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ABSTRACT

Deep convolutional classifiers linearly separate image classes and improve accuracy
as depth increases. They progressively reduce the spatial dimension whereas the
number of channels grows with depth. Spatial variability is therefore transformed
into variability along channels. A fundamental challenge is to understand the role
of non-linearities together with convolutional filters in this transformation. ReLUs
with biases are often interpreted as thresholding operators that improve discrimi-
nation through sparsity. This paper demonstrates that it is a different mechanism
called phase collapse which eliminates spatial variability while linearly separating
classes. We show that collapsing the phases of complex wavelet coefficients is
sufficient to reach the classification accuracy of ResNets of similar depths. How-
ever, replacing the phase collapses with thresholding operators that enforce sparsity
considerably degrades the performance. We explain these numerical results by
showing that the iteration of phase collapses progressively improves separation of
classes, as opposed to thresholding non-linearities.

1 INTRODUCTION

CNN image classifiers progressively eliminate spatial variables through iterated filterings and subsam-
plings, while linear classification accuracy improves as depth increases (Oyallon, 2017). It has also
been numerically observed that CNNs concentrate training samples of each class in small separated
regions of a progressively lower-dimensional space. It can ultimately produce a neural collapse
(Papyan et al., 2020), where all training samples of each class are mapped to a single point. In
this case, the elimination of spatial variables comes with a collapse of within-class variability and
perfect linear separability. This increase in linear classification accuracy is obtained in standard CNN
architectures like ResNets from the iteration of linear convolutional operators and ReLUs with biases.

A difficulty in understanding the underlying mathematics comes from the flexibility of ReLUs. Indeed,
a linear combination of biased ReLUs can approximate any non-linearity. Many papers interpret
iterations on ReLUs and linear operators as sparse code computations (Sun et al., 2018; Sulam et al.,
2018; 2019; Mahdizadehaghdam et al., 2019; Zarka et al., 2020; 2021). We show that it is a different
mechanism, called phase collapse, which underlies the increase in classification accuracy of these
architectures. A phase collapse is the elimination of phases of complex-valued wavelet coefficients
with a modulus, which we show to concentrate spatial variability. This is demonstrated by introducing
a structured convolutional neural network with wavelet filters and no biases.

Section 2 introduces and explains phase collapses. Complex-valued representations are used because
they reveal the mathematics of spatial variability. Indeed, translations are diagonalized in the Fourier
basis, where they become a complex phase shift. Invariants to translations are computed with a
modulus, which collapses the phases of this complex representation. Section 2 explains how this can
improve linear classification. Phase collapses can also be calculated with ReLUs and real filters. A
CNN with complex-valued filters is indeed just a particular instance of a real-valued CNN, whose
channels are paired together to define complex numbers.

Section 3 demonstrates the role of phase collapse in deep classification architectures. It introduces a
Learned Scattering network with phase collapses. This network applies a learned 1× 1 convolutional
complex operator Pj on each layer xj , followed by a phase collapse, which is obtained with a complex
wavelet filtering operator W and a modulus:

xj+1 = |WPjxj |. (1)
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It does not use any bias. This network architecture is illustrated in Figure 1. With the addition of
skip-connections, we show that this phase collapse network reaches ResNet accuracy on ImageNet
and CIFAR-10.

Section 4 compares phase collapses with other non-linearities such as thresholdings or more general
amplitude reduction operators. Such non-linearities can enforce sparsity but do not modify the phase.
We show that the accuracy of a Learned Scattering network is considerably reduced when the phase
collapse modulus is replaced by soft-thresholdings with learned biases. This is also true of more
general phase-preserving non-linearities and architectures.

Section 5 explains the performance of iterated phase collapses by showing that each phase collapse
progressively improves linear discriminability. On the opposite, the improvements in classification
accuracy of successive sparse code computations are shown to quickly saturate.

The main contribution of this paper is a demonstration that the classification accuracy of deep neural
networks mostly relies on phase collapses, which are sufficient to linearly separate the different classes
on natural image databases. This is captured by the Learned Scattering architecture which reaches
ResNet-18 accuracy on ImageNet and CIFAR-10. We also show that phase collapses are necessary to
reach this accuracy, by demonstrating numerically and theoretically that iterating phase-preserving
non-linearities leads to a significantly worse performance.

Figure 1: Architecture of a Learned Scattering network with phase collapses. It has J + 1 layers with
J = 11 for ImageNet and J = 8 for CIFAR-10. Each layer is computed with a 1× 1 convolutional
operator Pj which linearly combines channels. It is followed by a phase collapse, computed with
a spatial convolutional filtering with a complex wavelet W and a complex modulus |·|. A layer
of depth j corresponds to a scale 2j/2 and a subsampling by 2 is applied every two layers, after
W . A skip-connection concatenates the outputs of WPj and

∣∣WPj
∣∣. A final 1× 1 PJ reduces the

dimension before a linear classifier.

2 ELIMINATING SPATIAL VARIABILITY WITH PHASE COLLAPSES

Deep convolutional classifiers achieve linear separation of image classes. We show that linear
classification on raw images has a poor accuracy because image classes are invariant to local
translations. This geometric within-class variability takes the form of random phase fluctuations, and
as a result all classes have a zero mean. To improve classification accuracy, non-linear operators must
separate class means, which therefore requires to collapse these phase fluctuations.

Translations and phase shifts Translations capture the spatial topology of the grid on which the
image is defined. These translations are transformed into phase shifts by a Fourier transform. We
prove that this remains approximately valid for images convolved with appropriate complex filters.

Let x be an image indexed by u ∈ Z2. We write xτ (u) = x(u− τ) the translation of x by τ . It is
diagonalized by the Fourier transform x̂(ω) =

∑
u x(u) e−iω·u, which creates a phase shift:

x̂τ (ω) = e−iω·τ x̂(ω). (2)

This diagonalization explains the need to introduce complex numbers to analyze the mathematical
properties of geometric within-class variabilities. Computations can however be carried with real
numbers, as we will show.

A Fourier transform is computed by filtering x with complex exponentials eiω·u. One may replace
these by complex wavelet filters ψ that are localized in space and in the Fourier domain. The following
theorem proves that small translations can still be approximated by a phase shift in this case. We
denote by ∗ the convolution of images.
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Theorem 1. Let ψ : Z2 → C be a filter with ‖ψ‖2 = 1, whose center frequency ξ and bandwidth σ
are defined by:

ξ =
1

(2π)2

∫
[−π,π]

2
ω |ψ̂(ω)|2 dω and σ2 =

1

(2π)2

∫
[−π,π]

2
|ω − ξ|2|ψ̂(ω)|2 dω.

Then, for any τ ∈ Z2,
‖xτ ∗ ψ − e

−iξ·τ (x ∗ ψ)‖∞ ≤ σ |τ | ‖x‖2. (3)

The proof is in Appendix C. This theorem proves that if |τ | � 1/σ then xτ ∗ ψ ≈ e−iξ·τx ∗ ψ. In
this case, a translation by τ produces a phase shift by ξ · τ .

Phase collapse and stationarity We define a phase collapse as the elimination of the phase created
by a spatial filtering with a complex wavelet ψ. We now show that phase collapses improve linear
classification of classes that are invariant to global or local translations.

The training images corresponding to the class label y may be represented as the realizations of a
random vector Xy . To achieve linear separation, it is sufficient that class means E

[
Xy

]
are separated

and within-class variances around these means are small enough (Hastie et al., 2009). The goal of
classification is to find a representation of the input images in which these properties hold.

To simplify the analysis, we consider the particular case where each class y is invariant to translations.
More precisely, each random vector Xy is stationary, which means that its probability distribution is
invariant to translations. Equation (2) then implies that the phases of Fourier coefficients of Xy are
uniformly distributed in [0, 2π], leading to E[X̂y(ω)] = 0 for ω 6= 0. The class means E[Xy] are thus
constant images whose pixel values are all equal to E[X̂y(0)]. A linear classifier can then only rely
on the average colors of the classes, which are often equal in practice. It thus cannot discriminate
such translation-invariant classes.

Eliminating uniform phase fluctuations of non-zero frequencies is thus necessary to create separated
class means, which can be achieved with the modulus of the Fourier transform. It is a translation-
invariant representation: |x̂τ | = |x̂|. This improves linear discriminability of stationary classes,
because E[|X̂y|] may be different for different y. However, |X̂y| has a high variance, because the
Fourier transform is unstable to small deformations (Bruna and Mallat, 2013).

Fourier modulus descriptors can be improved by using filters ψ that have a localized support in space.
Theorem 1 shows that the phase of Xy ∗ ψ is also uniformly distributed in [0, 2π]. It results that
E[Xy ∗ ψ] = 0, and x ∗ ψ still provides no information for linear classification. Applying a modulus
similarly computes approximate invariants to small translations: |xτ ∗ ψ| ≈ |x ∗ ψ|, with an error
bounded by σ |τ | ‖x‖2. More generally, these phase collapses compute approximate invariants to
deformations which are well approximated by translations over the support of ψ. This representation
improves linear classification by creating different non-zero class means E[|Xy ∗ ψ|] while achieving
a lower variance than Fourier coefficients, as it is stable to deformations (Bruna and Mallat, 2013).

Image classes are usually not invariant to global translations, because of e.g. centered subjects or the
sky located in the topmost part of the image. However, classes are often invariant to local translations,
up to an unknown maximum scale. This is captured by the notion of local stationarity, which means
that the probability distribution of Xy is nearly invariant to translations smaller than some maximum
scale (Priestley, 1965). The above discussion remains valid if Xy is only locally stationary over a
domain larger than the support of ψ. The use of so-called “windowed absolute spectra” E

[∣∣Xy ∗ ψ
∣∣]

for locally stationary processes has previously been studied in Tygert et al. (2016).

Real or complex networks The use of complex numbers is a mathematical abstraction which
allows diagonalizing translations, which are then represented by complex phases. It provides a
mathematical interpretation of filtering operations performed on real numbers. We show that a real
network can still implement complex phase collapses.

In the first layer of a CNN, one can observe that filters are often oscillatory patterns with small
supports, where some filters have nearly the same orientation and frequency but with a phase shifted
by some α (Krizhevsky et al., 2012). We reproduce in Appendix A a figure from Shang et al. (2016)
which evidences this phenomenon. It shows that real filters may be arranged in groups (ψα)α that

3



Published as a conference paper at ICLR 2022

can be written ψα = Re(e−iαψ) for a single complex filter ψ and several phases α. A CNN with
complex filters is thus a structured real-valued CNN, where several real filters (ψα)α have been
regrouped into a single complex filter ψ. This structure simplifies the mathematical interpretation of
non-linearities by explicitly defining the phase, which is otherwise a hidden variable relating multiple
filter outputs within each layer.

A phase collapse is explicitly computed with a complex wavelet filter and a modulus. It can also be
implicitly calculated by real-valued CNNs. Indeed, for any real-valued signal x, we have:

|x ∗ ψ| = 1

2

∫ π

−π
ReLU(x ∗ ψα) dα. (4)

Furthermore, this integral is well approximated by a sum over 4 phases, allowing to compute complex
moduli with real-valued filters and ReLUs without biases. See Appendix D for a proof of eq. (4) and
its approximation.

3 LEARNED SCATTERING NETWORK WITH PHASE COLLAPSES

This section introduces a learned scattering transform, which is a highly structured CNN architecture
relying on phase collapses and reaching ResNet accuracy on the ImageNet (Russakovsky et al., 2015)
and CIFAR-10 (Krizhevsky, 2009) datasets.

Scattering transform Theorem 1 proves that a modulus applied to the output of a complex wavelet
filter produces a locally invariant descriptor. This descriptor can then be subsampled, depending upon
the filter’s bandwidth. We briefly review the scattering transform (Mallat, 2012; Bruna and Mallat,
2013), which iterates phase collapses.

A scattering transform over J scales is implemented with a network of depth J , whose filters are
specified by the choice of wavelet. Let x0 = x. For 0 ≤ j < J , the (j+1)-th layer xj+1 is computed
by applying a phase collapse on the j-th layer xj . It is implemented by a modulus which collapses
the phases created by a wavelet filtering operator W :

xj+1 =
∣∣Wxj

∣∣. (5)

The operator W is defined with Morlet filters (Bruna and Mallat, 2013). It has one low-pass filter g0,
and L zero-mean complex band-pass filters (g`)`, having an angular direction `π/L for 0 < ` ≤ L.
It thus transforms an input image x(u) into L+ 1 sub-band images which are subsampled by 2:

Wx(u, `) = x ∗ g`(2u). (6)

The cascade of j low-pass filters g0 with a final band-pass filter g`, each followed by a subsampling,
computes wavelet coefficients at a scale 2j . One can also modify the wavelet filtering W to compute
intermediate scales 2j/2, as explained in Appendix G. The spatial subsampling is then only computed
every other layer, and the depth of the network becomes twice larger. Applying a linear classifier
on such a scattering transform gives good results on simple classification problems such as MNIST
(LeCun et al., 2010). However, results are well below ResNet accuracy on CIFAR-10 and ImageNet,
as shown in Table 1.

Learned Scattering The prior work of Zarka et al. (2021) showed that a scattering transform can
reach ResNet accuracy by incorporating learned 1× 1 convolutional operators and soft-thresholding
non-linearities in-between wavelet filters. In contrast, we introduce a Learned Scattering architecture
whose sole non-linearity is a phase collapse. It shows that neither biases nor thresholdings are
necessary to reach a high accuracy in image classification. A similar result had previously been
obtained on image denoising (Mohan et al., 2019).

The Learned Scattering (LScat) network inserts in eq. (5) a learned complex 1 × 1 convolutional
operator Pj which reduces the channel dimensionality of each layer xj before each phase collapse:

xj+1 =
∣∣WPjxj

∣∣. (7)

Similar architectures which separate space-mixing and channel-mixing operators had previously been
studied in the context of basis expansion (Qiu et al., 2018; Ulicny et al., 2019) or to filter scattering
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Table 1: Error of linear classifiers applied to a scattering (Scat), learned scattering (LScat) and
learned scattering with skip connections (+ skip), on CIFAR-10 and ImageNet. The last column
gives the single-crop error of ResNet-20 for CIFAR-10 and ResNet-18 for ImageNet, taken from
https://pytorch.org/vision/stable/models.html.

Scat LScat LScat + skip ResNet

CIFAR-10 Top-1 error (%) 27.7 11.7 7.7 8.8

ImageNet Top-5 error (%) 54.1 15.2 11.0 10.9
Top-1 error (%) 73.0 35.9 30.1 30.2

channels (Cotter and Kingsbury, 2019). This separation is also a major feature of recent architectures
such as Vision Transformers (Dosovitskiy et al., 2021) or MLP-Mixer (Tolstikhin et al., 2021).

Each Pj computes discriminative channels whose spatial variability is eliminated by the phase
collapse operator. Their role is further discussed in Section 5. Table 1 gives the accuracy of a linear
classifier applied to the last layer of this Learned Scattering. It provides an important improvement
over a scattering transform, but it does not yet reach the accuracy of ResNet-18.

Including the linear classifier, the architecture uses a total number of layers J + 1 = 12 for ImageNet
and J + 1 = 9 for CIFAR, by introducing intermediate scales. The number of channels of Pjxj is
the same as in a standard ResNet architecture (He et al., 2016) and remains no larger than 512. More
details are provided in Appendix G.

Skip-connections across moduli Equation (7) imposes that all phases are collapsed at each layer,
after computing a wavelet transform. More flexibility is provided by adding a skip-connection which
concatenates WPjxj with its modulus:

xj+1 =
[∣∣WPjxj

∣∣ , WPjxj

]
. (8)

The skip-connection produces a cascade of convolutional filtersW without non-linearities in-between.
The resulting convolutional operator WW · · ·W is a “wavelet packet” transform which generalizes
the wavelet transform (Coifman and Wickerhauser, 1992). Wavelet packets are obtained as the
cascade of low-pass and band-pass filters (g`)`, each followed by a subsampling. Besides wavelets,
wavelet packets include filters having a larger spatial support and a narrower Fourier bandwidth. A
wavelet packet transform is then similar to a local Fourier transform. Applying a modulus on such
wavelet packet coefficients defines local spatial invariants over larger domains.

As discussed in Section 2, image classes are usually invariant to local rather than global translations.
Section 2 explains that a phase collapse improves discriminability for image classes that are locally
translation-invariant over the filter’s support. Indeed, phases of wavelet coefficients are then uniformly
distributed over [0, 2π], yielding zero-mean coefficients for all classes. At scales where there is no
local translation-invariance, these phases are no longer uniformly distributed, and they encode
information about the spatial localization of features. Introducing a skip-connection provides the
flexibility to choose whether to eliminate phases at different scales or to propagate them up to the last
layer. Indeed, the next 1× 1 operator Pj+1 linearly combines

∣∣WPjxj
∣∣ and WPjxj and may learn

to use only one of these. This adds some localization information, which appears to be important.

Table 1 shows that the skip-connection indeed improves classification accuracy. A linear classifier on
this Learned Scattering reaches ResNet-18 accuracy on CIFAR-10 and ImageNet. It demonstrates
that collapsing appropriate phases is sufficient to obtain a high accuracy on large-scale classification
problems. Learning is reduced to 1× 1 convolutions (Pj)j across channels.

4 PHASE COLLAPSES VERSUS AMPLITUDE REDUCTIONS

We now compare phase collapses with amplitude reductions, which are non-linearities which preserve
the phase and act on the amplitude. We show that the accuracy of a Learned Scattering network is
considerably reduced when the phase collapse modulus is replaced by soft-thresholdings with learned
biases. This result remains true for other amplitude reductions and architectures.
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Thresholding and sparsity A complex soft-thresholding reduces the amplitude of its input z =

|z|eiϕ by b while preserving the phase: ρb(z) = ReLU(|z| − b) eiϕ. Similarly to its real counterpart,
it is obtained as the proximal operator of the complex modulus (Yang et al., 2012):

ρb(z) = arg min
w∈C

b|w|+ 1

2
|w − z|2. (9)

Soft-thresholdings and moduli have opposite properties, since soft-thresholdings preserve the phase
while attenuating the amplitude, whereas moduli preserve the amplitude while eliminating the phase.
In contrast, ReLUs with biases are more general non-linearities which can act both on phase and
amplitude. This is best illustrated over R where the phase is replaced by the sign, through the
even-odd decomposition. If z ∈ R and b ≥ 0, then the even part of ReLU(z − b) is ReLU(|z| − b),
which is an absolute value with a dead-zone [−b, b]. When b = 0, it becomes an absolute value |z|.
The odd part is a soft-thresholding ρb(z) = sign(z) ReLU(|z| − b). Over C, a similar result can be
obtained through the decomposition into phase harmonics (Mallat et al., 2019).

We have explained how phase collapses can improve the classification accuracy of locally stationary
processes by separating class means E

[∣∣Xy ∗ ψ
∣∣]. In contrast, since the phase of Xy ∗ψ is uniformly

distributed for such processes, then it is also true of ρb(Xy ∗ψ). This implies that E
[
ρb(Xy ∗ ψ)

]
= 0

for all b. Class means of locally stationary processes are thus not separated by a thresholding.

When class means E[Xy ∗ ψ] are separated, a soft-thresholding of Xy ∗ ψ may however improve
classification accuracy. If Xy ∗ ψ is sparse, then a soft-thresholding ρb(Xy ∗ ψ) reduces the within-
class variance (Donoho and Johnstone, 1994; Zarka et al., 2021). Coefficients below the threshold
may be assimilated to unnecessary “clutter” which is set to 0. To improve classification, convolutional
filters must then produce high-amplitude coefficients corresponding to discriminative “features”.

Phase collapses versus amplitude reductions A Learned Scattering with phase collapses pre-
serves the amplitudes of wavelet coefficients and eliminates their phases. On the opposite, one may
use a non-linearity which preserves the phases of wavelet coefficients but attenuates their amplitudes,
such as a soft-thresholding. We show that such non-linearities considerably degrade the classification
accuracy compared to phase collapses.

Several previous works made the hypothesis that sparsifying neural responses with thresholdings
is a major mechanism for improving classification accuracy (Sun et al., 2018; Sulam et al., 2018;
2019; Mahdizadehaghdam et al., 2019; Zarka et al., 2020; 2021). The dimensionality of sparse
representations can then be reduced with random filters which implement a form of compressed
sensing (Donoho, 2006; Candes et al., 2006). The interpretation of CNNs as compressed sensing
machines with random filters has been studied (Giryes et al., 2015), but it never led to classification
results close to e.g. ResNet accuracy.

To test this hypothesis, we replace the modulus non-linearity in the Learned Scattering architecture
with thresholdings, or more general phase-preserving non-linearities. A Learned Amplitude Reduction
Scattering applies a non-linearity ρ(z) which preserves the phases of wavelet coefficients z = |z|eiϕ:
ρ(z) = eiϕ ρ(|z|). Without skip-connections, each layer xj+1 is computed from xj by:

xj+1 = ρ(WPjxj), (10)

and with skip-connections:
xj+1 =

[
ρ(WPjxj) , WPjxj

]
. (11)

A soft-thresholding is defined by ρ(|z|) = ReLU(|z| − b) for some threshold b. We also define
an amplitude hyperbolic tangent ρ(|z|) = (e|z| − e−|z|)/(e|z| + e−|z|), an amplitude sigmoid as
ρ(|z|) = (1 + e−a log |z|−b)−1 and an amplitude soft-sign as ρ(|z|) = |z|/(1 + |z|). The soft-
thresholding and sigmoid parameters a and b are learned for each layer and each channel.

We evaluate the classification performance of a Learned Amplitude Reduction Scattering on CIFAR-
10, by applying a linear classifier on the last layer. Classification results are given in Table 2 for
different amplitude reductions, with or without skip-connections. Learned Amplitude Reduction
Scatterings yield much larger errors than a Learned Scattering with phase collapses. Without skip-
connections, they are even above a scattering transform, which also uses phase collapses but does not
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Table 2: Top-1 error (in %) on CIFAR-10 with a linear classifier applied to a Scattering network
(Scat) and several Learned Scattering networks (LScat) with several non-linearities. They include a
modulus (Mod), an amplitude soft-thresholding (Thresh), an amplitude hyperbolic tangent (ATanh),
an amplitude sigmoid (ASigmoid), and an amplitude Soft-sign (ASign).

Scat
LScat

Mod AThresh ATanh ASigmoid ASign

Without skip 27.7 11.7 36.7 40.7 38.5 39.9
With skip - 7.7 22.5 19.2 17.0 19.5

have learned 1× 1 convolutional projections (Pj)j . It demonstrates that high accuracies result from
phase collapses without biases, as opposed to amplitude reduction operators including thresholdings,
which learn bias parameters. Similar experiments in the real domain with a standard ResNet-18
architecture on the ImageNet dataset can be found in Appendix B.

ReLUs with biases Most CNNs, including ResNets, use ReLUs with biases. A ReLU with bias
simultaneously affects the sign and the amplitude of its real input. Over complex numbers, it amounts
to transforming the phase and the amplitude. These numerical experiments show that accuracy
improvements result from acting on the sign or phase rather than the amplitude. Furthermore, this
can be constrained to collapsing the phase of wavelet coefficients while preserving their amplitude.

Several CNN architectures have demonstrated a good classification accuracy with iterated thresh-
olding algorithms, which increase sparsity. However, all these architecture also modified the sign of
coefficients by computing non-negative sparse codes (Sun et al., 2018; Sulam et al., 2018; Mahdizade-
haghdam et al., 2019) or with additional ReLU or modulus layers (Zarka et al., 2020; 2021). It seems
that it is the sign or phase collapse of these non-linearities which is responsible for good classification
accuracies, as opposed to the calculation of sparse codes through iterated amplitude reductions.

5 ITERATING PHASE COLLAPSES AND AMPLITUDE REDUCTIONS

We now provide a theoretical justification to the above numerical results in simplified mathematical
frameworks. This section studies the behavior of phase collapses and amplitude reductions when they
are iterated over several layers. It shows that phase collapses benefit from iterations over multiple
layers, whereas there is no significant gain in performance when iterating amplitude reductions.

5.1 ITERATED PHASE COLLAPSES

We explain the role of iterated phase collapses with multiple filters at each layer. Classification
accuracy is improved through the creation of additional dimensions to separate class means. The
learned projectors (Pj)j are optimized for this separation.

We consider the classification of stationary processes Xy ∈ Rd, corresponding to different image
classes indexed by y. Given a realization x of Xy , and because of stationarity, the optimal linear clas-
sifier is calculated from the empirical mean 1/d

∑
u x(u). It computes an optimal linear estimation

of E
[
Xy(u)

]
= µy . If all classes have the same mean µy = µ, then all linear classifiers fail.

As explained in Section 2, linear classification can be improved by computing (|x ∗ ψk|)k for some
wavelet filters (ψk)k. These phase collapses create additional directions with non-zero means which
may separate the classes. If Xy is stationary, then |Xy ∗ ψk| remains stationary for any ψk. An
optimal linear classifier applied to (|x ∗ ψk(u)|)k is thus obtained by a linear combination of all
empirical means (1/d

∑
u |x ∗ ψk(u)|)k. They are proportional to the `1 norm ‖x ∗ ψk‖1, which is a

measure of sparsity of x ∗ ψk.

If linear classification on (|x ∗ ψk(u)|)k fails, it reveals that the means E
[
|Xy ∗ ψk(u)|

]
= µy,k

are not sufficiently different. Separation can be improved by considering the spatial variations of
|Xy ∗ ψk(u)| for different y. These variations can be revealed by a phase collapse on a new set of
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wavelet filters ψk′ , which computes (||x∗ψk| ∗ψk′ |)k,k′ . This phase collapse iteration is the principle
used by scattering transforms to discriminate textures (Bruna and Mallat, 2013; Sifre and Mallat,
2013): each successive phase collapse creates additional directions to separate class means.

However, this may still not be sufficient to separate class means. More discriminant statistical
properties may be obtained by linearly combining (|x ∗ ψk|)k across k before applying a new filter
ψk′ . In a Learned Scattering with phase collapse, this is done with a linear projector P1 across
the channel indices k, before computing a convolution with the next filter ψk′ . The 1× 1 operator
P1 is optimized to improve the linear classification accuracy. It amounts to learning weights wk
such that E[

∣∣∑
k wk

∣∣Xy ∗ ψk
∣∣ ∗ ψk′ ∣∣] is as different as possible for different y. Because these are

proportional to the `1 norms
∥∥∑

k wk|x ∗ ψk| ∗ ψk′
∥∥

1
, it means that the images

∑
k wk|x ∗ ψk| ∗ψk′

have different sparsity levels depending upon the class y of x. The weights (wk)k of P1 can thus
be interpreted as features along channels providing different sparsifications for different classes. A
Learned Scattering network learns such Pj at each scale j.

5.2 ITERATED AMPLITUDE REDUCTIONS

Sparse representations and amplitude reduction algorithms may improve linear classification by
reducing the variance of class mean estimations, which can be interpreted as clutter removal. Such
approaches are studied in Zarka et al. (2021) by modeling the clutter as an additive white noise.
Although a single thresholding step may improve linear classification, we show that iterating more
than one thresholding does not improve the classification accuracy, if no phase collapses are inserted.

To understand these properties, we consider the discrimination of classes Xy for which class means
E(Xy) = µy are all different. If there exists y′ such that ‖µy−µy′‖ is small, then the class y can still
be discriminated from y′ if we can estimate E(Xy) sufficiently accurately from a single realization x
of Xy . This is a mean estimation problem. Suppose that Xy = µy +N (0, σ2) is contaminated with
Gaussian white noise, where the noise models some clutter. Suppose also that there exists a linear
orthogonal operator D such that Dµy is sparse for every y, and hence has its energy concentrated
in few non-zero coefficients. Such a D may be computed by minimizing the expected `1 norm∑
y E
[
‖DXy‖1

]
. The estimation of µy can be improved with a soft-thresholding estimator (Donoho

and Johnstone, 1994), which sets to zero all coefficients below a threshold b proportional to σ. It
amounts to computing ρb(Dx), where ρb is a soft-thresholding.

However, we explain below why this approach cannot be further iterated without inserting phase
collapses. The reason is that a sparse representation ρb(Dx) concentrates its entropy in the phases
of the coefficients, rather than their amplitude. We then show that such processes cannot be further
sparsified, which means that a second thresholding ρb′(D

′ρb(Dx)) will not reduce further the variance
of class mean estimators. This entails that a model of within-class variability relying on amplitude
reductions cannot be the sole mechanism behind the performance of deep networks.

Iterating amplitude reductions may however be useful if it is alternated with another non-linearity
which partly or fully collapses phases. Reducing the entropy of the phases of ρb(Dx) allows ρb′D

′

to further sparsify the process and hence further reduce the within-class variability. As mentioned
in Section 4, this is the case for previous work which used iterated sparsification operators (Sun
et al., 2018; Sulam et al., 2018; Mahdizadehaghdam et al., 2019). Indeed, these networks compute
non-negative sparse codes where sparsity is enforced with a ReLU, which acts both on phases and
amplitudes. Our results shows that the benefit of iterating non-negative sparse coding comes from the
sign collapse due to the non-negativity constraint.

We now qualitatively demonstrate these claims with two theorems. We first show that finding the
sparsest representation of a random process (i.e., minimizing its `1 norm) is the same as maximizing
a lower bound on the entropy of its phases.

Theorem 2. Let X denote a random vector in Cd with a probability density p. Let H(X) be the
entropy of X with respect to the Lebesgue measure:

H(X) = −
∫
p(x) log p(x) dx.

8
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If D ∈ U(d) is a unitary operator then:

H
(
ϕ(DX)

∣∣∣ |DX|) ≥ H(X)− d− 2d log

(
1

d
E[‖DX‖1]

)
,

where ϕ(DX) ∈ [0, 2π]d (resp. |DX| ∈ Rd+) is the random process of the entry-wise phases (resp.
moduli) of DX .

The proof is in Appendix E. This theorem gives a lower-bound on the conditional entropy of the phases
of DX with a decreasing function of the expected `1 norm of DX . Minimizing over D this expected
`1 norm amounts to maximizing the lower bound on H

(
ϕ(DX)

∣∣∣ |DX|). An extreme situation
arises when this entropy reaches its maximal value of d log(2π). In this case, the phase ϕ(DX) has a
maximum-entropy distribution and is therefore uniformly distributed in [0, 2π]d. Moreover, in this
extreme case ϕ(DX) is independent from |DX|, since its conditional distribution does not depend
on |DX|. Such statistical properties have previously been observed on wavelet coefficients of natural
images (Rao et al., 2001), where the wavelet transform seems to be a nearly optimal sparsifying
unitary dictionary.

The second theorem considers the extreme case of a random process whose phases are conditionally
independent and uniform. It proves that such a process cannot be significantly sparsified with a
change of basis.

Theorem 3. Assume that ϕ(ρb(DX)) is uniformly distributed in [0, 2π]d and independent from
|ρb(DX)|. Then there exists a constant Cd > 0 which depends on the dimension d, such that for any
D′ ∈ U(d),

E
[
‖D′ρb(DX)‖1

]
≥ CdE[‖ρb(DX)‖1].

The proof is in Appendix F. This theorem shows that random processes with conditionally in-
dependent and uniform phases have an `1 norm which cannot be significantly decreased by any
unitary transformation. Numerical evaluations suggest that the constant Cd may be chosen to be√
π/2 ≈ 0.886, independently of the dimension d. This constant arises as the value of E[|Z|] when

Z is a complex normal random variable with E[|Z|2] = 1.

These two theorems explain qualitatively that linear classification on ρb(Dx) cannot be improved by
another thresholding that would take advantage of another sparsification operator. Indeed, Theorem 2
shows that if ρb(Dx) is sparse, then its phases have random fluctuations of high entropy. Theorem 3
indicates that such random phases prevent a further sparsification of ρb(Dx) with some linear operator
D′. Applying a second thresholding ρb′(D

′ρb(Dx)) thus cannot significantly reduce the variance of
class mean estimators.

6 CONCLUSION

This paper studies the improvement of linear separability for image classification in deep convolutional
networks. We show that it mostly relies on a phase collapse phenomenon. Eliminating the phase of
wavelet coefficients improves the separation of class means. We introduced a Learned Scattering
network with wavelet phase collapses and learned 1× 1 convolutional filters (Pj)j , which reaches
ResNet accuracy. The learned 1× 1 operators (Pj) enhance discriminability by computing channels
that have different levels of sparsity for different classes.

When class means are separated, thresholding non-linearities can improve classification by reducing
the variance of class mean estimators. When used alone, the classification performance is poor over
complex datasets such as ImageNet or CIFAR-10, because class means are not sufficiently separated.
Furthermore, the iteration of thresholdings on sparsification operators requires intermediary phase
collapses.

These results show that linear separation of classes result from acting on the sign or phase of network
coefficients rather than their amplitude. Furthermore, this can be constrained to collapsing the phase
of wavelet coefficients while preserving their amplitude. The elimination of spatial variability with
phase collapses is thus both necessary and sufficient to linearly separate classes on complex image
datasets.

9
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REPRODUCIBILITY STATEMENT

The code to reproduce the experiments of the paper is available at https://github.com/
FlorentinGuth/PhaseCollapse. All experimental details and hyperparameters are also
provided in Appendix G.
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A PAIRED ALEXNET FILTERS

Section 2 explains that real networks can still implement phase collapses. This is done with several
real filters ψα = Re(e−iαψ) which correspond to several phases α of the same complex filter ψ.
Shang et al. (2016) showed that the filters in e.g. the first layer of AlexNet (Krizhevsky et al., 2012)
can indeed be grouped in such a way. For the sake of completeness, we reproduce in Figure 2 a
figure from Shang et al. (2016). This suggests that real-valued networks may indeed implement phase
collapses using eq. (4).

Figure 2: First-layer filters from AlexNet (Krizhevsky et al., 2012). They have been paired so that they
approximately correspond to two different phases of the same complex filter ψ. Figure reproduced
from Shang et al. (2016).

B PHASE COLLAPSE VERSUS AMPLITUDE REDUCTION WITH RESNET

We now evaluate the classification error of phase collapses and amplitude reduction non-linearities in
the real domain. We use a standard ResNet-18 architecture without biases. We replace the ReLU
non-linearity by an absolute value or sign collapse |x| and several sign-preserving (i.e., odd) non-
linearities. They include a soft-thresholding ρb(x) = sign(x) ReLU(|x| − b), an hyperbolic tangent
ρ(x) = (ex − e−x)/(ex + e−x), and a soft-sign ρ(x) = x/(1 + |x|). We do not report results for an
amplitude sigmoid ρ(x) = sign(x)(1 + e−a log |x|−b)−1 because of optimization instabilities when
learning the parameters a and b.

Classification results on the ImageNet dataset are given in Table 3. The error of bias-free ReLUs and
sign collapses are comparable to a standard ResNet-18, and confirm that sign collapses are sufficient
to reach such accuracies. In contrast, the performance of amplitude reduction non-linearities, which
preserve the sign of network coefficients, is significantly worse. The conclusions of Section 4 thus
still hold in the real domain and when the spatial filters are not constrained to be wavelets.

Table 3: Classification errors on ImageNet of bias-free ResNet-18 (BFResNet) architectures with
several non-linearities. They include a ReLU, an absolute value which performs sign collapses (Abs),
a soft-thresholding (Thresh), a hyperbolic tangent (Tanh), and a soft-sign (Sign). They are compared
to the original ResNet-18 architecture, which uses a ReLU and learns biases.

ResNet
BFResNet

ReLU Abs Thresh Tanh Sign

Top-5 error (%) 10.9 12.3 13.9 25.7 22.4 24.2
Top-1 error (%) 30.2 32.6 35.3 50.0 44.6 49.3
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C PROOF OF THEOREM 1

We have:

‖xτ ∗ ψ − e
−iξ·τ (x ∗ ψ)‖∞ = ‖x ∗ (ψτ − e

−iξ·τψ)‖∞ by covariance of convolution,

≤ ‖ψτ − e
−iξ·τψ‖2‖x‖2 by Young’s inequality,

and then:

‖ψτ − e
−iξ·τψ‖

2

2 =
1

(2π)2

∫
[−π,π]

2
|ψ̂τ (ω)− e−iξ·τ ψ̂(ω)|2dω by Plancherel,

=
1

(2π)2

∫
[−π,π]

2
|e−iω·τ ψ̂(ω)− e−iξ·τ ψ̂(ω)|2dω since ψτ (u) = ψ(u− τ),

=
1

(2π)2

∫
[−π,π]

2
|e−iω·τ − e−iξ·τ |2|ψ̂(ω)|2dω

≤ 1

(2π)2

∫
[−π,π]

2
|(ω − ξ) · τ |2|ψ̂(ω)|2dω since x ∈ R 7→ eix is 1-Lipschitz,

≤ 1

(2π)2

∫
[−π,π]

2
|ω − ξ|2|τ |2|ψ̂(ω)|2dω by Cauchy-Schwarz,

= σ2|τ |2,

which leads to the desired result of eq. (3):

‖xτ ∗ ψ − e
−iξ·τ (x ∗ ψ)‖∞ ≤ σ |τ | ‖x‖2.

D PROOF OF EQUATION (4)

We have:
ReLU(x ∗ ψα) = ReLU(x ∗ Re(e−iαψ)) = ReLU(Re(e−iαx ∗ ψ)),

since x is real. By writing: x ∗ ψ = |x ∗ ψ|eiϕ(x∗ψ) where ϕ(x ∗ ψ) is the phase of x ∗ ψ, this leads
to:

ReLU(Re(e−iαx ∗ ψ)) = ReLU(Re(|x ∗ ψ|ei(ϕ(x∗ψ)−α)))

= ReLU(|x ∗ ψ| cos(ϕ(x ∗ ψ)− α))

= |x ∗ ψ|ReLU(cos(ϕ(x ∗ ψ)− α)),

since ReLU activation is positive-homogeneous of degree 1. Thus:

1

2

∫ π

−π
ReLU(x ∗ ψα)dα =

1

2

∫ π

−π
|x ∗ ψ|ReLU(cos(ϕ(x ∗ ψ)− α))dα

=
1

2
|x ∗ ψ|

∫ π−ϕ(x∗ψ)

−π−ϕ(x∗ψ)

ReLU(cos(−α))dα with a change of variable,

=
1

2
|x ∗ ψ|

∫ π

−π
ReLU(cos(α))dα since cos is 2π periodic and even,

=
1

2
|x ∗ ψ|

∫ π/2

−π/2
cos(α)dα

= |x ∗ ψ|.

For z ∈ C, we have |z| =
√
|Re(z)|2 + |Im(z)|2 ≈ |Re(z)|+ |Im(z)| in the following sense:

1√
2

(|Re(z)|+ |Im(z)|) ≤ |z| ≤ |Re(z)|+ |Im(z)|.
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We can write:

|Re(z)| = ReLU(Re(z)) + ReLU(−Re(z)),

|Im(z)| = ReLU(Im(z)) + ReLU(− Im(z)).

and then, using Im(z) = Re(eiπ/2z) and eiπ = −1:

|z| ≈ ReLU(Re(z)) + ReLU(Re(e−iπz)) + ReLU(Re(e−iπ/2z)) + ReLU(Re(eiπ/2z)).

Finally,

|x ∗ ψ| = 1

2

∫ π

−π
ReLU(x ∗ ψα)dα ≈

∑
α∈{−π/2,0,π/2,π}

ReLU(Re(x ∗ ψα)),

which shows that the integral can be well approximated with a sum of 4 phases α of the complex
filter ψ.

E PROOF OF THEOREM 2

We first use the chain rule for the entropy:

H
(
ϕ(DX)

∣∣∣ |DX|) = H(|DX|, ϕ(DX))−H(|DX|).

The first term is rewritten with a change of variable:

H(|DX|, ϕ(DX)) = H(DX)−
d∑
k=1

E[log |(DX)k|]

= H(X)−
d∑
k=1

E[log |(DX)k|] as D is unitary and hence |det(D)| = 1,

≥ H(X)− dE
[
log

(
1

d
‖DX‖1

)]
by concavity,

≥ H(X)− d log

(
1

d
E[‖DX‖1]

)
by concavity.

The second term is bounded using the fact that the exponential distribution E(λ) is the maximum-
entropy distribution on R+ with mean 1

λ :

H(|DX|) ≤
d∑
k=1

H(|(DX)k|)

≤
d∑
k=1

log(eE[|(DX)k|])

≤ d log
( e
d
E[‖DX‖1]

)
by concavity.

Combining both inequalities and rearranging terms yields the stated bound:

H
(
ϕ(DX)

∣∣∣ |DX|) ≥ H(X)− d− 2d log

(
1

d
E[‖DX‖1]

)
.

F PROOF OF THEOREM 3

We begin with the following lemma:
Lemma 1. Let (θ1, . . . , θd) be i.i.d. uniform random variables in [0, 2π]. Then there exists a constant
Cd > 0 such that for all (ρ1, . . . , ρd) ∈ Rd, then:

E

[
|
d∑
k=1

ρke
iθk |

]
≥ Cd

√√√√ d∑
k=1

ρ2
k.
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This is proved by observing that the left-hand side is a norm on Rd. One can indeed verify that it
is positive definite, homogeneous and satisfies the triangle inequality. Since all norms on Rd are
equivalent, there exists a constant Cd > 0 such that:

E

[
|
d∑
k=1

ρke
iθk |

]
≥ Cd

√√√√ d∑
k=1

ρ2
k.

for all (ρ1, . . . , ρd) ∈ Rd.

Going back to the proof of Theorem 3, and letting X ′ = ρb(DX), we then have:

E
[
‖D′X ′‖1

∣∣∣ |X ′|] =

d∑
m=1

E

[
|
d∑
k=1

D′m,kX
′
k|

∣∣∣∣∣ |X ′|
]

≥ Cd
d∑

m=1

√√√√ d∑
k=1

|D′m,k|
2|X ′k|

2
by the above lemma,

≥ Cd
d∑

m=1

d∑
k=1

|D′m,k|
2|X ′k| by concavity, because

d∑
k=1

|D′m,k|
2

= 1,

= Cd
∥∥X ′∥∥

1
because

d∑
m=1

|D′m,k|
2

= 1.

Taking the expectation finishes the proof:

E
[
‖D′X ′‖1

]
≥ CdE

[
‖X ′‖1

]
. (12)

G EXPERIMENTAL DETAILS

Channel operators In all experiments we set P0 = Id, and factorize the classifier with an additional
complex 1 × 1 convolutional operator PJ , which reduces the dimension before all channels and
positions are linearly combined. The architectures implemented are thus also written as

∏J
j=1 PjρW ,

where ρ is the non-linearity. Each operator (Pj)1≤j≤J is preceded by a standardization. It sets the
complex mean µ = E[z] of every channel to zero, and the real variance σ2 = E[|z|2] of every channel
to one. This is similar to a complex 2D batch-normalization layer (Ioffe and Szegedy, 2015), but
without learned affine parameters. Each operator (Pj)1≤j≤J is additionally followed by a spatial
divisive normalization (Rao et al., 2001), similarly to the local response normalization of Krizhevsky
et al. (2012). It sets the norm across channels of each spatial position to one. The sizes of the (Pj)j
are specified in Table 4.

The total numbers of parameters for each architecture are specified in Table 5. Learned Scattering
with phase collapse have a large number of parameters compared to ResNet, despite the comparable
width. This is because the predefined wavelet operator W expands the dimension by a factor of
L + 1, which means that the input dimension of the learned (Pj)j is higher than in ResNet. The
skip-connection further increases this input dimension by a factor of 2.

Table 4: Number cj of complex output channels of Pj , 1 ≤ j ≤ J . The total number of projectors is
J = 8 for CIFAR and J = 11 for ImageNet.

j 1 2 3 4 5 6 7 8 9 10 11

CIFAR-10 cj 64 128 256 512 512 512 512 512 - - -

ImageNet cj 32 64 64 128 256 512 512 512 512 512 256
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Table 5: Number of real parameters (in millions) of Learned Scattering network architectures. A
complex parameter is counted as two real parameters.

PCScat PCScat + skip ResNet

CIFAR-10 41.6 83.1 0.27

ImageNet 36.0 62.8 11.7

Spatial filters We use elongated Morlet filters for the L complex band-pass filters (g`)` which are
rotated versions of a mother wavelet g: g`(u) = g(r−π`/Lu), with rθ the rotation by angle θ. The
mother wavelet g is defined as:

g(u) =
σ2

2π/s2 (eiξ·u −K)e−u·Σu/2 with Σ =

(
σ2 0

0 σ2s2

)
, (13)

Its parameters are its center frequency ξ = ((3π/4)/2γ , 0), its bandwidth σ = 1.25× 2−γ , and its
slant s = 0.5, where 2γ designates the scale of the band-pass filter and is to be adjusted.

g is rotated along L = 8 angles for Imagenet and L = 4 angles for CIFAR: θ` = (π`/L)1≤`≤L. The
(g`)` are then discretized for numerical computations, and K is adjusted so that they have a zero
mean.

Finally, we use for the low frequency g0 a Gaussian window:

g0(u) =
σ2

2π
e−σ

2‖u‖22/2.

The filters are implemented with the Kymatio package (Andreux et al., 2020).

Intermediate scales 2j/2 are obtained by applying a subsampling by 2 after each block of 2 layers.
This introduces intermediate scales and generates a wavelet filterbank with 2 scales per octave: the
filters are designed so that when j low-pass filters and one band-pass filter are cascaded, with a
subsampling every 2 layers, the scale of the resulting wavelet is 2j/2.

Each block comprises in its first layer a low-frequency filter g1
0 with γ = −1/2 and band-pass filters

with γ = 0. In the second layer, we use the same low-frequency filter g2
0 = g1

0 with γ = −1/2. The
band-pass filters g2

` are obtained with parameters ξ′ = (π/
√

2, 0), σ′ = 1.25
√

2/3, and s′ =
√

0.2.

For CIFAR experiments, the J = 8 layers are grouped in 4 successive blocks of 2 layers. For
ImageNet experiments, the first layer consists of band-pass elongated Morlet filters g` and a low-pass
Gaussian window g0 with γ = 0, followed by a subsampling of 2. The 10 following layers are
grouped in 5 blocks of 2 layers.

Optimization We use the optimizer SGD with an initial learning rate of 0.01, a momentum of
0.9, a weight decay of 0.0001, and a batch size of 128. The classifier is preceded by a 2D batch-
normalization layer. We use traditional data augmentation: horizontal flips and random crops for
CIFAR, random resized crops of size 224 and horizontal flips for ImageNet. Classification error on
ImageNet validation set is computed on a single center crop of size 224. On CIFAR, training lasts
for 300 epochs and the learning rate is divided by 10 every 70 epochs. On ImageNet, training lasts
for 150 epochs and the learning rate is divided by 10 every 45 epochs. All experiments ran during
the preparation of this paper, including preliminary ones, required around 10k 32GB NVIDIA V100
GPU-hours.
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