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Abstract

The Situated Interactive Multi-Modal Conver-001
sations (SIMMC) 2.0 aims to create virtual002
shopping assistants that can accept complex003
multi-modal inputs, i.e. visual appearances of004
objects and user utterances. It consists of four005
subtasks, multi-modal disambiguation (MM-006
Disamb), multi-modal coreference resolution007
(MM-Coref), multi-modal dialog state tracking008
(MM-DST), and response retrieval and gener-009
ation. While many task-oriented dialog sys-010
tems usually tackle each subtask separately, we011
propose a jointly learned multi-modal encoder-012
decoder that incorporates visual inputs and per-013
forms all four subtasks at once for efficiency.014
This approach won the MM-Coref and response015
retrieval subtasks and nominated runner-up for016
the remaining subtasks using a single unified017
model at the 10th Dialog Systems Technology018
Challenge (DSTC10), setting a high bar for the019
novel task of multi-modal task-oriented dialog020
systems.1021

1 Introduction022

A task-oriented dialog system aims to assist users023

accomplish certain tasks, such as executing ac-024

tions or retrieving specific information, with natu-025

ral language conversations. With the rising interest026

in multi-modal representation learning, the next027

generation of task-oriented virtual assistants is ex-028

pected to handle conversations in such contexts,029

especially in the domain of vision-language (VL).030

For instance, a multi-modal dialog agent may help031

the user navigate a virtual clothing store and look032

for an object meeting the user’s criteria. In such033

cases, a successful dialog agent should be able to034

parse and understand multi-modal contexts.035

To this end, SIMMC 2.0 (Kottur et al., 2021) pro-036

poses a situated multi-modal context in the form037

1Code is available at https://anonymous.
4open.science/r/NACCL_SUBMISSION_
ANONYMOUS-1CD3

of co-observed, realistic scene set in virtual re- 038

ality (VR) stores to incorporate the complexity 039

of multi-modal task-oriented dialogs. The multi- 040

modal subtasks, MM-Disamb and MM-Coref, in- 041

tend to test the assistant’s capability to identify the 042

need for disambiguating reference mentions and to 043

ground them to the scene objects. While challeng- 044

ing, these are all essential to building a successful 045

multi-modal dialog agent. 046

In this paper, we present our end-to-end, joint- 047

learning approach to address this challenge in 048

SIMMC 2.0. We adopt BART (Lewis et al., 2019) 049

and attach task-specific heads so that the model can 050

make predictions on all subtasks at once. To be 051

more specific, our model performs MM-Disamb, 052

MM-Coref, and response retrieval by the encoder 053

and MM-DST and response generation in a string 054

format by the decoder. We also integrate multi- 055

modality into the model by extracting visual fea- 056

tures of each object from a convolutional vision 057

backbone then combining them with non-visual 058

attributes. Our model is jointly trained on all sub- 059

tasks and a couple of auxiliary objectives to help 060

the model align the different modalities. For re- 061

trieval, we use in-batch negative samples for con- 062

trastive metric learning instead of creating a pool 063

of separate training samples. 064

With modification for the competition setting, 065

our model was ranked at the first place for MM- 066

Coref and response retrieval with 75.8% corefer- 067

ence F1, 82.5% MRR, 72.5% R@1, 95.0% R@5, 068

98.4% R@10, and 1.9 mean rank in the official eval- 069

uation of DSTC10. Moreover, our model was nom- 070

inated runner-up for all other subtasks, in which we 071

achieved 93.8% disambiguation accuracy, 90.3% 072

slot F1, 95.9% intent F1, and 0.295 BLEU-4. The 073

results were obtained with only a single model 074

and consistent with the results on the devtest (i.e. 075

validation) set, demonstrating a robust, common 076

representation on all subtasks learned by the model. 077
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2 Related Work078

Recent works on (uni-modal) task-oriented dialog079

systems remove the need for a pipeline composed080

of NLU (Liu and Lane, 2016), DST (Mrksic et al.,081

2017), POL (Wen et al., 2017), and NLG (Wen082

et al., 2015) modules by leveraging pretrained lan-083

guage models (LM) that integrate all the modules in084

an end-to-end, auto-regressive manner (Ham et al.,085

2020; Hosseini-Asl et al., 2020; Yang et al., 2021).086

Given a dialog context, such systems sequentially087

generates belief state, system action, and response,088

making predictions based on decisions made by pre-089

vious modules in the form of tokens and achieving090

superior results to the pipelined approaches. Some091

of these systems aim to learn the user preference092

from dialogs and recommend the object based on093

external knowledge base (KB) (Zhou et al., 2020).094

In a similar context, building cross-modal mod-095

els has recently gained attention in VL domain.096

Recent works develop VL models on top of097

the transformer-based (Vaswani et al., 2017) pre-098

trained LM and vision backbones, focusing on099

self-supervised pretraining methods to align joint100

embedding between different modalities. They101

achieve state-of-the-art performance in down-102

stream tasks such as visual question answering103

(VQA), as shown in (Chen et al., 2020) and (Li104

et al., 2020). However, there are only a handful of105

works focusing on situated VL task-oriented dialog106

systems (Liao et al., 2018), where visual modality107

of the task is provided in a sanitized setting rather108

than a natural, situated scene.109

3 SIMMC 2.0 Description110

3.1 Dataset111

SIMMC 2.0 (Kottur et al., 2021) 2 follows the set-112

ting of SIMMC 1.0 (Moon et al., 2020), which as-113

sumed conversations occurring between a user and114

an assistant in a situated, co-observed VR scene.115

This newer iteration of the dataset lifts the lim-116

itations of SIMMC 1.0 by further capturing the117

complexity of multi-modal conversations: whereas118

SIMMC 1.0 had at most three objects in a simple,119

sanitized scene, SIMMC 2.0 provides a far richer120

visual context with 19.7 objects on average that are121

often occluded, cluttered, or even out of view. An122

example dialog is shown in Figure 1.123

2Dataset is publicly available at https://github.
com/facebookresearch/simmc2

Figure 1: An instance of dialog and the corresponding
scene in SIMMC 2.0. Here, the assistant asks the user to
disambiguate between the blue hoodie jacket (indexed
as 1) and the beige jacket (indexed as 2), grounding its
mentions to the scene via multi-modal context M0 =
{1, 2}. Once the user chooses the blue one, the system
retrieves the information on the disambiguated object.
The multi-modal context in this case would be M1 =
{1}.

The SIMMC 2.0 dataset consists of 11,244 di- 124

alogs split into train (65%), dev (5%), devtest 125

(15%), and teststd (15%) sets. Each dialog includes 126

multiple turns where each turn has grounded multi- 127

modal context and an accompanying scene with ref- 128

erential indices. We shall denote a SIMMC dialog 129

with r rounds as D := {(Ut, At,Mt, St, Bt)}rt=1, 130

where Ut is user utterance, At system utterance, 131

Mt multi-modal context, St scene context, and 132

Bt user belief state at turn t. Here, Mt is a set 133

of object indices mentioned by the system and 134

St contains the corresponding attributes and lo- 135

cations of all the objects in a scene. User belief 136

state Bt is composed of dialog act (i.e. user in- 137

tent) and slot (i.e. a tuple of (slot name, value), 138

for instance ("price", "$11.99")). We also de- 139

fine the dialog history at some turn T ≤ r as 140

HT := {U0, A0,M0, . . . , UT−1, AT−1,MT−1}. 141

The assistant needs to make predictions condi- 142

tioned on history HT , current user utterance UT , 143

and the scenes up to the current turn St≤T . The 144

object set consists of fashion and furniture domain, 145

where each domain has 288 and 57 items respec- 146

tively. The system is allowed to look up which 147

item is present in a scene at all time along with 148

its bounding box information. As a side informa- 149

tion, the metadata of each object are provided: its 150

non-visual attributes such as brand, size, customer 151
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rating and price are available for both training and152

inference, but looking up the visual attribute (e.g.153

color, pattern, materials, sleeve length) is prohib-154

ited for inference so as to make the agent reason155

with multi-modal information.156

3.2 Subtasks157

Multi-modal disambiguation (MM-Disamb)158

The first subtask is to identify whether the assis-159

tant should disambiguate mentions in the next turn160

given the dialog and multi-modal context. For in-161

stance, given user utterance "How much is the pair162

on the left?", there may be more than two pairs of163

pants on the left. In this case, ambiguity in refer-164

ence should be resolved. This can be cast into a165

binary classification task, and the performance is166

measured by accuracy.167

Multi-modal coreference resolution (MM-Coref)168

The second subtask is to map the referential men-169

tions of the user utterance to the object indices170

in the scene. These mentions should be resolved171

through the linguistic context and the multi-modal172

context. The performance is measured by object173

slot F1 score.174

Multi-modal dialog state tracking (MM-DST)175

The third subtask extends the traditional uni-modal176

DST to ground user belief state on the multi-modal177

objects. This will measure the assistant’s under-178

standing throughout each dialog, which includes179

disambiguation and coreference resolution. The180

performance is measured by the F1 score for dialog181

act and slots.182

Response retrieval & generation The last sub-183

task is to retrieve or generate appropriate system184

utterance. Response generation is evaluated with185

BLEU-4 (Papineni et al., 2002). For response re-186

trieval, the system is expected to choose the most187

relevant response from a pool of 100 candidate re-188

sponses. Recall@k (k ∈ {1, 5, 10}), mean rank,189

and mean reciprocal rank (MRR) are used for re-190

trieval evaluation.191

4 Multi-Modal Transformer Model192

The setting of the dataset is similar to that of VQA193

where finetuning the pretrained VL models are194

prevalent; however, these models are usually pre-195

trained on natural images (Lin et al., 2014; Kr-196

ishna et al., 2017) and requires a large number of197

training samples of 3D rendered images that are198

aligned properly with text. Hence, we decide to199

work primarily with pretrained LM and convolu- 200

tional vision encoder to suit the setting of SIMMC 201

2.0. In particular, we integrate the visual modality 202

by encoding each object with finetuned ResNet- 203

34 (He et al., 2016). We also index each object in 204

the scene by their referential IDs (canonical object 205

IDs), which are concatenated with corresponding 206

visual representations for subtasks. 207

In order to further align the different modalities, 208

we provide additional supervision signals at train 209

time by looking up the object metadata. We note 210

that all of the subtasks are related to each other. 211

For example, if the assistant decides that the user 212

utterance needs to be disambiguated, then the ap- 213

propriate system action is to respond along the line 214

of “Which one are you referring to?”. Once disam- 215

biguated, the user may ask for the price of “blue 216

striped shirt”, where representations learned from 217

MM-Coref prediction subtask (and/or attribute clas- 218

sification) can help the model predict the correct 219

slot values for MM-DST and response generation. 220

We expect that the latent representation of the multi- 221

modal dialog learned from other subtasks will trans- 222

late readily to other subtasks. Hence, we utilize 223

hard parameter sharing (Caruana, 1993) on the en- 224

coder to jointly learn on all subtasks. This reduces 225

not only the number of network parameters, but 226

also the risk of overfitting (Baxter, 1997). 227

Moreover, we decide to view MM-Coref as a 228

type of set prediction (Zaheer et al., 2017), where 229

joint learning of set cardinality and state distribu- 230

tion has been shown effective (Rezatofighi et al., 231

2018). Hence, we define an additional empty coref- 232

erence target prediction (Empty-Coref), a simpli- 233

fied cardinality prediction task that outputs whether 234

the current user utterance has no MM-Coref tar- 235

gets. Moreover, we perform a supervised learning 236

on object attributes to help align object-language 237

modalities. 238

We adopt BART (Lewis et al., 2019) as the pre- 239

trained language backbone to harness the power 240

of NLU/NLG capabilities demonstrated by pre- 241

trained transformer encoder-decoder. We attach 242

classification heads for MM-Disamb and MM- 243

Coref subtasks to the encoder and LM head for 244

MM-DST and response generation to the decoder. 245

We also perform retrieval by computing the dot 246

product between representation vectors of response 247

candidates and multi-modal dialog context. The 248

overview of the model is provided in Figure 2. 249
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Figure 2: Overview of the jointly learned multi-tasking BART. For HT , we show only the last turn without user
utterance due to space limit. The details on the loss functions are provided in model specifics. Each scene object is
represented by the concatenation of scene canonical object ID token (e.g. <11>) and features from a vision encoder.
It is then passed through MM-Coref and attribute classification head. MM-DST and response generation subtasks
are approached in terms of auto-regressive LM.

4.1 Input Representation250

For all of the subtasks, we define our input to251

be a simple concatenation x := [HT ;UT ;St≤T ]252

with separators. We define HT to be the dialog253

history up to 2 turns to limit the length of input,254

i.e. {UT−2, AT−2,MT−2, UT−1, AT−1,MT−1}.255

SIMMC 2.0 assumes that utterances may mention256

objects that are not in the current scene ST but in257

the previously observed scene St<T ̸= ST . Hence,258

our model integrates the objects from the previous259

scene that are not in the current scene. An exemplar260

input is provided in Table 1.261

4.1.1 Canonical object ID token262

A canonical object ID token takes the form of263

<\d+> (e.g. <32>). This provides a relational264

context of the object within the scene, grounding265

each object to its scene object index provided in266

the dataset. This scheme was also used in the base-267

line (Kottur et al., 2021), but without any associa-268

tion to object attributes. In our method, this token269

intends to provide contextual information of the270

object alongside its visual attributes, allowing the271

assistant to make connections between different 272

modalities. 273

For the assistant to understand the spatial in- 274

formation, we must incorporate location of each 275

object. We follow the commonly used techniques 276

in VL models (Li et al., 2020; Chen et al., 2020; 277

Zhang et al., 2021) for encoding object locations 278

with the bounding box information. Given a bound- 279

ing box represented by its upper-left and lower- 280

right vertices, (x1, y1) and (x2, y2), with height 281

h and width w, we encode its location as a nor- 282

malized tuple (x1/w − 0.5, y1/h − 0.5, x2/w − 283

0.5, y2/h − 0.5, (x2−x1)(y2−y1)/(h ·w)). This 284

is passed through a location embedding layer (a 285

linear layer followed by layer norm) to be added 286

with the canonical object ID token encoding. 287

4.1.2 Representation of objects 288

Each item is represented by its visual and non- 289

visual attributes. The visual attributes are provided 290

by the hidden features of the cropped image en- 291

coded by ResNet-34 (He et al., 2016). Once fine- 292

tuned by classifying the objects from the train split 293

scenes to their corresponding visual attributes, the 294
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Common Input (x)
UT−1 <USR> What are the good hoodies around here?
AT−1 <SYS> I advise you consider the solid green one.
MT−1 <SOM> <56> <EOM>

UT <USR> I do like solid colors, but I’m looking for something with excellent ratings.
St<T <SOO> <PREV_OBJ> <12> <vis_12> <PREV_OBJ> <13> <vis_13>
ST <OBJ> <56> <vis_56> <OBJ> <85> <vis_85> <EOO>

Generation Target
BT <SOB> INFORM:GET <customerReview> good <pattern> plain <type> hoodie <EOB>
AT In fact, that green hoodie is very highly rated.

Response Candidate <SYS> In fact, that green hoodie is very highly rated.

Table 1: Example input representations for our model. We show only up to last 1 turn due to space limit. Thus, the
common input x is a concatenation [HT ;UT ;St≤T ] where HT = {UT−1, AT−1,MT−1}. Here, we separate the
previous scene history St<T to show how we handle out-of-view objects. The generation target is a concatenation
[BT ;AT ], which is used by the decoder. The response candidate is AT with speaker identifier <SYS> prepended.
Here, we denote the visual feature of the i-th object extracted from the vision encoder as <vis_{i}>.

vision encoder is fixed throughout training of the295

actual dialog system. The non-visual attributes are296

randomly initialized learnable embeddings. Both297

types of attributes are mapped by a linear layer then298

concatenated to represent an object to match the299

dimension of BART. For the competition setting (or300

deployment within virtual environment) where the301

object identity is readily available at inference, we302

replace then train the entire object representation303

with randomly initialized learnable embeddings.304

4.1.3 Separator tokens305

We define several separator tokens to delimit dif-306

ferent components of the multi-modal dialogs. We307

use <SOM>, <EOM> for the start and the end of308

multi-modal context and <SOO>, <EOO> for the309

start and the end of scene objects. Within the scene310

context, <OBJ> token is used as a marker between311

current scene objects. We also mark those from312

the previous scene with <PREV_OBJ>. For gener-313

ation target, we mark the start and the end of the314

user belief state with <SOB>, <EOB>.315

4.2 Model Specifics316

4.2.1 Binary prediction for MM-Disamb and317

MM-Coref318

We formulate MM-Disamb as a binary classifica-319

tion on the pooled output of the encoder from the320

pooling token <DISAMB>. The binary head for321

MM-Disamb should predict true if the current user322

utterance UT needs to be disambiguated and false323

otherwise.324

For MM-Coref, we make binary predictions on325

all objects in St≤T . We do so by passing the con-326

catenated canonical object (e.g. <11>) and the327

representation of each object through a binary clas-328

sification head. The MM-Coref head will predict 329

true if the current user utterance mentions that ob- 330

ject and false otherwise. We use a simple cross- 331

entropy loss for both MM-Disamb and MM-Coref, 332

denoted Lmm-disamb and Lmm-coref. 333

4.2.2 Auto-regressive LM for MM-DST and 334

response generation 335

We also approach MM-DST and response genera- 336

tion subtasks with auto-regressive LM following 337

the recent approaches in end-to-end dialog systems. 338

For MM-DST and response generation, we use the 339

standard left-to-right LM loss (Bengio et al., 2003). 340

LLM =
L∑
i=1

− logP (ωi | ω1, . . . , ωi−1), 341

where ωi is the i-th target token and L the total 342

length of the target. 343

4.2.3 In-batch negative samples for retrieval 344

For response retrieval task, we make use of in-batch 345

negative samples for contrastive learning on simi- 346

larity metrics, following (Karpukhin et al., 2020) 347

except that we use a single-tower architecture. We 348

treat the system responses of the other samples in 349

the batch formatted according to Table 1 as in-batch 350

negatives. We then pool the input and the response 351

candidate representations via bos token to compute 352

their dot product. We use multi-class cross-entropy 353

loss applied to dot-product similarities, i.e., 354

Lretrieval = − log
exp(x · a+)∑

a−∈B−(x)∪{a+} exp(x · a−)
, 355

where a+ is the positive response sample of the 356

input x and B−(x) the set of in-batch negative 357
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responses (assume x, a+, and a− are pooled rep-358

resentations from the encoder). We formulate the359

task loss Ltask as a linear combination of losses360

from each subtask.361

Ltask = λLMLLM + λmm-disambLmm-disamb

+ λmm-corefLmm-coref + λretrievalLretrieval

(1)

362

4.3 Auxiliary Tasks363

4.3.1 Binary prediction for Empty-Coref364

We define an additional Empty-Coref task, in which365

the assistant predicts whether the current dialog366

turn has MM-Coref targets. We find this addi-367

tional signal for coreference resolution, denoted368

Lempty-coref, is advantageous in boosting MM-Coref369

performance, a type of set prediction task. More-370

over, MM-Coref sometimes predicts targets when371

there is actually none, so we override any MM-372

Coref predictions if the Empty-Coref prediction is373

true (i.e. there is no coreference target). For this,374

we use <EMPTY_COREF> for pooling. At training375

time, we use cross-entropy loss for Lempty-coref.376

4.3.2 Encoding object attributes377

We encode object attributes by providing additional378

supervision signal during training. We do so by379

simply training to classify each object to its corre-380

sponding visual and non-visual attributes such as381

color, price, and customer ratings. Each object is382

represented as a concatenation of its canonical ob-383

ject ID and object features as in MM-Coref (refer384

to Figure 2). Each attribute head predicts a categor-385

ical class for each corresponding object, for exam-386

ple, if an object is a grey jacket, the color-attribute387

head should predict grey and the type-attribute head388

jacket.389

Let Ot≤T be the set of objects in the scene his-390

tory, St≤T . We denote attribute multi-class classifi-391

cation loss Latt for all objects in Ot≤T ,392

Latt =
∑

j∈Ot≤T

K∑
k=1

∑
c∈Ck

−1{c = yjk} logP (c),393

where K is the number of attributes, Ck the set394

of all classes of the k-th attribute, yjk the label of395

the k-th attribute of the j-th object, and 1{·} is an396

indicator function.397

As a result, the auxiliary loss Laux is defined398

as the weighted sum of attribute loss and empty-399

coreference prediction loss:400

Laux = λattLatt + λempty-corefLempty-coref (2)401

In summary, we minimize the sum of the task 402

loss Ltask (Equation 1) and the auxiliary loss Laux 403

(Equation 2). 404

5 Experiments 405

5.1 Experimental Setup 406

The details on training hyperparameters are pro- 407

vided in Appendix A. For model selection, we eval- 408

uate the model on the devtest split at every 1000 409

training steps. We give priority to the left-most 410

metric for each subtask (Table 2) and early stop on 411

those winning the most among 5 subtasks (counting 412

response generation and retrieval separately). 413

5.2 Baselines 414

The dataset organizers provided two baseline mod- 415

els: an end-to-end GPT-2 (Radford et al., 2019) 416

and multi-modal transformer networks (MTN) (Le 417

et al., 2019). The baselines handle each subtask 418

separately, except for MM-Coref, MM-DST, and 419

response generation. The GPT-2 baseline generates 420

the user belief state, coreference objects indices, 421

and response in an end-to-end manner given a dia- 422

log history with multi-modal context provided in 423

terms of object indices. For retrieval, generated 424

response is compared against available pool of re- 425

sponse candidates, from which the candidate with 426

the most likelihood is chosen. MTN baseline con- 427

ditions on the scene image and dialog history then 428

generate the user belief state and response using a 429

multi-modal transformer. The MTN baseline only 430

implements MM-DST and response generation. 431

6 Results 432

The results on the devtest (validation) and teststd 433

(test) splits are shown in Table 2 and 3, respectively. 434

On devtest set, our proposed model outperforms 435

the baselines by a large margin. In the competition 436

setting, we replaced visual feature extractor with 437

object embeddings and scaled the model to BART- 438

large. This model was ranked at the first place 439

with 75.8% coreference F1 in MM-Coref and was 440

declared winner in the response retrieval subtask 441

with 71.2% R@1, 95.0% R@5, 98.2% R@10, and 442

1.9 mean rank. Despite the simple approach we 443

have taken for representing the multi-modal con- 444

text, we were able to achieve competitive results 445

with a single model. 446

For comparison, the winning entry for MM- 447

Disamb and MM-DST, Entry #5, uses separate 448

models, namely RoBERTa-large (Liu et al., 2019) 449
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Models
#1 Disamb. #2 MM-Coref #3 MM-DST #4-1 Res. Retrieval #4-2 Res. Gen.

Accuracy (↑) Obj. F1 (↑) Slot F1 (↑) Act. F1 (↑) MRR (↑) R@1 (↑) R@5 (↑) R@10 (↑) M. Rank (↓) BLEU-4 (↑)

GPT-2 73.8% 36.6% 81.7% 94.5% 8.8% 2.6% 10.7% 18.4% 38.0 0.192
MTN - - 74.8% 93.4% - - - - - 0.217

BART-large 93.1% 73.5% 88.3% 96.3% 83.5% 73.7% 95.8% 98.7% 1.76 0.331
BART-base 92.5% 71.9% 82.0% 95.2% 76.7% 64.0% 93.7% 98.0% 2.12 0.294

- FT 92.2% 71.6% 80.6% 95.5% 76.1% 63.9% 92.6% 97.3% 2.24 0.284
- JT 91.5% 45.6 / 67.8% 79.5% 95.2% 73.2% 60.4% 90.5% 96.9% 2.58 0.283

- AC 92.1% 58.6% 82.7% 94.2% 75.0% 62.5% 91.1% 96.8% 2.23 0.289
- EC 92.4% 69.8% 83.3% 94.6% 75.8% 63.6% 93.4% 97.2% 2.16 0.290
- AX 91.9% 51.6% 81.0% 93.9% 74.9% 61.5% 88.4% 96.5% 2.34 0.279

Table 2: Ablation study results on the devtest set. The first block shows the baselines, which are separately trained
on each subtask. The MTN baseline performs only MM-DST and response generation. The second block provides
ablation studies on BART-base, where top two rows are the results of the complete model. FT: finetuning visual
encoder beforehand, JT: subtask joint training, AC: attribute classification loss, EC: Empty-Coref loss, AX: all
auxiliary subtasks (attribute classification and Empty-Coref). For MM-Coref performance of the model without
joint training, we report both the results of baseline-like generation (left) and our classification approach (right).

Entry ID
#1 Disamb. #2 MM-Coref #3 MM-DST #4-1 Res. Retrieval #4-2 Res. Gen.

Accuracy (↑) Obj. F1 (↑) Slot F1 (↑) Act. F1 (↑) MRR (↑) R@1 (↑) R@5 (↑) R@10 (↑) M. Rank (↓) BLEU-4 (↑)

GPT-2 73.5% 44.1% 83.8% 94.1% - - - - - 0.202
MTN - - 76.7% 92.8% - - - - - 0.211

#1 - 52.1% 89.1% 96.3% 53.5% 42.8% 65.4% 74.9% 11.9 0.285
#2 89.5% 42.2% 87.8% 96.2% 61.2%† 49.6%† 74.7%† 84.5%† 6.6† 0.256

(Ours) #3 93.9%† 75.8% 90.3%† 95.9%† 81.5% 71.2% 95.0% 98.2% 1.9 0.295†

#4 93.8%† 56.4% 89.3% 96.4% 32.0% 19.9% 41.8% 61.2% 12.9 0.322
#5 94.7% 59.5% 91.5% 96.0% - - - - - -
#6 93.1% 68.2% 4.0% 41.4% - - - - - 0.297†

#7 - 73.3%† - - - - - - - -
#8 93.6%† 68.2% 87.7% 95.8% - - - - - 0.327

Table 3: The official leaderboard of DSTC10 on the teststd set. The subtask winners are bold-faced and runner-ups
are marked with †. “-” means that the entry did not participate in that subtask. Our entry uses 24-layer BART-large
whose vision encoder is replaced with randomly initialized learnable embedding for identifying objects.

for MM-Disamb and BART for generating MM-450

Coref and MM-DST using the same prompt of the451

baselines without the use of visual features. Even452

though injecting continuous visual features (as ex-453

tracted by vision models) may introduce noise for454

generation, they certainly help with MM-Coref sub-455

tasks as some entries achieving more than 65% ob-456

ject F1 utilize visual features (#6 and #7). Entry #8457

enumerate visual attributes in the form of natural458

language tokens without relying on actual visual459

features.460

Entry #6 (Lee and Han, 2021) is a multi-tower461

architecture with text encoder (RoBERTa-large)462

and image encoder (DeiT) (Touvron et al., 2021).463

To adopt the image encoder to the SIMMC 2.0464

domain, it is contrastively pretrained by matching465

object image to its natural language attributes and466

scene (background) image to dialog context. Then,467

the objects and scene representations are added to-468

gether to match against the dialog context for MM-469

Coref prediction. Entry #7 (Huang et al., 2021)470

encodes object information (index, location, and 471

image) extracted by CLIP (Radford et al., 2021) 472

and BUTD (Milewski et al., 2020) then inputs the 473

flattened object representations to UNITER (Chen 474

et al., 2020) along with dialog context and scene 475

image. MM-Coref predictions are made in terms 476

of binary classification, similar to our approach. 477

All of the response retrieval entries modify the 478

baseline approach, where the generated response 479

(not the dialog context) is compared against the re- 480

sponse candidate pool by different measures. Entry 481

#1 uses cosine similarity for retrieval score intead 482

of cross-entropy. Entry #2 uses cross-entropy, but 483

generate from BART. Entry #4 uses OSCAR (Li 484

et al., 2020) with self-supervised few-shot learning 485

for predicting object tags, which act as anchor be- 486

tween image (object) and text (dialog) modalities. 487

The generated response with attached decoder are 488

then compared in the same way as the baseline. 489
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Figure 3: Attention maps between utterance and object IDs. The object attributes are given in Table 4.

6.1 Ablation Studies490

We ablate finetuning of vision encoder, joint train-491

ing, and auxiliary objectives from BART-base to492

see how different components of the model affects493

the performance. Because our model maps the494

frozen visual features to the model via learnable495

linear layer, finetuning of the vision encoder be-496

fore the actual training of the dialog system helped497

improve the model performance overall. We also498

observe that joint learning is a crucial part of the499

success of our approach, as training each subtask500

separately degrades the performance even more501

than not finetuning the vision encoder. The effect502

of different subtask loss coefficients are given in503

Table 5 of Appendix A.504

Removing the auxiliary subtasks affect the MM-505

Coref performance drastically. First, removing at-506

tribute classification loss drops the MM-Coref per-507

formance by roughly 13.3%. It also affects the508

response retrieval performance partially because509

of the joint-learning approach. Removing Empty-510

Coref loss degrade the object F1 score slightly, but511

slightly improves slot F1 as in ablating attribute512

classification. Removing all of auxiliary subtasks513

shows even clearer picture, where MM-Coref per-514

formance degrades by 20% among other subtasks.515

6.2 Visualizing attention516

We visualize the learned attention between the517

two different modalities. Figure 3 shows atten-518

tion heatmaps from the fifth head in last encoder519

layer. The rows indicate extracted utterance from520

[HT ;UT ] and the columns object IDs in in St≤T .521

Table 4 lists the visual-metadata of these objects.522

According to the visualization, the model was able523

to make a connection between natural language524

attributes mentioned in the dialog and the corre-525

sponding objects.526

fashion
object ID

color type pattern

169 light grey jacket plain
152 black, white blouse vertical
256 black sweater knit
168 maroon dress plain
258 brown dress plain
283 purple dress plain
277 grey trousers heavy stripes

115 grey, white jacket twin colors
167 blue jacket plain
005 black blouse velvet
069 black, white blouse spots
265 blue jeans denim
188 blue trousers plain

Table 4: Visual metadata of object IDs shown in Fig-
ure 3.

7 Conclusion 527

In this paper, we propose a multi-modal task- 528

oriented dialog system based on BART that can per- 529

form all SIMMC 2.0 subtasks at once. Our model 530

integrates the multi-modality of the challenge by 531

utilizing vision features from a vision model. In ad- 532

dition to joint learning of all subtasks, we introduce 533

auxiliary tasks to aid in subtasks. We observe that 534

the joint-learning and other components are crucial 535

in building a successful multi-modal assistant for 536

SIMMC 2.0. Our model is able to perform compet- 537

itively in all of the subtasks, setting a high bar for 538

the new generation of multi-modal task-oriented 539

dialog systems. Despite the success in SIMMC 540

2.0, our approach has a few limitations. First, it 541

relies on metadata for non-visual attributes, which 542

may not generalize if a new set of domain items are 543

introduced at inference. Our method also fails to 544

fully capture the semantic locality of objects within 545

the scene (e.g. on the table, in the closet, etc.). We 546

believe that these limitations will be addressed in 547

future works. 548
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A Implementation Details765

A.1 Training Hyperparameters766

Our model is built on top of BART from Hug-767

gingFace (Wolf et al., 2019).3 We finetune the768

model for 10 epochs with an initial learning rate769

of 5e-5 and a batch size of 16 with AdamW opti-770

mizer (Loshchilov and Hutter, 2018). We also use771

linear warmup schedule with 8000 warmup steps772

and clip gradient norms at 1.0. For decoding, we773

use top-p sampling (Holtzman et al., 2020) with774

p = 0.9 to generate the user belief state and system775

response.776

A.2 Joint Learning Coefficients777

We train the model jointly on the sum of Equa-778

tion 1 and Equation 2. We find the optimal combi-779

nation of coefficients via grid search with the fol-780

lowing choice of coefficient, while fixing LLM to781

1.0 and grouping MM-Disamb and auxiliary losses782

together to reduce the search space. Table 5 shows783

the results of grid search with the final choice of784

hyperparameters.785

• λmm-disamb, λatt, λempty-coref ∈ {0.1, 0.3}786

• λmm-coref ∈ {0.8, 1.0}787

• λretrieval ∈ {0.2, 0.4, 0.8}788

In general, we see that increasing789

λmm-disamb, λatt, λempty-coref does not help the790

model in terms of performance. We also see some791

performance degradation in MM-Coref as λretrieval792

increases; however, increasing λmm-coref improves793

the overall performance of the model.794

A.3 Task-Specific Heads795

Object related classification heads (MM-Coref,796

attribute classification) have input dimension of797

twice the model dimension of BART (i.e. 2048798

for bart-large). For MM-Disamb and Empty-799

Coref classification head, we use a single linear800

layer with softmax activation. For MM-Coref and801

attribute classification, we use an intermediate layer802

with the same hidden size as the input dimension,803

which is followed by a linear layer with softmax804

activation.805

B Qualitative analysis806

A successful multi-modal agent should be able to807

recommend objects that fit the user’s requested808

3https://github.com/huggingface/
transformers

criteria within the scene context, understand the 809

locations of the objects, and provide the requested 810

information on the object such as ratings and price. 811

We qualitatively analyze the generated system ut- 812

terances to check whether our model can capture 813

the object attributes along with spatial information. 814

B.1 Recommending objects from scene 815

Refer to Table 6 for examples. Upon inspecting 816

generated samples, we observe that our model 817

is often able to recommend appropriate objects 818

that fall under the user’s criteria. The first ex- 819

ample take place in a scene with jackets with the 820

color attributes mentioned by the system-generated 821

AT , demonstrating the ability to capture object at- 822

tributes. The second example demonstrates the 823

case where the system correctly recommend and 824

ground jacket to the correct location. 825

However, it is not hard to find cases where the 826

system is able to recommend the correct objects 827

but in a wrong location. The third example demon- 828

strates such case. All of the three recommended 829

objects match those in the ground-truth response, 830

but the system believes that they are all at a dif- 831

ferent location when in fact they are all on the left 832

wall. We conjecture that our method of encoding 833

object locations did not provide enough spatial in- 834

formation especially because we do not integrate 835

the store structure itself. The retrieved AT with 836

the same dialog yield the correct response since 837

all negative samples in the candidate pool did not 838

contain all of the three objects mentioned in the 839

ground truth. 840

B.2 Predicting coreference object and 841

attributes 842

Refer to Table 7 for examples. We see that the 843

model successfully identifies which objects and 844

slots are being queried. In most cases, the model 845

outputs the exact corresponding object information 846

without having to lookup the object metadata di- 847

rectly. Furthermore, the model correctly identifies 848

the turn for disambiguation. However, for more 849

complicated instances such as the third example, 850

the model mixes up the reference mentions and 851

identifies the wrong value for the attribute. We 852

also provide examples of all subtasks results (MM- 853

Disamb, MM-Coref, MM-DST, response genera- 854

tion & retrieval) with the corresponding VR scene 855

in Figure 4, 5, 6, 7, and 8 856
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#1 Disamb. #2 MM-Coref #3 MM-DST #4-1 Res. Retrieval #4-2 Res. Gen.

Accuracy (↑) Obj. F1 (↑) Slot F1 (↑) Act. F1 (↑) MRR (↑) R@1 (↑) R@5 (↑) R@10 (↑) M. Rank (↓) BLEU-4 (↑)

(0.1, 0.8, 0.2) 91.8% 71.4% 81.5% 94.8% 75.7% 63.1% 92.4% 97.6% 2.25 0.292
(0.1, 0.8, 0.4) 91.2% 69.5% 80.0% 94.4% 77.9% 66.2% 93.2% 97.6% 2.15 0.288
(0.1, 0.8, 0.8) 92.4% 64.9% 76.2% 92.7% 75.4% 62.9% 92.5% 97.4% 2.29 0.271
(0.1, 1.0, 0.2) 92.5% 71.9% 82.0% 95.2% 76.7% 64.0% 93.7% 98.0% 2.12 0.294
(0.1, 1.0, 0.4) 92.3% 69.9% 83.2% 93.3% 76.9% 65.0% 92.9% 97.9% 2.14 0.286
(0.1, 1.0, 0.8) 91.8% 63.6% 78.7% 94.2% 74.3% 61.5% 91.4% 97.2% 2.40 0.278

(0.3, 0.8, 0.2) 92.4% 69.6% 77.9% 95.7% 74.5% 61.2% 92.0% 97.5% 2.29 0.290
(0.3, 0.8, 0.4) 92.6% 67.0% 75.4% 95.2% 74.7% 62.2% 91.2% 97.2% 2.33 0.290
(0.3, 0.8, 0.8) 91.5% 61.7% 77.1% 93.9% 74.3% 61.4% 91.1% 97.0% 2.38 0.280
(0.3, 1.0, 0.2) 91.7% 70.6% 83.2% 95.7% 73.6% 59.9% 91.9% 98.0% 2.29 0.294
(0.3, 1.0, 0.4) 92.6% 67.3% 75.1% 95.4% 72.7% 59.2% 90.9% 97.0% 2.48 0.282
(0.3, 1.0, 0.8) 92.3% 63.9% 75.3% 94.6% 73.8% 60.8% 91.5% 97.6% 2.36 0.277

Table 5: Hyperparameter grid search on the joint learning coefficients on BART-base. The coefficients are given in
the first column in the form of ((λmm-disamb, λatt, λempty-coref), λmm-coref, λretrieval). Bolded row shows the most optimal
hyperparameters in terms of model selection criteria.

UT Can you show me a jacket that goes with my wardrobe?

Generated AT There are several jackets which match your criteria, including a black jacket, a grey and
white jacket, and a light grey jacket.

GT AT There are a couple of jackets throughout the store that you might like. What do you think?

UT Can you recommend a jacket to match my clothes?

Generated AT Do you like the blue one on the bottom row of the wall? It is a jacket.

GT AT Do you like the brown one on the top left of the wall or the blue one directly under it? They
are jackets.

UT Can you help me find a cheap blouse?

Generated AT What do you think of the grey and white blouse on the wall, the maroon, white, and blue on
the rack, or the white and grey on the back wall?

GT AT There are three options on the left wall: a grey and white, a white and grey, and a maroon,
white, and blue?

Table 6: Comparison between Generated AT and ground truth (GT) in the case of recommendation. The differences
between the generated and the ground-truth (in terms of semantics) are bolded.

UT What is the rating and price of that gray and white shirt?

Generated AT Which one?

GT AT Which one?

UT The gray and white one hanging on the left.

Generated AT The grey one is $239.99 and the brown one is only $59.99.

GT AT Sure! The brown one is $59.99 and the grey one is $239.99.

UT The green and white blouse in the closet and the red, white, and yellow blouse on the rack.

Generated AT The former is from Downtown Consignment and is available in S, XL, and XXL. The latter
is from Pedals & Gears and is in stock in XS, S and XL.

GT AT The first is available in XS, S, and XL and is from The Vegan Baker. The other is in XS, S,
and XL and is from Downtown Consignment.

Table 7: Comparison between Generated and GT AT in the case of disambiguation and informing object attributes.
The differences between the generated and the ground-truth (in terms of semantics) are bolded.
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Utterance
MM-Disamb MM-Coref

GT Pred GT Pred

U0 Are there any blouses that are cheap and in red and white that you can show me? - - - -
GT B0 REQUEST:GET, slots: { type: blouse, price: cheap, color: red,

white }
Pred B0 REQUEST:GET, slots: { type: blouse, price: cheap, color: red,

white }

GT A0 There is one on the left rack. What do you think?
Generated A0 There are several red and white blouses which match your search criteria.
Retrieved A0 Sorry but no matches were found. How else may I be of assistance?

U1 What are the available sizes and the brands of the red, white, and yellow blouse and the green and
white blouse?

1 1 21, 10 21

GT B1 ASK:GET, slots: { }
Pred B1 ASK:GET, slots: { }

GT A1 Which items?
Generated A1 Which items are you talking about?
Retrieved A1 Sorry, but no other matches were found.

U2 The green and white blouse in the closet and the red, white, and yellow blouse on the rack. - - 10, 21 10, 21
GT B2 INFORM:DISAMBIGUATE, slots: { }
Pred B2 INFORM:DISAMBIGUATE, slots: { }

GT A2 The first is available in XS, S, and XL and is from The Vegan Baker. The other is in XS, S, and XL
and is from Downtown Consignment.

Generated A2 The first is available in XXL, L, and XL and is from Cats Are Great. The other is available and is in
from The Vegan Baker.

Retrieved A2 The grey and white blouse is by Nature Photographers and is available in XS, M, L, and XL. The
maroon and white blouse is by Global Voyager and is available in S, L, XL, and XXL.

U3 What else do you have that has good ratings? - - - -
GT B3 INFORM:REFINE, slots: { customerReview: good, type: blouse,

price: cheap, color: red, white }
Pred B3 INFORM:REFINE, slots: { customerReview: good, type = blouse,

size = XS, color = red, white, yellow}

GT AT Sorry, but no other matches were found.
Generated A3 Sorry, but no item matches your search criteria.
Retrieved A3 Sorry, but no other matches were found.

U4 Now tell me how the green and white blouse compares with the other red and white blouse. - - 10, 27 10, 27
GT B4 REQUEST:COMPARE, slots: { }
Pred B4 REQUEST:COMPARE, slots: { }

GT A4 The green blouse is 24.99. The red blouse is 24.99.
Generated A4 The first is from Cats Are Great and has a score of 3.9. The other is from the Vegan Baker and has

short sleeves.
Retrieved A4 The first one is from North Lodge and is a size L, the second one is from Modern Arts in an XXL.

Figure 4: Comparison between the model prediction and the ground-truth of a SIMMC 2.0 dialog instance.
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Utterance
MM-Disamb MM-Coref

GT Pred GT Pred

U0 Can you help me find a cheap blouse? - -
GT B0 REQUEST:GET, slots: {type: blouse, price: cheap }
Pred B0 REQUEST:GET, slots: {type: blouse, price: cheap }

GT A0 There are three options on the left wall: a grey and white, a white and grey, and a maroon, white,
and blue.

Generated A0 "What do you think of the maroon, white, and blue blouse on the left, the grey and white on the
right, or the dark grey on the back wall?"

Retrieved A0 There are three options on the left wall: a grey and white, a white and grey, and a maroon, white,
and blue.

U1 Are any from Global Voyager and more expensive? - -
GT B1 INFORM:REFINE, slots: { brand: Global Voyager, price: cheap,

type: blouse }
Pred B1 INFORM:REFINE, slots: { brand: Global Voyager, price: cheap,

type: blouse }

GT A1 None of the options match that description.
Generated A1 Sorry, but no matches were found. What else can I do for you?
Retrieved A1 None that match your search terms.

U2 What can you tell me about the white and grey blouse and the maroon, white, and blue? 0 0 7, 3 7, 3
GT B2 REQUEST:COMPARE, slots: {}
Pred B2 REQUEST:COMPARE, slots: {}

GT A2 Both have long sleeves.
Generated A2 The white and grey blouse has a score of 2.9, is available in M, L, XL, and XXL, is from StyleNow

Feed, is 39.99, and is in size L. The other has a rating of 3.8, is 54.99, available in XXL and S, is in
a holiday pattern, has long sleeves, is a maroon, white, and blue, from Global Voyager, is 64.99,
and comes in S.

U3 Will you add the maroon sweater from the display and the black and olive dress from the rack to
my cart?

0 0 14, 30 28, 30

GT B3 REQUEST:ADDTOCART, slots: {}
GT A3 No problem, both items have been added for you.
Generated A3 Of course. Both have been added.
Retrieved A3 Confirmed. Both items will be added to your cart.

U4 Will you also add the black dress and the maroon one from the rack to my cart. - - 27, 20 20
GT B4 REQUEST:ADDTOCART, slots: {}
Pred B4 REQUEST:ADDTOCART, slots: {}

GT A4 Of course. Both have been added.
Generated A4 Of course, both have been added to your cart.
Retrieved A4 Of course, both are being added to your cart now.

Figure 5: Comparison between the model prediction and the ground-truth of a SIMMC 2.0 dialog instance.
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Utterance
MM-Disamb MM-Coref

GT Pred GT Pred

U0 I want a coat with good reviews. - - - -
GT B0 REQUEST:GET, slots: {type: coat, customerReview: good}
Pred B0 REQUEST:GET, slots: {type: coat, customerReview: good}

GT A0 How is this black one in the top middle on the wall, or the other black one on the right side of the
rack?

Generated A0 How about the black coat on the top left of the wall display?
Retrieved A0 How is this black one in the top middle on the wall, or the other black one on the right side of the

rack?

U1 How does the red, white and yellow blouse on the top right compare to the white red and violet one
on the bottom of the left wall?

- - 0, 8 0, 8

GT B1 REQUEST:COMPARE, slots: {}
Pred B1 REQUEST:COMPARE, slots: {}

GT AT The first one is rated 3.4, and the other one is rated 4.7
Generated A1 The one on the right is rated 3.4, and the other one is rated higher at 4.7.
Retrieved A1 The left is light grey in M with short sleeves and the right is short sleeve in XXL with colors green,

violet, and pick.

U2 Do you have anything similar to those black coats, but made by Downtown Consignment? - - 2, 12 2, 12
GT B2 INFORM:GET, slots: {sleeveLength: full, brand: Downtown

Consignment, size: L, price: 139.99 type: coat}
Pred B2 INFORM:GET, slots: {brand: Downtown Consignment, type: coat}

GT A2 I don’t have anything like that.
Generated A2 I’m sorry, I don’t have anything like that. Can I get you something different?
Retrieved A2 Sorry, I don’t have anything like that.

U3 What is the size on that dress? 1 1 1 -
GT B3 ASK:GET, slots: {}
Pred B3 ASK:GET, slots: {}

GT A3 Which dress are you asking about?
Generated A3 Which dress?
Retrieved A3 Which dress are you asking about?

U4 The black one on the top middle of the wall display. - - 1 -
GT B4. INFORM:DISAMBIGUATE, slots: {}
Pred B4. INFORM:DISAMBIGUATE, slots: {}

GT A4 That dress is a size M.
Generated A4 That dress is a M.
Retrieved A4 This dress is available in S, M, L, XL, and XXL.

Figure 6: Comparison between the model prediction and the ground-truth of a SIMMC 2.0 dialog instance.
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Utterance
MM-Disamb MM-Coref

GT Pred GT Pred

U0 I’m looking to buy some luxury jeans that have reviewers falling head over heels. - - - -
GT B0 REQUEST:GET, slots: {type: jeans, customerReview: good, price:

expensive}
Pred B0 REQUEST:GET, slots: {type: jeans, customerReview: good, price:

expensive}

GT A0 Those two jeans in the back to the left are a match! Do either of those suit your preferences?
Generated A0 There are some very high-quality jeans on the shelves to the right. Could you see yourself wearing

that dark blue pair on the end or the light blue pair next to it?
Retrieved A0 Those two jeans in the back to the left are a match! Do either of those suit your preferences?

U1 Yeah, I could get on board with those. Which one is more popular with buyers? 0 0 6, 7 6, 7
GT B1 REQUEST:COMPARE, slots: {}
Pred B1 REQUEST:COMPARE, slots: {}

GT A1 The lighter pair is more highly rated, with a nearly unbeatable average customer rating of 4.9. The
darker pair also comes highly recommended, with an average score of 4.6.

Generated A1 Both of those jeans have on average been rated a 4.6 by other customers.
Retrieved A1 The lighter pair is more highly rated, with a nearly unbeatable average customer rating of 4.9. The

darker pair also comes highly recommended, with an average score of 4.6.

U2 Good to know. Can I also get you to look for something in the same vein as that violet blouse
hanging up to the right or the green, violet, and pink one near it, but by the brand Downtown
Consignment?

- - 4, 5 4, 5

GT B2 INFORM:GET, slots: {brand: Downtown Consignment, type:
blouse}

Pred B2 INFORM:GET, slots: {brand: Downtown Consignment, type:
blouse}

GT A2 That brand makes the green and white shirt hanging above the light-wash jeans to the left.
Generated A2 I’m so sorry, but I can’t find any similar blouses by that brand. Is there something else I might be

able to do for you?
Retrieved A2 That brand makes the green and white shirt hanging above the light-wash jeans to the left.

U3 Hm okay and what are the rating figures on that red jacket and the grey one? 1 1 9, 0 9, 0
GT B3 ASK:GET, slots: {}
Pred B3 ASK:GET, slots: {}

GT A3 Woops, I’m not certain which jackets you’re talking about. Could you please be more specific?
Generated A3 Which jackets are you inquiring about?
Retrieved A3 Woops, I’m not certain which jackets you’re talking about. Could you please be more specific?

U4 I mean that red and white one to the right by the purple shirt and the grey one hanging near the
green shirt to the left.

- - 0, 9 0, 9

GT B4 INFORM:DISAMBIGUATE, slots: {} Pred B4 INFORM:DISAMBIGUATE, slots: {}

GT A4 The red and white jacket is rated a 3.3, while the grey jacket is rated a 3.6.
Generated A4 The red and white jacket has an average customer rating of 3.3, while the grey jacket is rated a 3.6.
Retrieved A4 The red and white jacket is rated a 3.3, while the grey jacket is rated a 3.6.

Figure 7: Comparison between the model prediction and the ground-truth of a SIMMC 2.0 dialog instance.
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Models Utterance
MM-Disamb MM-Coref

GT Pred GT Pred

U0 Are there any highly rated pants around here? - - - -
GT B0 REQUEST:GET, slots: { type: trousers, customerReview: good }
Pred B0 REQUEST:GET, slots: { type: trousers, customerReview: good }

GT A0 The first two pairs on the left have great reviews!
Generated A0 I think you may like the blue pair on the left and the two grey pairs on the right.
Retrieved A0 The first two pairs on the left have great reviews!

U1 Okay the last thing I need right now is more tshirts, but I can’t help myself. I’m totally eyeing that
white one in the back to the left and the black one hanging on the top row. Which of those is less
expensive, and what sizes are those?

0 0 1, 11 1, 10, 11

GT B1 REQUEST:COMPARE, slots: {}
Pred B1 REQUEST:COMPARE, slots: {}

GT A1 The black shirt pictured here is an extra large, and it sells for $24.99. The white shirt pictured here
is a large, and it is priced slightly higher, at $29.99.

Generated A1 The white shirt is less expensive, at $54.99, and it is a small. The black shirt costs $29.99 and is an
extra large

Retrieved A1 The black shirt pictured here is an extra large, and it sells for $24.99. The white shirt pictured here
is a large, and it is priced slightly higher, at $29.99.

U2 Gotcha. Got anything else for me to see? - - - -
GT B2 INFORM:REFINE, slots: {type: trousers, customerReview: good}
Pred B2 INFORM:REFINE, slots: {type: tshirt}

GT A2 My apologies, but there are no more highly rated trousers for you to view at this time.
Generated A2 I apologize, but those are the only tshirts I can find here. Is there something else I might be able to

help you with?
Retrieved A2 Unfortunately, those are the only ones I have. Can I show you something different?

U3 Hm okay well can you try to dig up something with the same sizes as this black blouse on the first
rack but with a polka dot pattern of some kind?

0 0 40 -

GT B3 INFORM:GET, slots: {pattern: spots, availableSizes: [S, XS,
M], type: blouse}

Pred B3 INFORM:GET, slots: {pattern: checkered, availableSizes: [XS],
type: blouse}

GT A3 Oh no, it looks like there are no similar blouses in that pattern. What else can I do for you today?
Generated A3 I regret to inform you there are no similar blouses with that pattern.
Retrieved A3 Oh no, it looks like there are no similar blouses in that pattern. What else can I do for you today?

U4 Oh snap that black blouse back there might be just the thing actually. What’s that cost, and who
makes it?

- - 3 -

GT B4 ASK:GET, slots: {}
Pred B4 ASK:GET, slots: {}

GT A4 Which blouse are you inquiring about?
Generated A4 Sorry, which blouse are you interested in learning more about?
Retrieved A4 Which blouse are you inquiring about?

Figure 8: Comparison between the model prediction and the ground-truth of a SIMMC 2.0 dialog instance.
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