2nd-order interaction

based graph transformers like EGT. Reliance on 3rd-order

interactions rather than features (similar to (Li et al., 2024))

allows for (i) accurate prediction of geometry from scratch,

i.e., without an initial estimate of 3D coordinates, and (ii) ro-

bustness to input geometric inaccuracies. Geometric GNNs

lack these capabilities due to their direct reliance on input

geometric features. We propose two forms of triplet inter-

actions called triplet attention and triplet aggregation. We

call this architecture Triplet Graph Transformer (TGT). We

also demonstrate the effectiveness of triplet interaction in

other geometric graph learning tasks, such as the traveling

salesman problem (TSP) – demonstrating its generality.

We introduce a two-stage model for molecular property pre-

diction involving a distance predictor and a task predictor.

Unlike previous approaches like UniMol+ (Lu et al., 2023),

our method eliminates the need for initial (e.g., RDKit (Lan-

drum, 2013)) 3D coordinates, and instead learns to predict

interatomic distances from 2D molecular graphs. The dis-

tance predictor can be directly used for other molecular

property prediction tasks, whereas the task predictor can be

finetuned for related quantum chemical prediction tasks.

We also propose a three-stage training framework for the

distance and task predictors, which significantly reduces the

training time and improves the performance of the model.

We also introduce a novel stochastic inference technique that

further improves the model’s performance and allows for

non-iterative parallel inference and uncertainty estimation.

Additionally, we introduce new methods for regularizing

both the pairwise update and triplet interaction mechanisms.

We also propose a locally smooth structural noising method

and a binned distance prediction objective that makes the

model robust to structural perturbations.

Through these contributions, our proposed TGT model

achieves new state-of-the-art (leaderboard) results on the

PCQM4Mv2 (Hu et al., 2021), OC20 IS2RE (Chanussot

et al., 2021), and QM9 (Ramakrishnan et al., 2014) quantum

chemical datasets. We also demonstrate the transferability

of our learned distance predictor by achieving SOTA re-

sults on the MOLPCBA (Hu et al., 2020) and LIT-PCBA

(Tran-Nguyen et al., 2020) benchmarks, which are molecu-

lar property prediction and drug discovery datasets, respec-

tively. This showcases the ability of our trained distance

predictor to act as an off-the-shelf pairwise feature extractor

that can be utilized for new molecular graph learning tasks.

2. Related Work

Some previous works like GraphTrans (Wu et al., 2021),

GSA (Wang & Deng, 2021), and GROVER (Rong et al.,

2020) and some new works like GPS (Rampášek et al.,

2022) and GPS++ (Masters et al., 2022) have used global

self-attention to boost the expressivity of GNNs in a hy-

brid approach. But our work is more directly related to the

recently proposed pure graph transformers (GTs) such as

SAN (Kreuzer et al., 2021), Graphormer (Ying et al., 2021),

EGT (Hussain et al., 2022), GRPE (Park et al., 2022), GEM-

2 (Liu et al., 2022a), and UniMol+ (Lu et al., 2023). Our

contribution is introducing novel 3rd-order interaction mech-

anisms that improve the expressivity of GTs. We primarily

approach the problem of molecular property prediction from

a pure graph transformer perspective (but also demonstrate

its generality). Recently, this problem has seen a lot of in-

terest in the form of equivariant/invariant geometric GNNs

like SchNet (Schütt et al., 2017), DimeNet (Gasteiger et al.,

2020b), GemNet (Gasteiger et al., 2021), SphereNet (Liu

et al., 2021b) and equivariant transformers like Equiformer

(Thölke & De Fabritiis, 2021), and TorchMD-Net (Thölke

& De Fabritiis, 2022). Unlike these works, our model can

be used for both general-purpose graph representation learn-

ing and geometric deep learning (Li et al., 2024). We pre-

serve SE(3) invariance by limiting the input features to

interatomic distances. We train our network to predict inter-

atomic distances from 2D molecular graphs, which allows

for inference even in the absence of 3D information. This is

in contrast to 3D pretraining approaches like 3D Infomax

(Stärk et al., 2022), GraphMVP (Liu et al., 2021a), Chemrl-

GEM (Fang et al., 2021), 3D PGT (Wang et al., 2023b),

GeomSSL (Liu et al., 2022b), Transformer-M (Luo et al.,

2022) which resort to 2D finetuning or multitask learning

to make predictions in absence of 3D information. On the

other hand, UniMol+ (Lu et al., 2023) iteratively refines

cheaply computed RDKit (Landrum, 2013) coordinates. In

contrast, our approach requires no initial 3D coordinates

and directly predicts interatomic distances from 2D graphs.

3. Method

3.1. TGT Architecture

Triplet Graph Transformer (TGT) significantly extends the

Edge-augmented Graph Transformer (EGT) (Hussain et al.,

2022) by introducing direct pair-to-pair communication in

the form of triplet (3rd-order) interactions. In each layer,
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Figure 1. Triplet interaction allows direct communication between

two adjacent pairs (i, j) and (j, k), alleviating the bottleneck at

the junction node j and also takes into account the third pair (i, k)
within the 3-tuple (i, j, k). (a) inward update (b) outward update.

EGT maintains both node embedding hi for each of the

N nodes and pairwise embedding eij for each (i, j) of the

N × N node pairs (see Appendix C for details). Triplet

interaction operates only on the pairwise embeddings eij .

TGT addresses the following important limitation of EGT –

it updates the pairwise embeddings eij solely based on the

node embeddings hi and hj . While this choice ensures a

computational complexity of O(N2) like the original trans-

former, it constrains the model’s expressivity to that of a

1-GWL test (Joshi et al., 2023). To improve upon this, we

must move beyond 2nd-order interactions within the 2-tuple

of nodes (i, j) and consider 3rd-order interactions involv-

ing the 3-tuple of nodes (i, j, k). Triplet interaction allows

direct information flow to the pair (i, j) from the neighbor-

ing pair (j, k). To complete the 3-tuple, it also considers

the pair (i, k). As illustrated in Figure 1, the linear arrows

between a pair of nodes denote the information flow in the

node channels, whereas the curved arrow represents the in-

formation flow between pairwise embeddings due to triplet

interaction. This interaction allows (i, j) to aggregate all

neighboring pairs (j, k), (j, k′), (j, k′′), . . . without involv-

ing the junction node j, resolving the bottleneck at j. This

3rd-order interaction elevates the model’s expressivity be-

yond 1-GWL, approaching that of 2-GWL, allowing it to

model complex geometric relationships in graphs. But this

comes at the cost of increased computational complexity.

We only consider 3rd-order interactions which limits the

complexity to O(N3). This is a good engineering choice

since, as shown by Li et al. (2024), 3rd-order interactions

are crucial for geometric understanding, yet ≥4th-order in-

teractions add little/no benefit at much higher computational

cost. Also, sub-cubic complexity is achievable with some

concessions, as we will see in the next section. Some pre-

vious works have also used 3rd-order interactions via axial

attention (Liu et al., 2022a) or triangular update (Lu et al.,

2023; Jumper et al., 2021) (see Appendix B for details).

We introduce a novel triplet interaction module to the edge

channels, between the pairwise attention block and the edge

Feed Forward Network (FFN) block. This module follows

the same pre-norm layer normalization and residual con-

Figure 2. (a) Triplet Graph Transformer (TGT) (b) Triplet Interac-

tion Module (inward update shown in detail, outward is similar).

nection pattern as the rest of the network. The resultant

Triplet Graph Transformer (TGT) architecture is shown in

Figure 2(a). The triplet interaction module is shown in Fig-

ure 2(b). We propose two forms of interaction mechanisms

called triplet attention and triplet aggregation and refer to

the resultant variants as TGT-At and TGT-Ag, respectively.

Triplet Attention (TGT-At) For a pair (i, j), the triplet

attention is computed as follows

oin

ij =

N
∑

k=1

ainijkv
in

jk (1)

ainijk = softmaxk(
1√
d
qin

ij · pin

jk + binik)× σ(ginik) (2)

where the value vector vin

jk is derived from a learnable pro-

jection of the pairwise embedding ejk and aijk is the atten-

tion weight assigned to the pair (j, k) by the pair (i, j). This

is done for multiple attention heads and oin

ij is the output of

an attention head. qin

ij and pin

jk are the query and the key

vectors derived from the pairwise embeddings eij and ejk,

respectively. binik, g
in

ik are scalars derived from the pairwise

embeddings eik belonging to the third pair (i, k) within the

3-tuple (i, j, k), which participates by providing these bias

and gating terms, respectively. The gating term is not strictly

necessary but improves the performance of the model. We

call this an inward update. Another parallel update, called

outward update, is done by changing the direction of the

aggregated pairs as follows:

oout

ij =

N
∑

k=1

aoutikjv
out

kj (3)

aoutikj = softmaxk(
1√
d
qout

ij · pout

kj + boutki )× σ(goutki ) (4)

Finally, oin

ij and oout

ij for all heads are concatenated and

the the pairwise embedding eij is updated from a learnable
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projection of the resultant. Triplet attention combines the

strengths of axial attention (Liu et al., 2022a) and triangular

update (Jumper et al., 2021) in a single update. It is thus

the most expressive form of interaction and outperforms

both of the aforementioned mechanisms in our experiments.

However, it has an O(N3) compute complexity.

Triplet Aggregation (TGT-Ag) Triplet aggregation can be

expressed as follows for the inward update:

oin

ij =

N
∑

k=1

ainikv
in

jk (5)

ainik = softmaxk(b
in

ik)× σ(ginik) (6)

Notice that it is a tensor multiplication between the weight

matrix and the value matrix, each of which has only

O(N2) elements and thus, has a subcubic complexity of

≈ O(N2.37) (Ambainis et al., 2015) which is much better

than the cubic complexity of triplet attention. As a compro-

mise, we have to remove the dependence of the weights on

the junction node j. The weights are only determined by the

pair (i, k), due to removing the dot product term from the

weights. Thus, this process is not an attention mechanism.

We also have an outward update, and the final update is done

by concatenating the inward and outward updates. Note that

the weights are bounded and normalized (ignoring the gat-

ing term) unlike the triangular update in UniMol+ (Lu et al.,

2023). Also, the values being aggregated are vectors instead

of scalars, which makes the process more expressive and

efficient as only a few heads are required instead of many.

A comparison of different 3rd-order interaction mechanisms

(previous methods and our triplet interactions) is shown in

Table 1. Triplet attention is the most expressive because all

other interactions are ablated versions of it, i.e., they can be

derived by removing some terms from triplet attention (see

Equations (1) to (6) and (8) to (10)). Triplet aggregation is

more expressive than triangular update because it aggregates

vector values rather than scalar values. In our experiments,

it outperforms triangular update while being more efficient.

Axial attention is the least expressive because it does not

include the pair (i, k), and thus interaction within the 3-

tuple is incomplete. In summary, triplet attention is the

best-performing yet heavyweight method while triplet ag-

gregation is more efficient and scalable at the cost of some

performance. Both are better than previous methods.

Regularization Methods We introduce a new dropout (Sri-

vastava et al., 2014) method for triplet interaction, called

triplet dropout. Following attention dropout (Zehui et al.,

2019), we randomly zero out the weights (aijk) of the triplet

interaction mechanism by sampling a binary mask Mijk

from a Bernoulli distribution with probability p and mul-

tiplying it with the weights aijk. This is done for each

attention head and both the inward and outward updates.

Table 1. Comparison of different 3rd-order interactions.

Axial Att.1 Tria. Update2 Triplet Agg. Triplet Att.

Normalized?

Gated?

Attention?

Values are Vectors Scalars Vectors Vectors

Participants ij, jk ij, jk, ik ij, jk, ik ij, jk, ik

Weighted by ij, jk ik ik ij, jk, ik

Complexity O(N3) O(N2.37) O(N2.37) O(N3)
Expressivity Worst Good Better Best

1Liu et al. (2022a), 2Lu et al. (2023)

Figure 3. The three stages of training and the stochastic inference.

We also propose a new dropout method for the pairwise

attention mechanism called source dropout. Instead of ap-

plying traditional attention dropout which randomly drops

individual members of the attention matrix, we drop entire

columns, i.e. key-value pairs, for all queries in all heads in

a layer. This essentially makes some of the nodes “invisi-

ble” as information sources for the other nodes during this

information exchange process. This is a stronger form of

regularization than the traditional attention dropout, inspired

by the structured dropout pattern proposed by Hussain et al.

(2023). It helps the model be robust to node degree vari-

ations in the input graphs, and thus more effective than

traditional attention dropout for graphs.

3.2. Training and Inference for Molecular Graphs

Our training method for molecular property prediction con-

sists of three stages. The first stage involves training the

distance predictor which predicts interatomic distances from

2D molecular graphs. The second stage involves pretraining

the task predictor which predicts molecular properties on

noisy 3D structures, and the third stage involves finetuning

it on the predicted distances. The three stages are shown in

Figure 3 along with the inference process.

Stage 1: Training the Distance Predictor We train a TGT

distance predictor to predict interatomic distances for all
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atom pairs in the molecule. The model takes the 2D molec-

ular graph as input and outputs a binned, clipped distance

matrix. We directly use the output edge embeddings to pre-

dict pairwise distances. We found predicting distances up to

8Å is enough for molecules. Cross-entropy loss is used to

train the model. Optionally, an initial distance estimate, e.g.,

from RDKit coordinates can be used to improve accuracy.

Our reasoning for predicting distances instead of coordi-

nates is that they can be directly used by the task predictor.

We predict and utilize the full distance matrix which fully

defines the geometry of the molecule up to a reflection (i.e.,

it cannot capture chirality). Thus, defining all pairwise dis-

tances also defines all the angles and dihedrals. Distances

are also invariant to translation/rotation and have a small,

easily learned value range. We found the accuracy of pre-

dicting individual distances is more important than strictly

conforming distances to a 3D structure. Unlike geomet-

ric GNNs like GemNet (Gasteiger et al., 2021), 3rd-order

features like angles are not necessary, due to our novel

triplet interaction (as shown by (Li et al., 2024)). Addi-

tionally, unlike UniMol+ (Lu et al., 2023), no initial 3D

structure is necessary for our approach, which is a signif-

icant advantage since the whole inference pipeline can be

pure neural network-based and highly scalable. We predict

binned distances instead of continuous values since distance

distributions are often multimodal and skewed, and thus

only fully captured by the model with a cross-entropy loss.

This allows us to predict the most probable distance, i.e. the

mode, which is more accurate than the mean or median pre-

dictions. Quantization noise due to binning does not affect

the downstream task predictor which is robust to noise.

Stage 2: Pretraining the Task Predictor We first pretrain

a TGT task predictor on the noisy ground truth 3D structures

(when available) rather than directly training on predicted

distances. It makes the task predictor robust to noise in

input distances and makes it adaptable to less accurate pre-

dicted distances. Similar to previous works (Godwin et al.,

2021), this also serves as an effective regularizer when we

include a pairwise distance prediction head in the task pre-

dictor with a secondary objective of predicting ground truth

binned distances by encouraging the edge channels to de-

noise the 3D structure. Without it, model accuracy stagnates

or deteriorates by failing to provide useful supervision to

these channels. The distance prediction secondary objective

combines with the primary task prediction objective in a

multitask learning setup and serves as a powerful regular-

ization method and can even be incorporated when training

directly on less accurate 3D data like RDKit coordinates.

We propose a novel input 3D noising method where instead

of adding random Gaussian or uniform noise that dispro-

portionately affects local versus global structure, we inject

locally smoothed noise that better reflects distance noise

characteristics. Specifically, atoms in closer proximity move

together, while far-apart atoms move more independently.

This can be expressed as:

r′i = ri +
N
∑

j=1

e−
∥ri−rj∥

ν uj ; where uj ∼ N (0, σ2I) (7)

Here, ri is the ground truth 3D coordinate of atom i, r′i
is the noised coordinate, and uj is the 3D noise vector

corresponding to atom j. The nature of the noise can be

controlled by tuning the smoothing parameter ν and the

noise variance σ2. We found that ν = 1Å is a good choice

for most cases, while σ can be tuned to set the noise level.

Stage 3: Finetuning the Task Predictor on Predicted Dis-

tances Before inference, the task predictor must adjust to

using predicted interatomic distances from the frozen dis-

tance predictor. During this finetuning process, we keep the

distance predictor in stochastic mode with active dropout

during inference. Although we choose the highest probabil-

ity distance bin, this enables sampling multiple predictions

for the same input, like a probabilistic model, and serves as

effective data augmentation, regularizing the finetuning pro-

cess. During finetuning, we maintain the distance prediction

objective from pretraining, although optionally with reduced

weight which continues to encourage noise robustness.

3.3. Stochastic Inference

During inference, we use stochastic distance predictions

and also leverage the task predictor in stochastic mode (i.e.,

dropouts are active) to predict target tasks. The task predic-

tor makes predictions on each distance sample, which are

aggregated via mean, median, or mode. It allows the task

predictor to process different structural variations to produce

a robust final prediction. This is reminiscent of using multi-

ple conformations to account for structural flexibility. This

process is non-iterative, embarrassingly parallel, and highly

scalable across multiple GPUs. Only ≈ 10 samples produce

very good results, which further improves monotonically

with more samples. The prediction distribution also enables

uncertainty estimation which is especially useful to guide

the search for new molecules with desired properties.

4. Experiments

Our experiments are designed to validate several key as-

pects of our proposed model and training approach. Firstly,

we demonstrate the performance and scalability of our ap-

proach on large quantum chemistry datasets PCQM4Mv2

(Hu et al., 2021) and OC20 (Chanussot et al., 2021). Next,

we evaluate the transfer learning capabilities of our mod-

els, by finetuning our task predictor from PCQM4Mv2 to

related quantum chemistry tasks on the QM9 (Ramakrish-

nan et al., 2014) dataset. We also transfer our distance
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Table 2. Results on PCQM4Mv2.

Val. MAE↓ Test-dev MAE↓
Model #Param (meV) (meV)

GINE1-VN14 13.2M 116.7 -

GCN2-VN14 4.9M 115.3 115.2

GIN3-VN14 6.7M 108.3 108.4

DeeperGCN4-VN14 25.5M 102.1 -

TokenGT5 48.5M 91.0 91.9

GRPE6 118.3M 86.7 87.6

Graphormer7 47.1M 86.4 -

GraphGPS8 13.8M 85.2 86.2

EGT9 89.3M 85.7 86.2

GEM-210 (+RDKit) 32.1M 79.3 80.6

Transformer-M11 69M 77.2 78.2

GPS++12 44.3M 77.8 72.0

Uni-Mol+13 (+RDKit) 77M 69.3 70.5

EGT9 (2 Stage+RDKit) 189M 69.0 -

TGT-Agx2 (+RDKit) 95M 68.2 -

TGT-Ag (+RDKit) 192M 67.9 -

TGT-At 203M 68.6 69.8

TGT-At (+RDKit) 203M 67.1 68.3

1Brossard et al. (2020), 2Kipf & Welling (2016), 3Xu et al. (2018), 4Li et al. (2020),
5Kim et al. (2022), 6Park et al. (2022), 7Ying et al. (2021), 8Rampášek et al. (2022),

9Hussain et al. (2022), 10Liu et al. (2022a), 11Luo et al. (2022), 12Masters et al.
(2022), 13Lu et al. (2023), 14Gilmer et al. (2017)

predictor from PCQM4Mv2 to molecular property predic-

tion on MOLPCBA (Hu et al., 2020) and drug discovery

dataset LIT-PCBA (Tran-Nguyen et al., 2020). Finally,

we showcase the utility of our triplet interaction mecha-

nisms for graph learning in general by evaluating it on

the traveling salesman problem task on the TSP dataset

by Dwivedi et al. (2020). The PyTorch (Paszke et al.,

2019) library was used to implement the models. The

training was done with mixed-precision computation on

4 nodes, each with 8 NVIDIA Tesla V100 GPUs (32GB

RAM/GPU), and two 20-core 2.5GHz Intel Xeon CPUs

(768GB RAM). The hyperparameters, training, and dataset

details are provided in Appendix E. Our code is available at

https://github.com/shamim-hussain/tgt.

4.1. Large-scale Quantum Chemical Prediction

PCQM4Mv2 PCQM4Mv2 comprising 4 million molecules,

is a part of the OGB-LSC datasets (Hu et al., 2021). The

primary objective is predicting the HOMO-LUMO gap. The

performance of the distance predictor is tuned on a random

subset of 5% of the training data which we call validation-

3D. The training of our TGT-At model takes ≈ 32 A100

GPU-days, slightly less than the training time of UniMol+

(Lu et al., 2023), which takes 40 A100 GPU-days.

The results of our experiments are presented in Table 2

in terms of Mean Absolute Error (MAE) in meV unit.

Our TGT-At model achieves the best performance on the

PCQM4Mv2 dataset, outperforming the previous SOTA

UniMol+ model by a significant margin of 2.2 meV. It is

worth highlighting that UniMol+ uses RDKit coordinates as

Table 3. Average results on the OC20 IS2RE task.

Val. Avg. Test Avg.

MAE↓ EwT↑ MAE↓ EwT↑
Model (meV) (%) (meV) (%)

SchNet1 666.0 2.65 684.8 2.61

DimeNet++2 621.7 3.42 631.0 3.21

SphereNet3 602.4 3.64 618.8 3.32

GNS4+NN10 480.0 - 472.8 6.51

Graphormer-3D5 498.0 - 472.2 6.10

EquiFormer6+NN10 441.0 6.04 466.0 5.66

DRFormer7 442.5 6.84 450.9 6.48

Moleformer8 460.0 5.48 458.5 6.48

Uni-Mol+9 408.8 8.61 414.3 8.23

TGT-Ag 423.7 8.64 - -

TGT-At 403.0 8.82 414.7 8.30

1Schütt et al. (2017), 2Gasteiger et al. (2020a), 3Liu et al. (2021b), 4Kumar &
Vantassel (2022), 5Shi et al. (2022), 6Thölke & De Fabritiis (2021), 7Wang et al.

(2023a), 8Yuan et al. (2023), 9Lu et al. (2023), 10Godwin et al. (2021)

Table 4. A breakdown of performance of top two models – Uni-

Mol+ (Lu et al., 2023) and our TGT-At on different splits of the

OC20 IS2RE validation and test datasets.
Val. Avg. Test Avg.

Split Uni-Mol+ TGT-At Uni-Mol+ TGT-At

ID MAE↓ 379.5 381.3 374.5 379.6

ID EwT↑ 11.15 11.15 11.29 11.50

OOD Ads. MAE↓ 452.6 445.4 476.0 471.8

OOD Ads. EwT↑ 6.71 6.87 6.05 5.70

OOD Cat. MAE↓ 401.1 391.7 398.0 399.0

OOD Cat. EwT↑ 9.90 10.47 9.53 9.84

OOD Both MAE↓ 402.1 393.6 408.6 408.4

OOD Both EwT↑ 6.68 6.80 6.06 6.17

input which is optional for our model. We see that even with-

out RDKit coordinates, i.e., with a pure neural approach, our

model outperforms UniMol+ by a fair margin. Hence, we

currently hold the top positions on the PCQM4Mv2 leader-

board for both RDKit-aided and pure neural approaches.

The TGT-Ag model also exhibits good performance, se-

curing the second-best position after TGT-At. TGT-Agx2

reduces parameter count by half by sharing parameters in

consecutive layers yet still outperforms UniMol+. Our per-

formance gains over other models stem from two factors –

not only a superior architecture but also better training and

inference. This is evidenced by the success of a basic EGT

2-stage model under our training and inference paradigm.

Open Catalyst 2020 IS2RE The Open Catalyst 2020 Chal-

lenge (Chanussot et al., 2021) is aimed at predicting the

adsorption energy of molecules on catalyst surfaces using

machine learning. We focus on the IS2RE (Initial Struc-

ture to Relaxed Energy) task, where the model is provided

with an initial DFT structure of the crystal and adsorbate,

which interact with each other to reach the relaxed structure

when the relaxed energy of the system is measured. We

exclusively use the IS2RE dataset and limit the number of

6
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atoms to a maximum of 64 by cropping/sampling based on

distances to the adsorbate atoms. It takes ≈ 32 A100 GPU-

days to train the model, which is significantly lower than the

112 GPU-days used by UniMol+, due to using much smaller

sized graphs and also our more efficient training method.

The results for the IS2RE task are shown in Table 3 in terms

of MAE (in meV) and percent Energy within a Threshold

(EwT) of 20 meV. We see that TGT-At performs better than

the SOTA UniMol+ model while using significantly less

compute, both for training and inference. TGT-Ag performs

second best and still outperforms other direct methods while

being significantly faster. The IS2RE evaluation is carried

out over multiple sub-splits of the validation and test datasets

- ID (In Domain) and OOD (Out of Domain) Adsorbates,

Catalyst, or Both. The breakdown for the best two models

– UniMol+ and TGT-At are presented in Table 4. We see

that TGT-At outperforms UniMol+ on OOD splits which

are of more importance, and overall performs slightly better

when both MAE and EwT are considered. Thus our TGT-At

model secures the spot of the best-performing direct method

on the OC20 IS2RE leaderboard.

Uncertainty Estimation Our stochastic inference method

allows us to draw multiple sample predictions for each input,

which can be used to estimate the uncertainty of our predic-

tions by looking at the spread of the samples. Specifically,

we use the reciprocal of standard deviation as a confidence

measure, as shown in Figure 4. For better visualization, we

normalize the confidence measure to the range [0, 1]. We

plot the MAE and EwT of validation graphs, filtered by

confidence threshold. We can see that performance mono-

tonically improves with higher confidence – evidenced by

lower MAE and higher EwT. This shows that the confidence

of a prediction has a strong positive correlation with its ac-

curacy. This can be useful for real-world applications like

drug discovery and material design.

4.2. Transfer Learning

Our model learns two different forms of knowledge during

the large-scale training on the PCQM4Mv2 dataset. The

distance predictor learns to predict interatomic distances

from 2D molecular graphs and the task predictor learns to

predict the quantum chemical property of HOMO-LUMO

gap from 3D molecular graphs. Thus we test the transfer of

knowledge in two different settings in this section.

Finetuning on QM9 To highlight the transfer of knowledge

to related quantum chemical prediction tasks we finetune the

task predictor from PCQM4Mv2 on the QM9 (Ramakrish-

nan et al., 2014) dataset. The ground truth 3D coordinates

are provided on this dataset which can be used during infer-

ence, so the distance predictor is not required. We report

finetuning performance on a subset of 7 tasks from the 12

tasks in QM9 in Table 5. We get comparable results with

Figure 4. Normalized Confidence Threshold vs MAE (meV) and

EwT (%) on (a) PCQM4Mv2 and (b) OC20 IS2RE validation sets.

Table 5. Results (MAE↓) on the QM9 dataset.

Method µ α ϵH ϵL ∆ϵ ZPVE Cv

GraphMVP1 0.031 0.070 28.5 26.3 46.9 1.63 0.033

GEM2 0.034 0.081 33.8 27.7 52.1 1.73 0.035

3D Infomax3 0.034 0.075 29.8 25.7 48.8 1.67 0.033

3D-MGP4 0.020 0.057 21.3 18.2 37.1 1.38 0.026

PhysNet5 0.053 0.062 32.9 24.7 42.5 1.39 0.028

Schnet6 0.033 0.235 41.0 34.0 63.0 1.7 0.033

Cormorant7 0.038 0.085 34.0 38.0 61.0 2.03 0.026

DimeNet++8 0.030 0.044 24.6 19.5 32.6 1.21 0.023

PaiNN9 0.012 0.045 27.6 20.4 45.7 1.28 0.024

EGNN10 0.029 0.071 29.0 25.0 48.0 1.55 0.031

NoisyNode11 0.025 0.052 20.4 18.6 28.6 1.16 0.025

SphereNet12 0.025 0.053 22.8 18.9 31.1 1.12 0.024

SEGNN13 0.023 0.060 24.0 21.0 42.0 1.62 0.031

EQGAT14 0.011 0.053 20.0 16.0 32.0 2.00 0.024

SE(3)-T15 0.051 0.142 35.0 33.0 53.0 - 0.052

TorchMD-Net16 0.011 0.059 20.3 17.5 36.1 1.84 0.026

Equiformer17 0.011 0.046 15.0 14.0 30.0 1.26 0.023

Transformer-M18 0.037 0.041 17.5 16.2 27.4 1.18 0.022

TGT-Ag 0.025 0.040 9.9 9.7 17.4 1.18 0.020

1Liu et al. (2021a), 2Fang et al. (2021), 3Stärk et al. (2022), 4Jiao et al. (2022), 5Unke
& Meuwly (2019), 6Schütt et al. (2017), 7Anderson et al. (2019), 8Gasteiger et al.

(2020a), 9Schütt et al. (2021), 10Satorras et al. (2021), 11Godwin et al. (2021), 12Liu
et al. (2021b), 13Brandstetter et al. (2021), 14Le et al. (2022), 15Fuchs et al. (2020),

16Thölke & De Fabritiis (2022), 17Thölke & De Fabritiis (2021), 18Luo et al. (2022)

TGT-Ag and TGT-At, so we only report results for TGT-

Ag to save compute. We see that TGT-Ag archives SOTA

results and outperforms other models by a significant mar-

gin in predicting the HOMO (ϵH ), LUMO(ϵL), and the

HOMO-LUMO gap (∆ϵ). This is because these tasks are

directly related to the pretraining task. We also achieve

SOTA results for α and Cv and perform satisfactorily on the

other two tasks – demonstrating a positive transfer of knowl-

edge to these tasks. Notably, we outperform Transformer-M

(Luo et al., 2022), another transformer model pretrained on

PCQM4Mv2 due to our novel triplet interaction mechanism.

Molecular Property Prediction Since 3D geometric infor-

mation is valuable for molecular property prediction, we

use our pretrained distance predictor (without RDKit) to

provide estimations of interatomic distances to models on

the MOLPCBA (Hu et al., 2020) molecular property pre-

diction and the LIT-PCBA (Tran-Nguyen et al., 2020) drug

discovery benchmarks. These datasets do not have ground

truth 3D information. So, we do not finetune the distance

predictor on them but rather use it as a frozen feature extrac-

7
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Table 6. Results on MOLPCBA.
Model #Param Test AP↑(%)

DeeperGCN1-VN9-FLAG10 6.55M 28.42(0.43)

PNA2 6.55M 28.38(0.35)

DGN3 6.73M 28.85(0.30)

GINE4-VN9 6.15M 29.17(0.15)

PHC-GNN5 1.69M 29.47(0.26)

GIN6-VN9
pretrain 3.4M 29.02(0.17)

Graphormer7-FLAG10
pretrain 119.5M 31.40(0.34)

EGT8
pretrain 110.8M 29.61(0.24)

EGT8+RDKit 47M 31.09(0.33)

EGT8+TGT-At-DP 47M 31.12(0.25)

TGT-Ag+RDKit 47M 31.44(0.29)

TGT-Ag+TGT-At-DP 47M 31.67(0.31)

1Li et al. (2020), 2Corso et al. (2020), 3Beani et al. (2021), 4Brossard et al. (2020),
5Le et al. (2021), 6Xu et al. (2018), 7Ying et al. (2021), 8Hussain et al. (2022),

9Gilmer et al. (2017), 10Kong et al. (2020)

Table 7. Average results on LIT-PCBA.

Avg. Test

Model ROC-AUC↑(%)

GCN1 72.3

GAT2 75.2

FP-GNN3 75.9

EGT4 66.7

EGT4
pretrain 78.9

GEM5 76.6

GEM5
pretrain 78.4

GEM-26 77.6

GEM-26
pretrain 81.5

EGT4+RDKit 81.2

EGT4+TGT-At-DP 81.5

1Kipf & Welling (2016), 2Veličković et al. (2017), 3Cai et al. (2022a), 4Hussain et al.
(2022), 5Fang et al. (2021), 6Liu et al. (2022a)

tor. The task predictor is trained from scratch and takes the

predicted distances as input.

The results for MOLPCBA are presented in Table 6 in terms

of test Average Precision (%) which evaluates the perfor-

mance of the model in a multitask setting of predicting

128 different binary molecular properties. We see that both

EGT and TGT-Ag models trained from scratch with RDKit

coordinates get good results but if we use our pretrained

TGT-AT-DP (“-DP” stands for distance predictor), we get

the best results. We also see that our model outperforms

the SOTA pretrained Graphormer model by a significant

margin.

On the LIT-PCBA dataset, we report on an average ROC-

AUC (%) on 7 separate tasks of predicting interactions with

proteins in Table 7 (a breakdown is provided in Table 14 in

the appendix). We see that EGT with TGT-At-DP matches

the SOTA pretrained GEM-2. Both of these experiments

demonstrate that our pretrained TGT-At-DP can provide

valuable 3D information to the task predictor, even though

it is trained on a different dataset. We also see that our TGT-

At-DP which is trained on DFT coordinates can provide

more useful 3D information than RDKit coordinates.

Table 8. Results on TSP.
Test F1↑(%) Test F1↑(%)

Model (#Param≈100K) (#Param≈500K)

GCN1 63.0(0.1) -

GIN2 65.6(0.3) -

GAT3 67.1(0.2) -

GatedGCN4 80.8(0.3) 83.8( 0.2)

Graphormer5 - 69.8( 0.7)

ARGNP6 - 85.5( 0.1)

EGT7 82.2(0.0) 85.3( 0.1)

TGT-Ag 83.2(0.1) 85.7( 0.1)

TGT-Agx2 84.9(0.0) 86.2( 0.1)

TGT-Agx3 85.2(0.1) 86.6( 0.1)

TGT-Agx4 85.4(0.1) 87.1( 0.1)

TGT-At 83.3(0.1) -

1Kipf & Welling (2016), 2Xu et al. (2018), 3Veličković et al. (2017), 4Bresson &
Laurent (2017), 5Ying et al. (2021), 6Cai et al. (2022b), 7Hussain et al. (2022)

4.3. Traveling Salesman Problem

We also show the utility of our proposed triplet interac-

tion mechanism beyond molecular graphs and for general-

purpose graph learning by targetting the Traveling Salesman

Problem benchmark dataset by Dwivedi et al. (2020) which

consists of 12000 K-NN graphs of 50-500 2D points in the

unit square. The task is to predict which of the edges of

the K-NN graph are part of the optimal tour. Since distance

prediction is not required, we train a single-stage model that

performs binary edge classification, and no pretraining/fine-

tuning is involved. The model receives both coordinates

(node features) and pairwise distances (edge features) as

input. According to the specification of this benchmarking

dataset, the task must be performed with a given parameter

budget of either 100K or 500K.

The results are presented in Table 8 in terms of test F1 score

(%) where We get a significant improvement when we use

our TGT-Ag and TGT-At models. This shows that our triplet

interaction mechanism is very useful for solving the TSP

task. We do not evaluate the TGT-At model for the larger

500K parameter budget due to memory constraints. We

show the performance of the TGT-Ag model can be further

improved by using repeated layers with shared parameters,

dubbed as TGT-Agx2, TGT-Agx3, and TGT-Agx4. This

shows the effectiveness of our triplet interaction module in

an iterative setting.

4.4. Ablation Study

In Table 9, we compare our proposed triplet interaction

methods with the previously proposed 3rd-order mecha-

nisms – axial attention and triangular update, which can

be thought of as ablated variants of our method. We also

compare with ungated variants of our methods (i.e., with-

out gating terms). We compare the cross-entropy losses of

the distance predictors (a good indicator of the downstream

performance) with different 3rd-order interaction mecha-

8
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Table 9. Distance prediction performance of different 3rd-order

interaction mechanisms and training times on PCQM4Mv2.

No Axial Triang. Ungated Triplet Ungated Triplet

3rd- Att. Update Triplet Agg. Triplet Att.

Order Agg. Att.

Cross-Ent.↓ 1.270 1.231 1.225 1.226 1.218 1.207 1.199

Time/Epoch↓ 1.0 2.2 1.8 1.6 1.7 3.1 3.3

Table 10. Ablation Study on PCQM4Mv2.

Stoch. RDKit Denoise Noise Source DFT DFT Tripl. Val.

Infer. Coords. Obj. Local Drop. Pre- Dist. Att. MAE↓
Input Smooth. train. Pred. (meV)

- - - - - - - - 85.1

- - - - - - - 84.2

- - - - - - 82.2

- - - - - 80.9

- - - - 80.5

- - - 80.1

- - 79.4

- - 75.3

- - 76.6

- 72.9

71.0

nisms on the PCQM4Mv2 validation-3D set. We normalize

training time with respect to the no 3rd-order interaction

scenario. We see that triplet attention performs best but is

expensive. Triplet aggregation performs better than both

axial attention and triangular update, yet is more efficient.

The ungated variants perform slightly worse but are also

slightly more efficient. We also see that the model with no

3rd-order interaction performs the worst by a significant

margin, which shows its importance for distance prediction.

Table 10 shows a detailed ablation study to test the effec-

tiveness of our triplet interaction mechanism and other pro-

posed optimizations within our model and training frame-

work. Results are shown for a smaller 12-layer model on

PCQM4Mv2. We see that to take full advantage of the input

3D information (e.g., RDKit coordinates), we also need the

denoising distance prediction objective. Local smoothing

of the input noise improves this process. Source dropout

proves to be a better alternative to attention dropout. Incor-

porating DFT distance predictor, and pretraining on noisy

DFT coordinates both lead to significant improvements in-

dividually and even greater improvements when combined.

Finally, a significant leap comes from triplet attention.

5. Limitations

The main limitations of TGT lie in the computational com-

plexity (≥ O(N2.37)) of the triplet interaction mechanism

which is higher than the O(N2) complexity of base trans-

formers like EGT. This is because, while EGT only con-

siders pairwise interactions, TGT considers 3rd order in-

teractions. However, we predict that this disadvantage can

be alleviated by incorporating sparse and/or low-rank inter-

actions. In this work, we focus on maximizing the perfor-

mance of the model, and any exploration of the trade-off

between performance and complexity is left for future work.

6. Conclusion

In this work, we introduce the Triplet Graph Transformer

(TGT) architecture, which incorporates the 3rd-order triplet

interaction mechanism. This significantly improves the

modeling of geometric dependencies in graph transform-

ers. We proposed two forms of triplet interactions – an

attention-based mechanism with maximum expressivity, and

an aggregation-based mechanism with greater efficiency and

scalability. Additionally, we put forth a two-stage frame-

work involving separate distance predictor and property pre-

dictor models for molecular graphs. Our distance predictor

directly predicts interatomic distances from 2D graphs dur-

ing inference, eliminating the need for property prediction

on 2D information only. The three-stage training method-

ology with a stochastic inference scheme enables fast and

accurate predictions, significantly advancing over previous

iterative refinement approaches, and allows for uncertainty

quantification in the prediction. Through extensive experi-

ments, we demonstrate state-of-the-art predictive accuracy

on quantum chemical datasets and the transferability of our

distance predictor to molecular property prediction. More-

over, the superior performance of TGT on the TSP task

indicates the broad applicability of our proposed triplet in-

teractions. In future work, we plan to explore the use of our

triplet interaction mechanism for other graph learning tasks.

We also plan to evaluate its performance in other molecular

graph learning tasks like molecule and conformation gener-

ation. Additionally, we aim to further investigate improving

the compute and memory efficiency of triple interaction.
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A. Additional Details about Related Works

Graph Transformers Before pure graph transformers, the self-attention mechanism was used to boost the expressivity of

localized message-passing Graph Neural Networks (GNNs) - for example, GraphTrans (Wu et al., 2021) and GSA (Wang &

Deng, 2021) used global self-attention to improve long-range information exchange in GNNs. GROVER (Rong et al., 2020)

utilized GNNs to generate query, key, and value matrices for self-attention, enabling pretraining on molecular graphs. These

hybrid approaches were followed by a new research interest in pure graph transformers. SAN (Kreuzer et al., 2021) utilized

Laplace Positional Encodings (LPE) in a global self-attention based graph transformer. Graphormer (Ying et al., 2021)

proposed graph-specific relative positional encodings and showed superior performance on molecular property prediction

tasks. EGT (Hussain et al., 2022) extended the transformer framework to include pairwise/edge channels and proposed a

general framework for graph learning including edge-related and pairwise tasks. GEM-2 (Liu et al., 2022a) extended the

notion of pairwise channels to include higher-order channels to account for many body interactions in molecular graphs.

GRPE (Park et al., 2022) proposed a more expressive relative positional encoding scheme for graphs. TokenGT (Kim et al.,

2022) proposed to include both nodes and edges as tokens in the transformer. UniMol and UniMol+ (Lu et al., 2023) use

transformer backbones with pairwise channels, similar to EGT, for molecular property prediction. GPS (Rampášek et al.,

2022) proposed a framework to combine message-passing and self-attention mechanisms and GPS++ (Masters et al., 2022)

tuned these choices to achieve SOTA performance on PCQM4Mv2. Our TGT model is a pure transformer architecture for

graph learning with a novel triplet interaction mechanism for 3rd-order interaction between neighboring pairs which is

computationally much cheaper than higher-order channels used in GEM-2 while still being expressive enough to capture

geometric information required for molecular property prediction.

Molecular Property Prediction Following the success of message-passing GNNs on molecular property prediction tasks

(Gilmer et al., 2017), new geometry and physics informed GNNs have been proposed which are equivariant or invariant to 3D

rotations and translations. Works like SchNet (Schütt et al., 2017) and DimeNet (Gasteiger et al., 2020b) use distance-based

convolution whereas spherical methods like GemNet (Gasteiger et al., 2021) and SphereNet (Liu et al., 2021b) also encode

angle information. Equivariant aggregation was later generalized to equivariant transformers like Equiformer (Thölke &

De Fabritiis, 2021) and TorchMD-Net (Thölke & De Fabritiis, 2022). Unlike these works which innovate on the network

architecture to preserve equivariance, we preserve SE(3) invariance by limiting the input features to interatomic distances.

3D Pretraining While ground truth 3D structural information, e.g., atomic coordinates optimized through density functional

theory (DFT) improves model accuracy, they are prohibitively expensive to compute for each inference instance. 3D

pretraining approaches address this by using 3D data sources to teach encoders useful structural knowledge. These pretrained

networks can then effectively process 2D molecular graphs for property prediction where explicit 3D data is unavailable.

For example, 3D Infomax (Stärk et al., 2022) and GraphMVP (Liu et al., 2021a) maximize the mutual information between

2D topological and 3D views. Chemrl-GEM (Fang et al., 2021) uses bond-angle graphs and reconstruction tasks with

approximate 3D data. 3D PGT (Wang et al., 2023b) combines multiple generative tasks on 3D conformations guided by a

total energy signal. GeomSSL (Liu et al., 2022b) proposes coordinate and distance denoising to model potential energy

surfaces. Transformer-M (Luo et al., 2022) encodes distances into self-attention and also trains the transformer to be able to

predict in the absence of 3D information. UniMol+ (Lu et al., 2023) iteratively refines cheaply computed RDKit coordinates

before making final predictions. In contrast to these methodologies, our approach involves training a distance predictor that

directly forecasts interatomic distances from 2D molecular graphs. This eliminates the need for initial 3D coordinates in

downstream tasks, as the predicted distances serve as direct inputs.

B. Third-order Interactions in Previous Works

B.1. Axial Attention

GEM-2 (Liu et al., 2022a) introduced axial attention, which can be simplified when we consider only pairwise channels as

follows:

oij =

N
∑

k=1

aijkvjk (8)

aijk = softmaxk

(

1√
d
qij · pjk

)

(9)
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where vjk is the value vector of the pair (j, k) and aijk is the attention weight between pairs (i, j) and (j, k) (we have

re-used the notations from node-to-node attention for consistency). qij and pjk are the query and key vectors of pairs

(i, j) and (j, k), respectively. This is a generalization of the self-attention mechanism for pairs and has a computational

complexity of O(N3). However, notice that the neighboring pair (i, k) of the 3-tuple (i, j, k) is not considered in this

process. GEM-2 (Liu et al., 2022a) instead uses a 3rd-order channel to provide positional information to this attention

process. However, in the absence of 3rd-order information like angles, axial attention does not perform well. Another update

is done by changing the direction of the aggregated pairs, i.e., from (k, j) to (i, j), with the weights aikj .

B.2. Triangular Update

The triangular update proposed by AlphaFold 2 (Jumper et al., 2021) and later adopted by UniMol+ (Lu et al., 2023) takes

the form:

oij =

N
∑

k=1

aikbjk (10)

where, aik and bjk are scalars formed from the projections of the pair embeddings eik and ejk, respectively, and the output

oij is also a scalar. However, this mechanism is done for multiple sets of projections and the outputs are concatenated.

Additionally, another update takes place in the opposite direction, i.e., for o′ij =
∑N

k=1
a′kib

′

kj .

Notice that, in this case, the update is a simple matrix/tensor multiplication which can have subcubic complexity. However,

the information flow from pair (j, k) to pair (i, j) is mediated only by the pair (i, k). Unlike a true attention process, (i, j)
cannot “select” which pairs to aggregate. The information passed for each set is a scalar, which means that many sets

are required compared to a few attention heads. Also, this summation/aggregation process is unbounded which can be

problematic if the input graphs vary in size drastically.

C. The Edge-augmented Graph Transformer (EGT)

The Edge-augmented Graph Transformer (Hussain et al., 2022) is an extension to the transformer framework by Vaswani et al.

(2017) for general-purpose graph learning. This architecture uses the embeddings hi, where i ∈ {1, . . . , N}, to represent

the nodes in a graph with N nodes. The contribution of EGT is to add additional edge channels with N × N pairwise

embeddings eij which represent both existing and non-existing edges. The edge channels (i.e., pairwise embeddings) are

updated both in the multi-head attention and their own feed-forward layers, just like the node embeddings. In this way, EGT

makes the graph topology dynamic and allows new pairwise representations to emerge over consecutive layers.

EGT Multi-head Attention We adopt the EGT architecture with some changes. Firstly, we remove the dot product clipping

in the multi-head attention layer, which was introduced as a means for stabilizing the training. With this change, the EGT

self-attention mechanism can be expressed as:

oi =
N
∑

j=1

aijvj (11)

where vj is the value vector of node j and aij is the attention weight between nodes i and j. The attention weight is

computed as:

aij = softmaxj(tij)× σ(gij) (12)

tij =
1√
dk

qi · kj + bij (13)

where qi and kj are the query and key vectors of nodes i and j, respectively, dk is the dimension of the key vectors, and

oi is the output vector which is used to update the node embedding hi. The attention logit tij is the summation of the

scaled dot product (between the query and key vectors) and the attention bias. The edge channels participate in the attention

mechanism by (i) providing a bias term bij and (ii) providing a gating term gij which passes through a sigmoid function

σ(·) to directly control the flow of information from node j to node i. Both the bias and gating terms are computed from

projections of the edge embeddings eij . This is done for each head of the multi-head attention mechanism in each layer.

The node channels are updated from the projection of the concatenation of oi of all heads. The edge channels are also
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updated from a projection of the concatenation of the attention logits tij of all heads. This way, EGT ensures two-way

communication between the node and edge channels in the multi-head attention layer. This is in contrast to architectures

like UniMol+ (Lu et al., 2023) where the edge channels are updated from an outer product of the node embeddings which

adds additional computational cost.

Dynamic Centrality Scalers We also adopt the dynamic centrality scalers introduced by EGT which ensures that the

network is sensitive to the centralities of the nodes and thus at least 1-WL expressive. The centrality scalers are computed

from the abovementioned gating terms gij as:

si = ln

N
∑

j=1

(1 + σ(gij)) (14)

which scales the output oi of each attention head.

Other Details Similar to current best practices for transformers, EGT uses a pre-norm layer normalization (Ba et al., 2016)

before the multi-head attention layer and the feed-forward layer (FFN). EGT uses separate FFNs for the node and edge

channels.

Other Modifications Unlike the original EGT architecture which uses virtual nodes for graph-level tasks, we use a simple

global average pooling over the final node embeddings to produce graph-level representations. Also, we do not use any form

of absolute positional encoding, like the SVD-based positional encoding used by EGT.

D. Additional Details for TGT Model

D.1. Source Dropout

Figure 5. (a) Attention Dropout vs. (b) Source Dropout.

Source dropout is an attention-masking process similar to attention dropout. For each sample in a batch of samples, we

randomly mask the columns of the attention matrix by adding a large negative value. The value for column j is mj = −∞
with probability p, and mj = 0 with probability 1− p. Then, the bias term bhij = mj for all nodes i and attention heads h,

is added to the input of the softmax function. This is illustrated in Figure 5. Notice that this pattern will be different for

different layers and also for different samples in the batch. It is called “source” dropout because it essentially makes some of

the nodes unavailable as information sources for all other nodes, in a particular layer. This is in contrast to attention dropout

where the information may still flow via other attention heads.

D.2. Distance Encoding

We use two forms of encoding schemes to encode the continuous interatomic distances into the input features to the edge

channels. The first one is an RBF encoding scheme, similar to the one used by Transformer-M (Luo et al., 2022). The second

one is a Fourier encoding scheme. Both encodings perform well, and the choice can be made based on the application.

RBF Encoding The RBF encoding scheme is defined as:

okij =
1√

2π · |σk|
exp



−1

2

(

mk
ij · dij + bkij − µk

|σk|

)2


 (15)
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Where dij is the interatomic distance between atoms i and j. mk
ij , bkij , µk, and σk are learnable parameters for the k-th

kernel. mk
ij and bkij are looked up from an embedding table based on the type of atom pair (i, j). This is done for multiple

kernels, each with a different set of parameters. The output of the RBF encoding is the concatenation of the outputs of all

kernels which is fed through a two-layer MLP to produce the final output.

Fourier Encoding The Fourier encoding scheme is defined as:

ok
ij =

[

sin(ϕk
ij), cos(ϕ

k
ij)
]

(16)

ϕk
ij = dij ×

2π

λk

(17)

Where, [·, ·] represents concatenation. dij is the interatomic distance between atoms i and j. λk is the wavelength associated

with the k-th kernel. ϕk
ij is the phase for the k-th kernel at the distance dij . The output of the Fourier encoding is the

concatenation of the outputs of all kernels which is fed through a linear layer to produce the final output. We choose the

wavelengths λk to be logarithmically spaced between 2× δmin and 2× δmax, where δmin and δmax are the minimum and

maximum interatomic distances of interest, respectively.

D.3. Feature Encoding

For molecular data, we use the same set of atomic and bond features as provided by the OGB (Hu et al., 2020) Python library.

These features are transformed via a learnable vector embedding layer before being fed to the node and edge channels,

respectively. Additionally, we use the shortest path hop encoding scheme of EGT (Hussain et al., 2022), which is also

transformed via a learnable vector embedding layer before being fed to the edge channels. For the OC20 dataset, we use

only an embedding of atomic numbers as node features, and the distance encoding mentioned above as edge features.

D.4. Parameter Sharing in Consecutive Layers

We found that a few subsequent TGT layers can share the same set of parameters, similar to ALBERT (Lan et al., 2019).

More specifically, layers {i×m+ j + 1} for j ∈ {0, . . . ,m− 1} share the same set of parameters, where m is the “layer

multiplier”. We refer to this as TGTxm.

This can be useful for reducing the number of parameters in the model, as a form of model compression. However, for

a given compute budget, this does not significantly reduce the computational and memory costs of training or inference,

and it is more efficient to use separate parameters for each layer. However, this can become more relevant as the model

size increases by allowing the model to fit within the GPU memory. This can also be useful for communication-bound

distributed training, as the gradients of the shared parameters are computed only once and then broadcast to all the layers.

This form of compression can be useful for the storage of the model as well.

E. Additional Details about Datasets and Training

E.1. PCQM4Mv2

The PCQM4Mv2 dataset, comprising 4 million molecules, is a part of the OGB-LSC datasets (Hu et al., 2021). The

primary objective involves predicting the quantum chemical property known as the HOMO-LUMO gap, representing

the energy difference between the Highest Occupied Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular

Orbital (LUMO). The molecular formulas are provided as SMILES strings. The 2D graph can be efficiently extracted

using RDKit (Landrum, 2013), along with pertinent node (atom) and edge (bond) features. We employ the same feature set

from the OGB-LSC Python library. The ground truth 3D positions of atoms, derived from DFT (Density Function Theory)

simulations, are provided in the training dataset. However, inference must be executed without DFT coordinates and within

a reasonable time limit (4 hours).

To provide the distance predictor with initial 3D information, we utilize RDKit (Landrum, 2013) to extract 3D coordinates

and apply MM Force Field Optimization (Halgren, 1996), as outlined in (Liu et al., 2022a). It is important to note that this

step is optional for our method.

Due to the absence of Ground Truth 3D coordinates in the validation set, we randomly divide the training set into train-3D

and validation-3D splits, with the latter containing 5% of the training data. Hyperparameters of the distance predictor are

fine-tuned by monitoring the average cross-entropy loss of binned distance prediction on the validation-3D split, which is
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found to be a good indicator of downstream performance. The MAE (Mean Absolute Error) loss is employed to pretrain and

finetune the task predictor, with an additional secondary cross-entropy loss for predicting ground truth distance bins with a

weight of 0.1. The input noise level is adjusted by evaluating the finetuned performance on the validation set. For a given

noise level, the MAE during pretraining serves as a good indicator of downstream performance. We train both a 24-layer

distance predictor and a 24-layer task predictor with identical architecture, utilizing the Adam optimizer. The distance

predictor undergoes training for 60,000 steps with a batch size of 1024, while the task predictor is trained for 300,000 steps

with a batch size of 2048 and finetuned for an additional 30,000 steps. This entire process is completed in less than 2 days,

utilizing 32 NVIDIA V100 GPUs for our most resource-intensive TGT-At model. This approximately corresponds to 32

A100 GPU-days, slightly less than the training time of UniMol+ (Lu et al., 2023), which takes 40 A100 GPU-days. We get

very good results by using an average of 10 sample predictions during stochastic inference, but to obtain the best possible

results we draw 50 samples.

Despite our models having a higher parameter count compared to the previous SOTA UniMol+, when combining parameters

of the distance predictor and the gap predictor, it is crucial to recognize that direct parameter count comparisons can be

misleading, especially for iterative models like UniMol+, where parameters are shared across iterations, contrasting with

non-iterative models like ours. To illustrate this we train a TGT-Ag model where the consequent layers share the same set of

parameters, dubbed as TGT-Agx2 reducing parameter count by half yet still outperforming UniMol+. However, we do not

resort to this form of parameter sharing because although it makes the model parameter-efficient, it does not significantly

reduce the computational and memory costs of training and inference. Instead, we focus on compute efficiency, i.e., to get

the best possible result for a given compute budget.

The validation MAE exhibits a high correlation with the test MAE for this dataset. We refrain from reporting test-dev MAE

for all models due to the unavailability of test-dev labels and each evaluation of test-dev MAE requiring a leaderboard

submission.

E.2. Open Catalyst 2020 IS2RE

The Open Catalyst 2020 Challenge (Chanussot et al., 2021) is designed to develop and evaluate machine learning models for

predicting the adsorption energy of molecules on catalyst surfaces. We focus on the IS2RE (Initial Structure to Relaxed

Energy) task of this benchmark where the model is provided with an initial DFT conformation of the crystal and adsorbate

system, which interact with each other to reach the relaxed structure, at which point the energy of the system is measured.

We exclusively use the IS2RE dataset for training which contains ≈ 460K catalyst-adsorbate pairs.

A few changes are required to adapt our model to this task compared to molecular property prediction tasks. First, there is

no 2D graph structure available, instead, we use the initial interatomic distance to provide relative positional information to

both the distance predictor and the task predictor. The distance predictor is trained to predict the interatomic distances in

the relaxed structure. The task predictor is pretrained on the noisy relaxed structure and later finetuned on the predicted

interatomic distances by the distance predictor. MAE loss and a weighted denoising loss are used both during pretraining and

finetuning. Due to the repeating nature of the crystal, we adopt the repeat and crop-by-distance approach of Graphormer-3D

(Shi et al., 2022). However, we limit the number of atoms to a maximum of 64 by randomly sampling crystal atoms based

on the proximity to the initial position of the adsorbate atoms. We also found that the distance range of interest for this

task is slightly larger – 16Å compared to 8Å for molecular graphs and a Fourier distance embedding works better than

RBF-based distance embedding.

We train a 24-layer distance predictor and a 14-layer task predictor. The distance predictor is trained for 30,000 steps and

the task predictor is pretrained for 100,000 steps and finetuned for 12,000 steps. This procedure takes approximately 2 days

on 32 NVIDIA V100 GPUs for TGT-At. This approximately corresponds to 32 A100 GPU-days, which is significantly

lower than the 112 GPU-days used by UniMol+. This is because we use much smaller sized graphs compared to UniMol+

and also our training method is more efficient. A median of 50 sample predictions is used for each input. We compare our

results with other direct methods, i.e., methods that do not resort to iterative relaxation or molecular dynamics, and as such,

only use the IS2RE data provided by OC20.

E.3. QM9

To highlight the transfer of knowledge to related quantum chemical prediction tasks we take the pretrained task predictor

from our PCQM4Mv2 experiment and finetune it on the QM9 (Ramakrishnan et al., 2014) dataset. QM9 is a quantum

chemistry benchmark consisting of 134k small organic molecules. The ground truth 3D coordinates are provided on this
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dataset which can be used during inference, so the distance predictor is not required. The task instead is to predict different

Quantum Mechanical properties as accurately as possible from the given 3D graph. We report finetuning performance on a

subset of 7 tasks from the 12 tasks in QM9, namely, dipole moment (µ), isotropic polarizability (α), HOMO (ϵH ), LUMO

(ϵL) energies and their difference (∆ϵ), Zero Point Vibrational Energy (ZPVE) and Heat Capacity (Cv). The results are

presented in terms of MAE. Energies are expressed in meV. We use the same dataset splitting strategy as Transformer-M

(Luo et al., 2022) to form validation and test splits consisting of 10,000 and 10,831 molecules, respectively. We use MAE

loss (normalized by the standard deviation of the task) and the Adam optimizer to finetune the pretrained task predictor

model.

E.4. MOLPCBA and LIT-PCBA

Since 3D geometric information is valuable for molecular property prediction, we use our pretrained distance predictor

(without RDKit) to provide an estimation of interatomic distances to models on the MOLPCBA molecular property prediction

and the LIT-PCBA (Tran-Nguyen et al., 2020) drug discovery benchmarks.

The MOLPCBA dataset is a part of the OGB (Hu et al., 2020) graph-level datasets, comprising 437,929 molecules collected

from MoleculeNet (Wu et al., 2018). The task is to predict the presence or absence of 128 binary properties.

LIT-PCBA is a dataset for the virtual screening of 15 protein targets. It contains 9780 active compounds (positive samples)

that bind to the targets, as well as 407,839 inactive compounds (negative samples) selected from PubChem Bioassay data.

Predicting whether candidate compounds will bind to a particular target can be framed as a binary classification task. Since

some of the proteins have very few positive samples, we use the same 7 targets (with over 150 active compounds each) and

dataset splitting strategy as GEM-2 (Liu et al., 2022a).

Note that, since these datasets do not have ground truth 3D information, we do not finetune the distance predictor on these

datasets, but rather use it as a frozen feature extractor. We train the task-specific predictor model from scratch on these

datasets, with the extracted distance estimations as inputs. We also use RDKit coordinates as a secondary target while

training to regularize the model, but inference can be performed in the absence of RDKit coordinates. We also compare

against RDKit conformations as a source of 3D information. In our comparative results, when using RDKit input distances,

we use the locally smooth noising and distance prediction objective mentioned in Section 3.2 to train the task predictor to

get the best achievable performance and to make a fair comparison with the distance predictor. We use the same model

hyperparameters for both cases.

F. Hyperparameters

The hyperparameters used for each dataset are presented in Table 11. For PCQM4Mv2 and OC20 we list the hyperpa-

rameters for both the distance and the task predictor models and both training and finetuning. For QM9, we only list the

hyperparameters for finetuning. For MOLPCBA, LIT-PCBA, and TSP we only show the hyperparameters for training from

scratch. The missing hyperparameters do not apply to the corresponding dataset or model. For QM9 no secondary distance

denoising objective is used. For LIT-PCBA, 0 triplet interaction heads indicate that an EGT is used without any triplet

interaction module. For TSP datasets we train two models with 4 and 16 layers for parameter budgets 100K and 500K,

respectively, which otherwise use the same hyperparameters.

G. Additional Results

OC20 IS2RE The breakdown of performance on the OC20 IS2RE validation and test results are presented in Table 12 and

Table 13, respectively over the dataset splits ID (In Domain) and OOD (Out Of Domain) Adsorbates, Catalyst and Both.

Notice that, TGT-At and UniMol+ outperform all other models for all splits.

LIT-PCBA We also show a breakdown of the LIT-PCBA results for the individual protein targets in Table 14. We also

compare against traditional machine learning methods like Naive Bayes (Duda et al., 1973), Support Vector Machine (SVM)

(Cortes & Vapnik, 1995), Random Forest (RF) (Liaw et al.), and XGBoost (Chen & Guestrin, 2016). Notice that, EGT with

our distance predictor TGT-At-DP outperforms other models in most cases except for GBA and MAPK1. We think this is

due to the very low number of positive samples for these targets which is detrimental to training from scratch. We also see

that the performance of TGT-At-DP is generally better than RDKit coordinates, which is a good indicator of the quality of

the distance predictor.
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Table 11. Hyperparameters used for each dataset.

PCQM4Mv2 OC20 QM9 MOLPCBA LIT-PCBA TSP

Hyperparam. Dist. Pred. Task Pred. Dist. Pred. Task Pred. Task Pred. Task Pred. Task Pred. -

# Layers 24 24 24 14 24 12 8 4,16

Node Embed. Dim. 768 768 768 768 768 768 1024 64

Edge Embed. Dim. 256 256 256 512 256 32 256 8

# Attn. Heads 64 64 64 64 64 32 64 8

# Triplet Heads 16 16 16 16 16 4 0 2

Node FFN Dim. 768 768 1536 768 768 768 2048 128

Edge FFN Dim. 256 256 512 512 256 32 512 16

Max. Hops Enc. 32 32 - - 32 32 32 16

Activation GELU GELU GELU GELU GELU GELU GELU GELU

Input Dist. Enc. RBF RBF Fourier Fourier RBF RBF RBF Fourier

Source Dropout 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.1

Triplet Dropout 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0

Path Dropout 0.2 0.2 0.2 0.1 0.2 0.1 0.1 0.0

Node Activ. Dropout 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Edge Activ. Dropout 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Input 3D Noise - 0.2 - 0.6 0.0 - - -

Input Noise Smooth. - 1.0 - 1.0 0.0 - - -

Optimizer Adam Adam Adam Adam Adam Adam Adam Adam

Batch Size 1024 2048 256 256 - 256 1024 32

Max. LR 0.001 0.002 0.001 0.001 - 4× 10−4 5× 10−4 0.001

Min. LR 10−6 10−6 0.001 10−6 - 10−6 5× 10−5 10−4

Warmup Steps 30000 15000 8000 16000 - 4500 600 1000

Total Training Steps 60000 300000 30000 100000 - 30000 1200 20000

Grad. Clip. Norm 5.0 5.0 5.0 5.0 5.0 5.0 2.0 5.0

Dist. Loss Weight - 0.1 - 3.0 0.0 0.05 0.1 -

# Dist. Bins 256 512 256 512 - 512 512 -

Dist. Bins Range 8 8 16 16 - 8 8 -

FT Batch Size - 2048 - 1024 2048 - - -

FT Warmup Steps - 3000 - 0 3000 - - -

FT Total Steps - 50000 - 12000 150000 - - -

FT Max. LR - 2× 10−4 - 10−5 2× 10−4 - - -

FT Min. LR - 10−6 - 10−5 10−6 - - -

FT Dist. Loss Weight - 0.1 - 2.0 0.1 - - -

Table 12. Breakdown OC20 IS2RE validation results.

MAE ↓ (meV) EwT ↑ (%)

Model ID OOD Ads. OOD Cat. OOD Both Avg. ID OOD Ads. OOD Cat. OOD Both Avg.

SchNet1 646.5 707.4 647.5 662.6 666.0 2.96 2.22 3.03 2.38 2.65

DimeNet++2 563.6 712.7 561.2 649.2 621.7 4.25 2.48 4.40 2.56 3.42

GemNet-T3 556.1 734.2 565.9 696.4 638.2 4.51 2.24 4.37 2.38 3.38

SphereNet4 563.2 668.2 559.0 619.0 602.4 4.56 2.70 4.59 2.70 3.64

GNS5 540.0 650.0 550.0 590.0 582.5 - - - - -

GNS5+NN11 470.0 510.0 480.0 460.0 480.0 - - - - -

Graphormer-3D6 432.9 585.0 444.1 529.9 498.0 - - - - -

EquiFormer7 422.2 542.0 423.1 475.4 465.7 7.23 3.77 7.13 4.10 5.56

EquiFormer7+NN11 415.6 497.6 416.5 434.4 441.0 7.47 4.64 7.19 4.84 6.04

DRFormer8 418.7 486.3 432.1 433.2 442.5 8.39 5.42 8.12 5.44 6.84

Moleformer9 413.0 523.0 432.0 473.0 460.0 8.01 3.04 7.66 3.19 5.48

Uni-Mol+10 379.5 452.6 401.1 402.1 408.8 11.1 6.71 9.90 6.68 8.61

TGT-Ag 386.1 485.8 394.8 428.1 423.7 10.8 6.55 10.27 6.92 8.64

TGT-At 381.3 445.4 391.7 393.6 403.0 11.1 6.87 10.47 6.80 8.82
1Schütt et al. (2017), 2Gasteiger et al. (2020a), 3Gasteiger et al. (2021), 4Liu et al. (2021b), 5Kumar & Vantassel (2022), 6Shi et al. (2022), 7Thölke & De Fabritiis (2021), 8Wang

et al. (2023a), 9Yuan et al. (2023), 10Lu et al. (2023), 11Godwin et al. (2021)
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Table 13. Breakdown OC20 IS2RE test results.

MAE ↓ (meV) EwT ↑ (%)

Model ID OOD Ads. OOD Cat. OOD Both Avg. ID OOD Ads. OOD Cat. OOD Both Avg.

SchNet1 639.0 734.0 662.0 704.0 684.8 2.96 2.33 2.94 2.21 2.61

DimeNet++2 562.0 725.0 576.0 661.0 631.0 4.25 2.07 4.1 2.41 3.21

SphereNet3 563.0 703.0 571.0 638.0 618.8 4.47 2.29 4.09 2.41 3.32

GNS4+NN10 421.9 567.8 436.6 465.1 472.8 9.12 4.25 8.01 4.64 6.51

Graphormer-3D5 397.6 571.9 416.6 502.9 472.2 8.97 3.45 8.18 3.79 6.10

EquiFormer6 503.7 688.1 521.3 630.1 585.8 5.14 2.41 4.67 2.69 3.73

EquiFormer6+NN10 417.1 547.9 424.8 474.1 466.0 7.71 3.70 7.15 4.07 5.66

DRFormer7 386.5 543.5 406.0 467.7 450.9 9.18 4.01 8.39 4.33 6.48

Moleformer8 413.4 534.6 428.0 458.1 458.5 8.79 4.67 7.58 4.87 6.48

Uni-Mol+9 374.5 476.0 398.0 408.6 414.3 11.29 6.05 9.53 6.06 8.23

TGT-At 379.6 471.8 399.0 408.4 414.7 11.50 5.70 9.84 6.17 8.30
1Schütt et al. (2017), 2Gasteiger et al. (2020a), 3Liu et al. (2021b), 4Kumar & Vantassel (2022), 5Shi et al. (2022), 6Thölke & De Fabritiis (2021), 7Wang et al. (2023a), 8Yuan

et al. (2023), 9Lu et al. (2023), 10Godwin et al. (2021)

Table 14. LIT-PCBA results in terms of ROC-AUC↑ (%).

ALDH1 FEN1 GBA KAT2A MAPK1 PKM2 VDR Average

No. active 7,168 369 166 194 308 546 884

No. inactive 137,965 355,402 296,052 348,548 62,629 245,523 355,388

NaiveBayes1 69.3 87.6 70.9 65.9 68.6 68.4 80.4 73.0

SVM2 76.0 87.7 77.8 61.2 66.5 75.3 69. 73.4

RandomForest3 74.1 65.7 59.9 53.7 57.9 58.1 64.4 62.0

XGBoost4 75.0 88.8 83.0 50.0 59.3 73.7 78.2 72.6

GCN5 73.0 89.7 73.5 62.1 66.8 63.6 77.3 72.3

GAT6 73.9 88.8 77.6 66.2 69.7 72.4 78.0 75.2

FP-GNN7 76.6 88.9 75.1 63.2 77.1 73.2 77.4 75.9

EGT8 72.5(1) 81.0(5) 52.9(12) 54.6(1) 67.5(2) 64.6(4) 74.0(1) 66.7

EGT8
pretrain 78.7(2) 92.9(1) 75.4(4) 72.8(1) 75.3(3) 76.5(2) 80.7(2) 78.9

GEM9 77.6(0.3) 93.3(1) 82.9(1) 63.2(9) 68.5(2) 73.5(4) 77.1(2) 76.6

GEM9
pretrain 77.2(1) 91.4(2) 82.1(2) 74.0(1) 71.0(2) 74.6(2) 78.5(1) 78.4

GEM-210 77.0(2) 92.9(1) 81.9(2) 67.0(2) 71.5(2) 72.4(3) 80.5(2) 77.6

GEM-210
pretrain 80.2(0.2) 94.5(0.3) 85.6(2) 76.3(1) 73.3(1) 78.2(0.4) 82.3(0.5) 81.5

EGT8+RDKit 80.2(0.2) 95.2(0.3) 84.5(4) 74.3(1) 73.5(1) 78.0(0.2) 82.8(0.3) 81.2

EGT8+TGT-At-DP 80.6(0.3) 95.5(0.3) 84.4(3) 74.6(2) 74.3(0.7) 78.4(0.2) 82.9(0.3) 81.5
1Duda et al. (1973), 2Cortes & Vapnik (1995), 3Liaw et al., 4Chen & Guestrin (2016), 5Kipf & Welling (2016), 6Veličković et al. (2017), 7Cai et al. (2022a), 8Hussain et al.

(2022), 9Fang et al. (2021), 10Liu et al. (2022a)

Figure 6. Number of samples drawn vs MAE(meV) and EwT(%) on (a) PCQM4Mv2 and (b) OC20 IS2RE validation sets.
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H. Stochastic Inference Results

To verify the cost and effectiveness of our proposed stochastic inference method, we illustrate how the performance improves

with the number of stochastic samples drawn. We also evaluate the performance in a “deterministic” mode where the

dropouts are turned off and only a single prediction is made (beforehand, we perform slight finetuning with dropout turned

off for better performance). The results are presented in Figure 6. We see that the performance steadily improves with the

number of samples drawn. It only takes 4-5 samples to outperform the deterministic prediction while with ≈ 10 samples

we get very good results. The results continue to improve monotonically with more samples and approximately plateaus

at ≈ 50 samples. Since these samples can be drawn in parallel and independently, with the performance exceeding the

deterministic prediction by a fair margin, with only 10 samples they are a good trade-off between performance and cost.

I. Distribution of Predictions

In Figure 7 we show some example distributions of predictions vs. ground truth values for PCQM4Mv2 and OC20 IS2RE.

We see that the predictions are generally centered around the ground truth values but for some cases, they can be multimodal.

In these cases, the ground truth often corresponds to one of the modes, mostly the strongest mode.

Figure 7. Example distributions of predictions vs. ground truth values for (a) PCQM4Mv2 and (b) OC20.

Since we have multiple predictions, this raises the question of which statistic, i.e., mean, median, or mode, to use to produce

a final prediction. In Table 15, and Table 16 and Table 17, we show the performance of each statistic on the validation sets

of PCQM4Mv2 and OC20 IS2RE, respectively. We see that for all cases the mean produces the best MAE but the worst

EwT, whereas the mode produces the best EwT but also the worst MAE. The median is a good trade-off between the two.

This indicates that the mean reduces the average error, while the mode improves the accuracy of the strongest predictions.

The median is a robust statistic that is less sensitive to outliers and thus produces a good balance between the two. The

choice of statistic can be made based on the application.

Table 15. PCQM4Mv2 validation results for different statistics.

Statistic Val. MAE↓ (meV) Val. EwT↑ (%)

Mean 67.06 35.40

Median 67.14 36.08

Mode 67.48 36.32

J. Input 3D Noise and Local Smoothing

Since it is difficult to visualize the effect of input noise in 3D, we show its effect on an example 2D graph in Figure 8. We

see that, without local smoothing (i.e., random), the noise disproportionately affects the local structure of the graph. This is

also in contrast to reality, where larger distances are more likely to be noisy/erroneous than smaller distances. With local

smoothing, the noise mostly preserves the local structure of the graph, i.e., the nodes that are close together, also move

22



Triplet Interaction Improves Graph Transformers

Table 16. OC20 validation results for different statistics.

MAE↓ (meV) EwT↑ (%)

Stastic ID OOD Ads. OOD Cat. OOD Both Avg. ID OOD Ads. OOD Cat. OOD Both Avg.

Mean 380.5 444.2 391.1 392.8 402.2 10.68 6.63 10.20 6.41 8.48

Median 381.3 445.4 391.7 393.6 403.0 11.15 6.87 10.47 6.80 8.82

Mode 385.1 449.0 396.1 396.2 406.6 11.30 6.98 10.48 6.88 8.91

Table 17. OC20 test results for different statistics.

MAE↓ (meV) EwT↑ (%)

Stastic ID OOD Ads. OOD Cat. OOD Both Avg. ID OOD Ads. OOD Cat. OOD Both Avg.

Mean 378.4 469.1 397.8 407.3 413.1 10.98 5.54 9.43 6.04 8.00

Median 379.6 471.8 399.0 408.4 414.7 11.50 5.70 9.84 6.17 8.30

Mode 383.3 475.5 403.0 412.0 418.4 11.60 5.92 9.95 5.89 8.34

together, whereas atoms that are far apart, move independently. This is more realistic and also encourages the model to

utilize the local structure of the graph to make predictions.

In Figure 9 we show the effect of input 3D noise on the finetuned performance on the PCQM4Mv2 validation set for both

random noise and locally smoothed noise and different downstream distance inputs, i.e., interatomic distances from RDKit,

an EGT distance predictor (EGT-DP) and our TGT-At distance predictor (TGT-At-DP). We see that, as the downstream

distance input becomes more accurate (RDKit worst, EGT-DP better, TGT-At-DP best), the optimal noise level decreases.

In all cases, better performance is achieved at the optimal noise level with local smoothing compared to random noise. Also,

local smoothing allows us to inject more noise without degrading performance. This is because, without local smoothing,

the higher level of noise perturbs the local structure of the molecule too much.

Figure 8. Effect of local smoothing on the injected noise for an example 2D graph.

K. Distribution of Pairwise Atomic Distances

In Figure 10 we show some example distributions of pairwise atomic distances predicted by the distance predictor, vs.

ground truth values for the PCQM4Mv2 dataset. We see that for non-trivial distances, generally between non-bonded atoms,

the predictions are often multimodal with multiple strong modes. Also, the distributions are often skewed. The ground

truth distance is most likely to correspond to one of the modes, usually the strongest one. This is why it is important to use

cross-entropy loss for the distance predictor, which encourages the model to learn the whole distribution. Using MSE or

MAE loss would not encourage the model to learn the different modes of distribution.

L. How Accurate is the Distance Predictor?

The distance predictor operates in the stochastic mode and outputs clipped and binned distances, which provides sufficient

structural information to the downstream task predictor. However, it is difficult to directly compare the accuracy of the

distance predictor to that of other methods like RDKit. To compare the accuracy of the distances we must first convert
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Figure 9. Pretraining input 3D noise vs finetuned performance for both random noise and locally smoothed noise, on the PCQM4Mv2

validation set for different downstream distance inputs.

Figure 10. Example predicted distributions of pairwise atomic distances vs. ground truth values (from the PCQM4Mv2 dataset).

Table 18. Accuracy of pairwise distances in terms of MAE↓, RMSE↓ and percent error within a threshold (EwT↑).

Model MAE (Å) RMSE (Å) EwT-0.2Å (%) EwT-0.1Å (%) EwT-0.05Å (%) EwT-0.01Å (%)

RDKit 0.248 0.541 73.33 66.65 56.90 26.79

TGT-At-DP(no RDKit) + Refiner 0.152 0.378 80.10 75.19 70.38 54.61

TGT-At-DP(with RDKit) + Refiner 0.152 0.378 80.53 75.68 70.80 54.54
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them into continuous unbounded distances. We do this by training a smaller refiner network which takes the clipped and

binned distances as input and outputs continuous unbounded distances. We train this network with MAE loss and during

stochastic inference take the median of the output distances. We compare the accuracy of individual pairwise distances on

the validation-3D split of the PCQM4Mv2 dataset (i.e., unseen data during training), in terms of MAE, RMSE (Root Mean

Square Error), and percent error within a threshold of 0.2Å, 0.1Å, 0.05Å and 0.01Å in Table 18.

We see that our TGT-At distance predictor outperforms RDKit by a large margin in terms of all of the metrics, which

improves slightly if we feed RDKit distances as an initial estimate to the distance predictor. This is also reflected in the

accuracy of the downstream task predictor. This indicates that the distance predictor can predict the underlying structure of

the molecule more accurately than RDKit.
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