
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

STAR: SYNTHESIS OF TAILORED ARCHITECTURES

Anonymous authors
Paper under double-blind review

ABSTRACT

Iterative improvement of model architectures is fundamental to deep learning:
Transformers first enabled scaling, and recent advances in model hybridization
have pushed the quality-efficiency frontier. However, optimizing architectures re-
mains challenging and expensive. Current automated or manual approaches fall
short, largely due to limited progress in the design of search spaces and due to the
simplicity of resulting patterns and heuristics. In this work, we propose a new ap-
proach for the synthesis of tailored architectures (STAR). Our approach combines
a novel search space based on the theory of linear input-varying systems, support-
ing a hierarchical numerical encoding into architecture genomes. STAR genomes
are automatically refined and recombined with gradient-free, evolutionary algo-
rithms to optimize for multiple model quality and efficiency metrics. Using STAR,
we optimize large populations of new architectures, leveraging diverse computa-
tional units and interconnection patterns, improving over highly-optimized Trans-
formers and striped hybrid models on the frontier of quality, parameter size, and
inference cache for autoregressive language modeling.

1 INTRODUCTION

Most domains of applications for AI have seen a gradual convergence towards similar model ar-
chitecture designs, based on stacking multi-head attention and gated linear units (Transformers)
(Vaswani et al., 2017; Shazeer, 2020; Brown, 2020) or combinations of other basic computational
units grounded in signal processing, such as recurrences or convolutions (Martin & Cundy, 2017;
Romero et al., 2021; Gu et al., 2022; Smith et al., 2023; Peng et al., 2023; Poli et al., 2023; Massaroli
et al., 2023; Yang et al., 2024b).

Broadly, there are two prominent paths to improve model architectures: automated and manual.
Automated design, leveraging optimization (e.g. evolutionary methods) within a predefined search
space, has seen success in highly-targeted domains, such as the refinement of convolutional neural
networks for resource-constrained applications (Pham et al., 2018; Liu et al., 2018; Howard et al.,
2019; Li et al., 2021; Tan & Le, 2021). Automated methods have also been utilized to identify
candidate improvements to standard computational primitives (So et al., 2021), e.g., depthwise con-
volutions in projections. Nevertheless, to date, automated methods have fallen short of providing a
unified framework that provides significant improvements in quality and efficiency across domains
and objectives over models using standard generalizable recipes. The homogeneity of architectures
applied at scale during the Transformer era highlights this shortcoming.

The main challenge for automated methods lies in curating a search space for computational units
and architectures that is both (a) well-conditioned i.e., populations of model candidates can be
trained effectively, without numerical instability or unpredictable degradation in performance, and
(b) comprehensive i.e., the design space includes candidates with significantly different properties
from existing variants, expanding the range of potential improvements that can be identified.

Despite a wealth of automated approaches for the search and refinement of computational units and
composition strategies (White et al., 2023), the current generation has been obtained mostly through
an iterative manual process, guided by intuition and tuning on representative smaller-scale tasks
via e.g., synthetics and scaling laws (Hoffmann et al., 2022; Arora et al., 2023; Bi et al., 2024).
Manual design has led to a variety of results, most notably in the introduction or improvement of
computational units (Poli et al., 2023; Massaroli et al., 2023; Yang et al., 2024a; Arora et al., 2024),

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Transformer++ StripedHybrid STAR Synthesized

1. Assess0. Population

Properties

Cache: PPL | Train: 10.5

32.43ms

9.9

21.56msCPU latency:

98MB

122M

88MB

134M#Params:

... ...

Performance

2. Recombine 3. Mutate

STAR-2 STAR-2STAR-1 STAR-2STAR-1STAR-1 STAR-2STAR-1

Figure 1.1: [Top Left]: Population of architectures undergoing iterative STAR evolution to minimize number
of parameters and maximize quality. [Top Right:] Baseline Transformer++, hybrid model, and representative
architecture found via STAR. [Bottom]: STAR evolution optimizes architectures using principles of evolution-
ary optimization, including assessment, recombination, and mutation.

modifications targeting smaller inference cache (Shazeer, 2019; Brandon et al., 2024), and the dis-
covery of simple interconnection strategies e.g., striped hybridization (Brown, 2020; Fu et al., 2022;
Poli et al., 2024; Lieber et al., 2024), weight sharing (Liu et al., 2024), and others (Liu et al., 2022;
Brandon et al., 2024). Yet, manual design is limited to finding relatively basic design patterns, com-
pared to the total diversity of possible patterns, and requires a significant investment in resources,
expertise and time.

Given the wide range of possible applications of current AI systems, enabling systematic and auto-
matic optimization of model architectures from the multitude of existing computational units is key
to meeting the various demands these applications pose, in terms of efficiency (e.g., model size, in-
ference cache size, memory footprint) and quality (e.g., perplexity, downstream benchmarks), and a
prerequisite on the path to further, consistent improvements on the quality-efficiency Pareto frontier.

In this work, we seek to address limitations of existing automated architecture optimization methods
by introducing an approach for the synthesis of tailored architectures (STAR). STAR is based on the
combination of a novel hierarchical search space of computational units and their composition, as
well as a numerical encoding compatible with evolutionary methods.

Hierarchical search spaces The design space for STAR is grounded in the theory of linear input-
varying systems (LIVs), providing a novel framework to design building blocks in architectures.
LIVs generalize most computational units used in deep learning, such as attention variants, linear1

recurrences, convolutions, and other structured operators. Notably, our framework allows us to char-
acterize model architecture at three hierarchical levels of resolution: (a) featurization, defining how
the linear computation within the LIV is modulated by the input context; (b) operator structure,
defining the token and channel mixing structure of the LIV; and (c) backbone, defining the compo-
sition structure between LIVs. In contrast to previous search spaces (Pham et al., 2018; Liu et al.,
2018; Howard et al., 2019; Li et al., 2021; Roberts et al., 2024), we show how the LIV search space
is both comprehensive and well-conditioned, as most sampled candidates train without instabilities.

Leveraging the modularity of LIVs, we taxonomize the space and devise a hierarchical numerical
representation of a model backbone, which we refer to as the STAR genome. Due to its struc-

1Here, by linear we refer to the linearity of the state transition.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

ture, STAR genomes can be optimized at different levels of the hierarchy. We show how backbone
genomes – defining ordering and interconnection between LIVs – can be automatically refined with
evolutionary algorithms relying on few key principles, such as evaluation, recombination, and mu-
tation.

Exploring the efficiency-quality frontier We evaluate STAR on autoregressive language mod-
eling, a domain historically dominated by Transformers and architecture improvements found via
manual search. In particular, we optimize architectures for various combinations of metrics si-
multaneously: quality (perplexity during pretraining), quality and size, and quality and inference
cache size (KV cache and fixed state cache). When optimizing for quality and size, 7/8 evaluated
STAR-evolved architectures improve over Transformer++ and striped hybrids of recurrences and
attention across downstream evaluation benchmarks (Gao et al., 2024), with a reduction of up to
13% in parameter counts. Similarly, optimizing for quality and cache size, 7/8 evaluated STAR-
evolved architectures achieve up to 37% smaller cache sizes than striped hybrids, and 90% smaller
than Transformers, while outperforming both in quality. We also show that 125M-parameter ar-
chitectures optimized for quality and cache by STAR can scale to 1B parameters and perform on
par with parameter-matched Transformer++ and striped hybrid architectures, while maintaining the
same advantages in cache size reductions. When optimizing solely for quality, all evaluated STAR-
evolved architectures outperform standard hybrids on downstream benchmarks, achieving improve-
ments twice as large as those of hybrids over Transformers. Finally, we showcase how STAR can
be used to identify recurring architecture motifs emerging during evolution, driving the observed
performance gains.

2 FOUNDATIONS OF THE SEARCH SPACE

We detail how the framework behind our search space is grounded in the theory of linear systems.

Linear input-varying systems The class of data structures under consideration are sequences of
vectors {x0, x1, . . . , xℓ} where each element xi is referred to as a token. Each token xi is a real-
valued vector in Rd, represented as xi = (x0i , x

1
i , . . . , x

d−1
i). The individual components xαi of each

token are called channels.

The attention operator (Bahdanau et al., 2014; Vaswani et al., 2017), provides a valuable starting
point to define a search space for model architectures, as it defines a prototype of what we call
linear input-varying (LIV) operators. Attention, in its common formulation, can be expressed as a
linear operator applied to the input, with the operator’s action determined by the input itself:

yαi =
∑
β∈[d]

∑
j∈[ℓ]

σ(q⊤i kj)V
αβ

︸ ︷︷ ︸
attention operator

xβj , (qi, ki) = (φ(xi), ψ(xi))

where σ : R → R is a nonlinear function and V ∈ Rd×d. The intermediate quantities q, k, obtained
through functions φ,ψ : Rd → Rh of the input tokens and used to construct the linear operator T ,
are referred to as feature groups.

We extend this idea to include a broader family of LIVs, expressed in their most general form as:

yαi =
∑
j∈[ℓ]

∑
β∈[d]

Tαβ
ij (x)xβj .

The LIV framework decouples the (potentially) nonlinear and linear computation required to mate-
rialize the operator T (x) and apply it to obtain the outputs, y = Tx. LIVs include and generalize a
diverse array of computational units commonly used in model architectures, whose class is defined
by the structure of the operator: attention, convolutions, linear recurrences, and various forms of
other structured layers:

Tij = σ(CiBj) dense attention [4; 45]
Tij = CiBj low-rank linear attention [21]
Tij = CiAi−1 · · ·Aj+1Bj semi-separable linear recurrence [28; 41; 17; 49]
Tij = CiKi−jBj scaled Toeplitz gated convolution [12; 33]

Tij =

{
σ(C) i = j

0 otherwise
diagonal memoryless system [39]

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

where the structure of the operator T induces a decomposition into feature groups, analogously to
the attention example. To highlight the parallels between different LIVs and attention, we have
adopted a shared notation for the feature groups. Differentiating between LIV systems are two key
factors, operator structure and featurization.

Featurization refers to the process with which feature groups are obtained, either via direct
parametrization, reparametrization2, or via parametric transformations of inputs as is the case in
attention i.e., linear projections.

Structure We taxonomize the linear operators of LIVs by decoupling the analysis of token-mixing
and channel-mixing structures. To define structure, we look at two different slices of the operator:

• Tαβ ∈ Rℓ×ℓ highlights the token-mixing structure for each tuple of input and output
channels, i.e. the linear contribution of the βth input channel xβ ∈ Rℓ to the αth out-
put channel yα ∈ Rℓ. Loosely speaking, the choice of token-mixing structure determines
the class of matrix multiplication algorithms that can be utilized to apply the operator to
the input (e.g. Fast Fourier Transform based convolution if Toeplitz, or parallel prefix scan
if semi-separable (Dewilde & Van der Veen, 1998)).

• Tij ∈ Rd×d conversely reveals the channel-mixing structure of T , i.e. the (linear) contri-
bution of the jth input token xj of the input sequence to the ith output token yi. In practice,
the most common choice of channel-mixing structure is by far the diagonal one, as used
in attention and most variants of linear recurrences3. Diagonal Tij blocks allow maximum
parallelization of the LIV operators as the linear computation reduces to d independent
matrix multiplications.

Note that we use the same logic to define the structure present in the featurizer itself. The structure
of the featurizer and operator need not be the same.

Composition An architecture backbone can be decomposed into a set of LIVs with different com-
position rules. Beyond sequential stacking of LIVs, as is common in standard deep architectures, we
introduce other composition rules realized via the featurization: featurizer sharing, where the same
featurizer weights are shared between different LIVs of a backbone, and feature group sharing,
where different LIVs share the same feature groups.

Let T, S denote the operators at two different depthsm,n (m < n) of the composition, respectively.
If, for example, both LIV operators are chosen with similar low-rank (linear attention) structure
Tij = CiBj , Sij = EiFj and the dimensions of the feature groups are compatible, i.e. Ci, Ei ∈
Rd×h and Bi, Fi ∈ Rh×d, we can apply both featurizer and feature group sharing techniques:

• If the parametric featurizer of Ci and Ei has the same form Ci = φ(xi; ·), Ei = φ(xi; ·),
we can share the same set of parameters θ between them:

Tij = φ(x
(m)
i ; θ)Bj Sij = φ(x(n); θ)Fjfeaturizer sharing

where x(m), x(n) denote the input to the mth and nth LIV system, respectively.

• Similarly, we can simply re-use one of the feature groups of the mth LIV system in the nth
one, e.g. Bj :

Tij = CiBj Sij = EiBjfeature group sharing

A prominent example of feature group sharing is the sharing of key-value caches between attention
operators (Brandon et al., 2024). Beyond featurizer interconnections, we explore other strategies of
operator composition in Appendix A.7.

2Sometimes referred to as implicit parametrization (Mescheder et al., 2019; Romero et al., 2021; Sitzmann
et al., 2020).

3This is brought to an extreme by multi-headed architectures that only present number-of-heads distinct
values on the diagonal.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

LIV system

featurizer sharing strategy

featurizer sharing feature group sharing

share featurizer weights

share feature groups

feature group sharing strategy

001

001

0310202203011120200113Backbone:

Operator:

Featurizer:

Figure 3.1: Hierarchical structure of the STAR genome. Each sequence at lower levels is summarized into a
single value at higher levels, enabling its treatment as a discrete variable. We leverage this property extensively
when optimizing backbones directly.

3 DESCRIBING OPERATORS AND BACKBONES WITH STAR GENOMES

The new design space of LIVs and their compositions serves as the foundation for the automated
synthesis of tailored architectures (STAR). In the following, we will describe how we map the three
hierarchical levels of the LIV description–featurization, structure, and composition–into a numerical
representation suitable for optimization: the STAR genome. Each level of the hierarchy can be sum-
marized into a single integer, yielding a numerical representation that can be optimized at different
levels of granularity (see Fig. 3.1). In this work, we focus on backbone optimization but are report-
ing the full description of the genome for completeness. See Appendix A.6 for a full description of
all genome values considered in this work.

3.1 BACKBONE GENOME

We begin by describing the highest abstraction level of the STAR genome, the backbone genome,
which defines the composition of LIVs in the backbone. We recall that under the LIV framework,
LIVs can be connected with featurizer and feature group sharing, as described in Section 2. Specifi-
cally, the backbone genome represents a set of integer-valued sequences of length five, one for each
LIV of the backbone. Each of these 5-number segments defines the following properties of the LIV:

1. LIV class: integer summary of lower levels of the STAR genome, i.e., operator and featurizer
genomes (see Section 3.2).

2. Featurizer sharing: determines the weight-sharing structure between featurizers of LIVs at
different depth in the backbone. LIVs with the same value at this position share featurizer
weights, as defined by the featurization sharing strategy.

3. Featurization sharing strategy: defines how featurizer sharing is implemented for the LIV
class. Featurizer weights can be shared partially, for example, only those responsible for com-
putingB(x), in contrast to also sharing weights that computeC(x). We explore all combinations
of sharing strategies based on the number of feature groups of the LIV class.

4. Feature group sharing: LIVs with the same index share feature groups directly, instead of
featurizer weights, for example, by using the exact same B(x) and C(x).

5. Feature group sharing strategy: describes which feature groups, of all available feature groups
of the LIV class, are shared.

These 5-number segments are then repeated in the order at which the encoded operators occur in
the backbone (Figure 3.1). Note that outside of the compositions defined by the backbone genome,
LIVs are sequentially stacked using pre-norm residuals i.e., y = T (norm(x))norm(x) + x.

Example: 21211-31112-21221-32112 is the backbone of a genome with 4 LIVs. The first
and third LIV belong to the same class “2”, and are part of the same featurizer sharing group “1”,
thus sharing featurizer weights according to the indexed featurizer sharing strategy “2” (e.g., only
sharing the weights responsible for the first feature group). The second and fourth LIV belong to
class “3”, they do not share any featurizer weights (they have different featurizer sharing indices,
“1” and “2”), and instead share feature groups directly, with strategy “2” (sharing all groups).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

1032043010
2010320110

0102011022

4050320501

103

2043010

201032

0110

010

2011022

405032

0501

+= 801MB

632MB

1122MB

987MB

11.1

12.2

9.9

10.5

=

=

=

=

=

=

=

+

+

+

i) Initial Population ii) Assess iv) Recombine v) Mutate

403

2033001

201031

0112

110

2011022

402032

0301

iii) Pair vi) Repair

403

2033001

201031

0112

110

2011022

401032

0001

Cache: PPL | Train:

Figure 4.1: Fundamental operations of STAR evolution (akin to other evolutionary optimization algorithms).

3.2 OPERATOR AND FEATURIZER GENOMES

In the backbone genome, LIVs are summarized into a single number, indicating the specific fea-
turizer and structure of the LIV. Unrolling this encoding reveals an additional level, the operator
genome, which identifies a specific LIV in 5 numbers: (1) featurization, indicating the specific fea-
turizer class; (2) linear token-mixing structure of the LIV (Tαβ); (3) possible structured sparsity
masks (e.g., banded) for token-mixing; (4) any nonlinearity applied to the token-mixing structure;
(5) the LIV’s channel-mixing structure (Tij).

The featurizer class can be similarly unrolled. In STAR, each featurizer genome is a sequence defin-
ing for each of the feature groups: token and channel mixing structure (akin to the operator genome);
expansion factor, defining the ratio of the feature group channel dimension over the input channel
dimension, encoded as one number; repeat factor, defining how many times the feature groups are
replicated across the channel dimension, encoded as one number. For a detailed description of all
genome entries, and the respective values considered in this work, see Appendix A.6.

4 SYNTHESIZING ARCHITECTURES BY EVOLVING GENOMES

We have devised the STAR genome as a hierarchical numerical representation that encodes a specific
LIV backbone, suitable for gradient-free optimization. In the following, we will outline how a
STAR genome can be optimized via evolutionary methods (Beyer & Schwefel, 2002); a process
subsequently referred to as STAR evolution. To allow for the application of evolutionary optimization
methods to the STAR genome, we adapted methods commonly used to iteratively evolve an initial
population of genomes.

4.1 KEY STEPS OF STAR EVOLUTION

Assessment STAR evolution begins by evaluating the quality of each genome in the initial popula-
tion. This involves realizing the model encoded in each genome and scoring it against the objective
functions of interest, either by training and assessing its performance or through a static analysis for
efficiency objectives, such as the total number of trainable parameters in the model. Notably, STAR
evolution can incorporate multiple and diverse objectives.

Pairing After assessing the quality of each genome, STAR evolution selects parent genomes for
generating the next generation of offspring through tournament selection. Parents are chosen by
randomly selecting a set of k genomes from the population and then picking the one with the highest
quality—typically based on criteria such as predictive accuracy or the lowest parameter count.4.

Recombination Next, STAR evolution generates new candidate solutions by applying k-point
crossover to the selected parent genomes. Here, genetic material from two parents is exchanged
between k randomly chosen points, resulting in offspring that inherit traits from both parents. All
random sampling in STAR is performed with a uniform probability across all valid options.

Mutation Finally, STAR evolution introduces random mutations to the offspring. These mutations
are essential for maintaining diversity in the population and promoting exploration of the search
space. In STAR evolution, random mutations are implemented as alterations to the numbers in a
genome, where values are randomly replaced by others from a predefined set of possible choices. As
discussed earlier (Sec. 3), these choices vary depending on the genome position. To ensure that all
genomes encode models capable of being trained stably and showing smooth quality improvements,
STAR enforces several constraints on these random mutations, as outlined below (Sec. 4.2).

4As we will explore later, STAR evolution also takes into account solution diversity in the selection process
to maintain variety within the population (see Appendix A.4)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

4.2 GUIDING EVOLUTION WITH HIERARCHICAL MUTATIONS

To ensure compatibility with evolutionary optimization, the STAR genome must remain robust to
random edits such as recombination, mutation, or initialization. The backbone genome is composed
of 5-number segments. When mutating the first entry (LIV class), mutation is restricted to valid LIV
classes. For the second and fourth entries (defining featurizer and feature group sharing), only LIVs
within the same class can connect. The third and fifth entries are mutated by randomly sampling
valid sharing strategies for the corresponding LIV class. If mutations or recombinations result in
invalid configurations, such as incompatible sharing strategies, these are detected and repaired by
either removing the invalid connection for entries 2 and 4 of the operator genome, or re-sampling
the respective genome value from the set of valid choices for entries 1, 3, and 5.

0 2000 4000

Training Steps

5

10

15

20

25

P
P

L

Optimizing: Quality

0

3

6

9

12

15

G
en

er
at

io
n

Figure 4.2: Training perplexity for
all runs during STAR evolution of a
population.

Controlled improvements Combining the LIV search space,
genome encoding, and guidelines for mutation and recombina-
tion, leads to stable training runs for most candidates obtained
during the course of STAR evolution, as shown in Figure 4.2.

5 EXPERIMENTS

Experimental setup The goal of our experiments is to test
whether STAR is suitable for synthesizing architectures tailored
to diverse objectives, such as predictive quality and efficiency. If
not noted otherwise, STAR evolutions presented are performed at
125M-parameter model scale, where backbones contain 24 LIVs
at a width of 768 dimensions, with populations of 16 genomes
that are evolved for 18 generations. During each STAR evolution,
we keep the depth and width of the backbone fixed. All experiments are performed in autoregres-
sive language modeling on the RedPajama dataset (Weber et al., 2024) at a sequence length of 4096
tokens.

Training details During STAR evolution, models are trained from scratch for 1.3B tokens using
AdamW (Loshchilov et al., 2017) with a peak learning rate of 0.0008, a batch size of 0.25M tokens,
and a cosine learning rate schedule with a 130M-token linear warmup. Synthesized backbones are
evaluated by training them from scratch for 5B tokens under the same setup but with an extended
warmup of 400M tokens. Additionally, we train select 1B-parameter models (48 LIVs at a width
of 2048) for 40B tokens, increasing the batch size to 0.75M tokens and the warmup to 2.6B tokens.
See Appendix A.2 for details.

Evaluation We use a two-stage evaluation process. During STAR evolution, performance metrics
are computed on a 500M-token evaluation set from RedPajama (Weber et al., 2024). Post-evolution,
we select the 8 models with the lowest perplexity among those with lower parameter counts (for
quality and quality-size optimizations) or smaller cache size (for quality-cache optimization) than
baseline models. These models are trained further and evaluated on downstream tasks: HellaSwag
(Zellers et al., 2019), ARC-Easy (Clark et al., 2018), Winogrande (Sakaguchi et al., 2019), PiQA
(Bisk et al., 2020), and SciQ (Welbl et al., 2017). We additionally evaluate 1B-parameter models on
the Arc-challenge (Clark et al., 2018).

Option pool To improve initialization during STAR evolution, we incorporate genomes of com-
mon backbone types (see Sec. 4). Unless stated otherwise, initial populations include simple hybrid
backbones without special interconnections, combining memoryless LIVs (e.g., SwiGLU (Shazeer,
2020)) with baseline LIVs such as convolutions, recurrences, or attention. Other backbones are ran-
domly initialized, with random LIV class choices and compositions. As the focus is on backbone
optimization, the pool of LIV classes is limited to a subset of systems encodable through the operator
and featurizer genomes, including token-mixing structures from Section 2. This includes common
dense channel-mixing featurizers (linear projections), more advanced Toeplitz token-mixing featur-
izers, and "differential" variants of all LIV classes except memoryless ones, which use two identical,
parallel LIVs and output their difference. A complete list of included LIV classes is provided in Ap-
pendix A.6.

5.1 IDENTIFYING A SYNTHESIS PROTOCOL

Evolutionary algorithm We compare three gradient-free evolutionary algorithms—Firefly Algo-
rithm (FA) (Yang, 2009), Genetic Algorithm (GA) (Bremermann et al., 1966), and NSGA-2 (Deb

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

15 20

PPL

2

3

#
P

ar
a
m

s
(N

on
-E

m
b
ed

.) 1e7 FA

15 20

PPL

GA

15 20

PPL

NSGA-2

9.5 10.0 10.5

PPL

6.0

6.5

7.0

7.5

#
P

ar
am

s
(N

o
n
-E

m
b
ed

.) 1e7 8@768

9.5 10.0 10.5

PPL

24@256

9.5 10.0 10.5

PPL

24@768

Figure 5.1: [Left]: Evolutionary algorithms: Final populations evolved with the Firefly Algorithm (FA),
Genetic Algorithm (GA), and Non-dominated Sorting Genetic Algorithm II (NSGA-2). [Right]: Backbone
synthesis scales (left to right): synthesized at reduced depth ("motif," 8 LIVs at 768), reduced width (24 LIVs
at 256), or full depth and width (24 LIVs at 768). Models are scaled to the same LIV count and width via
stacking or width extension.

et al., 2002)—for optimizing STAR genomes toward quality and parameter count. Each algorithm
evolves a population of 16 genomes (8 LIVs, 768 dimensions) over 8 iterations (details in Ap-
pendix A.4)5. Results show GA and NSGA-2 outperform FA, achieving significantly lower pa-
rameter counts while maintaining comparable predictive quality. GA slightly surpasses NSGA-2 in
performance but produces larger models, whereas NSGA-2 achieves greater solution diversity (Fig.
5.1). Based on this, we use NSGA-2 in subsequent experiments. Hyperparameter tuning indicates
optimal performance with a population size of 16, a 10% mutation probability, and 2 crossover
points (Appendix A.4)6.

Synthesis scale Applying automated architecture optimization to language modeling faces the
challenge of high compute costs for training and evaluating large-scale models. We explore two
paths to reducing this cost: (a) optimizing smaller backbone motifs (groups of fewer LIVs in deeper
models) and stacking them to build deeper models; and (b) optimizing full-depth backbones at
reduced widths. For both approaches, we evolve 16 genomes over 12 iterations, optimizing for
parameter count and quality, and compare the resulting models to those synthesized at full width
and depth under identical settings. From each evolution, we select 8 backbones smaller in parameter
count than the Transformer++ and StripedMamba baselines (Appendix A.3) and with the lowest
evaluation perplexity. Selected backbones are scaled to the same LIV count and width (via motif
stacking or width extension) and trained for 5B tokens before downstream evaluation.

Finding 1: Synthesizing backbones at full width and depth yields consistent improvements, while
reduced-width synthesis achieves similar results with fewer successful candidates. Motif synthesis
underperforms both approaches (Fig. 5.1).

5.2 SYNTHESIZING HIGH-QUALITY LANGUAGE MODELS

8.5 9.0 9.5 10.0 10.5

PPL

6.5

7.0

7.5

8.0

8.5

9.0

#
P

ar
am

s
(N

on
-E

m
b
ed

.)

1e7 Optimizing: Quality

Synthesized

Transformer++

StripedMamba

0

3

6

9

12

15

G
en

er
at

io
n

Figure 5.2: Genome scores during STAR evolu-
tion, when optimizing for quality.

We now apply our identified protocol to synthesize
high-quality backbones for language modeling by
evolving a population using perplexity as the only
optimization objective. When optimizing for qual-
ity, STAR evolution achieves a reduction of the aver-
age quality of an initial population by 1.0 PPL point
without changes to model depth and width (Figs. 5.2
and B.33).

Finding 2: STAR backbones–optimized for
quality–outperform parameter-matched Trans-
former++ and StripedMamba backbones in
RedPajama eval. PPL as well as on Hellaswag,
ARC-Easy, Winogrande, PiQA, and SciQ. Im-
provements of STAR backbones over standard
hybrids on benchmark averages is 2 times
larger than the improvement of hybrids over
Transformers (Tables 5.1 and A.4).

5FA and GA optimize a single objective, using the sum of normalized loss L and parameter count P :
U(L) + U(P), where U(x) = x−min(X)

max(X)−min(X)
for x ∈ X .

6The 2 best-performing genomes per population are carried over to prevent performance regression.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Backbone / Size Cache RedPj. Hella. ARC-e Wino. PiQA SciQ Avg.
Optimized for (bytes | 4K) ppl ↓ acc. norm. ↑ acc. ↑ acc. ↑ acc. ↑ acc. ↑ ↑
Transformer++ 85M 150MB 7.3 28.9 38.8 51.2 61.2 64.1 48.8
StripedMamba 80M 25MB 7.2 28.6 39.3 51.1 60.9 67.4 49.5

STAR-1 / Quality 79M 100MB 7.0 29.8 39.3 51.2 62.2 72.5 51.0
STAR-2 / Quality 80M 82MB 7.1 29.2 40.5 51.1 61.6 72.4 51.0
STAR-3 / Quality 78M 120MB 7.1 29.7 40.0 50.9 62.0 71.2 51.0
STAR-4 / Quality 79M 94MB 7.1 29.3 39.7 51.0 61.5 72.6 50.8

STAR-1 / Q.+Size 74M 63MB 7.2 28.9 39.3 51.0 61.8 67.6 49.7
STAR-2 / Q.+Size 74M 64MB 7.2 28.7 37.5 52.8 61.0 68.9 49.8
STAR-3 / Q.+Size 70M 151MB 7.2 29.2 39.5 51.9 61.5 69.4 50.3
STAR-4 / Q.+Size 70M 114MB 7.2 29.2 40.0 52.7 61.4 68.9 50.4

STAR-1 / Q.+Cache 77M 16MB 7.2 28.9 40.0 51.3 61.0 66.4 49.5
STAR-2 / Q.+Cache 83M 22MB 7.2 28.7 40.1 50.3 62.2 66.0 49.5
STAR-3 / Q.+Cache 75M 23MB 7.2 28.9 40.6 50.2 61.3 67.2 49.6
STAR-4 / Q.+Cache 78M 22MB 7.2 29.1 39.9 53.0 62.2 66.7 50.2

Table 5.1: Evaluation of backbones optimized for quality (upper third), quality and size (middle third), and
quality and cache (lower third). We test on LM-Eval-Harness (Gao et al., 2024), reporting Transformer++
and StripedMamba baselines trained on the same data. Size indicates trainable parameter count, excluding
embeddings layers.

Backbone Size Cache RedPj. ARC-c Hella. ARC-e Wino. PiQA SciQ Avg.
(bytes | 4K) ppl ↓ acc. norm. ↑ acc norm. ↑ acc. ↑ acc. ↑ acc. ↑ acc. ↑ ↑

Transf.++ 1.2B 805MB 5.9 27.3 49.3 58.9 51.3 71.2 86.3 57.4
StripedMb. 1.1B 136MB 5.7 28.3 52.8 59.8 54.1 72.9 86.0 59.0
STAR-1B 1.1B 86MB 5.7 27.9 52.6 60.8 53.9 71.8 87.0 59.0

Table 5.2: Evaluation of a STAR backbone (48 LIVs, 2048 width) optimized for quality and cache (LM-Eval-
Harness (Gao et al., 2024)). Results are compared to parameter-matched Transformer++ and StripedMamba
baselines trained on 40B RedPajama tokens. Size excludes embedding layers.

5.3 SYNTHESIZING PARAMETER-EFFICIENT HIGH-QUALITY LANGUAGE MODELS

We observed that STAR can synthesize high-quality language models. Next, we ask whether it can
likewise synthesize language models of high quality and smaller parameter counts. To this end,
we evolve a population using evaluation perplexity and parameter count as objectives. Optimizing
for quality and size, STAR evolution improves an initial population by 0.5 PPL points at an aver-
age reduction of 10% in trainable parameter count, as shown in Figure 1.1. We also evaluate the
performance of representative synthesized backbones when training them longer.

Finding 3: STAR backbones–optimized for quality and size–outperform Transformer++ and
match StripedMamba backbones in RedPajama eval PPL, while surpassing both on Hellaswag,
ARC-Easy, Winogrande, PiQA, and SciQ, with a reduction in parameter count by 13% and 8%
respectively (Table 5.1 and A.4).

5.4 SYNTHESIZING CACHE-EFFICIENT HIGH-QUALITY LANGUAGE MODELS

High inference costs limit the widespread use of language models. To address this, we test whether
STAR can synthesize architectures with reduced inference cache size without sacrificing predictive
quality. By optimizing for perplexity and cache size (Fig. 5.3), STAR evolution improves an initial
population by 0.4 PPL points and a 40% cache size reduction.

Finding 4: STAR backbones–optimized for quality and cache size–outperform Transformer++ and
match StripedMamba in RedPajama perplexity while surpassing both on HellaSwag, ARC-Easy,
Winogrande, and PiQA, with cache size reductions of 90% and 36%, respectively, at a sequence
length of 4096 tokens (Tables 5.1 and A.4).

Our previous experiments have shown that STAR synthesis at smaller scales yields suboptimal re-
sults (see Fig. 5.1). Nevertheless, when scaling a 24-LIV backbone at 768 dimensions, optimized

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

8.6 8.8 9.0 9.2

PPL

0.25

0.50

0.75

1.00

1.25

1.50

C
a
ch

e
(b

y
te

s
@

 4
K

)

1e8 Optimizing: Quality & Cache

Synthesized

Transformer++

StripedMamba

0

3

6

9

12

15

G
en

er
a
ti
o
n

8192 65536 131072 262144 524288

Sequence Length

109

1010

1011

C
ac

h
e

S
iz

e
(b

y
te

s)

Inference Cache Size Scaling (48@2048)

Transformer++

StripedMamba

STAR

Figure 5.3: [Left]: Genome scores during STAR evolution when optimizing for quality and cache size. Cache
size is computed at a fixed sequence length of 4096 tokens. [Right]: Cache size scaling with increasing input
sequence length for the models show in Table 5.2.

for quality and cache size, to 48 LIVs at 2048 dimensions, through stacking and width extension,
we find that it matches the performance of a parameter-matched StripedMamba baseline and outper-
forms a parameter-matched Transformer++ baseline when all are trained for 40B tokens:

Finding 5: Scaling a synthesized STAR backbone from 125M to 1B parameters (Fig. B.25) out-
performs a parameter-matched Transformer++ baseline and matches a StripedMamba baseline in
RedPajama evaluation perplexity and performance on ARC-Challenge, HellaSwag, Winogrande,
PiQA, and SciQ, while reducing cache size by 90% and 37%, respectively (Table 5.2).

Finding 6: Overall, synthesized STAR backbones outperform Transformer++ and StripedMamba
baselines with hit rates of 8/8, 7/8, and 7/8 when optimizing for quality, quality and size, and
quality and cache, respectively (Tables 5.1 and A.4).

5.5 COMPARING SYNTHESIZED BACKBONES

STAR is well-suited for the synthesis of backbones optimized for various objectives. In addition,
it provides a tool for the automated discovery of backbone motifs that drive these performance
improvements, as it evolves populations towards using those combinations and compositions of
LIVs that perform best. Figure 5.4 demonstrates this for the evolution targeting model quality and
size. We observe that STAR favors gated short convolutions (GConv-1), grouped query (Ainslie
et al., 2023) attention variants (SA-3), and differential variants of input-varying recurrences (Rec-
1-Diff), as well as SwiGLUs (Shazeer, 2020) (GMemless). A more detailed analysis of the motifs
resulting from all STAR evolutions, as well as visualizations of all evaluated backbones, can be
found in Appendix B.

6 CONCLUSION
6.75

7.00

7.25

#
P

ar
am

s
(N

on
-E

m
b
ed

.) 1e7 Optimizing: Quality & Size

0

1

2

3

4

5

6

#
L
IV

s

SA-1

SA-2

SA-3

Rec-1

Rec-2

GConv-1

GConv-2

GMemless

SA-1-Diff

SA-2-Diff

SA-3-Diff

Rec-1-Diff

Rec-2-Diff

GConv-1-Diff

GConv-2-Diff

1

2

#
C

on
n
ec

te
d

L
IV

s

Shared
Featurizer
Weights

Shared
Feature
Groups

0 5 10 15

Generation

5

10

D
is

ta
n
ce

 b
/w

C
on

n
ec

te
d

L
IV

s

Figure 5.4: Evolution of backbones opti-
mized for quality and size, averaged per pop-
ulation. Distance measures the number of
other LIVs between two connected LIVs.

This work presents STAR, a framework for the auto-
mated evolution of tailored architectures. Unlike other
approaches, STAR explores a hierarchical, general de-
sign space encompassing attention, recurrences, convo-
lutions, and other input-dependent units. Its design space
is well-conditioned, with most architecture candidates
training stably. Using evolutionary methods on a nu-
merical backbone encoding, STAR achieves significant
improvements in perplexity, downstream benchmarks,
model size, and inference cache compared to optimized
striped hybrid and Transformer baselines.

Reproducibility statement To aid in reproducibil-
ity, we run optimization and training on open-source
datasets (RedPajama). We report full training and STAR
evolutionary algorithms details in Appendix A and a full
description of the STAR genome in Appendix A.6.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
points. arXiv preprint arXiv:2305.13245, 2023. 10

Simran Arora, Sabri Eyuboglu, Aman Timalsina, Isys Johnson, Michael Poli, James Zou, Atri
Rudra, and Christopher Ré. Zoology: Measuring and improving recall in efficient language mod-
els. arXiv preprint arXiv:2312.04927, 2023. 1, 15

Simran Arora, Sabri Eyuboglu, Michael Zhang, Aman Timalsina, Silas Alberti, Dylan Zinsley,
James Zou, Atri Rudra, and Christopher Ré. Simple linear attention language models balance
the recall-throughput tradeoff. arXiv preprint arXiv:2402.18668, 2024. 1

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. 2014. 3

Hans-Georg Beyer and Hans-Paul Schwefel. Evolution strategies–a comprehensive introduction.
Natural computing, 1:3–52, 2002. 6

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding,
Kai Dong, Qiushi Du, Zhe Fu, et al. Deepseek llm: Scaling open-source language models with
longtermism. arXiv preprint arXiv:2401.02954, 2024. 1

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020. 7

William Brandon, Mayank Mishra, Aniruddha Nrusimha, Rameswar Panda, and Jonathan Ragan
Kelly. Reducing transformer key-value cache size with cross-layer attention. arXiv preprint
arXiv:2405.12981, 2024. 2, 4

Hans J Bremermann, M Rogson, and S Salaff. Global properties of evolution processes. Natural
automata and useful simulations, pp. 3–41, 1966. 7

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020. 1,
2

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018. 7

Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated
convolutional networks. In International conference on machine learning, pp. 933–941. PMLR,
2017. 3

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and elitist mul-
tiobjective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation, 6(2):
182–197, 2002. 7

Patrick Dewilde and Alle-Jan Van der Veen. Time-varying systems and computations. Springer
Science & Business Media, 1998. 4

Daniel Y Fu, Tri Dao, Khaled K Saab, Armin W Thomas, Atri Rudra, and Christopher Ré.
Hungry hungry hippos: Towards language modeling with state space models. arXiv preprint
arXiv:2212.14052, 2022. 2

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-
tang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 07 2024. URL https://zenodo.org/records/
12608602. 3, 9, 22

11

https://zenodo.org/records/12608602
https://zenodo.org/records/12608602

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2023.
3, 16, 20

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces, 2022. 1

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022. 1

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In Pro-
ceedings of the IEEE/CVF international conference on computer vision, pp. 1314–1324, 2019. 1,
2

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention, 2020. 3

Sheng Li, Mingxing Tan, Ruoming Pang, Andrew Li, Liqun Cheng, Quoc V Le, and Norman P
Jouppi. Searching for fast model families on datacenter accelerators. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8085–8095, 2021. 1, 2

Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen, Jhonathan Osin, Itay Dalmedigos, Erez Safahi,
Shaked Meirom, Yonatan Belinkov, Shai Shalev-Shwartz, et al. Jamba: A hybrid transformer-
mamba language model. arXiv preprint arXiv:2403.19887, 2024. 2

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018. 1, 2

Zechun Liu, Changsheng Zhao, Forrest Iandola, Chen Lai, Yuandong Tian, Igor Fedorov, Yunyang
Xiong, Ernie Chang, Yangyang Shi, Raghuraman Krishnamoorthi, et al. Mobilellm: Optimizing
sub-billion parameter language models for on-device use cases. arXiv preprint arXiv:2402.14905,
2024. 2

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 11976–11986, 2022. 2

Ilya Loshchilov, Frank Hutter, et al. Fixing weight decay regularization in adam. arXiv preprint
arXiv:1711.05101, 5, 2017. 7

Eric Martin and Chris Cundy. Parallelizing linear recurrent neural nets over sequence length. arXiv
preprint arXiv:1709.04057, 2017. 1, 3

Stefano Massaroli, Michael Poli, Daniel Y. Fu, Hermann Kumbong, Rom N. Parnichkun, Aman
Timalsina, David W. Romero, Quinn McIntyre, Beidi Chen, Atri Rudra, Ce Zhang, Christopher
Re, Stefano Ermon, and Yoshua Bengio. Laughing hyena distillery: Extracting compact recur-
rences from convolutions, 2023. 1

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger. Oc-
cupancy networks: Learning 3d reconstruction in function space. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 4460–4470, 2019. 4

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman,
Huanqi Cao, Xin Cheng, Michael Chung, Matteo Grella, et al. Rwkv: Reinventing rnns for
the transformer era. arXiv preprint arXiv:2305.13048, 2023. 1

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture search
via parameters sharing. In International conference on machine learning, pp. 4095–4104. PMLR,
2018. 1, 2

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional
language models. 2023. 1, 3, 20, 21

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Michael Poli, Armin W Thomas, Eric Nguyen, Pragaash Ponnusamy, Björn Deiseroth, Kristian
Kersting, Taiji Suzuki, Brian Hie, Stefano Ermon, Christopher Ré, et al. Mechanistic design and
scaling of hybrid architectures. arXiv preprint arXiv:2403.17844, 2024. 2, 15, 16

Nicholas Roberts, Samuel Guo, Zhiqi Gao, Satya Sai Srinath Namburi GNVV, Sonia Cromp,
Chengjun Wu, Chengyu Duan, and Frederic Sala. Pretrained hybrids with mad skills. arXiv
preprint arXiv:2406.00894, 2024. 2

David W Romero, Anna Kuzina, Erik J Bekkers, Jakub M Tomczak, and Mark Hoogendoorn. Ck-
conv: Continuous kernel convolution for sequential data. arXiv preprint arXiv:2102.02611, 2021.
1, 4

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. arXiv preprint arXiv:1907.10641, 2019. 7

Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150, 2019. 2, 20

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020. 1, 3, 7,
10, 16, 21

Vincent Sitzmann, Julien NP Martel, Alexander W Bergman, David B Lindell, and Gordon
Wetzstein. Implicit neural representations with periodic activation functions. arXiv preprint
arXiv:2006.09661, 2020. 4

Jimmy T. H. Smith, Andrew Warrington, and Scott W. Linderman. Simplified state space layers for
sequence modeling, 2023. 1, 3

David So, Wojciech Mańke, Hanxiao Liu, Zihang Dai, Noam Shazeer, and Quoc V Le. Searching
for efficient transformers for language modeling. Advances in neural information processing
systems, 34:6010–6022, 2021. 1, 20

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024. 16

Mingxing Tan and Quoc Le. Efficientnetv2: Smaller models and faster training. In International
conference on machine learning, pp. 10096–10106. PMLR, 2021. 1

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017. 1, 3, 16

Maurice Weber, Daniel Fu, Quentin Anthony, Yonatan Oren, Shane Adams, Anton Alexandrov,
Xiaozhong Lyu, Huu Nguyen, Xiaozhe Yao, Virginia Adams, et al. Redpajama: an open dataset
for training large language models. arXiv preprint arXiv:2411.12372, 2024. 7

Johannes Welbl, Nelson F. Liu, and Matt Gardner. Crowdsourcing multiple choice science questions.
In NUT@EMNLP, 2017. 7

Colin White, Mahmoud Safari, Rhea Sukthanker, Binxin Ru, Thomas Elsken, Arber Zela, De-
badeepta Dey, and Frank Hutter. Neural architecture search: Insights from 1000 papers. arXiv
preprint arXiv:2301.08727, 2023. 1

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
transformers with hardware-efficient training, 2024a. 1, 3, 20

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transform-
ers with the delta rule over sequence length. arXiv preprint arXiv:2406.06484, 2024b. 1

Xin-She Yang. Firefly algorithms for multimodal optimization. In International symposium on
stochastic algorithms, pp. 169–178. Springer, 2009. 7

Tianzhu Ye, Li Dong, Yuqing Xia, Yutao Sun, Yi Zhu, Gao Huang, and Furu Wei. Differential
transformer. arXiv preprint arXiv:2410.05258, 2024. 18, 21

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019. 7

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Supplementary Material

CONTENTS

1 Introduction 1

2 Foundations of the Search Space 3

3 Describing Operators and Backbones with STAR Genomes 5
3.1 Backbone Genome . 5
3.2 Operator and Featurizer Genomes . 6

4 Synthesizing Architectures by Evolving Genomes 6
4.1 Key Steps of STAR Evolution . 6
4.2 Guiding Evolution with Hierarchical Mutations 7

5 Experiments 7
5.1 Identifying a Synthesis Protocol . 7
5.2 Synthesizing High-Quality Language Models . 8
5.3 Synthesizing Parameter-Efficient High-Quality Language Models 9
5.4 Synthesizing Cache-Efficient High-Quality Language Models 9
5.5 Comparing Synthesized Backbones . 10

6 Conclusion 10

A Experimental Details 15
A.1 Discussion . 15
A.2 Training . 15
A.3 Baseline models . 16
A.4 Evolutionary Optimization Algorithms . 16
A.5 Genome Scores . 17
A.6 Linear Input-Varying Systems and Featurizers: Option Pools 17

A.6.1 Backbone Genome . 18
A.6.2 Operator Genome . 19
A.6.3 Featurizer Genome . 21

A.7 Extending the backbone genome for variable residual connections 21
A.8 Evaluation of synthesized backbones . 21

B Visualization and Analysis of STAR Backbones 22
B.1 Recurring Motifs . 23

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

A EXPERIMENTAL DETAILS

A.1 DISCUSSION

Limitations and extensions of STAR While the LIV search space is general in the context of
sequence modeling primitives, it does not include all classes of functions that can be embedded in a
backbone, potentially missing options for further optimization.

Relation to scaling laws and mechanistic design Since STAR evolution can target any objective,
the methods presented in this paper are suited to integration within scaling laws protocols. Another
options is optimizing efficiently computed metrics that correlate with performance at scale e.g.,
average accuracy on curated synthetic tasks (Arora et al., 2023; Poli et al., 2024).

Optimizing variable depth backbones Currently, STAR optimizes fixed-length genomes, lim-
iting architectures to fixed depth and width. Optimizing variable-depth and variable-width archi-
tectures is challenging due to the hierarchical and modular design space. Shallower genomes are
computationally cheaper and converge faster but may lack the complexity needed for difficult tasks.
Deeper genomes offer greater representational power but expand the search space, risking subop-
timal convergence due to overfitting or inefficient sampling. Future extensions of STAR could ad-
dress these challenges with adaptive mechanisms like depth-aware sampling or dynamic penalties
to improve scalability. Testing these methods on tasks requiring deeper architectures will be key to
enhancing STAR’s robustness and versatility.

Multi-level optimization STAR streamlines the search by treating the genome as a unified en-
tity, enabling efficient exploration—especially beneficial for rapid iteration or limited resources.
However, this approach may not fully exploit the hierarchical design space, potentially overlook-
ing dependencies or key subspaces across genome levels. In contrast, a multi-stage optimization
strategy could systematically refine each hierarchical level—featurization, operator structure, and
backbone—using tailored evolutionary algorithms. This could improve convergence, especially in
complex task settings, by leveraging the genome’s modularity and addressing interactions incremen-
tally, but it would increase algorithmic complexity and computational costs.

A.2 TRAINING

Tables A.1 and A.2 provide an overview of the training settings used during STAR evolution and
when evaluating the resulting synthesized backbones.

Table A.1: Training setting during STAR evolution.

OPTIMIZER ADAMW
OPTIMIZER MOMENTUM β1, β2 = 0.9, 0.95
BATCH SIZE 0.25M TOKENS
TRAINING STEPS 5000
LEARNING RATE SCHEDULE COSINE DECAY
LINEAR LEARNING RATE WARM-UP 500 STEPS
BASE LEARNING RATE 0.0008
WEIGHT DECAY 0.1
DROPOUT NONE
GRADIENT CLIPPING 1.0

Table A.2: Training setting for evaluation of synthesized backbones.

OPTIMIZER ADAMW
OPTIMIZER MOMENTUM β1, β2 = 0.9, 0.95
BATCH SIZE 0.25M TOKENS
TRAINING STEPS 20000
LEARNING RATE SCHEDULE COSINE DECAY
LINEAR LEARNING RATE WARM-UP 1500 STEPS
BASE LEARNING RATE 0.0008
WEIGHT DECAY 0.1
DROPOUT NONE
GRADIENT CLIPPING 1.0

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Table A.3: Training setting for models with 48 LIVs at a width of 2048 dimensions (see Table 5.2.

OPTIMIZER ADAMW
OPTIMIZER MOMENTUM β1, β2 = 0.9, 0.95
BATCH SIZE 0.75M TOKENS
TRAINING STEPS 50000
LEARNING RATE SCHEDULE COSINE DECAY
LINEAR LEARNING RATE WARM-UP 3500 STEPS
BASE LEARNING RATE 0.0008
WEIGHT DECAY 0.1
DROPOUT NONE
GRADIENT CLIPPING 1.0

A.3 BASELINE MODELS

All baseline models are trained according to the recipe described in Table A.2. We train the two
baseline models each at two depths widths to match the parameter counts of our synthesized models
(Tables 5.1 and 5.2): 24 operators at 768 dimensions and 48 operators at 2048 dimensions.

Transformer++ A Transformer (Vaswani et al., 2017) with an improved architecture, namely
rotary positional encodings (Su et al., 2024), SwiGLU MLP (Shazeer, 2020), RMSNorm instead
of LayerNorm, and no linear bias term. We use a head dimension of 64 for all Transformer++
baselines trained in this work, resulting in 12 and 32 heads for models with 768 and 2048 width.

StripedMamba A striped hybrid backbone (Poli et al., 2024) that combines Mamba (Gu & Dao,
2023), SwiGLU MLP (Shazeer, 2020), and self-attention (Vaswani et al., 2017) operators. The 24
operator backbone is composed of interleaved Mamba and SwiGLU operators, with the exception of
operators 6 and 18, which are softmax attention. The Mamba operators have a state size of 32, while
we use a head dimension of 64 for the attention operators. The 48 operator StripedMamba backbone
is obtained by stacking two 24 operator backbones in depth and increasing the overall width to 2048.

A.4 EVOLUTIONARY OPTIMIZATION ALGORITHMS

In this section, we present an overview of the three variants of commonly used gradient-free evo-
lutionary optimization algorithms applied in this work. These algorithms have been adapted as
necessary to be compatible with the STAR genome. Before discussing their individual differences,
we will first describe several core operations shared across all variants.

Tournament selection selects parent candidates by randomly sampling a subset of individuals
from the population and choosing the highest-performing individual from this subset. This method
promotes the propagation of strong candidates while preserving diversity through its inherent ran-
domness.

K-point crossover recombines the genomes of two parents by exchanging segments of genetic
material at k randomly selected points, creating offspring that inherit a mix of traits from both
parents.

Elitism balances exploration and exploitation by preserving a subset of the top-performing indi-
viduals from the current population and carrying them over directly to the next generation. This
approach ensures that high-quality solutions are not lost and generally accelerates convergence,
while reducing the risk of premature convergence to suboptimal regions of the solution space.

Mutation maintains population diversity by introducing randomness through random alterations
to a genome, helping the algorithm explore new regions of the solution space.

Firefly Algorithm (FA) The Firefly Algorithm (FA) is inspired by fireflies’ attraction to brighter
(fitter) individuals based on their light intensity. FA assigns a light intensity a = 1

1+s to each
genome, inversely related to its fitness score s. In each iteration, FA pairs genome i with genome j
via tournament selection. If aj > ai, FA updates gi to resemble gj through two steps: (1) computing
attraction strength β = β0(1 − e−γ(1−r)), where β0 is baseline attraction, γ is the light absorption
coefficient, and r is the similarity ratio of matching LIVs, and (2) replacing LIV gik with gjk with
probability β. If ai ≥ aj , gi remains unchanged. Finally, gi undergoes mutation.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Genetic Algorithm (GA) In each iteration, the Genetic Algorithm (GA) generates new genomes
by: (i) selecting two parents via tournament selection; (ii) recombining them using k-point
crossover; and (iii) mutating the recombined genomes.

Non-dominated Sorting Genetic Algorithm II (NSGA-2) NSGA-2 extends GA for multi-
objective optimization by maintaining a diverse set of Pareto-optimal solutions through non-
dominated sorting and crowding distances. It first segregates genomes into fronts, with the first
front containing the most optimal, non-dominated solutions. Genome gi dominates gj if it outper-
forms gj in at least one objective without being worse in others. Within each front, genomes are
sorted by objective scores, such as predictive quality, and assigned crowding distances 7 Boundary
solutions, with extreme objective scores, receive infinite crowding distances to ensure preservation,
while non-boundary solutions are assigned crowding distances based on differences from adjacent
neighbors. Selection then favors genomes with higher front rank and crowding distance.

Determining hyper-parameters for NSGA-2 We found that NSGA-2 performed the best in our
comparison (Section 5). We also investigate the optimal hyper-parameter settings for NSGA-2,
specifically population size n, mutation probability p, and number of crossover points k. To do this,
we evolved two population sizes (16 and 32), optimizing for quality and parameter count, while
varying the number of crossover points (1 or 2) and mutation probabilities (10% or 20%) (Fig.
A.1). To keep to overall number of sampled genomes constant, we evolve populations containing
16 genomes for 8 iterations and populations containing 32 genomes for 4 iterations. All genomes
contain 24 LIVs at a width of 64 dimensions. Our results indicate that NSGA-2 performs best with
a population size of 16, 2 crossover points, and a 10% mutation probability.

70 80 90

PPL

300000

400000

#
P

a
ra

m
s

n:16, p:0.1, k:1

70 80 90

PPL

n:16, p:0.1, k:2

70 80 90

PPL

n:16, p:0.2, k:1

70 80 90

PPL

n:16, p:0.2, k:2

70 80 90

PPL

n:32, p:0.1, k:1

70 80 90

PPL

n:32, p:0.1, k:2

70 80 90

PPL

n:32, p:0.2, k:1

70 80 90

PPL

n:32, p:0.2, k:2

Figure A.1: Comparison of different hyper-parameter settings for NSGA-2.

A.5 GENOME SCORES

We provide visualizations of all genome scores in all STAR evolutions:

i. Evolutionary algorithm ablations: figures B.28 and B.29.

ii. Comparison of synthesis scales: figures B.30, B.31, and B.32.

iii. Direct quality optimization: figure B.33.

iv. Quality and size optimization: figure B.32.

v. Quality and cache optimization: figure B.34.

A.6 LINEAR INPUT-VARYING SYSTEMS AND FEATURIZERS: OPTION POOLS

Modifying the STAR genome – the numerical encoding enabled by the LIV framework – allows
exploration of model architectures with substantial differences at multiple levels, including in the
type of LIVs they are composed of, as well as their ordering and interconnection.

Recall that the STAR genome is structured hierarchically: At the highest level, the backbone genome
specifies the composition of LIVs in the backbone, with each LIV represented by a single inte-
ger. Expanding this integer reveals the operator genome, which identifies the LIV. At the operator
genome level, the specific featurizer of the LIV is similarly encoded as a single integer, which can

7Crowding distance in multi-objective optimization is a measure of the density of solutions surrounding
a particular solution, calculated as the sum of the normalized distances between adjacent solutions across all

objectives: di =
∑M

m=1

(
fi+1
m −fi−1

m

fmax
m −fmin

m

)
, where di is the crowding distance for solution i, and fm is the objective

value in the mth objective.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

be further expanded into the featurizer genome, which specifies the particular featurizer used by the
LIV.

Below, we provide an overview of the specific integer values and their corresponding meanings
considered in this work for each level of the STAR genome. Note that this definition of the genome
is not exhaustive and can be extended further.

A.6.1 BACKBONE GENOME

The basic formulation of the backbone genome (without extensions such as residual composition
explored in A.7) consists of sequences of five integers, where each sequence corresponds to one of
the LIVs contained in the backbone, defining (a) the individual operator and (b) composition rules
with other LIVs.

For each integer in the genome, we detail the set of options considered in this work. While we
present a specific set of choices here, the pool of options can be readily expanded, provided the
results compile to valid operators and backbones within the LIV framework.

Tthe first integer specifies the LIV class and can take on the following values in our experiments:

1-4. Softmax attention variants (SA) 1-4

5-6. Recurrences (Rec) 1-2

7-8. Gated convolutions (GConv) 1-2

9. Gated memoryless unit (GMemless)

10-17. Differential variants of LIV classes 1-8 (akin to the "Differential Transformer" (Ye et al.,
2024))

The second integer defines the weight-sharing structure of the LIVs’ featurizers. Specifically, all
LIVs within a backbone that share featurizer weights will have the same value in this position.
The mapping of integer values to the weight-sharing structure thereby depends on the number of
occurrences of each LIV class (N) in the backbone. If all LIVs of the same class share featurizer
weights, they are all assigned a value of 1 at this position. Conversely, if none of these LIVs share
featurizer weights, each LIV is assigned a unique integer value from 1 to N .

The third integer defines the strategy for sharing featurizer weights. In this work, we are consider-
ing only two possible featruizer sharing strategies:

1. No weights are shared

2. All weights are shared

The fourth integer establishes the feature group sharing structure of the LIVs. Similar to the featur-
izer weight-sharing structure (second integer), all LIVs within a backbone that share feature groups
will have the same value at this position. The assignment of integer values to feature group sharing
follows the same logic described for the second integer.

The fifth integer specifies the strategy used for sharing feature groups. Since feature groups are
unique to each LIV class, the possible values for this integer vary depending on the LIV class. The
range is between 1 (indicating no shared feature groups) and N +1, where N represents the number
of unique feature groups in the given LIV class. For example, in the case of softmax attention, the
possible values are:

1. No shared feature groups

2. Shared key cache

3. Shared value cache

4. Shared key and value cache

For clarity, we provide examples of backbone genomes below:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

11111 91111 12121 92121

This genome consists of four LIVs arranged in an interleaved order. The first and last LIVs belong to
the SA-1 class, while the second and fourth LIVs belong to the GMemless class. None of the LIVs
share featurizer weights or feature groups, as each occurrence of a LIV class has distinct integer
values for featurizer sharing (integer 2) and feature group sharing (integer 4). Both the featurizer
sharing strategy (integer 3) and feature group sharing strategy (integer 5) are set to 1, indicating no
sharing.

11111 91111 51111 92121

This genome represents a variation of the genome shown above, where the third LIV has been
switched from class SA-1 to class Rec-1. As before, none of the LIVs share feature groups of
featurizer weights.

11111 91111 51111 92121 11221 91131

This genome is comprised of six LIVs. The first and fifth belong to the SA-1 class. The first and
fifth belong to the SA-1 class, the second, fourth, and sixth to the GMemless class, and the third to
the Rec-1 class. Notably, the two SA-1 LIVs share the weights of their featurizers, as both have a
value of 1 at the second integer position and a value of 2 at the third integer position.

A.6.2 OPERATOR GENOME

The operator genome specifies a particular LIV and consists of five integer values. Integer 1 sum-
marizes the LIV’s featurizer, integers 2–4 define the token-mixing structure of the LIV, and integer
5 determines the channel-mixing structure.

The first integer specifies the featurizer class. In this work, we consider the following 9 featurizer
classes:

1. Dense channel mixing structure with diagonal token mixing structure on all feature groups
(3 groups e.g., in SA-1).

2. Dense channel mixing structure with Toeplitz token mixing structure on all feature groups
(3 groups e.g., in SA-2).

3. Variant of 1. where a repeat factor of 4 is applied to the last two feature groups (e.g., used
for SA-3).

4. Variant of 1. where a repeat factor of 2 is applied to the last two feature groups (e.g., used
for SA-4).

5. Dense channel mixing and Toeplitz token mixing structure. An expansion factor of 16 is
applied to the last two feature groups (e.g., used for Rec-1).

6. Dense channel mixing and Toeplitz token mixing structure. An expansion factor of 2 is
applied to the last two feature groups (e.g., used for Rec-2).

7. Diagonal channel mixing structure with Toeplitz token mixing structure for all feature
groups. One of the groups is explicitly parametrized (e.g., short convolutions of length
3 used for GConv-1).

8. Variant of 5. Where the short convolution kernel feature group is replaced with an implicitly
parametrized feature group (e.g., long convolutions used in GConv-2).

9. Dense channel mixing structure with diagonal token mixing structure with 2 feature groups
(e.g., used for GMemless). Variant of 1 with one fewer feature group.

The second integer defines the linear token-mixing structure of the LIV, before any final nonlinear-
ity, and can take on the following values in this work:

1. Diagonal (e.g., GMemless)

2. Low rank (e.g., SA)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

3. Scaled Toeplitz (e.g., GConv)

4. Sequentially semi-separable (e.g., Rec)

The token-mixing structure determines the class of matrix multiplication algorithms that can be used
to apply the operator to the input. For instance, if the LIV is sequentially semi-separable, it supports
an O(l) algorithm implemented as a linear recurrence.

The third integer determines whether any structured sparsity mask is applied to the token-mixing
structure. We consider the following in this work:

1. No sparsity

2. Banded (e.g., as used for short convolutions)

Note that all models trained in this work are causal, and as such upper-triangular sparsity masks are
introduced whenever needed e.g., in LIVs wrapped by nonlinearities.

The fourth integer describes whether any final nonlinearity is applied to the token-mixing structure.
We consider the following set of static and normalization non-linearities in this work:

1. None

2. Softmax

3. ReLU

4. Swish

The fifth integer describes the LIV channel mixing structure, for which we consider the following
two possible structures in this work:

1. Diagonal

2. Dense

Below we provide the specific operator genomes for each LIV class considered in this work:

SA-1 12121 refers to the standard attention operator using a featurizer with a dense channel mixing
and diagonal token mixing structure with 3 feature groups, a low-rank token-mixing structure, no
sparsity mask, a softmax non-linearity, and a diagonal channel-mixing structure.

SA-2 22121 represents a variant of SA-1 whose featurizer has a dense channel mixing and Toeplitz
token mixing structure. This is realized in practice by adding depth-wise convolutions to the featur-
izer, in line with the findings of (So et al., 2021; Poli et al., 2023).

SA-3 32121 represents a variant of SA-1 where a repeat factor of 4 is applied to the last two feature
groups. This is akin to variants of multi-query (MQA) and grouped-query attention (GQA) (Shazeer,
2019).

SA-4 42121 represents a variant of SA-3 with a lower repeat factor of 2 for the last two feature
groups.

Rec-1 54111 is characterized by a featurizer with Toeplitz token mixing structure and dense chan-
nel mixing structure with 5 feature groups where an expansion factor of 16 is applied to the last two
feature groups, a semi-separable token mixing structure, no sparsity, no non-linearity, and a diag-
onal channel mixing structure. Rec-1 is representative of a variety of modern input-varying linear
recurrent layers (Gu & Dao, 2023; Yang et al., 2024a).

Rec-2 64111 is the same as Rec-1, with the exception of an expansion factor of 2 for the last two
feature groups.

GConv-1 73111 is characterized by a featurizer with diagonal channel mixing structure and
Toeplitz token mixing structure (using a short convolution filter) applied to all feature groups in

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

addition to an explicitly parametrized feature group for short convolution, a Toeplitz token mixing
structure, no sparsity, no non-linearity, and a diagonal channel mixing structure.

GConv-2 83111 has the same structure as GConv-1, except for the use of an implicitly parametrized
feature group for long convolutions. GConv-2 represents modern operators in the gated long convo-
lution family (Poli et al., 2023).

GMemless 91142 is characterized by a featurizer with dense channel mixing structure and diagonal
token mixing structure with two feature groups, a diagonal token mixing structure, no sparsity, swish
non-linearity, and dense channel mixing structure. GConv-1 thereby represents a SwiGLU (Shazeer,
2020).

In addition, we include differential variants of LIV classes 1–8 (SA, Rec, and GConv), where two
identical LIVs are applied in parallel, outputting their difference, similar to the "Differential Trans-
former" (Ye et al., 2024).

A.6.3 FEATURIZER GENOME

The featurizer genome is composed of sequences of seven integers, one sequence per feature group
of the featurizer. The first five integers are akin to integers 2-5 of the operator genome, respec-
tively indicating the linear token-mixing structure, whether any sparsity is applied, whether any
non-linearity is applied, and the channel mixing structure. The sixth integer indicates an expansion
factor of the feature group channel dimension over the input channel dimension. The seventh inte-
ger indicates a repeat factor for how many times the feature groups are replicated across the channel
dimension.

Note that we restrict the featurizer genome to a maximum of 5 feature groups (ie, 35 integers in
total). If the featurizer takes in less than 5 feature groups, we set the sequences of all excess feature
groups to 0.

A.7 EXTENDING THE BACKBONE GENOME FOR VARIABLE RESIDUAL CONNECTIONS

In our main experiments, we constrain backbone topologies to a pre-norm residual structure, where
the output ym of LIV Tm at backbone depthm is defined as: ym = T (norm(ym−1)) norm(ym−1)+
ym−1.

However, the backbone genome can be extended to support more flexible residual streams. This can
be achieved by introducing a sixth entry to each subsection of the backbone genome, corresponding
to its respective LIV. Recall that the backbone genome consists of sequences of five integers, where
each sequence encodes the characteristics of an LIV and its integration within the composition struc-
ture. If two LIVs, at depths m and n (where m < n), share the same value at this new genome
position, the residual stream is extended such that: yn = T (norm(u)) norm(u) + u, where u =
yn−1 + ym.

We evaluate this extended backbone genome in an ablation study by comparing the outcomes of
two STAR evolutions: one incorporating this extension and the other using the standard backbone
genome. In both conditions, we evolve a population of 16 genomes, each consisting of 24 LIVs with
a width of 768 dimensions, for 7 generations. The results indicate that the extension allows STAR
to synthesize architectures of even smaller parameter counts while maintaining the same level of
quality (see Fig. A.2).

Based on these promising findings, we plan to further investigate composition strategies via residuals
and inputs to LIVs in future work, in addition to improved featurizer interconnections e.g., sharing
inputs to the system, the featurizer, and the residual stream itself.

A.8 EVALUATION OF SYNTHESIZED BACKBONES

Table A.4 provides an overview of the evaluation performances of the remaining 4 synthesized
backbones that were selected from each STAR evaluation and trained for longer (for comparison,
see Table 5.1).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

7

8

w
/

E
x
te

n
si

on

#
P

ar
am

s

1e7 Generation 0 Generation 1 Generation 2 Generation 3 Generation 4 Generation 5 Generation 6

9 10 11

PPL

7

8

w
/o

 E
x
te

n
si

o
n

#
P

ar
am

s

1e7

9 10 11

PPL

9 10 11

PPL

9 10 11

PPL

9 10 11

PPL

9 10 11

PPL

9 10 11

PPL

Figure A.2: Comparison of two STAR evolutions with and without an extension of the backbone genome
allowing for more flexible residual connections.

Backbone / Size Cache RedPj. Hella. ARC-e Wino. PiQA SciQ Avg.
Optimized for (bytes | 4K) ppl ↓ acc. norm. ↑ acc. ↑ acc. ↑ acc. ↑ acc. ↑ ↑
Transformer++ 85M 150MB 7.3 28.9 38.8 51.2 61.2 64.1 48.8
StripedMamba 80M 25MB 7.2 28.6 39.3 51.1 60.9 67.4 49.5

STAR-5 / Quality 78M 94MB 7.1 29.2 39.1 52.1 62.1 72.7 51.0
STAR-6 / Quality 79M 94MB 7.1 29.0 39.9 50.9 61.7 71.1 50.5
STAR-7 / Quality 79M 107MB 7.1 29.3 38.2 51.5 61.6 70.2 50.2
STAR-8 / Quality 79M 94MB 7.1 29.1 40.6 50.8 62.0 70.3 50.6

STAR-5 / Q.+Size 78M 64MB 7.2 29.2 40.0 52.7 61.0 67.8 50.1
STAR-6 / Q.+Size 73M 104MB 7.2 27.7 39.5 53.1 61.6 69.4 50.3
STAR-7 / Q.+Size 69M 170MB 7.2 27.8 39.2 49.9 61.2 69.5 49.5
STAR-8 / Q.+Size 72M 92MB 7.2 27.5 39.2 51.7 61.8 64.1 48.9

STAR-5 / Q.+Cache 79M 22MB 7.2 28.9 40.0 50.2 61.1 69.1 49.9
STAR-6 / Q.+Cache 68M 25MB 7.2 29.1 40.0 51.3 60.9 68.7 50.0
STAR-7 / Q.+Cache 75M 22MB 7.3 28.6 39.4 52.6 61.0 66.6 49.6
STAR-8 / Q.+Cache 74M 16MB 7.3 28.8 38.8 51.2 61.0 67.0 49.4

Table A.4: Evaluation of backbones optimized for quality (lower half) and quality and size (upper half). We
test on LM-Eval-Harness (Gao et al., 2024), reporting parameter-matched Transformer++ and StripedMamba
baselines trained on the same data. Size indicates trainable parameter count, excluding embeddings layers. All
models were trained for 5B tokens from Redpajama.

B VISUALIZATION AND ANALYSIS OF STAR BACKBONES

We provide visualization of the STAR backbones presented in Tables 5.1, 5.2, and A.4. Featurizer
sharing between operators is indicated as solid black arrows on the right, feature group sharing as
dashed black arrows on the left.

i. Direct quality optimization: figures B.1 (STAR-1), B.2 (STAR-2), B.3 (STAR-3), B.4
(STAR-4), B.5 (STAR-5), B.6 (STAR-6), B.7 (STAR-7), B.8 (STAR-8)

ii. Quality and size optimization: figures B.9 (STAR-1), B.10 (STAR-2), B.11 (STAR-3),
B.12 (STAR-4), B.13 (STAR-5), B.14 (STAR-6), B.15 (STAR-7), B.16 (STAR-8)

iii. Quality and cache optimization: figures B.17 (STAR-1), B.18 (STAR-2), B.19 (STAR-3),
B.20 (STAR-4),B.21 (STAR-5), B.22 (STAR-6), B.23 (STAR-7), B.24 (STAR-8), and B.25
(STAR-1B)

We also provide overviews of the average count at which each LIV type occurs in a population over
the course of STAR optimization, the average count of LIVs that share featurizer weights or groups,
and the average distance between LIVs sharing featurizer weights or feature groups8:

i. Direct quality optimization: figure B.26

8Distance is indicated by the number of LIVs between two LIVs with connected through featurizer or
feature group sharing.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

ii. Quality and size optimization: figure 5.4

iii. Quality and cache optimization: figure B.27

We have observed that STAR can evolve populations of architectures to optimize their quality (per-
plexity, accuracy, downstream performance), size (number of parameters), and efficiency (inference
cache). The basis for this is laid out by the flexibility of the LIV design space, which allows con-
structing computational units tailored to these various objectives. STAR leverages evolutionary opti-
mization methods to search the design space and converge on those solutions performing best under
the given set of objectives.

For example, a key mechanism for STAR to reduce parameter counts is to identify which LIVs can
be connected through featurizer or feature group sharing without degrading performance. Likewise,
STAR can reduce parameter counts by purposefully placing MLPs only at those positions of the
backbone (as observed in Figs. B.9, B.10, B.11, B.12), instead of at every other depth index as is
otherwise common.

By contrast, STAR can reduce cache size by deliberately placing LIVs with large cache sizes in
the backbone and connecting these through featurizer or feature group sharing, while increasing the
overall amount of MLPs in the backbone (as observed in Figs. B.27, B.17, and B.23).

B.1 RECURRING MOTIFS

Feature group sharing in softmax attention When optimizing solely for quality, a notable pat-
tern in STAR is that the first LIV in the model is typically a variant of softmax attention (SA),
connected via feature group sharing to other SA-LIVs positioned toward the end of the model (Figs.
B.1, B.3, B.5, and B.7).

Dominance of softmax attention and memoryless LIVs when optimizing for quality Softmax
attention and memoryless LIVs are foundational to the Transformer architecture. When optimiz-
ing for quality, STAR tends to favor these LIV classes (Fig. B.26). Their performance is further
enhanced by strategically placed recurrences and differential variants of short gated convolutions
(Figs. B.1, B.4, and B.5).

Sparsely placed differential gated convolutions with featurizer sharing Backbones optimized
for quality often include two differential variants of short gated convolutions connected through
featurizer sharing (as illustrated in Figs. B.2, B.4, B.5, B.6, and B.8).

Reduced connectivity when optimizing for quality and size Interestingly, backbones synthe-
sized by STAR for both quality and size exhibit significantly fewer LIVs connected through featur-
izer and feature group sharing compared to those optimized for quality alone (compare Figs. B.26
and 5.4).

Connected gated convolutions A recurring motif from the evolutionary process involves LIVs
with a block-Toeplitz token-mixing structure (e.g., convolutions, gated convolutions). In these cases,
earlier LIVs in the model are connected through feature group sharing to later LIVs (Figs. B.12 and
B.22).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

SA-1
SA-2
SA-3
SA-4
Rec-1
Rec-2
GConv-1
GConv-2
GMemless
SA-1-Diff
SA-2-Diff
SA-3-Diff
SA-4-Diff
Rec-1-Diff
Rec-2-Diff
GConv-1-Diff
GConv-2-Diff

Figure B.1: STAR-1 optimised for quality (see Table 5.1). Dashed lines on the left indicate feature
group sharing while solid lines on the right indicate featurizer sharing.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

SA-1
SA-2
SA-3
SA-4
Rec-1
Rec-2
GConv-1
GConv-2
GMemless
SA-1-Diff
SA-2-Diff
SA-3-Diff
SA-4-Diff
Rec-1-Diff
Rec-2-Diff
GConv-1-Diff
GConv-2-Diff

Figure B.2: STAR-2 optimised for quality (see Table 5.1). Dashed lines on the left indicate feature
group sharing while solid lines on the right indicate featurizer sharing.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

SA-1
SA-2
SA-3
SA-4
Rec-1
Rec-2
GConv-1
GConv-2
GMemless
SA-1-Diff
SA-2-Diff
SA-3-Diff
SA-4-Diff
Rec-1-Diff
Rec-2-Diff
GConv-1-Diff
GConv-2-Diff

Figure B.3: STAR-3 optimised for quality (see Table 5.1). Dashed lines on the left indicate feature
group sharing.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

SA-1
SA-2
SA-3
SA-4
Rec-1
Rec-2
GConv-1
GConv-2
GMemless
SA-1-Diff
SA-2-Diff
SA-3-Diff
SA-4-Diff
Rec-1-Diff
Rec-2-Diff
GConv-1-Diff
GConv-2-Diff

Figure B.4: STAR-4 optimised for quality (see Table 5.1). Dashed lines on the left indicate feature
group sharing while solid lines on the right indicate featurizer sharing.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

SA-1
SA-2
SA-3
SA-4
Rec-1
Rec-2
GConv-1
GConv-2
GMemless
SA-1-Diff
SA-2-Diff
SA-3-Diff
SA-4-Diff
Rec-1-Diff
Rec-2-Diff
GConv-1-Diff
GConv-2-Diff

Figure B.5: STAR-5 optimised for quality (see Table A.4). Dashed lines on the left indicate feature
group sharing while solid lines on the right indicate featurizer sharing.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

SA-1
SA-2
SA-3
SA-4
Rec-1
Rec-2
GConv-1
GConv-2
GMemless
SA-1-Diff
SA-2-Diff
SA-3-Diff
SA-4-Diff
Rec-1-Diff
Rec-2-Diff
GConv-1-Diff
GConv-2-Diff

Figure B.6: STAR-6 optimised for quality (see Table A.4). Dashed lines on the left indicate feature
group sharing while solid lines on the right indicate featurizer sharing.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

SA-1
SA-2
SA-3
SA-4
Rec-1
Rec-2
GConv-1
GConv-2
GMemless
SA-1-Diff
SA-2-Diff
SA-3-Diff
SA-4-Diff
Rec-1-Diff
Rec-2-Diff
GConv-1-Diff
GConv-2-Diff

Figure B.7: STAR-7 optimised for quality (see Table A.4). Dashed lines on the left indicate feature
group sharing.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

SA-1
SA-2
SA-3
SA-4
Rec-1
Rec-2
GConv-1
GConv-2
GMemless
SA-1-Diff
SA-2-Diff
SA-3-Diff
SA-4-Diff
Rec-1-Diff
Rec-2-Diff
GConv-1-Diff
GConv-2-Diff

Figure B.8: STAR-8 optimised for quality (see Table A.4). Dashed lines on the left indicate feature
group sharing while solid lines on the right indicate featurizer sharing.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

SA-1
SA-2
SA-3
SA-4
Rec-1
Rec-2
GConv-1
GConv-2
GMemless
SA-1-Diff
SA-2-Diff
SA-3-Diff
SA-4-Diff
Rec-1-Diff
Rec-2-Diff
GConv-1-Diff
GConv-2-Diff

Figure B.9: STAR-1 optimised for quality and size (see Table 5.1). Dashed lines on the left indicate
feature group sharing while solid lines on the right indicate featurizer sharing.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

SA-1
SA-2
SA-3
SA-4
Rec-1
Rec-2
GConv-1
GConv-2
GMemless
SA-1-Diff
SA-2-Diff
SA-3-Diff
SA-4-Diff
Rec-1-Diff
Rec-2-Diff
GConv-1-Diff
GConv-2-Diff

Figure B.10: STAR-2 optimised for quality and size (see Table 5.1). Dashed lines on the left indicate
feature group sharing while solid lines on the right indicate featurizer sharing.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

SA-1
SA-2
SA-3
SA-4
Rec-1
Rec-2
GConv-1
GConv-2
GMemless
SA-1-Diff
SA-2-Diff
SA-3-Diff
SA-4-Diff
Rec-1-Diff
Rec-2-Diff
GConv-1-Diff
GConv-2-Diff

Figure B.11: STAR-3 optimised for quality and size (see Table 5.1). Solid lines on the right indicate
featurizer sharing.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

SA-1
SA-2
SA-3
SA-4
Rec-1
Rec-2
GConv-1
GConv-2
GMemless
SA-1-Diff
SA-2-Diff
SA-3-Diff
SA-4-Diff
Rec-1-Diff
Rec-2-Diff
GConv-1-Diff
GConv-2-Diff

Figure B.12: STAR-4 optimised for quality and size (see Table 5.1). Dashed lines on the left indicate
feature group sharing.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

SA-1
SA-2
SA-3
SA-4
Rec-1
Rec-2
GConv-1
GConv-2
GMemless
SA-1-Diff
SA-2-Diff
SA-3-Diff
SA-4-Diff
Rec-1-Diff
Rec-2-Diff
GConv-1-Diff
GConv-2-Diff

Figure B.13: STAR-5 optimised for quality and size (see Table A.4). Solid lines on the right indicate
featurizer sharing.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

SA-1
SA-2
SA-3
SA-4
Rec-1
Rec-2
GConv-1
GConv-2
GMemless
SA-1-Diff
SA-2-Diff
SA-3-Diff
SA-4-Diff
Rec-1-Diff
Rec-2-Diff
GConv-1-Diff
GConv-2-Diff

Figure B.14: STAR-6 optimised for quality and size (see Table A.4).

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

SA-1
SA-2
SA-3
SA-4
Rec-1
Rec-2
GConv-1
GConv-2
GMemless
SA-1-Diff
SA-2-Diff
SA-3-Diff
SA-4-Diff
Rec-1-Diff
Rec-2-Diff
GConv-1-Diff
GConv-2-Diff

Figure B.15: STAR-7 optimised for quality and size (see Table A.4). Dashed lines on the left indicate
feature group sharing while solid lines on the right indicate featurizer sharing.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

SA-1
SA-2
SA-3
SA-4
Rec-1
Rec-2
GConv-1
GConv-2
GMemless
SA-1-Diff
SA-2-Diff
SA-3-Diff
SA-4-Diff
Rec-1-Diff
Rec-2-Diff
GConv-1-Diff
GConv-2-Diff

Figure B.16: STAR-8 optimised for quality and size (see Table A.4).

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

SA-1
SA-2
SA-3
SA-4
Rec-1
Rec-2
GConv-1
GConv-2
GMemless
SA-1-Diff
SA-2-Diff
SA-3-Diff
SA-4-Diff
Rec-1-Diff
Rec-2-Diff
GConv-1-Diff
GConv-2-Diff

Figure B.17: STAR-1 optimised for quality and cache (see Table 5.1). Dashed lines on the left
indicate feature group sharing.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

SA-1
SA-2
SA-3
SA-4
Rec-1
Rec-2
GConv-1
GConv-2
GMemless
SA-1-Diff
SA-2-Diff
SA-3-Diff
SA-4-Diff
Rec-1-Diff
Rec-2-Diff
GConv-1-Diff
GConv-2-Diff

Figure B.18: STAR-2 optimised for quality and cache (see Table 5.1).

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

SA-1
SA-2
SA-3
SA-4
Rec-1
Rec-2
GConv-1
GConv-2
GMemless
SA-1-Diff
SA-2-Diff
SA-3-Diff
SA-4-Diff
Rec-1-Diff
Rec-2-Diff
GConv-1-Diff
GConv-2-Diff

Figure B.19: STAR-3 optimised for quality and cache (see Table 5.1). Dashed lines on the left
indicate feature group sharing.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

SA-1
SA-2
SA-3
SA-4
Rec-1
Rec-2
GConv-1
GConv-2
GMemless
SA-1-Diff
SA-2-Diff
SA-3-Diff
SA-4-Diff
Rec-1-Diff
Rec-2-Diff
GConv-1-Diff
GConv-2-Diff

Figure B.20: STAR-4 optimised for quality and cache (see Table 5.1).

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

SA-1
SA-2
SA-3
SA-4
Rec-1
Rec-2
GConv-1
GConv-2
GMemless
SA-1-Diff
SA-2-Diff
SA-3-Diff
SA-4-Diff
Rec-1-Diff
Rec-2-Diff
GConv-1-Diff
GConv-2-Diff

Figure B.21: STAR-5 optimised for quality and cache (see Table A.4). Dashed lines on the left
indicate feature group sharing.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

SA-1
SA-2
SA-3
SA-4
Rec-1
Rec-2
GConv-1
GConv-2
GMemless
SA-1-Diff
SA-2-Diff
SA-3-Diff
SA-4-Diff
Rec-1-Diff
Rec-2-Diff
GConv-1-Diff
GConv-2-Diff

Figure B.22: STAR-6 optimised for quality and cache (see Table A.4). Dashed lines on the left
indicate feature group sharing.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

SA-1
SA-2
SA-3
SA-4
Rec-1
Rec-2
GConv-1
GConv-2
GMemless
SA-1-Diff
SA-2-Diff
SA-3-Diff
SA-4-Diff
Rec-1-Diff
Rec-2-Diff
GConv-1-Diff
GConv-2-Diff

Figure B.23: STAR-7 optimised for quality and cache (see Table A.4). Dashed lines on the left
indicate feature group sharing.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

SA-1
SA-2
SA-3
SA-4
Rec-1
Rec-2
GConv-1
GConv-2
GMemless
SA-1-Diff
SA-2-Diff
SA-3-Diff
SA-4-Diff
Rec-1-Diff
Rec-2-Diff
GConv-1-Diff
GConv-2-Diff

Figure B.24: STAR-8 optimised for quality and cache (see Table A.4). Dashed lines on the left
indicate feature group sharing.

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

SA-1
SA-2
SA-3
SA-4
Rec-1
Rec-2
GConv-1
GConv-2
GMemless
SA-1-Diff
SA-2-Diff
SA-3-Diff
SA-4-Diff
Rec-1-Diff
Rec-2-Diff
GConv-1-Diff
GConv-2-Diff

Figure B.25: STAR backbone optimized for quality and cache, consisting of 48 LIVs with a width
of 2048 dimensions (see Table 5.2). This backbone was generated by duplicating a backbone from
the STAR evolution for quality and cache and increasing its width from 768 to 2048 dimensions.
Dashed lines on the left indicate feature group sharing.

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

7.5

8.0

#
P

ar
a
m

s
(N

on
-E

m
b
ed

.) 1e7 Optimizing: Quality

0

2

4

6

8

10

#
L
IV

s

SA-1

SA-2

SA-3

Rec-1

Rec-2

GConv-1

GConv-2

GMemless

SA-1-Diff

SA-2-Diff

SA-3-Diff

Rec-1-Diff

Rec-2-Diff

GConv-1-Diff

GConv-2-Diff

0

5

#
C

on
n
ec

te
d

L
IV

s

Shared
Featurizer
Weights

Shared
Feature
Groups

0 5 10 15

Generation

5

10

15

D
is

ta
n
ce

 b
/w

C
on

n
ec

te
d

L
IV

s

Figure B.26

4

6

C
ac

h
e

(b
y
te

s
@

 4
K

)

1e7 Optimizing: Quality & Cache

0

2

4

6

8

#
L
IV

s

SA-1

SA-3

SA-4

Rec-1

Rec-2

GConv-1

GMemless

SA-1-Diff

SA-3-Diff

SA-4-Diff

Rec-1-Diff

Rec-2-Diff

GConv-1-Diff

0

2

#
C

on
n
ec

te
d

L
IV

s

Shared
Featurizer
Weights

Shared
Feature
Groups

0 5 10 15

Generation

0

10

D
is

ta
n
ce

 b
/w

C
o
n
n
ec

te
d

L
IV

s

Figure B.27

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

2

3

4
F
A

#
P

ar
am

s

1e7 Iteration 0 Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6 Iteration 7

2

3

4

G
A

#
P

ar
am

s

1e7

25 30

Eval PPL

2

3

4

N
S
G

A
-2

#
P

ar
am

s

1e7

25 30

Eval PPL

25 30

Eval PPL

25 30

Eval PPL

25 30

Eval PPL

25 30

Eval PPL

25 30

Eval PPL

25 30

Eval PPL

Figure B.28

300000

400000

n
:1

6,
 p

:0
.1

,
k
:1

#
P

ar
am

s

Iteration 0 Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6 Iteration 7

300000

400000

n
:1

6,
 p

:0
.1

,
k
:2

#
P

ar
am

s

300000

400000

n
:1

6,
 p

:0
.2

,
k
:1

#
P

ar
am

s

300000

400000

n
:1

6,
 p

:0
.2

,
k
:2

#
P

ar
am

s

300000

400000

n
:3

2,
 p

:0
.1

,
k
:1

#
P

ar
am

s

300000

400000

n
:3

2,
 p

:0
.1

,
k
:2

#
P

ar
am

s

300000

400000

n
:3

2,
 p

:0
.2

,
k
:1

#
P

ar
a
m

s

120 140

Eval PPL

300000

400000

n
:3

2,
 p

:0
.2

,
k
:2

#
P

ar
a
m

s

120 140

Eval PPL

120 140

Eval PPL

120 140

Eval PPL

120 140 120 140 120 140 120 140

Figure B.29

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

2

3

#
P

ar
am

s
1e7 Iteration 0 Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

25 30

Eval PPL

2

3

#
P

ar
am

s

1e7 Iteration 6

25 30

Eval PPL

Iteration 7

25 30

Eval PPL

Iteration 8

25 30

Eval PPL

Iteration 9

25 30

Eval PPL

Iteration 10

25 30

Eval PPL

Iteration 11

Optimizing for Quality & Size (8@768)

Figure B.30

0.6

0.8

1.0

#
P

ar
am

s

1e7 Iteration 0 Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

30 32 34

Eval PPL

0.6

0.8

1.0

#
P

ar
am

s

1e7 Iteration 6

30 32 34

Eval PPL

Iteration 7

30 32 34

Eval PPL

Iteration 8

30 32 34

Eval PPL

Iteration 9

30 32 34

Eval PPL

Iteration 10

30 32 34

Eval PPL

Iteration 11

Optimizing for Quality & Size (24@256)

Figure B.31

7

8

#
P

ar
a
m

s
(N

o
n
-E

m
b
ed

.) 1e7 Generation 0 Generation 1 Generation 2 Generation 3 Generation 4 Generation 5

7

8

#
P

ar
a
m

s
(N

o
n
-E

m
b
ed

.) 1e7 Generation 6 Generation 7 Generation 8 Generation 9 Generation 10 Generation 11

9.0 9.5 10.0

PPL

7

8

#
P

ar
am

s
(N

on
-E

m
b
ed

.) 1e7 Generation 12

9.0 9.5 10.0

PPL

Generation 13

9.0 9.5 10.0

PPL

Generation 14

9.0 9.5 10.0

PPL

Generation 15

9.0 9.5 10.0

PPL

Generation 16

9.0 9.5 10.0

PPL

Generation 17

Optimizing for Quality & Size

Figure B.32

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

7

8

9

#
P

ar
am

s
(N

on
-E

m
b
ed

.) 1e7 Generation 0 Generation 1 Generation 2 Generation 3 Generation 4 Generation 5

7

8

9

#
P

ar
am

s
(N

on
-E

m
b
ed

.) 1e7 Generation 6 Generation 7 Generation 8 Generation 9 Generation 10 Generation 11

9 10

PPL

7

8

9

#
P

ar
am

s
(N

on
-E

m
b
ed

.) 1e7 Generation 12

9 10

PPL

Generation 13

9 10

PPL

Generation 14

9 10

PPL

Generation 15

9 10

PPL

Generation 16

9 10

PPL

Generation 17

Optimizing for Quality

Figure B.33

0.0

0.5

1.0

1.5

C
a
ch

e
(b

y
te

s
@

 4
K

)

1e8 Generation 0 Generation 1 Generation 2 Generation 3 Generation 4 Generation 5

0.0

0.5

1.0

1.5

C
a
ch

e
(b

y
te

s
@

 4
K

)

1e8 Generation 6 Generation 7 Generation 8 Generation 9 Generation 10 Generation 11

8.75 9.00 9.25

PPL

0.0

0.5

1.0

1.5

C
a
ch

e
(b

y
te

s
@

 4
K

)

1e8 Generation 12

8.75 9.00 9.25

PPL

Generation 13

8.75 9.00 9.25

PPL

Generation 14

8.75 9.00 9.25

PPL

Generation 15

8.75 9.00 9.25

PPL

Generation 16

8.75 9.00 9.25

PPL

Generation 17

Optimizing for Quality & Cache

Figure B.34

52

	Introduction
	Foundations of the Search Space
	Describing Operators and Backbones with STAR Genomes
	Backbone Genome
	Operator and Featurizer Genomes

	Synthesizing Architectures by Evolving Genomes
	Key Steps of STAR Evolution
	Guiding Evolution with Hierarchical Mutations

	Experiments
	Identifying a Synthesis Protocol
	Synthesizing High-Quality Language Models
	Synthesizing Parameter-Efficient High-Quality Language Models
	Synthesizing Cache-Efficient High-Quality Language Models
	Comparing Synthesized Backbones

	Conclusion
	Experimental Details
	Discussion
	Training
	Baseline models
	Evolutionary Optimization Algorithms
	Genome Scores
	Linear Input-Varying Systems and Featurizers: Option Pools
	Backbone Genome
	Operator Genome
	Featurizer Genome

	Extending the backbone genome for variable residual connections
	Evaluation of synthesized backbones

	Visualization and Analysis of STAR Backbones
	Recurring Motifs

