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Abstract

AI support of collaborative interactions entails001
mediating potential misalignment between in-002
terlocutor beliefs. Common preference align-003
ment methods like DPO excel in static settings,004
but struggle in dynamic collaborative tasks005
where the explicit signals of interlocutor beliefs006
are sparse and skewed. We propose the Fric-007
tional Agent Alignment Framework (FAAF), to008
generate precise, context-aware "friction" that009
prompts for deliberation and re-examination of010
existing evidence. FAAF’s two-player objective011
decouples from data skew: a frictive-state pol-012
icy identifies belief misalignments, while an in-013
tervention policy crafts collaborator-preferred014
responses. We derive an analytical solution to015
this objective, enabling training a single policy016
via a simple supervised loss. Experiments on017
three benchmarks show FAAF outperforms com-018
petitors in producing concise, interpretable fric-019
tion and in OOD generalization. By aligning020
LLMs to act as adaptive "thought partners"—021
not passive responders—FAAF advances scal-022
able, dynamic human-AI collaboration.023

1 Introduction024

When collaborating to solve problems, humans025

continually interrogate each other’s intentions and026

assumptions (Stalnaker, 2002; Asher and Gillies,027

2003; Klein et al., 2005). With the rapid integra-028

tion of generative AI, exemplified by large lan-029

guage models (LLMs), into personal, educational,030

business, and even governmental workflows, AI031

systems will increasingly be called upon to act as032

collaborators with humans; to adequately fill this033

role, AIs must be able to recapitulate the reflection034

and deliberation that makes human-human collabo-035

ration successful, but also causes temporary slow-036

downs in dialogue while interlocutors construct a037

common ground on which to collectively reason—038

we will call this phenomenon friction.039

“Friction” in this sense is something that LLMs040

struggle with. To prompt an interlocutor to reflect041

Figure 1: FAAF conditions responses on both the di-
alogue context x and representation of the “frictive”
(belief) state ϕ, to generate outputs that prompt for re-
flection, deliberation, and verification of evidence.

upon their assumptions requires that one have an 042

approximate understanding of what those assump- 043

tions are and entail (Lewis and Sarkadi, 2024). This 044

is predicated upon a theory of mind (ToM; Premack 045

and Woodruff (1978)), which is likewise a chal- 046

lenge for LLMs (Sap et al., 2022; Ullman, 2023). 047

To address this, we present the Frictional Agent 048

Alignment Framework (FAAF), a novel approach 049

to aligning LLMs to be adept collaborators in 050

dialogue-driven tasks. Unlike common prefer- 051

ence alignment approaches which focus predomi- 052

nantly on reward differences between textual sur- 053

face forms to generate the best possible comple- 054

tions as a sequence of actions, FAAF takes a state- 055

driven approach based on the notion of a frictive 056

state—a dynamic natural language representation 057

that integrates task context and the beliefs of par- 058

ticipants as they change over time (Fig. 1). We 059

use this state-wise representation to train "friction 060

agent" models aligned to prompt collaborators to- 061
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ward reflection and deliberation in shared tasks, to062

help them resolve conflicting beliefs and assump-063

tions that result in frictive states. Our results on two064

challenging collaborative task datasets and variants065

show that FAAF’s belief state conditioning consis-066

tently produces output that is more relevant, impact-067

ful on the dialogue, and thought-provoking than068

competing methods. Our key contributions are:069

• a novel offline LLM alignment framework for070

collaborative agents based not on pairwise071

reward differences between responses, but072

rather on advantage of an intervention over073

a dialogue state representation;074

• development of an LLM “agent” that inserts075

interventions into collaborative dialogues to076

prompt participants toward reflection, deliber-077

ation, and common ground;078

• evaluations on three challenging collabora-079

tive task datasets that show the advantages080

of FAAF over competing alignment methods.081

2 Related Work082

RLHF-inspired preference alignment in LLMs has083

become a cornerstone of developing generative084

AI systems that cater to user preferences (Stien-085

non et al., 2020). Both "offline" approaches like086

Direct Preference Optimization (DPO; Rafailov087

et al. (2024b)), Identity Preference Optimization088

(IPO; Azar et al. (2024)) and other supervised meth-089

ods (Meng et al., 2024; Hong et al., 2024; Fisch090

et al., 2024; Pal et al., 2024; Nath et al., 2024b)091

and "online" methods (Schulman et al., 2017; Pang092

et al., 2024) focus predominantly on preference093

samples often sourced from datasets like Reddit094

TL;DR (Völske et al., 2017) or Ultrafeedback (Cui095

et al., 2024) for algorithm development.096

These methods excel in generating summaries097

or completions that reflect human preferences098

including on single-turn human-AI interaction099

datasets like SGD (Rastogi et al., 2020) or Mul-100

tiWOZ (Zang et al., 2020; Ye et al., 2022), but101

are often ill-equipped to handle the complexities102

of real-world multiparty interactions, where com-103

munication occurs across diverse modalities, in-104

cluding sparse and ambiguous spoken dialogues105

between multiple collaborators (Karadzhov et al.,106

2023; Khebour et al., 2024b).107

A key challenge in these multiparty shared task108

settings is the scarcity of annotated data, particu-109

larly where interventions emerge contextually but110

sparsely (Karadzhov et al., 2023; Khebour et al.,111

2024b). While preference data generated with AI- 112

feedback is a viable option (Li et al., 2023b; Yuan 113

et al., 2024), DPO-trained models depend crucially 114

on the sampling or data-generating distribution 115

due to its Bradley-Terry (BT) model of "implicit 116

rewards," limiting their applications to dialogue- 117

driven settings where preferences may be intran- 118

sitive (Tversky, 1969) or change over time. This 119

data-dependence is true even for more sophisticated 120

methods that optimize on human utility (Ethayarajh 121

et al., 2024), discard the BT assumption (Azar et al., 122

2024), or use iterative online approaches (Rosset 123

et al., 2024; Pang et al., 2024). Game-theoretic ap- 124

proaches to reduce this dependence focus on opti- 125

mizing a “general preference model” (Munos et al., 126

2023; Calandriello et al., 2024) that does not suffer 127

from this data-bias. But these have limited practical 128

application due to their compute-intensive nature, 129

often requiring the storage and computations with 130

intermediate-stage policies during training (Choi 131

et al., 2024). In contrast, FAAF avoids this data- 132

dependence by explicitly conditioning policies on 133

belief-misalignment in a simple "one-step" super- 134

vised manner without requiring computations of 135

complicated mixture policies during training. 136

3 Definitions 137

Let us first define key terms we rely on. 138

Frictive state Entailed by Clark (1996)’s com- 139

mon ground, or the set of beliefs shared by in- 140

terlocutors, a frictive state arises during a col- 141

laborative task when different interlocutors have 142

contradictory beliefs about a task-relevant propo- 143

sition (i.e., one believes p and another sees evi- 144

dence against p). This can be realized as a formal 145

model of agent beliefs in an evidence-based dy- 146

namic epistemic logic (van Benthem et al., 2014; 147

Pacuit, 2017), or a natural language description 148

thereof, as we use. Different evidence leads to 149

different predictions of future trajectories (Craik, 150

1943). Thus frictive states, though sparse in dia- 151

logues, can critically delay or preclude success in 152

a collaboration due to unresolved misunderstand- 153

ings. The occurrence of a frictive state may not 154

guarantee task failure, as p may be trivial to ac- 155

tual task completion. Therefore, in a functionally 156

frictive state, the lack of common ground prohibits 157

progress on the task, or presents a significant risk 158

of failure unless it is resolved. 159

Friction intervention Friction can indicate an 160

impasse (the frictive state), but can also be used 161

to resolve it, through a friction intervention that 162
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inserts into the dialogue indirect prompting to the163

participants to reevaluate their beliefs and incor-164

rect assumptions or positions in light of available165

evidence (Oinas-Kukkonen and Harjumaa, 2009),166

rather than accepting possibly erroneous presup-167

positions inherent in the dialogue. Importantly, a168

frictive intervention may be non-contradictory to169

the individual beliefs on display (i.e., neither assert-170

ing p nor ¬p), but rather slows down the dialogue171

for reflection and deliberation, such as the probing172

utterances in Karadzhov et al. (2023) and Nath et al.173

(2024c). In the context of LLMs and FAAF, the fric-174

tion agent constitutes a language model aligned175

toward the capacity to make frictive interventions.1176

An ideal friction agent does not intervene arbitrar-177

ily, which would cause distraction in collaborative178

tasks, but is conditioned to resolve the lack of com-179

mon ground between human collaborators.180

4 Task Formulation and Background181

Let f be a frictive intervention (utterance) that is182

not required to contradict any particular belief en-183

capsulated in a frictive state ϕ, and let the human184

preference probability P(f ≻ ϕ) be the probabil-185

ity that an expert annotator would prefer f over186

maintaining ϕ, given prior dialogue history, x. An187

RLHF-based approach to LLM alignment toward188

an optimal policy π∗
f would assume a partition func-189

tion Z∗(ϕ, x) that normalizes the probabilities of190

all possible responses (see Appendix B for more191

details). While the optimal policy formulation is192

closed form, the dependence on Z∗ makes it practi-193

cally intractable to estimate it for LLMs since Z∗ is194

a summation over the set of all possible sequences195

of tokens in the tokenizer, often requiring methods196

like importance sampling (Korbak et al., 2022) or197

ensembling models (Go et al., 2023) for an unbi-198

ased estimate. This problem remains even if the set199

of friction interventions F were a restricted subset200

of the space of all possible actions Y . To overcome201

this, prior RLHF and Preference-based RL (Wirth202

et al., 2017) literature suggests supervised learning203

algorithms for obtaining an optimal policy induced204

under the expectation over a preference dataset.205

These offline methods, such as DPO (Rafailov et al.,206

2024b), IPO (Azar et al., 2024), or Kahneman-207

Tversky Optimization (KTO; (Ethayarajh et al.,208

2024)), either rely on the BT model of preferences209

(Bradley and Terry, 1952) where the optimal pol-210

1We use πf to denote the friction agent which generates
high-quality interventions, but refer to it as the "optimal pol-
icy" for consistency with RLHF literature.

icy can be induced from a static preference dataset 211

using implicitly-defined pointwise rewards, or as- 212

sume that alignment is conducted with access to a 213

non-biased data-generation or "sampling" distribu- 214

tion µ from which π∗
f can be learned using pairwise 215

preferences without adopting a strictly BT assump- 216

tion (Azar et al., 2024).2 These approaches would 217

give us the following formulation for π∗
f : 218

π∗
f =

πref exp

(
β−1Ef∼µ(·|x)

ϕ∼µ(·|x)
Ψ(P(f ≻ ϕ | x))

)
Z∗(ϕ, x)

, (1) 219

where Ψ(p) is the identity mapping for IPO, and 220

log
(

P
1−P

)
(inverse sigmoid) for DPO and KTO. 221

While the practicality of these supervised algo- 222

rithms is a clear advantage, their dependence on 223

preference data selected via a sampling—is a limi- 224

tation in reconstructing the human preference prob- 225

ability P . This is particularly true for collaborative 226

dialogue tasks where common ground changes over 227

time, meaning that the occurrence of frictive states 228

is dynamic, and where participants may not inter- 229

vene due to variables obscure to a language model, 230

such as not realizing the existence of a frictive state 231

or judging the frictive state to be non-functional 232

(Sec. 3). Operationally, even if the true underly- 233

ing preferences (P) of collaborators are transitive 234

and consistent, constructing a preference dataset 235

for use with existing offline training methods is 236

not straightforward as dialogues may be skewed 237

or sparse (Khebour et al., 2024b). When using 238

generative AI to create denser training data, even 239

high-capacity LLMs like GPT-4 are prone to vari- 240

ous forms of biases such as toward length (Lambert 241

et al., 2024) or certain linguistic registers. There- 242

fore, the core motivation of FAAF is as follows— 243

how do we train a high-quality friction agent that 244

can leverage the inherent scalability of offline align- 245

ment methods and reconstruct the true underlying 246

preference distribution while still being robust to 247

the data skew that may arise when sampling a pref- 248

erence dataset, whether using generative AI or from 249

real-life collaborative dialogues? 250

4.1 FAAF Objective 251

We define a novel two-player adversarial optimiza- 252

tion objective J∗
FAAF (Eq. 2). Specifically, given a 253

reference model πref and a regularization parameter 254

β ∈ R+, our goal is to learn two interdependent 255

2By "sampling," we mean those actions that make it to
the preference annotation phase after being sampled with the
data-generator µ.

3



"collaborative" policies: (i) a frictive state policy256

π∗
ϕ that generates the most semantically rich fric-257

tive states ϕ, capturing tensions or uncertainties258

(in the form of first-order beliefs of dialog partici-259

pants) in dialogue, and (ii) a friction intervention260

policy π∗
f that generates constructive interventions261

f , conditioned on the frictive state, to improve dis-262

course clarity and converge onto a common ground263

between participants. Mathematically,264

J∗
FAAF = min

πϕ

max
πf

E x∼ρ
ϕ∼πϕ(·|x)
f∼πf (·|ϕ,x)

[
P(f ≻ ϕ | x)265

− βDKL(πf ∥ πref | ϕ, x)266

+ βDKL(πϕ ∥ πref | x)

]
. (2)267

Notice how the optimal intervention policy π∗
f ,268

by definition of the inner max operator, generates269

interventions that are, on average, most preferred270

by collaborators, while the first KL-divergence271

term, defined as DKL(· | ϕ, x), stabilizes learn-272

ing in π∗
f by keeping it closer to a reference model.273

Compared to a standard RLHF objective, the ad-274

ditional KL term DKL(πϕ ∥ πref | x) forces the275

frictive state policy π∗
ϕ to be adversarially robust,276

in that it must ensure that sampled frictive states ϕ277

∼ π∗
ϕ cannot be exploited by π∗

f to generate subpar278

interventions that remain too close to the reference279

model. Thus, FAAF serves as an agent policy that280

adapts to dialogues over time: the frictive state pol-281

icy searches for the most immediate tension points282

or exposes the lack of common ground between283

task participants, while the intervention policy gen-284

erates outputs that remain grounded in the particu-285

lars of the relevant frictive state (e.g., regarding the286

correct task items or propositions), and naturally287

and intuitively prompts for reflection and deliber-288

ation on these points. The key takeaway is that289

optimal friction interventions should not be ar-290

bitrary interventions in the dialogue, but should291

surface the presuppositions that gave rise to the292

most logically necessary frictive state, making293

interventions precise and interpretable.294

4.2 Dataset Annotation and Generation295

In Sec. 2, we discuss why common preference op-296

timization datases such as Ultrafeedback, Reddit297

TL;DR, SGD, or MultiWOZ are not appropriate298

for FAAF’s collaborative task use case. Therefore,299

we consider two collaborative task datasets to eval-300

uate FAAF—DeliData (Karadzhov et al., 2023) and301

the Weights Task Dataset (WTD; Khebour et al. 302

(2024a)). These datasets also exemplify the data 303

sparsity problem with deliberation and friction 304

in collaboration (Sec. 4). DeliData contains dia- 305

logues from 500 groups of 5 attempting the Wason 306

Card task (Wason, 1968), which involves reason- 307

ing about if a card with a specific characteristic 308

(e.g., even number on one side) must have a dif- 309

ferent characteristic (e.g., a vowel on the other). 310

Karadzhov et al. (2023) annotated DeliData with 311

"probing" interventions, or naturally-occurring fric- 312

tion that prompts for reasoning and deliberation 313

without introducing new information. However, 314

these amount to an average of only 3.46 probing 315

interventions per group, out of 17,110 total utter- 316

ances. WTD is an audiovisual dataset of 10 triads 317

collaborating to deduce the weights of differently- 318

colored blocks and infer the pattern describing 319

them, and is similarly sparse. We annotated WTD 320

for naturally-occurring friction given a definition 321

following Oinas-Kukkonen and Harjumaa (2009).3 322

Two annotators annotated half the groups each 323

while a third annotated all 10. They then collec- 324

tively adjudicated each annotation following the 325

definition. Cohen’s κ between initial and final an- 326

notations was 0.632, indicating substantial agree- 327

ment. An average of 4 naturally-occurring friction 328

interventions per group were found in the WTD. 329

Training Dataset Construction This extreme 330

sparsity does not capture anything close to the pos- 331

sible frictive states available in the combinatorics 332

of the problem space, and so motivated the need for 333

data augmentation to construct sufficiently diverse 334

preference datasets for training and evaluation. We 335

used GPT-4o as a high-capacity LLM for our sam- 336

pling distribution µ. We used a self-rewarding ap- 337

proach (Yuan et al., 2024) to simultaneously gen- 338

erate candidate interventions (and their rationales) 339

and assign them rewards, which naturally induced 340

an implicit preference ranking. We provided GPT- 341

4o with sequences of h utterances from each dia- 342

logue in the two datasets, and prompted it to label 343

frictive states and generate friction interventions 344

following colloquial renderings of the definitions in 345

Sec. 3.4 Finally, we conducted contrastive pairing 346

of “winning” and “losing” interventions fw and fl 347

3Frictive interventions in this setting act as indirect per-
suasion (Oinas-Kukkonen and Harjumaa, 2009) where partic-
ipants are passively prompted to reevaluate their beliefs and
assumptions or propositions, in light of incoming goal-specific
evidence. See Appendix A for the complete definition.

4h was set to 15 for DeliData and 10 for WTD.
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with the corresponding dialogue history x to con-348

struct the final preference datasets for each task,349

comprising tuples of x, frictive state ϕ, fw, and fl.350

For each dataset, we conducted additional task-351

appropriate augmentation. For DeliData, we con-352

structed alternative tuples where the specific cards353

mentioned in the original data were replaced with354

other cards of the same classes that preserved the355

relevant rule (e.g., replacing even numbers with356

other even numbers, consonants with other con-357

sonants, etc.). This resulted in 68,618 preference358

samples for training, with average µ-assigned re-359

ward for preferred samples of 8.03 and for dispre-360

ferred samples of 3.96 (out of 10). We held out 50361

randomly-sampled dialogues for testing.362

Since the original WTD contains only 10 dia-363

logues, holding one or two out for evaluation would364

adversely impact the data distribition. Therefore365

we used Shani et al. (2024)’s method to generate366

novel simulated collaborative conversations about367

the Weights Task, providing a task descriptions368

and ground-truth values for the weights. GPT-4o369

was prompted to role-play personality-facet com-370

binations from the Big 5 personality types (Gold-371

berg, 2013), and for each labeled frictive state ϕ372

we generated and scored 6 friction interventions.373

This resulted in two distinct versions of the WTD374

preference dataset. The Simulated WTD friction375

dataset consisted of 56,698 training preference sam-376

ples, with mean scores of 8.48 (preferred interven-377

tions) and 6.01 (dispreferred). 54 dialogues were378

held out for testing. The Original WTD friction379

dataset (see above) contained 4,299 preference sam-380

ples (preferred mean score 8.36, dispreferred 6.35).381

These were all retained for an OOD evaluation of382

FAAF trained on the Simulated WTD data. See383

Appendix D for more details on data generation.384

Human Validation We conducted a human eval-385

uation to assess the quality of the GPT-generated386

friction intervention on a random representative387

subset of 50 pairwise samples each from both the388

DeliData and WTD generated test datasets.5 For389

each sample, 2 annotators were asked to choose390

which of the two candidate interventions was more391

appropriate for provoking participants’ reflection to392

help them advance in their task without being given393

the solution. Average Cohen’s κ on WTD samples394

was 0.58 and on DeliData samples was 0.92, indi-395

cated substantial to near complete agreement on396

5WTD samples include both Original and Simulated inter-
ventions.

which was the better intervention, and indicates 397

that the preferred/dispreferred friction distinction 398

sourced from GPT-4o as µ aligns with human judg- 399

ments. See Appendix D.4 for more. 400

4.3 Deriving the Empirical FAAF Loss 401

While the data is constructed using a standard pair- 402

wise preference format, the FAAF optimization con- 403

ditions upon the dialogue context x and textual 404

rendering of the frictive state ϕ. To derive an em- 405

pirical offline (supervised) preference learning loss 406

from the two-player objective (Eq. 2), we use a 407

divide-and-conquer approach. Deriving the inner 408

maximization loop of Eq. 2 results in an analytical 409

expression of the optimal frictive intervention pol- 410

icy, π∗
f (see Appendix B.1, Eq. 8). However, we 411

observe that π∗
f in its analytical form (Eqs. 1 and 8) 412

is not fully expressive since it does not contain the 413

optimal frictive-state policy π∗
ϕ term. Therefore, 414

we derive π∗
ϕ using a Lagrangian formulation (see 415

Appendix C for details) that expresses the prefer- 416

ence for any intervention f1 over f2 analytically 417

in terms of both the optimal friction intervention 418

policy (π∗
f (· | ϕ, x)) and the optimal frictive-state 419

policy (π∗
ϕ(·|x)). This allows us to use a straightfor- 420

ward supervised (ℓ2) objective—similar in spirit to 421

IPO (Azar et al., 2024)—that empirically regresses 422

the predicted preference expression derived from 423

π∗
f (· | ϕ, x) and π∗

ϕ(·|x) to the observed relative 424

preferences p(f1 ≻ f2 | x) (relative to ϕ), assum- 425

ing access to a large enough preference-annotated 426

dataset of friction interventions. Notably, this ob- 427

jective is optimized by a single parametrized policy 428

that leverages the inherent expressivity of LLMs 429

and induces a unique global minimum in the space 430

of policies (see Theorem 2 in Appendix B.1). Al- 431

gorithm 1 shows the full training algorithm.6 432

5 Experimental Setup 433

Training Setup and Baselines We use 434

Meta-Llama-3-8B-Instruct (AI@Meta, 2024)7 435

for all experiments including baselines. For 436

an in-depth evaluation of FAAF, we include the 437

Supervised-Finetuned (SFT) model as well as the 438

base instruct model generations in our experiments. 439

For "offline" contrastive approaches, we choose 440

6For compactness reasons here we represent all policies
π as parameterized by weights θ. Similarly to approaches
such as Choi et al. (2024), because we formulate two distinct
policies with the preference equation, we can empirically
enforce it using ℓ2 loss and learn it with a single expressive
policy parameterized by θ.

7https://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct
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Algorithm 1 Frictional Agent Alignment Frame-
work
Require: Training data Dµ containing tuples (x, ϕ, fw, fl),

where x: prompt, ϕ: frictive state, fw: preferred response,
fl: non-preferred response.

1: Define likelihood ratios:
2: ∆R = log

(
πθ(fw|ϕ,x)
πref(fw|ϕ,x)

)
− log

(
πθ(fl|ϕ,x)
πref(fl|ϕ,x)

)
3: ∆R′ = log

(
πθ(fw|x)
πref(fw|x)

)
− log

(
πθ(fl|x)
πref(fl|x)

)
4: Loss function: L = EDµ [(1− β(R+R′))2]
5: Gradient update: ∇θL = EDµ [−2βδ∇θ log(R · R′)],

where δ = 1− β(logR+ logR′)
6: Update policy parameters θ using gradient descent

DPO (Rafailov et al., 2024b) and IPO (Azar et al.,441

2024) and for "online" approaches, we include442

Proximal Policy Optimization (PPO; Schulman443

et al. (2017)) baseline. For SFT, we employ444

rejection sampling (Xu et al., 2023) to maximize445

the likelihood of interventions that receive high446

rewards under µ. For SFT, DPO, and IPO, the447

respective losses are computed only on the output448

tokens and frictive states ϕ, excluding dialogue449

context tokens. This training approach ensures that450

the models learn to generate effective interventions451

while maintaining contextual understanding. For452

PPO, we train an OPT 1.3B (Zhang et al., 2022)453

reward model on each dataset using a standard454

Bradley-Terry loss (Stiennon et al., 2020) over455

preference pairs. For ablations, we consider456

variants of FAAF that ablate the different likelihood457

ratios—FAAF∆R keeps only the ϕ-conditioned458

implicit rewards in the FAAF objective (line 2 in Al-459

gorithm 1), and FAAF∆R′ removes ϕ-conditioning460

(keeping only line 3). See Appendix D.5 for more461

details on training and hyperparameters.462

Evaluation Strategies As LLM generation is463

open-ended, we employ an LLM-as-a-judge (us-464

ing GPT-4o) "win-rate" evaluation method where465

a high-capacity model is prompted to select its466

preference, given two completions. First, we sam-467

pled friction interventions from all competing mod-468

els on 500 randomly sampled prompts from the469

DeliData, Simulated WTD and Original WTD470

test sets. Next, we conducted two evaluations471

using said completions, one with a preference-472

model (Munos et al., 2023) and another with a473

reward-model (Hong et al., 2024). Since GPT-4o474

also served as the data generation distribution µ,475

preference-model evaluation compares the two pre-476

sented choices and nothing else in the data, mitigat-477

ing lingering bias toward µ (Munos et al., 2023).478

Within preference-based evaluation settings, we 479

adopt the framework proposed by Cui et al. (2024) 480

to retrieve utility scores across seven friction dimen- 481

sions, building on insights from Chen and Schmidt 482

(2024). Specifically, we assess relevance and align- 483

ment with rationale and golden samples8 to deter- 484

mine how well a friction intervention aligns with 485

surface-level semantics. Meanwhile, actionability, 486

specificity, thought-provoking, and impact measure 487

its expected long-term influence on behavior, rea- 488

soning, and decision-making. The LLM-judge as- 489

signs Likert-type scores across these dimensions, 490

providing a fine-grained evaluation of task-specific 491

preference desiderata. These scores are collected 492

in a pairwise fashion where πθ-generated inter- 493

ventions fi from a baseline are compared with 494

πref-generated counterparts, fj . We positionally 495

swap these interventions in the evaluation prompt 496

(Fig. 7) for each API call and average the scores 497

for each of the seven dimensions over two runs 498

to mitigate positional bias (Lambert et al., 2024) 499

in computing the final win rates. Specifically, for 500

any pair of interventions (fi, fj), let s(x, f∗) de- 501

note the score estimate9 for intervention f∗ given 502

context x. The win-rate percentage for a run is 503

computed as 100 × 1
N

∑N
m=1 1{s(x(m), f

(m)
i ) > 504

s(x(m), f
(m)
j )}, where N is the total number of 505

samples, and x(m) represents the context of the 506

mth sample. These results are reported in Table 1. 507

The above evaluation tests for preference align- 508

ment advantage of the aligned model over πref. 509

For a more robust evaluation, we compare FAAF’s 510

generations "head-to-head" against all baselines. 511

Here, instead of the preference model, we utilize 512

the trained OPT 1.3B Reward Model (RM) as de- 513

scribed in our PPO training setup. These pointwise 514

estimates of rewards provide a more accurate as- 515

sessment of the advantage provided by FAAF pro- 516

posed approach when directly pitted against other 517

alignment baselines. Specifically, we compare 518

FAAF∆R, FAAF∆R′ as well as our full objective 519

baseline (FAAF∆(R+R′)) against all chosen base- 520

lines. We compute the reward accuracy (or win- 521

rates) similarly and report our results in Table 2. 522

8A subset of these golden friction interventions was used
for human evaluations (see Appendix D.4).

9In this evaluation, "overall" (first column in Table 1) is
computed based on the judge’s choice of winner after rating
all other dimensions. As such, s(x, f∗) represents scores over
these fine-grained friction preference desiderata, and "overall"
does not necessarily represent an average or aggregate of the
other dimensions but rather a binary judgment based on them.
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6 Results and Analysis523

Table 1 shows that in the eyes of the the LLM-judge,524

FAAF models have a consistently greater advan-525

tage over the SFT model πref than other baselines526

across the 7 preference dimensions and overall. For527

instance, in "overall" preference on the DeliData528

test samples, FAAF achieves a 75.7% win-rate over529

πref, surpassing PPO (68.9%), DPO (70.8%), and530

IPO (70.1%). On the WTD datasets, win rates for531

all models are higher, reflecting πref’s weakness532

with the underspecified nature of WTD dialogues;533

alignment on this data has a greater net effect on534

win-rates than the generally less ambiguous Deli-535

Data. On WTD FAAF is a clear all-around winner,536

at 90.9% (vs. DPO’s 89.0% and 82.0%) and 91.5%537

(vs. DPO’s 82.9% and IPO’s 83.0%) on the Origi-538

nal and Simulated WTD datasets, respectively.539

We find that FAAF’s win-rates on dimensions540

such as actionability and gold-alignment are541

somewhat lower compared to other dimensions—542

possibly reflecting that multiple kinds of inter-543

ventions may be appropriate in context. How-544

ever, across dimensions like thought-provoking and545

rationale-fit we find that FAAF improves 5-6%, or546

even up to 12% over equivalent PPO, IPO, and547

DPO win-rates. PPO’s win-rates consistently lag548

across all datasets (this is particularly pronounced549

on the WTD data), indicating the challenge that the550

dimensions of friction pose for a standard approach.551

DPO is typically FAAF’s closest competitor against552

πref, with the narrowest average gap in win-rates.553

Robustness to OOD Generalization FAAF main-554

tains superior performance on the Original WTD555

dataset (Overall: +1.9% over DPO, +8.9% over556

IPO, and +14.9% over PPO). No model was ex-557

plicitly aligned to this data, and so this result558

shows FAAF’s robustness to OOD settings com-559

pared to other approaches. This is particularly560

noteworthy given that the Original WTD dataset561

comprises word-for-word transcriptions of actual562

human dialogues—with disfluencies, sentence frag-563

ments, etc.—which differs markedly from the gram-564

matical, structured text typically found in LLM565

training data or the preference pair samples in566

the Simulated WTD data. That FAAF generalizes567

well to organic human data provides a strong basis568

of confidence that a FAAF-aligned agent, jointly-569

conditioned on the dialogue transcript and frictive570

state rendering ϕ, could effectively intervene in571

and mediate real collaborations, where dialogues572

are often sparse, informal, and structurally distinct573

from LLM-generated text (Martins et al., 2020). 574

DPO, although also optimized against ϕ as part 575

of the context (Sec. 5), suffers from the Longest- 576

common-subsequence problem (Pal et al., 2024)10 577

due to the Bradley-Terry preference model assump- 578

tion where dependence on the context via DPO’s 579

log-partition term is effectively canceled in gradi- 580

ent estimates. In contrast, FAAF’s combined ∆R 581

and ∆R′ regularization (Algorithm 1) avoids miss- 582

ing such signals in its learning, thereby allowing it 583

to capture more nuanced human preferences. 584

Does ϕ-conditioning help FAAF learn more ac- 585

curate preferences? Table 2 shows results from 586

the trained OPT-1.3B RM’s evaluation of the full 587

FAAF∆(R+R′) objective and its ablated variants—ϕ- 588

conditioned FAAF∆R and unconditioned FAAF∆R′— 589

"head-to-head" against all baselines, including the 590

base Meta-Llama-3-8B-Instruct model. Across 591

the three datasets, FAAF win-rates computed with 592

pointwise reward estimates on sampled interven- 593

tions exceed 80%, on average, against the base 594

and SFT models, consistent with prior work (Hong 595

et al., 2024). We also find that while explicit condi- 596

tioning on ϕ provides clear advantages (e.g., +6.6% 597

vs. Base on Simulated WTD, +14% vs. PPO), 598

and even the unconditioned version consistently 599

wins over baselines, neither term alone achieves 600

the robust performance of FAAF∆(R+R′). 601

Both IPO and FAAF use a squared ℓ2 loss. IPO’s 602

performance against FAAF’s ablations suggests that 603

this structural similarity makes it more compet- 604

itive with FAAF (FAAF ablations beat IPO 53.6% 605

and 54.2% on DeliData and 58.0% and 62.0% on 606

Original WTD, compared to anywhere from a 68– 607

85% win rate against the Base model). In general, 608

these ablations demonstrate that neither variant 609

alone is sufficient. FAAF∆(R+R′) (the full objective) 610

shows consistently stronger performance against 611

IPO (79.6% on DeliData, 73.7% on WTD Sim., 612

74.0% on WTD Orig.) while maintaining high win 613

rates across other baselines (∼81% vs Base/SFT, 614

∼74% vs. DPO). These results, in light of the 615

trends observed previously in OOD evaluation, sug- 616

gest that while FAAF∆R learns rich ϕ-conditioned 617

preferences, the additional regularization term ∆R′ 618

enables better reward space exploration and gen- 619

eralized preference learning. The combination is 620

crucial for robust performance. 621
10The LCS issue in DPO, where gradient signals from to-

kens shared by winning and losing responses are ignored, is
well-studied (Pal et al., 2024; Zhang et al., 2024; Rafailov
et al., 2024a).
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Policy Overall Ac Ga Im Rf Re Sp Th

DELIDATA

PPO 68.9±1.5 59.9±1.5 65.4±1.5 68.6±1.5 64.9±1.5 65.1±1.5 71.1±1.4 64.0±1.5

IPO 70.1±1.4 61.2±1.5 65.7±1.5 69.3±1.5 65.3±1.5 65.5±1.5 72.1±1.4 64.1±1.5

DPO 70.8±1.4 61.0±1.5 66.8±1.5 69.6±1.5 66.1±1.5 67.5±1.5 72.2±1.4 66.2±1.5

FAAF 75.7±1.4 65.6±1.5 69.5±1.5 75.0±1.4 72.0±1.4 71.1±1.4 75.3±1.4 70.4±1.4

WTD ORIGINAL

PPO 76.0±4.3 74.0±4.4 75.0±4.3 75.0±4.3 67.0±4.7 70.0±4.6 73.0±4.4 74.0±4.4

IPO 82.0±3.8 87.0±3.4 75.0±4.3 84.0±3.7 75.0±4.3 80.0±4.0 88.0±3.2 78.0±4.1

DPO 89.0±3.1 92.0±2.7 82.0±3.8 89.0±3.1 84.0±3.7 87.0±3.4 89.0±3.1 79.0±4.1

FAAF 90.9±2.9 81.8±3.9 84.8±3.6 90.9±2.9 86.9±3.4 89.9±3.0 88.9±3.1 90.9±2.9

WTD SIMULATED

PPO 73.6±1.5 69.7±1.5 64.9±1.6 74.2±1.5 67.6±1.6 71.9±1.5 78.1±1.4 78.3±1.4

IPO 83.0±1.3 74.8±1.4 78.4±1.4 82.9±1.3 76.9±1.4 81.4±1.3 82.5±1.3 83.2±1.2

DPO 82.9±1.3 80.4±1.3 75.8±1.4 81.3±1.3 72.9±1.5 76.3±1.4 80.2±1.3 79.2±1.4

FAAF 91.5±0.9 87.5±1.1 87.1±1.1 90.1±1.0 82.0±1.3 85.1±1.2 90.3±1.0 90.1±1.0

Table 1: Win-rates (%) against the SFT model (πref) for all alignment methods on sampled interventions (temperature
of 0.7, top-p of 0.9) from 500 randomly-sampled prompts from DeliData and WTD evaluation sets, according to
GPT-4o. Metrics: Ac (Actionability), Ga (Gold-alignment), Im (Impact), Rf (Rationale-fit), Re (Relevance), Sp
(Specificity), and Th (Thought-provoking). The LLM-as-a-judge evaluation follows Cui et al. (2024). Average win
rates are reported over two runs, with positional swapping to mitigate position bias.

Dataset Policy Win-rate vs. Base Win-rate vs. SFT Win-rate vs. DPO Win-rate vs. IPO Win-rate vs. PPO

DeliData FAAF∆R′ 82.2±1.7 78.8±1.8 74.0±1.9 53.6±2.2 79.2±1.8

FAAF∆R 85.8±1.5 81.4±1.7 73.2±1.9 54.2±2.2 73.4±1.9

FAAF∆(R+R′) 86.2±1.5 84.0±1.6 75.6±1.9 79.6±1.8 76.0±1.9

WTD Orig. FAAF∆R′ 78.0±5.8 78.0±5.8 76.0±6.0 58.0±6.9 58.0±6.9

FAAF∆R 68.0±6.5 74.0±6.2 72.0±6.3 62.0±6.8 70.0±6.4

FAAF∆(R+R′) 84.0±5.1 76.0±6.0 74.0±6.2 74.0±6.2 82.0±5.4

WTD Sim. FAAF∆R′ 79.1±1.9 80.2±1.8 70.4±2.1 68.6±2.1 60.8±2.3

FAAF∆R 85.7±1.6 80.8±1.8 70.8±2.1 72.2±2.1 74.8±2.0

FAAF∆(R+R′) 88.0±1.5 83.7±1.7 72.8±2.0 73.7±2.0 75.1±2.0

Table 2: Win rates of of FAAF variants—FAAF∆R′ (not ϕ-conditioned), FAAF∆R (ϕ-conditioned), and FAAF∆(R+R′)

(full objective)—against competing methods in pairwise comparisons (temperature of 0.7, top-p of 0.9). All
alignment baselines are SFT-initialized and Meta-Llama-3-8B-Instruct is used as Base.

7 Conclusion622

FAAF introduces a novel perspective on LLM align-623

ment, focusing on the problem of generating out-624

puts that elicit reasoning and reexamination of625

assumptions and evidence in a collaborative con-626

text. This critical capacity can help avert collab-627

oration failure due to groups or individuals pro-628

ceeding hastily according to their own preconcep-629

tions (Koschmann, 2016), such that a fragile com-630

mon ground collapses. We proposed a novel two-631

player objective with an analytical form that can be632

optimized using a single policy (Sec. 4). Through633

evaluations on three datasets representing two dif-634

ferent collaborative tasks, and with detailed abla-635

tions (Sec. 6), we showed that FAAF bests other636

common preference alignment methods in perfor-637

mance against a reference model, and that FAAF’s638

simultaneous conditioning on both the frictive state639

ϕ and surface context x is critical to its success.640

In the process, we also put forth operational def-641

initions of "friction" in human-AI collaboration 642

(Sec. 3). Friction creates opportunity for negotia- 643

tion of intents toward a common goal, and space for 644

accountability and collaborative reasoning. These 645

moments may result in a net slower interaction, but 646

are critical to eventual task success. The study of 647

friction has broad applicability to fields like dis- 648

course studies, team science, and education (Søn- 649

neland, 2019; Collins et al., 2024; Sutton and Rao, 650

2024), and is something we believe the NLP com- 651

munity would do well to invest effort in. Counter 652

to AI being sold as a speed and efficiency multi- 653

plier, our formulation of alignment to specialize 654

in friction shifts LLMs from mere responders to 655

being "thought partners," and sets a new standard 656

for dynamic, dialogue-centric environments. 657

Limitations 658

FAAF addresses only the question of aligning lan- 659

guage models to generate friction conditioned upon 660
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a task state where the terms of the task (though661

not the solution) are known, rather than toward a662

general response generation problem such as in-663

struction following or summarization. Our goal is664

to train an LLM aligned toward the generation of665

interventions that prompt reflection and delibera-666

tion, and not a general dialogue agent/chatbot. In667

our results we have shown that common alignment668

methods of the kind used in dialogue or chatbot669

alignment are inferior to FAAF in ability to generate670

these kinds of utterances. This does not necessar-671

ily mean that FAAF is superior to other methods in672

aligning for human preference in other tasks, and673

as discussed in Sec. 4.2, it is not clear that this674

would be a meaningful comparison because of the675

domain difference.676

Of course, real humans are infamous for flum-677

moxing the most theoretically-rigorous AI systems678

and so the performance of FAAF (or any other align-679

ment method) in a real multiparty collaborative680

setting remains an open question. FAAF provides a681

theoretically-grounded and empirically-validated682

basis of confidence for success, and we have fo-683

cused on the alignment technique in this paper (and684

thus framed this paper as a preference alignment685

paper) and demonstrated feasibility on challeng-686

ing collaborative task datasets, but real-time user687

studies remain the topic of future work.688

Although we motivate FAAF based in part on689

theory of mind (Sec. 1), we do not claim that it690

imbues an LLM with ToM and acknowledge that691

FAAF aligned models could still inherit potential692

biases (say, from pretrains) in generating inter-693

ventions as well as risks of overly confident or694

misaligned suggestions that could derail group dy-695

namics. Instead, we use an "agentic" framework696

that trains a model to perform interventions for a697

desired effect (Russell and Norvig, 2016; Krish-698

naswamy et al., 2022). This is not to be confused699

with senses of LLM-agents such as "tool using"700

agents (Liu et al., 2024). Within this framework,701

we render the frictive state ϕ in plain English text702

to make it amenable to LLM input, but as briefly703

mentioned in Sec. 3, frictive states have a formal704

defintion based on evidence-based dynamic epis-705

temic logic: a mental model M = ⟨A,W,E, V ⟩706

consists of agents A, worlds W , evidence relation707

E defining accessibility between worlds, and valu-708

ation function V . This allows the agent to assess709

alternatives and predict future developments from710

past events (Craik, 1943). Thus, other formal struc-711

tures to encode the frictive state could be explored712

but were out of scope for this paper. 713

Finally, in terms of computational limitations, 714

while we constructed FAAF in a way that addresses 715

data skewness and evaluated in a manner that 716

sought to mitigate biases in the data generation 717

distribution µ, we cannot guarantee for certain that 718

our results are bias-free. And, FAAF still requires a 719

reference model to be kept in memory, which leads 720

to some additional compute requirements. 721
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Peter R Lewis and Ştefan Sarkadi. 2024. Reflective 850
artificial intelligence. Minds and Machines, 34(2):1– 851
30. 852

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii 853
Khizbullin, and Bernard Ghanem. 2023a. Camel: 854
Communicative agents for" mind" exploration of 855
large language model society. Advances in Neural 856
Information Processing Systems, 36:51991–52008. 857

Zekun Li, Wenhu Chen, Shiyang Li, Hong Wang, Jing 858
Qian, and Xifeng Yan. 2023b. Controllable dia- 859
logue simulation with in-context learning. Preprint, 860
arXiv:2210.04185. 861

Shilong Liu, Hao Cheng, Haotian Liu, Hao Zhang, Feng 862
Li, Tianhe Ren, Xueyan Zou, Jianwei Yang, Hang 863
Su, Jun Zhu, et al. 2024. Llava-plus: Learning to 864
use tools for creating multimodal agents. In Euro- 865
pean Conference on Computer Vision, pages 126– 866
142. Springer. 867

Ilya Loshchilov, Frank Hutter, et al. 2017. Fixing 868
weight decay regularization in adam. arXiv preprint 869
arXiv:1711.05101, 5. 870

10

https://arxiv.org/abs/2405.19316
https://arxiv.org/abs/2405.19316
https://arxiv.org/abs/2405.19316
https://aclanthology.org/2024.lrec-main.318/
https://aclanthology.org/2024.lrec-main.318/
https://aclanthology.org/2024.lrec-main.318/
https://arxiv.org/abs/2210.04185
https://arxiv.org/abs/2210.04185
https://arxiv.org/abs/2210.04185


Shengyu Mao, Xiaohan Wang, Mengru Wang, Yong871
Jiang, Pengjun Xie, Fei Huang, and Ningyu Zhang.872
2024. Editing personality for large language mod-873
els. In CCF International Conference on Natural874
Language Processing and Chinese Computing, pages875
241–254. Springer.876

Pedro Henrique Martins, Zita Marinho, and André F. T.877
Martins. 2020. Sparse text generation. Preprint,878
arXiv:2004.02644.879

Yu Meng, Mengzhou Xia, and Danqi Chen. 2024.880
Simpo: Simple preference optimization with a881
reference-free reward. Preprint, arXiv:2405.14734.882

Rémi Munos, Michal Valko, Daniele Calandriello, Mo-883
hammad Gheshlaghi Azar, Mark Rowland, Zhao-884
han Daniel Guo, Yunhao Tang, Matthieu Geist,885
Thomas Mesnard, Andrea Michi, et al. 2023. Nash886
learning from human feedback. arXiv preprint887
arXiv:2312.00886.888

Abhijnan Nath, Shadi Manafi Avari, Avyakta Chelle,889
and Nikhil Krishnaswamy. 2024a. Okay, let’s do890
this! modeling event coreference with generated ra-891
tionales and knowledge distillation. In Proceedings892
of the 2024 Conference of the North American Chap-893
ter of the Association for Computational Linguistics:894
Human Language Technologies (Volume 1: Long Pa-895
pers), pages 3931–3946.896

Abhijnan Nath, Changsoo Jung, Ethan Seefried, and897
Nikhil Krishnaswamy. 2024b. Simultaneous reward898
distillation and preference learning: Get you a lan-899
guage model who can do both. arXiv preprint900
arXiv:2410.08458.901

Abhijnan Nath, Videep Venkatesha, Mariah Bradford,902
Avyakta Chelle, Austin Youngren, Carlos Mabrey,903
Nathaniel Blanchard, and Nikhil Krishnaswamy.904
2024c. “any other thoughts, hedgehog?” linking905
deliberation chains in collaborative dialogues. In906
Findings of the Association for Computational Lin-907
guistics: EMNLP 2024, pages 5297–5314.908

Harri Oinas-Kukkonen and Marja Harjumaa. 2009. Per-909
suasive systems design: Key issues, process model,910
and system features. Communications of the associa-911
tion for Information Systems, 24(1):28.912

OpenAI, :, Aaron Hurst, Adam Lerer, Adam P. Goucher,913
Adam Perelman, Aditya Ramesh, Aidan Clark,914
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec915
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A Functional Definition and Samples of1223

Naturally-Occurring Friction1224

The functional operative definition of friction in1225

collaborative contexts that we used is given below.1226

This definition was used when annotating the WTD1227

for naturally-occurring frictive utterances, and used1228

to construct the prompt for friction intervention1229

generation, following work by Oinas-Kukkonen1230

and Harjumaa (2009) and Karadzhov et al. (2023).1231

FUNCTIONAL DEFINITION OF FRICTION

IN COLLABORATIVE TASKS

Frictive interventions in this setting acts as
indirect persuasion (Oinas-Kukkonen and
Harjumaa, 2009) where participants are pas-
sively prompted to reevaluate their belief-
states and incorrect assumptions or proposi-
tions, in light of incoming goal-specific evi-
dence. We define productive or positive fric-
tion as interventions that act as indirect per-
suasion: agentic interventions that prompt
participants to reevaluate their beliefs and
assumptions about the task state, primarily
but not solely, in light of incoming evidence
(say, occurrences in the physical environ-
ment or a correct "declaration" previously
occurring in the dialogue that any partici-
pant missed) that negates their preconceived
notions about the state of the task. We
call this indirect persuasion since we do not
want our friction agent to directly offer hints
about the task and thereby biasing task per-
formance or negatively affecting the delib-
eration process that is proven to beneficial
for successful task completion in reasoning-
based, collaborative tasks (Karadzhov et al.,
2023).

1232

Table 3 shows a sample friction annotation and1233

training sample from the Weights Task Dataset,1234

consisting of the dialogue history x, GPT-4o-1235

identified frictive state ϕ, rationale, and preferred1236

and dispreferred friction interventions fw and fl.1237

Because the WTD is a multimodal dataset, the tran-1238

scriptions we use are enriched using dense para-1239

phrasing (Tu et al., 2024), a textual enrichment1240

technique that uses the multimodal channels to de-1241

contextualize referents and in this case transform 1242

contextually-dependent phrasings such as demon- 1243

stratives to explicit denotations of the content. For 1244

example, under dense paraphrasing, “seems like 1245

these might be about the same” while the speaker 1246

in the video is pointing to the red and blue blocks 1247

becomes “seems like red block, blue block might 1248

be about the same.” The dense paraphrased utter- 1249

ances are included as part of the publicly-available 1250

WTD (Khebour et al., 2024a,b). 1251

B Frictive-state conditioning and RLHF 1252

In its simplest formulation within Chain-of- 1253

Thought (CoT) settings (Wei et al., 2023), the fric- 1254

tion agent is modeled as a policy distribution πf 1255

that sequentially generates frictive states, sampling 1256

ϕi ∼ πf (· | x, ϕ1, . . . , ϕi−1), and ultimately pro- 1257

ducing the final friction intervention f ∼ πf (· | 1258

x, ϕ1, . . . , ϕn). Here, x represents the dialogue his- 1259

tory, f denotes the intervention, and ϕ consists of 1260

sequentially sampled frictive state tokens, analo- 1261

gous to “thoughts” in standard CoT-based reason- 1262

ing frameworks (Yao et al., 2023). Unlike stan- 1263

dard CoT-based alignment, which relies on self- 1264

rewarding strategies, we frame friction agent align- 1265

ment within preference-based RL (PbRL; Wirth 1266

et al. (2017)). Prior work (Zhang et al., 2024) 1267

shows CoT frameworks benefit significantly from 1268

contrastive signals in preference learning. 1269

In this setting, we define the human preference 1270

probability P(f ≻ ϕ) as the probability that an 1271

expert annotator would prefer f over maintaining 1272

the frictive state ϕ, given prior dialogue history, 1273

x. The key insight is that to retrieve the optimal 1274

policy π∗
f , we can leverage established methods 1275

from RLHF and PbRL by formulating the problem 1276

as a KL-divergence constrained minimum relative 1277

entropy optimization (Ziebart et al., 2008), a well- 1278

known approach with a closed-form solution (Peng 1279

et al., 2019). 1280

J∗
RLHF(πf ) = 1281

max
πf

Ef∼πf
[P(f ≻ ϕ | x)]− 1282

βDKL(πf ∥ πref). (3) 1283

This formulation (Eq. 3)—where J∗
RLHF enforces 1284

a KL-based “soft”-constraint on the parametric 1285

form of π∗
f wrt the reference policy πref—provides 1286

crucial tradeoffs between training stability and bal- 1287

ancing exploration vs exploitation. Specifically, 1288
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Field Content

Dialogue History (x) P1: i guess if red block red one’s ten grams P2: we got red ten P1: seems like red block, blue block might be
about the same P3: i would agree yeah so blue block one’s ten P3: Alright let’s see if we can find a twenty
P3: Too heavy so P2: Way too heavy P2: this is a sensitive scale P2: Looks like about twenty P1: that’s
looking pretty even P3: Alright let’s see if we can find a thirty P1: so yellow block one is noticeably heavier
than P2: probably yellow block big sucker P1: the purple ish one P1: making sure that purple block didn’t
have the weight at the bottom P2: it’s just stuff written at the bottom that’s a so red block, green block’s a ten
and a twenty right now right that’s looking P2: Well P2: red block, blue block, green block, yellow block,
purple block’re increments of ten i would say that’s probably P1: Yeah I think P2: cause purple block’s also a
twenty let’s double check that purple block’s not also a twenty P1: yeah it looks a little P2: cause it um just
purple block one there P3: is blue block one a twenty P2: ok so purple block’s more than twenty but it almost
seems like the thirty takes it past but P2: it’s so sensitive P2: if red block, blue block, green block, yellow
block, purple block’re only in increments of ten purple block has to be

Frictive state (ϕ) P2 initially identified the red and blue blocks as both 10 grams and has speculated about the green at 20
grams, but is uncertain about the actual weights of the yellow and purple blocks.

Rationale P2 suggests that the red, green, and yellow blocks are all in increments of ten. Encourage a double-check.

Preferred Friction (fw) Since the purple block seems heavier and we’re unsure about its exact weight, should we double-check the
increments of ten assumption? Maybe the purple block doesn’t fit this pattern.

Dispreferred Friction (fl) You know, the purple block being heavier might actually mean the blocks aren’t increasing consistently at all.
What if the increments are random, like 10, 15, or 25 grams, and we’re forcing a pattern that isn’t there?

Table 3: A transcribed, sparse collaborative dialogue from the Weights Task Dataset (Khebour et al., 2024a) with
frictive states and friction interventions. Preferred and dispreferred friction interventions are shown at the bottom.
Positive friction interventions prompt participants to reevaluate their assumptions with frictive states (evolution
of beliefs and rationales) providing indirect hints and directions. Here, P2’s uncertainty about the green block
and assumption of weight increment by 10g is addressed by the positive friction. In contrast, the dispreferred
intervention introduces randomness, instigating the group to abandon structured reasoning.

J∗
RLHF ensures that π∗

f retrieves the best possible1289

preference probabilities for its generated interven-1290

tions f , as assigned by P(f ≻ ϕ), whether over1291

the distribution of preferences encoded in an of-1292

fline dataset (Rafailov et al., 2024b) or from on-1293

line sampling ∼ πf during training (Schulman1294

et al., 2017) while being distributionally close to an1295

“already-good” imitator, the Supervised-finetuned1296

(SFT) reference model (Hussein et al., 2017). No-1297

tice that unlike standard RLHF, we formulate1298

J∗
RLHF such that π∗

f takes the form π∗
f (· | ϕ, x)1299

is explicitly conditioned on the frictive state ϕ,1300

apart from x. This is intentional since we hy-1301

pothesize that an ideal friction agent does not in-1302

tervene arbitrarily, causing distraction in collabo-1303

rative tasks and is conditioned to resolve the lack1304

of common ground thereof between human collab-1305

orators, by definition—as observed in ϕ. While1306

prior work (Choi et al., 2024; Zhang et al., 2024)1307

explores preference alignment in LLMs in such1308

CoT-conditioned scenarios, we provide a more1309

principled approach to proving the existence and1310

the uniqueness of π∗
f that J∗

RLHF seeks to retrieve.1311

Mathematically,1312

π∗
f =

πref exp(β
−1P(f ≻ ϕ|x))

Z∗(ϕ, x)
, (4)1313

where Z∗ =
∑

f ′ πref exp(β
−1P(f ′ ≻ ϕ|x)) is1314

the partition function which is fixed and does not1315

depend on f and can be safely ignored in the op-1316

timization of J∗
RLHF (Rafailov et al., 2024b). See1317

Appendix B.1 and Equation (8) for the full-proof 1318

and optimal policy form respectively. 1319

B.1 Existence and uniqueness of the optimal 1320

friction intervention policy 1321

In order to derive an empirical offline (supervised) 1322

preference learning loss from the complicated two- 1323

staged FAAF-alignment objective defined in Equa- 1324

tion (2), we use a divide and conquer approach— 1325

our core insight here is to express the preference of 1326

interventions conditioned on the frictive states in 1327

terms of two mutually supportive “twin” policies. 1328

As such, we first derive the inner maximization 1329

loop of Eq. 2 to get an analytical expression of the 1330

optimal frictive intervention policy, π∗
f as shown in 1331

the proof for Eq. 8. However, we observe that π∗
f 1332

in its analytical form is not fully expressive since it 1333

does not contain the optimal frictive-state policy π∗
ϕ 1334

term. Therefore, we propose a novel method to de- 1335

rive π∗
ϕ using a Lagrangian formulation. We show 1336

the detailed derivation for this part in Appendix C 1337

including supporting results from Lemma 3 and 1338

Lemma 6. 1339

This above result is one of our main contri- 1340

butions since it lets us express the preference 1341

for any intervention f1 over f2 analytically in 1342

terms of both the optimal friction intervention 1343

policy (π∗
f (· | ϕ, x)) and the optimal frictive- 1344

state policy (π∗
ϕ(·|x)). Finally, this core result is 1345

used to propose a straightforward supervised (ℓ2) 1346

objective—similar in spirit to IPO (Azar et al., 1347
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2024)—that empirically regresses the predicted1348

preference expression derived from π∗
f (· | ϕ, x)1349

and π∗
ϕ(·|x) to the observed relative preferences1350

p(f1 ≻ f2 | x) (relative to ϕ), assuming access1351

to a large-enough preference-annotated dataset of1352

frictive interventions. Notably, this objective is op-1353

timized by a single parametrized policy that lever-1354

ages the inherent expressivity of LLMs with bil-1355

lions of parameters.1356

In particular, this FAAF objective formulation1357

avoids some of the policy degeneracy issues1358

that popular supervised “offline” alignment al-1359

gorithms like Direct Preference Optimization1360

(DPO) (Rafailov et al., 2024b) face due to its un-1361

bounded rewards. Additionally, unlike Fisch et al.1362

(2024), our regression objective works directly on1363

preference labels and does not require an external1364

reward model in avoiding such degeneracies. Fi-1365

nally, we also prove that FAAF-trained policies are1366

unique solutions in the policy space in Theorem 2.1367

For completeness, we first prove the existence of1368

the optimal friction/frictive intervention policy that1369

solves the inner maximization of our two-part mini-1370

max objective. The structural solution to this objec-1371

tive is well-studied in the RL/control-theory liter-1372

ature including popular frameworks in preference1373

alignment in LLMs (Ziebart et al., 2008; Peng et al.,1374

2019; Rafailov et al., 2024b; Azar et al., 2024)1375

as well as Chain-of-Thought (CoT)-based prefer-1376

ence alignment frameworks (Choi et al., 2024).1377

We show how it specifically applies to our unique1378

parametrization. Our proof follows similar logic as1379

Azar et al. (2024). Let us recall two-part minimax1380

objective (Eq. 2) for clarity here:1381

J∗
FAAF = min

πϕ

max
πf

E x∼ρ
ϕ∼πϕ(·|x)
f∼πf (·|ϕ,x)

[
P(f ≻ ϕ | x)1382

− βDKL(πf ∥ πref | ϕ, x)1383

+ βDKL(πϕ ∥ πref | x)

]
. (5)1384

For fixed πϕ, the inner maximization reduces to1385

our regularized objective:1386

Lβ(πf ) = Ef∼πf
[p(f ≻ ϕ|x)]−1387

βDKL(πf ∥ πref|ϕ, x),1388

=
∑
f

πf (f |ϕ, x)p(f ≻ ϕ|x)−1389

βDKL(πf ∥ πref|ϕ, x), (6)1390

where f ∈ F is from a finite friction token alpha- 1391

bet F , p(f ≻ ϕ|x) maps elements of F to the 1392

utility of generating a frictive intervention f de- 1393

fined as the preference of f over the frictive-state 1394

ϕ, given context x, β ∈ R∗
+ is a strictly positive 1395

real number, and πf , πref are conditional proba- 1396

bility distributions. In particular, notice that the 1397

conditional probability distribution πf (f |ϕ, x) can 1398

be identified as a positive real function satisfying: 1399∑
f

πf (f |ϕ, x) = 1. (7) 1400

Now, if we define the optimal friction interven- 1401

tion policy π∗
f as: 1402

π∗
f (f |ϕ, x) =

πref(f |ϕ, x) exp(β−1p(f ≻ ϕ|x))
Z∗(ϕ, x)

,

(8) 1403

recalling Eq. 1, where Z∗(ϕ, x) = 1404∑
f ′ πref(f

′|ϕ, x) exp(β−1p(f ′ ≻ ϕ|x)), then, 1405

under the previous definitions, we have: 1406

π∗
f = argmax

πf

Lβ(πf ) (9) 1407
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Proof.

Lβ(πf )

β
=
∑
f∈F

πf (f |ϕ, x)
p(f ≻ ϕ|x)

β
−DKL(πf ∥ πref|ϕ, x),

=
∑
f∈F

πf (f |ϕ, x)
p(f ≻ ϕ|x)

β
−
∑
f∈F

πf (f |ϕ, x) log
( πf (f |ϕ, x)
πref(f |ϕ, x)

)
,

=
∑
f∈F

πf (f |ϕ, x)
(p(f ≻ ϕ|x)

β
− log

( πf (f |ϕ, x)
πref(f |ϕ, x)

))
,

=
∑
f∈F

πf (f |ϕ, x)
(
log(exp(β−1p(f ≻ ϕ|x)))− log

( πf (f |ϕ, x)
πref(f |ϕ, x)

))
,

=
∑
f∈F

πf (f |ϕ, x) log
(
exp(β−1p(f ≻ ϕ|x))πref(f |ϕ, x)

πf (f |ϕ, x)
)
,

=
∑
f∈F

πf (f |ϕ, x) log
(πref(f |ϕ, x) exp(β−1p(f ≻ ϕ|x))

πf (f |ϕ, x)
)
,

=
∑
f∈F

πf (f |ϕ, x) log
(πref(f |ϕ, x) exp(β−1p(f ≻ ϕ|x))

πf (f |ϕ, x)
Z∗(ϕ, x)

Z∗(ϕ, x)

)
,

=
∑
f∈F

πf (f |ϕ, x) log
(πref(f |ϕ, x) exp(β−1p(f ≻ ϕ|x))

Z∗(ϕ, x)

Z∗(ϕ, x)

πf (f |ϕ, x)
)
,

=
∑
f∈F

πf (f |ϕ, x) log
(π∗

f (f |ϕ, x)
πf (f |ϕ, x)

)
+
∑
f∈F

πf (f |ϕ, x) logZ∗(ϕ, x),

=
∑
f∈F

πf (f |ϕ, x) log
(π∗

f (f |ϕ, x)
πf (f |ϕ, x)

)
+
∑
f∈F

πf (f |ϕ, x) logZ∗(ϕ, x),

= −DKL(πf ∥ π∗
f ) + logZ∗(ϕ, x), (using normalization

∑
f∈F

πf (f |ϕ, x) = 1)

By definition of the KL divergence, we know that π∗
f = argmaxπf

[
−DKL(πf ∥ π∗

f )
]

and as:

−DKL(πf ∥ π∗
f ) =

Lβ(πf )

β
− logZ∗(ϕ, x)

where logZ∗(ϕ, x) is the partition function (Peng et al., 2019; Rafailov et al., 2024b) and has
no dependency on πf and β ∈ R∗

+ is a strictly positive real number. Therefore, the argmax of
−DKL(πf ∥ π∗

f ) coincides with that of Lβ(πf ), concluding the proof. □
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Lemma 1 (Value of Inner Maximization). When1408

substituting the optimal friction intervention policy1409

π∗
f , as derived in Eq. 8, into Eq. 5, the objective in1410

Eq. 5 reduces to:1411

J∗
FAAF =min

πϕ

Ex∼ρ,ϕ∼πϕ(·|x)[β log(Z∗(ϕ, x))+1412

βDKL(πϕ||πref |x)] (10)1413

Proof. Substituting π∗
f into the KL diver-

gence term:

DKL(π
∗
f ||πref |ϕ, x)

= Ef∼π∗
f

[
log(π∗

f (f |ϕ, x))−

log(πref(f |ϕ, x))
]

= Ef∼π∗
f

[
p(f ≻ ϕ|x)

β
−

log(Z∗(ϕ, x))

]
(11)

The original objective becomes:

p(f ≻ ϕ|x)− βEf∼π∗
f

[
p(f ≻ ϕ|x)

β
−

log(Z∗(ϕ, x))

]
= β log(Z∗(ϕ, x)) (12)

The result follows by substituting this value
back into the full objective. □

1414

C Derivation of Optimal Frictive State1415

Policy1416

We begin with the reduced objective function af-1417

ter solving the inner maximization as shown in1418

Lemma 1.1419

J∗
FAAF =min

πϕ

Ex∼ρ,ϕ∼πϕ(·|x)
[
β log(Z∗(ϕ, x))1420

+ βDKL(πϕ||πref|x)
]

(13)1421

The Kullback-Leibler divergence term expands1422

as follows:1423

DKL(πϕ||πref|x) = Eϕ∼πϕ

[
log

πϕ(ϕ|x)
πref(ϕ|x)

]
(14)1424

Substituting this back into our objective: 1425

J∗
FAAF =min

πϕ

Eϕ∼πϕ

[
β log(Z∗(ϕ, x))+ 1426

β log(πϕ(ϕ|x))− β log(πref(ϕ|x))
]

(15)

1427

Since πϕ must be a valid probability distribu- 1428

tion satisfying
∑

ϕ πϕ(ϕ|x) = 1, we introduce a 1429

Lagrange multiplier λ and define the correspond- 1430

ing Lagrangian function to derive the optimality 1431

conditions: 1432

L(πϕ) = Eϕ∼πϕ

[
β log(Z∗(ϕ, x))+ 1433

β log(πϕ(ϕ|x))− β log(πref(ϕ|x))
]
+ 1434

λ

1−
∑
ϕ

πϕ(ϕ|x)

 1435

=
∑
ϕ

πϕ(ϕ|x)
[
β log(Z∗(ϕ, x))+ 1436

β log(πϕ(ϕ|x))− β log(πref (ϕ|x))
]

1437

+ λ

1−
∑
ϕ

πϕ(ϕ|x)

 . (16) 1438

Now, to find the optimal policy π∗
ϕ(ϕ|x), we 1439

take the derivative of the Lagrangian with respect 1440

to πϕ(ϕ|x) and equate it to zero: 1441

δL

δπϕ(ϕ|x)
= β log(Z∗(ϕ, x))+ 1442

β
δ

δπϕ

[
πϕ(ϕ|x) log(πϕ(ϕ|x))

]
1443

− β log(πref (ϕ|x))− λ = 0. (17) 1444

From the standard functional derivative of 1445

entropy
δ

δπϕ

[
πϕ(ϕ|x) log(πϕ(ϕ|x))

]
= 1 + 1446

log(πϕ(ϕ|x)), we obtain: 1447

β log(Z∗(ϕ, x)) + β(1 + log(πϕ(ϕ|x)))− 1448

β log(πref (ϕ|x)) + λ = 0. (18) 1449

Rearranging the terms: 1450

log(πϕ(ϕ|x)) = log(πref (ϕ|x))− 1451

log(Z∗(ϕ, x))− λ

β
− 1. (19) 1452
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Taking the exponential on both sides:1453

πϕ(ϕ|x) = e
−1−λ

β πref(ϕ|x)e− logZ∗(ϕ,x). (20)1454

To ensure πϕ(ϕ|x) is a valid probability distribu-1455

tion, we define the normalization constant:1456

Z(x) =
∑
ϕ

πref(ϕ|x)e−β logZ∗(ϕ,x). (21)1457

Thus, the optimal frictive-state policy is:1458

π∗
ϕ(ϕ|x) =

πref(ϕ|x)e−β logZ∗(ϕ,x)

Z(x)
. (22)1459

Notice that without losing any generality, we can1460

parametrize the above optimal frictive-state policy1461

with any outcome f consistent with the structure1462

in Eq. 22 as follows:1463

π∗
ϕ(f |x) =

πref(f |x)
Z(x)

e−β log(Z∗(f,x)). (23)1464

Note that although this formulation of the op-1465

timal frictive-state policy (π∗
ϕ(ϕ|x)) is an analyt-1466

ical solution to J∗ from Eq. 13, we still need to1467

represent π∗
ϕ(ϕ|x) in terms of the optimal friction1468

intervention policy, π∗
f (· | ϕ, x) proposed in Eq. 81469

and the preference probabilities p(f ≻ ϕ|x), the1470

preference probability of the friction f over the1471

frictive-state ϕ, given context x. This is crucial1472

to derive the empirical FAAF optimization objec-1473

tive that can be used for standard offline learning.1474

Therefore, to represent the p(f ≻ ϕ|x) in terms of1475

π∗
f (· | ϕ, x), we take the logarithm of Eq. 8 on both1476

sides and some algebra, we obtain:1477

log(π∗
f (f |ϕ, x)) =

p(f ≻ ϕ|x)
β

+1478

log(πref(f |ϕ, x))− log(Z∗(ϕ, x)).1479

Multiplying both sides by β and rearranging1480

terms, we obtain:1481

p(f ≻ ϕ|x) = β[log(π∗
f (f |ϕ, x))−1482

log(πref(f |ϕ, x)) + log(Z∗(ϕ, x))]. (24)1483

Similar to Munos et al. (2023), Azar et al. (2024),1484

and Choi et al. (2024), we can apply the identity1485

that p(ϕ ≻ ϕ|x) = 1
2 and substitute f = ϕ into the1486

previous equation and derive:1487

1

2
= β[log(π∗

f (ϕ|ϕ, x))− 1488

log(πref(ϕ|ϕ, x)) + log(Z∗(ϕ, x))]. (25) 1489

Solving for log(Z∗(ϕ, x)) gives: 1490

log(Z∗(ϕ, x)) =
1

2β
− 1491

[log(π∗
f (ϕ|ϕ, x))− log(πref(ϕ|ϕ, x))]. (26) 1492

Substituting this back into Eq. 24 results in: 1493

p(f ≻ ϕ|x) = β[log(π∗
f (f |ϕ, x))− 1494

log(πref(f |ϕ, x)) 1495

+
1

2β
− (log(π∗

f (ϕ|ϕ, x))− 1496

log(πref(ϕ|ϕ, x)))] 1497

= β log

(
π∗
f (f |ϕ, x)

πref(f |ϕ, x)

)
+

1

2
1498

− β log

(
π∗
f (ϕ|ϕ, x)

πref(ϕ|ϕ, x)

)
. (27) 1499

The log
(

π∗
f (ϕ|ϕ,x)

πref(ϕ|ϕ,x)

)
term in the above step is a 1500

self-referential term signifying the friction interven- 1501

tion policy’s (π∗
f (· | ϕ, x)) estimate of the frictive 1502

state given ϕ. However, this term does not provide 1503

much information on the regularized preference in 1504

terms of the frictive state policy. Recall that our 1505

outer minimization objective operates over πϕ(·|x). 1506

Fortunately, we can use our results from Lemma 3 1507

and Lemma 6 to express Eq. 27 in terms of the op- 1508

timal frictive state policy π∗
ϕ(·|x). Therefore, from 1509

Lemma 6 we can express π∗
f and πref as follows: 1510

For the optimal policy π∗
f : 1511

log(π∗
f (ϕ|ϕ, x)) = log(π∗

ϕ(ϕ|x))− 1512

log(π∗
ϕ(f |x)) (28) 1513

For the reference policy πref: 1514

log(πref(ϕ|ϕ, x)) = log(πref(ϕ|x))− 1515

log(πref(f |x)) (29) 1516

Now, substituting these expressions into Equa- 1517

19



tion (27), we get:1518

p(f ≻ ϕ|x) = β
[
log(π∗

f (f |ϕ, x))−1519

log(πref(f |ϕ, x))+1520

1

2β
− log(π∗

ϕ(ϕ|x))+1521

log(π∗
ϕ(f |x))− log(πref(ϕ|x))+1522

log(πref(f |x))
]

1523

= β
[
log(π∗

f (f |ϕ, x))−1524

log(πref(f |ϕ, x))+1525

1

2β
−
(
log(π∗

ϕ(ϕ|x))−1526

log(πref(ϕ|x))−1527

(log(π∗
ϕ(f |x))− log(πref(f |x)))

)]
1528

= β

[
log

(
π∗
f (f |ϕ, x)

πref(f |ϕ, x)

)
+

1

2β
+1529

log

(
π∗
ϕ(f |x)

πref(f |x)

)
−1530

log

(
π∗
ϕ(ϕ|x)

πref(ϕ|x)

)]
. (30)1531

Now, replacing f by f1 in p(f ≻ ϕ|x):1532

p(f1 ≻ ϕ|x) = β

[
log

(
π∗
f (f1|ϕ, x)

πref(f1|ϕ, x)

)
+1533

1

2β
+ log

(
π∗
ϕ(f1|x)

πref(f1|x)

)
−1534

log

(
π∗
ϕ(ϕ|x)

πref(ϕ|x)

)]
(31)1535

Similarly, expressing f2 in p(f ≻ ϕ|x), we ob-1536

tain:1537

p(f2 ≻ ϕ|x) = β

[
log

(
π∗
f (f2|ϕ, x)

πref(f2|ϕ, x)

)
+1538

1

2β
+ log

(
π∗
ϕ(f2|x)

πref(f2|x)

)
−1539

log

(
π∗
ϕ(ϕ|x)

πref(ϕ|x)

)]
(32)1540

Now, expressing p(f1 ≻ ϕ|x) − p(f2 ≻ ϕ|x),1541

the relative preference probability of f1 over f21542

given ϕ and x, we observe that log
(

π∗
ϕ(ϕ|x)

πref(ϕ|x)

)
1543

terms cancel out and we derive:1544

p(f1 ≻ ϕ|x)− p(f2 ≻ ϕ|x) = 1545

β

[
log

(
π∗
f (f1|ϕ, x)

πref(f1|ϕ, x)

)
+

1

2β
+ 1546

log

(
π∗
ϕ(f1|x)

πref(f1|x)

)
− log

(
π∗
ϕ(ϕ|x)

πref(ϕ|x)

)]
1547

− β

[
log

(
π∗
f (f2|ϕ, x)

πref(f2|ϕ, x)

)
+

1

2β
+ 1548

log

(
π∗
ϕ(f2|x)

πref(f2|x)

)
− log

(
π∗
ϕ(ϕ|x)

πref(ϕ|x)

)]
1549

= β

[
log

(
π∗
f (f1|ϕ, x)

πref(f1|ϕ, x)

)
− log

(
π∗
f (f2|ϕ, x)

πref(f2|ϕ, x)

)
1550

+ log

(
π∗
ϕ(f1|x)

πref(f1|x)

)
− log

(
π∗
ϕ(f2|x)

πref(f2|x)

)]
(33)

1551

This above result is one of our core contributions 1552

since it lets us express the relative preference of 1553

any friction intervention f1 over f2 given a frictive 1554

state (ϕ) analytically in terms of both the optimal 1555

friction intervention policy ((π∗
f (· | ϕ, x))) and the 1556

optimal frictive state policy (π∗
ϕ(·|x)): 1557

p(f1 ≻ ϕ|x)− p(f2 ≻ ϕ|x) = 1558

β

[
log

(
π∗
f (f1|ϕ, x)

πref(f1|ϕ, x)

)
− log

(
π∗
f (f2|ϕ, x)

πref(f2|ϕ, x)

)
1559

+ log

(
π∗
ϕ(f1|x)

πref(f1|x)

)
− log

(
π∗
ϕ(f2|x)

πref(f2|x)

)]
(34)

1560

Following a standard approach for empirical es- 1561

timation of the LHS (Azar et al., 2024) in the above 1562

equation, one can learn both the optimal friction 1563

intervention policy π∗
f and the frictive-state pol- 1564

icy π∗
ϕ using a trainable policy πθ, parametrized 1565

with θ. The core insight here is to exploit the ex- 1566

pressive nature of LLMs’ hidden representations 1567

with billions of parameters to learn a single opti- 1568

mal policy. A reasonable choice here is to train 1569

πθ through an ℓ2 loss (Fisch et al., 2024) that en- 1570

forces the relative preference ordering between any 1571

pair of friction interventions (f1, f2) with implicit 1572

reward estimates from the RHS of Eq. 34. How- 1573

ever, unlike (Fisch et al., 2024), our approach in 1574

enforcing this constraint does not require access to 1575
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an external reward model or an "oracle" for point-1576

wise reward estimates, assuming we have access to1577

labeled preference feedback in samples. Addition-1578

ally, the ℓ2 formulation avoids placing a unbounded1579

logit or a inverse sigmoid function over the prefer-1580

ence since this has been shown to cause non-trivial1581

policy degeneracy issues in learning algorithms1582

like DPO (Azar et al., 2024). Applying this ℓ2 loss,1583

we derive:1584

Lπθ
= E x∼ρ

ϕ∼πθ(·|x)
f1,f2∼πθ(·|ϕ,x)

1585

(
p(f1 ≻ ϕ|x)− p(f2 ≻ ϕ|x)−1586

β

[
log

(
πθ(f1|ϕ, x)
πref(f1|ϕ, x)

)
− log

(
πθ(f2|ϕ, x)
πref(f2|ϕ, x)

)
1587

+ log

(
πθ(f1|x)
πref(f1|x)

)
− log

(
πθ(f2|x)
πref(f2|x)

)])2

(35)

1588

Since the friction dataset Dµ sampled from µ1589

contains preference-annotated pairs (fw, fl) given1590

ϕ and x, the preference probabilities can be ex-1591

pressed using indicator functions as p(fw ≻1592

fl|x) = E[1(fw ≻ fl|x)] = 1 and p(fl ≻1593

fw|x) = E[1(fl ≻ fw|x)] = 0. Furthermore,1594

the difference p(fw ≻ fl|x) − p(fl ≻ fw|x) =1595

1 − 0 = 1 aligns with the formulation p(f1 ≻1596

ϕ|x) − p(f2 ≻ ϕ|x) when f1 = fw and f2 = fl.1597

Therefore, we can write our final FAAF-alignment1598

empirical objective function (L̂) as follows:1599

L̂(πθ) = E(x,ϕ,fw,fl)∼Dµ
1600 (

1− β

[
log

(
πθ(fw|ϕ, x)
πref(fw|ϕ, x)

)
−1601

log

(
πθ(fl|ϕ, x)
πref(fl|ϕ, x)

)
+1602

log

(
πθ(fw|x)
πref(fw|x)

)
−1603

log

(
πθ(fl|x)
πref(fl|x)

)])2

(36)1604

where (fw, fl) represent the winning (preferred)1605

and losing (less preferred) friction interventions1606

respectively in each annotated pair.1607

L̂(πθ) = E(x,ϕ,fw,fl)∼Dµ
1608(

1− β

[
log

(
πθ(fw|ϕ, x)πref(fl|ϕ, x)
πθ(fl|ϕ, x)πref(fw|ϕ, x)

)
+ 1609

log

(
πθ(fw|x)πref(fl|x)
πθ(fl|x)πref(fw|x)

)])2

(37) 1610

L̂(πθ) = E(x,ϕ,fw,fl)∼Dµ
1611(

1−

[
β log

(
πθ(fw|ϕ, x)πref(fl|ϕ, x)
πθ(fl|ϕ, x)πref(fw|ϕ, x)

)
︸ ︷︷ ︸

∆R

+ 1612

β log

(
πθ(fw|x)πref(fl|x)
πθ(fl|x)πref(fw|x)

)
︸ ︷︷ ︸

∆R′

])2

(38) 1613

where ∆R and ∆R′ represent implicit reward dif- 1614

ferences (Rafailov et al., 2024b; Azar et al., 2024), 1615

the former being explicitly conditioned on the fric- 1616

tive state ϕ, with no such conditioning on the latter. 1617

Theorem 2 (Uniqueness of FAAF Empirical Loss). 1618

We prove this by contradiction. Let µ be the 1619

sampling distribution that samples friction inter- 1620

ventions for the preference dataset, and assume 1621

Supp(µ) = Supp(πref). Then the FAAF loss L(π) 1622

has a unique solution in policy space ∈ Π. 1623
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Proof. Assume by contradiction that there exist two distinct optimal policies πA, πB ∈ Π. By
their definition, L̂(πA) = L̂(πA) = 0 as πA and πB are global minima. Consider (sAϕ , s

A) and
(sBϕ , s

B) as their respective logit parameterizations where:

πk(f |ϕ) =
exp(skϕ(f))∑
f ′ exp(skϕ(f

′))

πk(f) =
exp(sk(f))∑
f ′ exp(sk(f ′))

for k ∈ {A,B}

where πk(f |ϕ) and πk(f) are the ϕ-conditioned and ϕ-unconditioned policies.
By the structure of our FAAF loss from Equation (38):

L̂(π) = Ef,f ′∼µ

[(
1− β(∆sϕ +∆s)

)2] ≥ 0

Notice that adding a constant c to all logits of sϕ or logits of s (directionally denoted as the
(c, . . . , c) ∈ R) does not affect either policy probabilities due to softmax normalization. For L̂(π),
this is the only direction where the loss function might not be strictly convex. Outside of these
directions, any change in the logits would increase L(π) with strict convexity as a consequence for
α ∈ (0, 1), implying:

L̂(απ1 + (1− α)π2) < αL̂(π1) + (1− α)L̂(π2)
= α(0) + (1− α)(0) = 0

where the equality follows from π1, π2 being global minima, by definition. This contradicts the
non-negativity of L̂, which proves the uniqueness of the FAAF objective. □

L̂(πθ) has no dependence on log-partition1624

terms involving Z∗(ϕ, x) and Z∗(x) Our final1625

FAAF empirical objective loss in Eq. 38 has no de-1626

pendence on either partition function terms. This1627

makes it convenient for practical applications. In1628

fact, similar to DPO’s derivation (Rafailov et al.,1629

2024b), these log-partition terms effectively can-1630

cel out in formulating the frictive state-conditioned1631

and unconditioned implicit rewards, scaled by the1632

KL-strength parameter β. In its essence, L̂(πθ)1633

regresses the DPO-based implicit rewards (∆R′1634

term) with an additional ϕ-conditioned reward term1635

(∆R term) onto the empirically observed prefer-1636

ence probabilities, labeled with preference labels1637

from Dµ. Notice that without the ∆R term, L̂(πθ)1638

reduces to a structurally similar form as IPO (Azar1639

et al., 2024), differing a constant scaling term β.1640

This suggests that under this condition, both L̂(πθ)1641

and IPO objective likely have similar qualitative1642

loss landscapes though convergence rates and op-1643

timal solutions would differ—while both lead πθ1644

toward a reward-consistent preference alignment.1645

This also explains the somewhat similar perfor- 1646

mance of the IPO baseline and FAAF∆R′ in both 1647

DeliData and WTD OPT 1.3B reward model-based 1648

win-rate evaluations, where FAAF∆R′ achieves com- 1649

paratively middling win-rates (Table 2). 1650

Lemma 3 (Sequential Choice Decomposition in 1651

Friction Agent Optimization). Consider the mini- 1652

max optimization between frictive-state policy πϕ 1653

and friction intervention policy πf where we seek 1654

to generate optimal friction interventions f from 1655

frictive states ϕ: 1656

J∗ = min
πϕ

max
πf

E x∼ρ
ϕ∼πϕ(·|x)
f∼πf (·|ϕ,x)

[
p(f ≻ ϕ | x)− 1657

βDKL(πf ∥ πref | ϕ, x) + βDKL(πϕ ∥ πref | x)
]

(39)

1658

For any policy π (either optimal friction policy 1659

π∗
f or reference policy πref), the sequential choice 1660

probability decomposes as: 1661

π(ϕ|ϕ, x) = π(ϕ|x)
π(f |x)

(40) 1662
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Proof. The key insight in deriving this decomposition lies in understanding how optimal friction
interventions are generated sequentially from frictive states. For the optimal friction policy π∗

f ,
consider its probability space Pπ∗

f
. By definition of conditional probability, we have π∗

f (ϕ|ϕ, x) =
Pπ∗

f
(ϕ,ϕ|x)

Pπ∗
f
(ϕ|x) . This term is crucial as it captures the policy’s propensity to maintain a frictive state

rather than generate a friction intervention. Under choice independencea within this policy
space assuming a Markovian nature of friction intervention generation, we have Pπ∗

f
(ϕ, ϕ|x) =

Pπ∗
f
(ϕ|x)Pπ∗

f
(ϕ|x). With policy-specific preference probability symmetry (Munos et al., 2023;

Fisch et al., 2024), the probability Pπ∗
f
(ϕ|x) +Pπ∗

f
(f |x) = 1, reflecting the binary choice between

maintaining a frictive state or generating a friction intervention, we obtain π∗
f (ϕ|ϕ, x) =

π∗
f (ϕ|x)

π∗
f (f |x)

,

where the optimality of π∗
f (f |x) ensures π∗

f (ϕ|x) ≤ π∗
f (f |x). A similar argument can be made in

the case of πref, the reference policy, where πref’s initialization with the supervised-finetuned (SFT)
model on friction interventions ensures πref(f |x) ≥ πref(ϕ|x). This decomposition is fundamental
to the minimax objective, J∗, as it enables expressing the KL-regularized preference probability
in terms of base policy probabilities while preserving the structure necessary for optimal friction
intervention generation from frictive states. □

aAssuming a single-step bandit setting (Rafailov et al., 2024b,a), choice independence holds since each frictive-state
intervention is independent of past episodes. Using conditional probability, we express the joint probability under any
policy π as Pπ(ϕ, ϕ | x) = Pπ(ϕ | ϕ, x)Pπ(ϕ | x). By choice independence, the probability of selecting ϕ at the
second step does not depend on the first selection given x, i.e., Pπ(ϕ | ϕ, x) = Pπ(ϕ | x). Substituting this, we obtain
Pπ(ϕ, ϕ | x) = Pπ(ϕ | x)Pπ(ϕ | x).
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The sequential choice decomposition provides1663

crucial insight into determining optimal timing for1664

friction interventions. In other words, this decom-1665

position has an interesting implication in deciding1666

when is a friction intervention most desirable or1667

cost-effective. Specifically, our derived identity1668

π(ϕ|ϕ, x) = π(ϕ|x)
π(f |x) establishes a natural thresh-1669

old mechanism through the ratio τ(x) =
π∗
f (ϕ|x)

π∗
f (f |x)

.1670

When τ(x) ≈ 1, the policy maintains the cur-1671

rent frictive state ϕ, while τ(x) ≪ 1 triggers a1672

friction intervention f . This mechanism emerges1673

naturally from the preference probability p(f ≻1674

ϕ|x) = β[log(π∗
f (f |ϕ, x)) − log(πref(f |ϕ, x)) +1675

1
2β − (log(π∗

f (ϕ|ϕ, x))− log(πref(ϕ|ϕ, x)))] in our1676

minimax objective J∗, where π∗
f optimally gener-1677

ates interventions when the likelihood ratio indi-1678

cates low confidence in the current frictive state ϕ.1679

However, exploring this sequential decomposition1680

and determining optimal timing in interventions is1681

outside the scope of this paper. As such, we leave1682

that for future work.1683

Lemma 4 (Uniqueness of Intervention Thresholds).1684

The threshold τ(x) =
π∗
f (ϕ|x)

π∗
f (f |x)

uniquely determines1685

optimal intervention policy π∗
f .1686
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Proof. We prove uniqueness by contradiction. Consider two potentially optimal policies π1
f and

π2
f with corresponding thresholds τ1(x) and τ2(x). Assume τ1(x) ̸= τ2(x) but both policies are

optimal. By optimality, their contributions to the objective J∗ must be equal for any observation
tuple x, f and ϕ:

β[log(π1
f (f |ϕ, x))− log(πref(f |ϕ, x))− (log(τ1(x))− log(πref(ϕ|ϕ, x)))]

= β[log(π2
f (f |ϕ, x))− log(πref(f |ϕ, x))− (log(τ2(x))− log(πref(ϕ|ϕ, x)))]

(41)

Simplifying and rearranging terms:

log(π1
f (f |ϕ, x))− log(τ1(x)) = log(π2

f (f |ϕ, x))− log(τ2(x)) (42)

However, by the strict convexity of KL divergence and Jensen’s inequality:

DKL(π
1
f ∥ πref | ϕ, x) +DKL(π

2
f ∥ πref | ϕ, x) > 2DKL(

π1
f + π2

f

2
∥ πref | ϕ, x) (43)

This inequality implies that a mixed policy π
avg
f =

π1
f+π2

f

2 would achieve a lower KL divergence
cost due to strict convexity and equal expected reward (regularized preference probabilities) from
the equality of optimal policies. Therefore, πavg

f would achieve strictly better objective value than
both π1

f and π2
f , contradicting their assumed optimality. This proves threshold uniqueness. The

contradiction arises because:

J∗(π
avg
f ) >

1

2
[J∗(π1

f ) + J∗(π2
f )] (44)

which is impossible if both π1
f and π2

f were truly optimal. □

25



Corollary 5 (Uniqueness of Optimal Policy Under1687

Threshold Identity). If two optimal intervention1688

policies π1
f and π2

f satisfy the same threshold con-1689

dition τ1(x) = τ2(x) for all x, then π1
f = π2

f .1690

Proof. Assume for contradiction that two
distinct optimal policies π1

f and π2
f satisfy

the threshold condition
π1
f (ϕ|x)

π1
f (f |x)

=
π2
f (ϕ|x)

π2
f (f |x)

=

τ(x). Define the mixed policy π
avg
f =

1
2(π

1
f + π2

f ), which preserves the threshold
as τavg(x) = τ(x) due to linearity, implying
π

avg
f is also optimal.

Now, applying Jensen’s inequality to the KL
divergence term in the objective, we obtain
DKL(π

avg
f ∥ πref | ϕ, x) ≤ 1

2DKL(π
1
f ∥

πref | ϕ, x) + 1
2DKL(π

2
f ∥ πref | ϕ, x).

Strict convexity ensures a strict inequality
whenever π1

f ̸= π2
f on a set of positive

measure where supp(πref) > 0, implying
J∗(π

avg
f ) < 1

2 [J
∗(π1

f ) + J∗(π2
f )]. This con-

tradicts the assumed optimality of π1
f and

π2
f , proving that they must be identical. □

1691

Lemma 6 (Policy Ratio Equivalence). For the opti-1692

mal friction policy π∗
f and the optimal frictive-state1693

policy π∗
ϕ, the following expectation-based ratio1694

holds:1695

E x∼ρ
ϕ∼π∗

ϕ(·|x)
f∼π∗

f (·|ϕ,x)

[
π∗
f (ϕ|x)

π∗
f (f |x)

]
= E x∼ρ

ϕ∼π∗
ϕ(·|x)

f∼π∗
f (·|ϕ,x)

[
π∗
ϕ(ϕ|x)

π∗
ϕ(f |x)

]
.

(45)1696
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Proof. We show that both the policy ratios simplify to the same value under the expectation. We
begin by taking the expectation over the preference probability formulationa:

E [p(f ≻ ϕ | x)] = E
[
β
(
log(π∗

f (f |ϕ, x))− log(πref(f |ϕ, x)) + logZ∗(ϕ, x)
)]

. (46)

We first represent the ratios of the optimal frictive intervention policies (LHS of this lemma) for
any tuple (x, ϕ, f) in terms of their parametric representations from Eq. 8 as follows:

π∗
f (ϕ|x)

π∗
f (f |x)

=
πref(ϕ|x)
πref(f |x)

eβ
−1(p(ϕ≻f |x)−p(f≻ϕ|x)) ( logZ∗(x) cancels out) (47)

Take the expectation on both sides and applyb the identity p(ϕ ≻ f | x) = 0:

E

[
π∗
f (ϕ|x)

π∗
f (f |x)

]
= E

[
πref(ϕ|x)
πref(f |x)

e−β−1p(f≻ϕ|x)
]

(since p(ϕ ≻ f | x) = 0). (48)

Notice that by definition in Eq. 2, the optimal friction intervention policy π∗
f (·|ϕ, x) is KL-

constrained wrt to the reference policy πref(·|ϕ, x). So under the expectation, the following has to
be true for π∗

f (·|ϕ, x) to be optimal:

E
[
π∗
f (f |ϕ, x)

]
≈ E [πref(f |ϕ, x)] . (49)

Substituting the preference probability formulation p(f ≻ ϕ|x) from Eq. 24 in Eq. 48 and applying
the KL-regularization approximation in Eq. 49 we derive that:

E
[
e−(log(π

∗
f (f |ϕ,x))−log(πref(f |ϕ,x))+logZ∗(ϕ,x))

]
≈ E

[
Z∗(f, x)

Z∗(ϕ, x)

]
. (50)

Using this substitution, we rewrite Eq. 48 as:

E

[
π∗
f (ϕ|x)

π∗
f (f |x)

]
= E

[
πref(ϕ|x)
πref(f |x)

e−(log(π
∗
f (f |ϕ,x))−log(πref(f |ϕ,x))+logZ∗(ϕ,x))

]
= E

[
πref(ϕ|x)
πref(f |x)

Z∗(f, x)

Z∗(ϕ, x)

]
. (51)

Similarly, for the optimal frictive state policy ratio we derive:

E

[
π∗
ϕ(ϕ|x)

π∗
ϕ(f |x)

]
= E

 πref(ϕ|x)
Z∗
ϕ(x)

e−β−1 logZ∗(ϕ,x)

πref(f |x)
Z∗
ϕ(x)

e−β−1 logZ∗(f,x)

 = E

[
πref(ϕ|x)
πref(f |x)

e− logZ∗(ϕ,x)

e− logZ∗(f,x)

]
(Z∗

ϕ(x) cancels)

(52)

= E
[
πref(ϕ|x)
πref(f |x)

Z∗(f, x)

Z∗(ϕ, x)

]
. (53)

Thus, E
[
π∗
f (ϕ|x)

π∗
f (f |x)

]
= E

[
π∗
ϕ(ϕ|x)

π∗
ϕ(f |x)

]
. □

aFor clarity, the expectation E is taken over x ∼ ρ, ϕ ∼ π∗
ϕ(· | x), f ∼ π∗

f (· | ϕ, x) throughout the proof, but this is
omitted in the notation when the context is clear.

bSince learning occurs in a supervised setting with preference-annotated data, the probability follows as p(f ≻ ϕ |
x) = E[1(f ≻ ϕ | x)] = 1, implying p(ϕ ≻ f | x) = 0.
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D Operationalizing µ: Frictive State and1697

Friction Intervention Generations1698

In order to train and evaluate our baselines along1699

with FAAF for friction intervention generation in1700

collaborative tasks, we carry out a series of data1701

augmentation procedures using GPT-4o (denoted1702

as µ) in order to construct two diverse preference1703

datasets. For details on our choice of datasets,1704

please refer to Section 4.2.1705

In this section, we provide procedural details of1706

our friction intervention datasets, that were gener-1707

ated out of the original Weights Task and DeliData1708

dataset. For all our data-generation experiments,1709

we use a high-capacity LLM (GPT-4o) (OpenAI1710

et al., 2024) as our sampling distribution µ, as de-1711

fined in Section 4. In particular, we utilize a self-1712

rewarding LLM approach (Yuan et al., 2024;1713

Xu et al., 2023; Rosset et al., 2024) to simultane-1714

ously generate and assign rewards to µ-generated1715

interventions, since previous work (Pace et al.,1716

2024; Meng et al., 2024) provides evidence that1717

such synthetic preference-data generation still leads1718

to higher-quality reward models and preference-1719

aligned policies. Prior work (Zheng et al., 2023)1720

provides substantial evidence that this approach1721

leads to more high-quality LLM-as-a-judge-based1722

evaluations especially for conversational bench-1723

marks (Lambert et al., 2024). Additionally, re-1724

ward assignments for sampled intervention nat-1725

urally provides an implicit preference ranking—1726

which we use for constructing our respective pref-1727

erence datasets. After these data-generation experi-1728

ments, we further conduct filtering and contrastive1729

pairing of a “winning” (fw) or preferrred interven-1730

tions and “losing” (fl) or dispreferred interventions1731

along with their corresponding dialogue histories1732

(x) to create our final preference datasets for each1733

augmented dataset.1734

D.1 DeliData Friction Intervention Preference1735

Dataset1736

In order to generate frictive state and friction in-1737

terventions in the DeliData dataset, we use the1738

prompt shown in Figure 2. In order to contex-1739

tualize the extraction of frictive states, we only1740

provide h = 15 previous utterances in each di-1741

alogue group (group_id) assuming that frictive1742

states are likely to be present within a “attentional-1743

state” (Grosz and Sidner, 1986) window that de-1744

scribes the focused part in the discourse. This1745

technique allows us to avoid unnecessary api-calls1746

while also providing a more focused dialogue con- 1747

text to GPT-4o. Additionally, since this dataset al- 1748

ready contains manual human annotations of “prob- 1749

ing” interventions (which are a subset of friction 1750

interventions as per our definitions), we explicitly 1751

guide the data-generator to exclude probing inter- 1752

ventions in extracting the frictive states. Note that 1753

each functionally-frictive state (denoted as ϕ), as 1754

extracted by GPT-4o, resulted in two friction in- 1755

terventions, fw and fl. In total, this generation 1756

process led to 6238 (x, ϕ, fw, fl) tuples after keep- 1757

ing 50 randomly sampled dialogue groups separate 1758

for the evaluation set, our of which 476 (33) were 1759

probing interventions in train (test) partitions. Ad- 1760

ditionally, we carry out another round of training 1761

pair augmentations since 6238 samples is very less 1762

compared to popular preference alignment datasets 1763

like Ultrafeedback (Cui et al., 2024) which con- 1764

tains roughly 62k11 training preference pairs. The 1765

average rewards for the preferred and dispreferred 1766

interventions assinged by µ are 8.03 and 3.96 re- 1767

spectively (rated out of 10). 1768

As such, for each training tuple (x, ϕ, fw, fl), 1769

we generate N augmented versions (x′, ϕ′, f ′
w, f

′
l ) 1770

by applying a replacement mapping R : Σ → Σ′ 1771

N times, where Σ represents the original set of 1772

card values (vowels12, odd numbers, and even num- 1773

bers), and Σ′ represents their replacements. The 1774

replacement function R is defined as follows: Each 1775

vowel v ∈ {A,E,O,U} is replaced with another 1776

vowel v′ such that v′ ∈ {A,E,O,U} \ {v}, where 1777

v′ is sampled uniformly at random from the re- 1778

maining vowels. Similarly, each odd number o ∈ 1779

{1, 3, 5, 7, 9} is replaced with another odd number 1780

o′ such that o′ ∈ {1, 3, 5, 7, 9} \ {o}, where o′ is 1781

sampled uniformly at random. Likewise, each even 1782

number e ∈ {0, 2, 4, 6, 8} is replaced with another 1783

even number e′ such that e′ ∈ {0, 2, 4, 6, 8} \ {e}, 1784

with e′ sampled uniformly at random. For exam- 1785

ple, if an utterance contains reference to card "A" 1786

and "6", the rules of the Wason Card task still 1787

applies equivalently for, say, "E" and "8"–while 1788

keeping the reasoning consistent with the original 1789

utterance and the utterance with replacement. We 1790

11We found 14 samples where GPT-4o did not return any
strings for the frictive state description. We filtered out these
samples from our training set.

12We did not replace instances of "I" to avoid noise from
mistakenly replacing first-person references in the dialogues.
Additionally, since vowels constitute the majority of prompted
card solutions vs. consonants, applying our replacement func-
tion R for vowels was enough to generate ∼62k additional
samples, comparable to Ultrafeedback (Cui et al., 2024)
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Train Test

Min Max Mean ± Std Min Max Mean ± Std

Dialogue History 16 824 288.43 ± 132.97 25 733 291.88 ± 118.03
Belief State 8 140 32.93 ± 15.92 20 140 47.99 ± 28.38
Chosen Friction 6 60 24.03 ± 4.65 9 39 22.05 ± 5.55
Chosen Rationale 8 78 22.84 ± 8.67 10 78 29.61 ± 13.33
Rejected Friction 9 45 23.95 ± 4.10 10 41 22.16 ± 5.11
Rejected Rationale 8 73 19.60 ± 6.89 10 59 26.04 ± 11.61

Table 4: Token Length Statistics for DeliData Preference Dataset using the Meta-Llama-3-8B-Instruct tokenizer.

Field Train Test

Min Max Mean ± Std Min Max Mean ± Std

Dialogue History 4 1464 227.83 ± 189.48 4 1031 235.04 ± 180.36
Belief State 11 65 30.55 ± 6.65 17 54 30.47 ± 6.29
Chosen Friction 10 45 21.20 ± 5.12 11 42 21.08 ± 5.10
Chosen Rationale 10 35 20.38 ± 3.44 12 32 19.67 ± 3.38
Rejected Friction 6 32 15.88 ± 3.68 7 29 15.57 ± 3.75
Rejected Rationale 8 41 20.10 ± 3.51 12 30 19.88 ± 3.47

Table 5: Token Length Statistics for WTD Simulated Friction dataset using the Meta-Llama-3-8B-Instruct
tokenizer.

Field Train Test

Min Max Mean ± Std Min Max Mean ± Std

Dialogue History 16 555 309.88 ± 81.11 25 555 316.46 ± 79.16
Belief State 41 140 84.94 ± 15.58 41 140 84.95 ± 16.27
Chosen Friction 9 31 16.85 ± 3.47 9 27 16.87 ± 3.49
Chosen Rationale 24 78 44.19 ± 8.46 26 78 44.43 ± 8.59
Rejected Friction 9 31 17.12 ± 3.51 10 28 17.23 ± 3.41
Rejected Rationale 24 73 40.00 ± 6.62 24 59 39.89 ± 6.43

Table 6: Token Length Statistics for WTD Original Friction dataset using the Meta-Llama-3-8B-Instruct
tokenizer.

Personality Type Facet Description

Extraversion Assertiveness Tends to take charge and speak confidently.
Sociability Enjoys engaging with others and maintaining conversation.
Activity Level Shows high energy and enthusiasm.
Excitement Seeking Looks for novel and stimulating experiences.
Positive Emotions Expresses optimism and cheerfulness.

Neuroticism Anxiety Shows worry and concern about potential mistakes.
Depression Tends to be pessimistic and doubtful.
Vulnerability Easily becomes overwhelmed or stressed.
Self-Consciousness Shows hesitation and uncertainty.
Anger Can become frustrated and irritated easily.

Agreeableness Trust Readily trusts others and their suggestions.
Altruism Shows concern for others’ success and well-being.
Compliance Tends to avoid conflicts and agree with others.
Modesty Downplays own contributions and abilities.
Sympathy Shows understanding and empathy towards others.

Table 7: Descriptions of our chosen 3 personality types and facet combinations from the Big Five framework that
we use for simulated friction generation on the Weights Task.
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apply this replacement mapping across all fields in1791

tuples (x′, ϕ′, f ′
w, f

′
l ) in the training set. This led to1792

training set of 68,618 preference pairs. Note that1793

we only apply this augmentation for the training set1794

to generate a reasonably large preference dataset1795

for more robust training signals. Table 4 shows a1796

detailed breakdown of the token-length statistics of1797

the DeliData Friction preference dataset using the1798

Meta-Llama-3-8B-Instruct tokenizer.1799

D.2 WTD Friction Intervention Preference1800

Dataset1801

WTD "Original" Friction dataset Unlike the1802

DeliData dataset, which includes pre-annotated1803

probing interventions as natural friction points, the1804

Weights Task dataset (Khebour et al., 2024a) con-1805

sists of dense-paraphrased utterances transcribed1806

manually (Terpstra et al., 2023) and with Whis-1807

per (Radford et al., 2023), making friction inter-1808

ventions sparse due to its multimodal nature. Man-1809

ual inspection found only 3-4 frictive interventions1810

per group, yielding ≈ 30-40 samples—insufficient1811

for training an effective agent without overfit-1812

ting, especially for LLMs with billions of param-1813

eters. As such, we carry out two phases of data-1814

augmentations and preference annotations. In our1815

first round, we generate the WTD Original Fric-1816

tion dataset which contains annotations of frictive-1817

states and friction interventions. Similar to Del-1818

iData preference annotations Appendix D.1, we1819

use a self-rewarding LLM set-up to first generate1820

these states and interventions in an autoregressive1821

manner and prompt µ to rate them in the same1822

api-call, for each frictive state extraction. Since1823

WTD dialogues can be substantially long (> 2001824

utterances) for certain groups, we only consider1825

a non-overlapping window of 10 previous utter-1826

ances as context history h = 10 for a more ro-1827

bust grounding for µ; See Fig. 2 for details on1828

the prompt used constructing the WTD Original1829

Friction dataset. This process led to 4299 (470)1830

training (testing) preference pairs. Preferred in-1831

terventions achieved mean scores (mean±std) of1832

8.36±1.12 (train) and 8.35±1.08 (test), while dispre-1833

ferred interventions scored 6.35±1.13 (train) and1834

6.36±1.11 (test), demonstrating consistent prefer-1835

ence margins across splits.1836

Note that we do not use WTD Original Fric-1837

tion for training any of our baselines—but use it1838

for out-of-domain distribution (OOD) evaluation1839

(see Sec. 4.2). This allows us to more extensively1840

evaluate FAAF in checking test-time OOD general-1841

ization (Rafailov et al., 2024b; Choi et al., 2024) 1842

against baselines—where OOD generalization is 1843

a major limitation in supervised preference align- 1844

ment algorithms that depend crucially on the sam- 1845

pling distribution (Yang et al., 2024; Fisch et al., 1846

2024). 1847

WTD "Simulated" Friction dataset Addition- 1848

ally, for a more robust training and in order to 1849

evaluate multi-turn preference alignment in inter- 1850

ventions, we use (Shani et al., 2024)’s method to 1851

generate novel full collaborative conversations us- 1852

ing the weight-definitions of the original WTD en- 1853

vironment. This method is more akin to “West- 1854

of-N” sampling (Pace et al., 2024) techniques that 1855

allow synthetic data generations with high-capacity 1856

LLMs—where highest and lowest rewarded candi- 1857

dates naturally form preference pairs. As shown 1858

in Fig. 4, we sample a full dialogue at once us- 1859

ing µ, while providing initial task-related guide- 1860

lines and gold-truth labels of actual weights of 1861

the five blocks in the WTD dataset. For exam- 1862

ple, we explicitly prompt µ to role-play (Li et al., 1863

2023a) the triad consisting of three participants 1864

in the weight-deduction process. Furthermore, to 1865

generate more realistic utterances, we utilize par- 1866

ticipant personality-facet combinations (Pan and 1867

Zeng, 2023; Mao et al., 2024) from Big 513 person- 1868

ality classifications (Goldberg, 2013) as additional 1869

attributes in the prompt. In other words, each sam- 1870

pled full-dialogue contains a unique combination 1871

of these personality-facet combinations for each 1872

participant (total 3,375 combinations). 1873

Similarly, for each sampled frictive state within a 1874

conversation (dialogue), we generated N = 6 fric- 1875

tion interventions with corresponding effectiveness 1876

scores in resolving the frictive state. Since WTD 1877

data does not contain any probing intervention sam- 1878

ples, in order to further ground these generations 1879

to the task, we also provide a one-shot example of 1880

a naturally occurring friction intervention (marked 1881

with P1(f) in Fig. 4). In total, out of the expected 1882

3,375 personality-facet combinations (3*5 unique 1883

combinations for each participant), 3,362 were suc- 1884

cessfully generated using µ and parsed. Finally, to 1885

create the preference pairs, for each frictive state, 1886

we paired the lowest scoring response with all the 1887

higher scoring ones, akin to the West-of-N tech- 1888

nique. This resulted in 56, 689 preference pairs 1889

13See Tab. 7 for our full set of personality-type and facet
combinations. Similar to (Mao et al., 2024), we choose three
personality types from Big 5 framework for consistency.
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after excluding 54 dialogues (amounting to 8001890

preference pairs) for the test set. This process fi-1891

nally resulted in the WTD Simulated Friction1892

dataset. Preferred interventions achieved mean1893

scores of 8.48±1.52 (train) and 8.51±1.50 (test),1894

while dispreferred interventions scored 6.01±0.881895

(train) and 6.08±0.87 (test), demonstrating consis-1896

tent preference margins across splits.1897

Personality Types P1 P2 P3

Extraversion 4740 4889 4741
Neuroticism 5928 5591 5921
Agreeableness 4573 4761 4579

Table 8: Friction Count for Participants
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FRICTION GENERATION PROMPT: DELIDATA DATASET

System: You are an expert in collaborative reasoning and dialogue analysis. Your task is to
detect *frictive states* and generate *friction interventions* that resolve them in group dialogue.
A frictive state occurs when a participant makes a claim that contradicts another participant’s
belief model (i.e., their assumed understanding of the rule or task constraints), leading to
misalignment in reasoning that could hinder progress. Friction interventions encourage self-
reflection in participants and prompt them to reevaluate these contradicting beliefs and assumptions.

User: Analyze this dialogue about the Wason card selection task. Participants see four
cards showing numbers or letters and must test this rule: "All cards with vowels on one
side have an even number on the other." Remember that the correct answer is to select a
vowel and an odd number. Provide [N] frictive states with their resolutions in the following
JSON format. For each state, include both a preferred and less preferred intervention that
could help resolve the conflict. Additionally, provide a one-sentence rationale for your intervention.

IMPORTANT: - Do not analyze utterances labeled as "probing" or statements immedi-
ately before them, as these frictive states have already been detected.
- For each frictive state detected, you should:
* Identify the dialogue index where it occurs
* Summarize the conflicting beliefs
* Explain why the contradiction affects reasoning

Here is the provided dialogue:
[Dialogue]

Message ID: [index_where_friction_occurs]
Contradiction: [describe_the_conflicting_beliefs]
Contradiction Reason: [explain_why_the_contradiction_affects_reasoning]

Preferred Intervention:
Statement: [your_friction_intervention]
Rationale: [your_rationale]
Score: [your_score]

Less Preferred Intervention:
Statement: [your_friction_intervention]
Rationale: [your_rationale]
Score: [your_score]

Figure 2: Delidata (Karadzhov et al., 2023) Friction Generation Prompt. We use GPT-4o as our sampling distribution
µ and prompt it to simultaneously generate frictive states and friction interventions. For diversity, we use the default
temperature of 1. This process implicitly provides us with preference rankings between intervention, via the reward
scores. See Section 3 for definitions of frictive states and friction interventions. Note that we exclude already-present
“probing” interventions in this generation process since are present in the original Delidata annotations.
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FRICTION GENERATION PROMPT: WEIGHTS TASK DATASET (WTD ORIGINAL)

System: You are an expert in collaborative reasoning and dialogue analysis. Your task is to
detect *frictive states* and generate *friction interventions* that resolve them in group dialogue.
A frictive state occurs when a participant makes a claim that contradicts another participant’s
belief model (i.e., their assumed understanding of the rule or task constraints), leading to
misalignment in reasoning that could hinder progress. Friction interventions encourage self-
reflection in participants and prompt them to reevaluate these contradicting beliefs and assumptions.

User: Analyze this dialogue about the Weights Task dataset. Three participants (P1, P2,
and P3) are collaborating to determine the weights of colored blocks using a scale.

Block Weights (in grams):
- Red block: 10g
- Blue block: 10g
- Green block: 20g
- Purple block: 30g
- Yellow block: 50g

Game Rules:
1. Participants can only weigh two blocks at a time
2. They are told the red block’s weight at the start
3. All other block weights are initially unknown
4. Scale slider is not needed (blocks are in 10g increments)

Provide [N] frictive states with their resolutions in the following JSON format. For each
state, include both a preferred and less preferred intervention that could help resolve the conflict.
Additionally, provide a one-sentence rationale for your intervention.
Here is the provided dialogue:
[Dialogue]

Message ID: [index_where_friction_occurs]
Contradiction: [describe_the_conflicting_beliefs]
Contradiction Reason: [explain_why_the_contradiction_affects_reasoning]

Preferred Intervention:
Statement: [your_friction_intervention]
Rationale: [your_rationale]
Score: [your_score]

Less Preferred Intervention:
Statement: [your_friction_intervention]
Rationale: [your_rationale]
Score: [your_score]

Figure 3: Weights Task dataset (Khebour et al., 2024b) Friction Generation Prompt. We use GPT-4o as our sampling
distribution µ and prompt it to simultaneously generate frictive states and friction interventions. For diversity, we
use the default temperature of 1.
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FRICTION GENERATION PROMPT: WEIGHTS TASK DATASET (WTD SIMULATED)

System: You are an expert in collaborative reasoning and dialogue analysis. Your task is to
*generate a complete dialogue* where participants (P1, P2, P3) discuss which block to measure
next and how to measure them. The three participants have distinct personality types that influence
their behavior and dialog must reflect these personality traits in their communication style and
behavior. The dialog is considered complete when all block weights are measured and agreed
upon. Additionally, identify frictive states within the dialogue and provide N friction interventions
at these points.

[Definition: Frictive State]
[Definition: Friction Intervention]

User: Three participants (P1, P2, P3) work together in the Weights Task to determine the weights
of colored blocks (red=10g, blue=10g, green=20g, purple=30g, yellow=50g). They can only
weigh two blocks at a time, start knowing only the red block’s weight, and use a scale with 10g
increments (no slider needed).
Your tasks:
Generate a full dialogue until all weights are correctly identified and agreed upon.
Identify frictive states where reasoning misalignment occurs.
Provide N friction interventions with their corresponding rationales at these points. Rank them by
effectiveness in resolving the conflict. Assign each a quality score from 1 to 10.

P1 has {personality_type} personality type with high {personality_facet}.
Here is an example dialogue where friction statements are labeled as (f). Actions of participants
are provided within “[]” blocks.

P2: [pointing towards the purple block first and then towards the blue block] I think this
one is purple and this one is blue.
P3: [reading from the laptop screen] Ok so blue is ten and purple is
P3: [looking at the blocks and asking a rhetorical question] Thirty
P1 (f): [putting green and red blocks on the left side of the scale and purple block on the right
side] Yes verify real quick but I think it is
P2: [observing the balanced scale] Yes thirty
P1: [removing green, red, and purple blocks from the scale] Yeah we got them yeah

Generated Dialogue:
[Full_generated_dialogue_until_completion]

Message ID: [index_where_friction_occurs]
Contradiction: [describe_the_conflicting_beliefs]
Contradiction Reason: [explain_why_the_contradiction_affects_reasoning]

Friction Interventions:
Statement: [your_friction_intervention]
Rationale: [your_rationale]
Score: [your_score]

Figure 4: “Simulated” Weights Task dataset (WTD Simulated) Friction Generation Prompt.To ground these friction
interventions with personality-traits of the participants, we use (Mao et al., 2024)’s prompting framework with
personality-facet combinations. We use GPT-4o as our sampling distribution µ and prompt it to simultaneously
generate frictive states and friction interventions. For diversity, we use the default temperature of 1.
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D.3 Tie Counts: GPT-4o Evaluation1898

Fig. 5 shows the tie-count distribution (baselines vs.1899

SFT model completions) over our 7 preference di-1900

mensions on DeliData (top), Simulated WTD (mid-1901

dle) and Original WTD (bottom) datasets, when1902

evaluated for win-rate computations using scores1903

assigned by the LLM-judge (GPT-4o). To avoid1904

positional bias in the placement of the sampled1905

completions (friction interventions), we swap the1906

positions of the two candidate samples in each run1907

and then report the mean tie-count across each pref-1908

erence dimension. On average, Fig. 5 reveals that1909

the LLM-judge have lower raw-agreement on di-1910

mensions such as consistency of the friction inter-1911

vention with its rationale (rationale_fit), relevance1912

and thought_proving on all three datasets compared1913

to aspects like gold-alignment, specificity and im-1914

pact. This is expected since surface-level alignment1915

with the golden samples are easier to assign a clear1916

preference compared to metrics like rationale con-1917

sistency especially when interventions from both1918

the candidate and the opponent are well-justified.1919

Consistent with our results from Table 1, we find1920

that FAAF model tends to tie less than other base-1921

lines on average. This trends is more pronounced1922

in the WTD datasets consistent with FAAF’s overall1923

performance as shown in our main results.1924

D.4 Human Validation of Generated Friction1925

Interventions1926

Following previous work that evaluates LLM-1927

generated annotations and outputs (Wiegreffe et al.,1928

2021, 2022; Nath et al., 2024a,c), in addition to1929

choosing the winning intervention, we asked the1930

human annotators14 to evaluate the candidates in1931

each sample across dimensions of reasoning, speci-1932

ficity, and thought provoking. Annotators were1933

asked to rate both candidate interventions on a 5-1934

point Likert-type scale. For analysis, we bucketed1935

the ratings together by valence—1 & 2: negative1936

valence (-1), 3: neutral valence (0), and 4 & 5: pos-1937

itive valence (1), and calculated average valences1938

and Krippendorff’s α and Cohen’s κ. We find that1939

the average valence ratings of the various dimen-1940

sions is low, very close to neutral, as are the α and1941

κ values (α = 0.276, κ = 0.205 on DeliData sam-1942

ples, α = −0.265, κ = 0.004 on WTD). There1943

is little agreement on the qualities of the friction1944

14Our two human annotators have the following demo-
graphic breakdown: both male, college undergraduates, one
Caucasian, one African, both fluent English speakers.

statement which suggests that although the anno- 1945

tators usually have strong agreement that there is 1946

a clear winner for each pair (see Sec. 4.2), there 1947

is a lot of subjectivity on the qualities of these ut- 1948

terances. While the winning utterance was judged 1949

to be better at prompting reflection or redirecting 1950

the dialogue, it may nor be entirely clear to the 1951

annotators why. In addition, these qualities are 1952

loosely-derived from other human-LLM validation 1953

frameworks, which usually align somewhat with 1954

how LLMs themselves score things, which is often 1955

based on specific detail and level of informativity. 1956

These might not actually be the best qualities to 1957

emphasize in a collaborative dialogue, because they 1958

tend to violate Gricean principles (Grice, 1975) in 1959

a collaborative context, due to informativity and 1960

specific detail leading to redundancy, violating the 1961

maxim of quantity, etc. 1962
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Figure 5: Comparison of average tie counts of baselines against SFT model over two runs across our 7 distinct
dimensions (metrics) when evaluated using our GPT-4o-based LLM-as-a-judge evaluation in a "preference"-based
setting (see Fig. 7)—on DeliData (top), Simulated WTD (middle) and Original WTD (bottom). Note that there were
no ties in GPT’s "overall" preference between a baseline vs SFT model.

D.5 Training Settings and Hyperparameters1963

As motivated in Sec. 4, FAAF-aligned πθ learns1964

to distinguish signals that determine why a par-1965

ticular intervention is more preferred by explic-1966

itly conditioning its implicit reward estimation on1967

the frictive-state ϕ. This allows the model to esti- 1968

mate the true preference distribution P by balanc- 1969

ing its load, from learning both with and without 1970

ϕ-conditioning, given a context. This is empiri- 1971

cally seen in Fig. 6 (top), where πθ displays a bal- 1972
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anced15 learning of “preference-strengths” between1973

the winning and losing response (via the winning1974

and losing response rewards as well as margins1975

conditioned on ϕ), subject to the KL-regularization1976

strength parameter β. We use the TRL Library’s1977

trainer classes for efficient multi-GPU training.1978

Hyperparameters for baselines All our pref-1979

erence alignment baselines:DPO (Rafailov et al.,1980

2024b), IPO (Azar et al., 2024) and PPO (Schul-1981

man et al., 2017) are initialized with the Supervised-1982

finetuned (SFT) models that were trained on the1983

winning responses (fw) of DeliData and Simulated1984

WTD training sets, following prior work to ensure1985

the SFT model has reasonable support over the1986

winning responses generated from µ.1987

For SFT models, we initialize them from the1988

base meta-llama/Meta-Llama-3-8B-Instruct1989

model in order to leverage its instruction follow-1990

ing and general conversational abilities (AI@Meta,1991

2024). Due to compute constraints, we conducted1992

all our training experiments with LoRA (Low-Rank1993

Adaptation of Large Language Models), where1994

LoRA α = 16, LoRA dropout = 0.05 and a LoRA1995

R of 8 was used in training with the PEFT16 and1996

SFTT17 trainers from the TRL library. We use the1997

bitsandbytes18 library to load our models in 4-bit1998

quantization for more cost-efficient training.1999

Additionally, as mentioned in Sec. 5, we only2000

compute the loss on completions (includes both2001

frictive states ϕ and interventions fw) using a2002

ConstantLengthDataset format for more effi-2003

cient training. We use a learning-rate (LR) of 1e−42004

with AdamW (Loshchilov et al., 2017; Dettmers2005

et al., 2024) optimization with a cosine LR sched-2006

uler with a weight-decay of 0.05 and 100 warm-up2007

steps. We train the SFT models for 6000 steps (≈2008

1.5 epochs with approximately 58k samples) with2009

an effective batch-size of 16 (gradient accumula-2010

tion of 4) that reasonably achieves convergence on2011

a 5% validation set randomly sampled from the2012

training sets of both datasets. For context-length,2013

we use a maximum length of 4096 tokens.2014

Offline baselines For DPO and IPO, we use sim-2015

ilar LoRA settings with a max_length (including2016

15By balance, we mean that both ϕ-conditioned and ϕ-
unconditioned implicit rewards capture preference strengths
from the data.

16https://huggingface.co/docs/peft/index
17https://huggingface.co/docs/trl/en/sft_

trainer
18https://huggingface.co/docs/transformers/

main/en/quantization/bitsandbytes

both prompts and responses) for 4096 tokens with 2017

a max_prompt_length of 1024 tokens that only 2018

minimally filters our preference pairs that exceed 2019

this length, and helps avoid out-of-memory (OOM) 2020

issues during training. We train for 2000 steps 2021

with an effective batch size of 32 and an LR of 2022

5e − 6, following default settings. Note that for 2023

IPO, we normalize the log-probabilities of the pre- 2024

ferred and the dispreferred responses using their 2025

token-lengths. 2026

PPO baseline For PPO, we additionally train- 2027

ing an OPT 1.3B reward model (RM) follwing 2028

prior work (Hong et al., 2024) using a standard 2029

Bradley-Terry loss formulation using the TRL re- 2030

ward modeling library.19 Due to PPO’s excessive 2031

compute requirements, for policy training, we use 2032

an effective batch size of 8 with a mini-batch size 2033

of 4 and gradient accumulation per 2 steps and 2034

train for 4,000 batches for two epochs. We con- 2035

strain response tokens to be between 180 and 256 2036

tokens using a LengthSampler while the queries 2037

are truncated to 1,024 tokens, with LR of 3e−6 for 2038

DeliData and 1.41e− 6 for Simulated WTD. For 2039

sampling response tokens, we use a top-p of 1.0 for 2040

diversity. We found that subtracting the baseline 2041

reward for the golden friction interventions (fw) 2042

from the RM-assigned rewards stabilizes training. 2043

Therefore, we report results using this method in 2044

Table 1 and Table 2. 2045

FAAF Training Settings For training FAAF, we 2046

use a batch size of 8 with the same PEFT/LoRA set- 2047

tings mentioned above and train for 2000 steps with 2048

a slightly smaller LR of 5e− 7, due to the smaller 2049

batch-sizes. For efficiency, we compute both 2050

the ϕ-conditioned (πθ(f |ϕ, x)) and unconditioned 2051

(πθ(f |x)) policy logits in parallel within each for- 2052

ward pass. The winning (fw) and losing (fl) inter- 2053

vention pairs for each conditioning type are batched 2054

together, requiring only two forward passes total 2055

per batch. We implement this using a modified ver- 2056

sion of the DPO Trainer20 from TRL, adapting it to 2057

handle the dual policy outputs. For data preprocess- 2058

ing, we filter pairs exceeding max_length of 2,500 2059

and 3,000 tokens in DeliData and Simulated WTD 2060

respectively, with max_prompt_length set to 1024 2061

tokens. Following standard practice, we compute 2062

token-length normalized log-probabilities for more 2063

19https://github.com/huggingface/trl/blob/main/
trl/trainer/reward_trainer.py

20https://huggingface.co/docs/trl/main/en/dpo_
trainer
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stable training. For the KL-regularization hyper-2064

parameter β, we conducted an ablation study over2065

β ∈ {10, 5, 1, 0.01}. As shown in Fig. 6, β = 102066

achieves optimal performance across multiple met-2067

rics: (1) higher implicit reward accuracy in both2068

ϕ-conditioned and unconditioned policies, (2) bet-2069

ter reward margins between winning and losing2070

interventions, and (3) more stable convergence of2071

the FAAF loss, while NLL loss or cross-entropy loss2072

is relatively lower than lower β values. Notably,2073

while smaller β values (e.g., β = 0.01) fail to dis-2074

tinguish preference margins effectively, β = 102075

provides sufficient reward margins. We therefore2076

use β = 10 for all FAAF experiments reported in2077

our results.2078

Training Hardware We train all our models that2079

require a reference model in memory on two Nvidia2080

A100 GPUs, while the OPT 1.3B reward model2081

(full-parameter training) and the SFT model were2082

trained on a single A100 GPU. Training a single2083

baseline for 2000 steps roughly took 12 hours of2084

GPU compute, but PPO models that were trained2085

for 4000 minibatches of size 8 took roughly 242086

hours to train until convergence.2087
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Figure 6: Ablation study of FAAF’s β hyperparameter (β ∈ {10, 5, 1, 0.01}) during training on the Simulated WTD
data (top-half) and DeliData datasets (bottom-half) across 2k and 1k training steps respectively. Higher β values
(e.g., β = 10) show better implicit reward estimation as shown in Reward Accuracy plots and estimated preference-
strengths (Reward Margins), while very small values (β = 0.01) fail to distinguish preferences effectively. β = 10
also minimizes NLL and FAAF losses suggesting model stability and better convergence. As such, we report results
with FAAF models trained with β = 10 in Table 1 and Table 2
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E Friction Intervention Evaluation2088

Prompts and Sampled Representative2089

Interventions2090

Fig. 7 shows prompt used for friction intervention2091

assessments in an LLM-as-a-judge format. We use2092

a standard format (Cui et al., 2024) but adapt fric-2093

tion preference dimensions to collaborative task-2094

specific settings. This prompt systematically scores2095

friction interventions on 7 target dimensions of2096

friction intervention quality such as correct reason-2097

ing, consistency with the agent’s justification for2098

friction, alignment with golden friction samples,2099

clarity etc. For sampling from GPT-4o, we use2100

standard settings with a nucleus sampling parame-2101

ter (top-p) (Holtzman et al., 2019) and temperature2102

of 1.2103

Tables 9–12 show some representative interven-2104

tions from each baseline and FAAF.2105
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PAIRWISE LLM-AS-A-JUDGE EVALUATION PROMPT: FRICTION INTERVENTIONS

System: You are an expert evaluating the quality of friction interventions in collaborative
problem-solving.

Game-definition: Participants (P1, P2, P3) are solving a block-weighing puzzle. They
can only weigh two blocks at a time and know the red block is 10g. They must determine weights
of all blocks (blue=10g, green=20g, purple=30g, yellow=50g) but don’t know these values
initially. A friction intervention is an indirect persuasion statement that prompts self-reflection and
reevaluation of assumptions, like asking "Are we sure?" or suggesting to revisit steps. You must
rate each intervention (between 1 to 5) along these **dimensions** given the json format below.

[Dialogue]
[Gold intervention]
[Intervention A]
[Rationale A]
[Intervention B]
[Rationale B]

You must a choice between which of two interventions is more preferable and provide
one sentence explanation at the end.

1. Relevance: How well does the intervention address key issues or assumptions in the reasoning
process?
2. Gold Alignment: How well does the friction intervention align with the golden friction sample?
3. Actionability: Does the friction intervention provide actionable guidance or suggest concrete
steps for participants to improve their reasoning?
4. Rationale Fit: How well does the provided rationale align with the preference for the friction
intervention?
5. Thought-Provoking: Encourages self-reflection
6. Specificity: Does the intervention pinpoint specific flaws, assumptions, or gaps?
7. Impact: To what extent does the friction intervention have the potential to change the course of
the participants’ reasoning?

Format your response as follows:

A: relevance: [1 − 5], gold_alignment: [1 − 5], actionability: [1 − 5], rationale_fit: [1 − 5],
thought_provoking: [1− 5], specificity: [1− 5], impact: [1− 5]
B: similar format
Winner: [’A’ or ’B’]
Rationale: [One sentence explanation]

Figure 7: Evaluation prompt used for friction intervention assessments in an LLM-as-a-judge format.
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Prompt You are an expert in collaborative task analysis and reasoning. Your task is to analyze the dialogue history
involving three participants (P1, P2, and P3) trying to deduce the weights of certain blocks.
For each dialogue:
<belief_state> Identify reasoning flaws or misunderstandings. </belief_state>
<rationale> Justify the need for intervention and its impact. </rationale>
<friction> Generate an intervention to prompt reflection and alignment. </friction>
User Dialogue:
P1: Alright, let’s get started! I say we measure the blue block against the red block first. Since we know the
red is 10 grams, it’ll give us a good starting point! P2: Great idea! I’m curious if the blue block is heavier or
lighter. Let’s do it! P3: I’m excited to see what we find! Measuring the blue block first sounds perfect. P1:
(Weighs blue block against red) Wow, the blue block is also balancing with the red! So, it must weigh 10
grams too! P2: Awesome! Now we know two blocks weigh the same. What should we do next? P3: Let’s
measure the green block against one of the 10-gram blocks! I think it might be heavier. P1: Sounds good!
Let’s weigh the green block against the blue block. P2: (Weighs green block against blue) Whoa! The green
block is definitely heavier! P3: That’s exciting! It must weigh more than 10 grams. I can feel it! P1: But
wait, how much heavier do you think it is? Should we weigh it against the red block next? P2: Yeah, let’s do
that! But should we assume it’s 20 grams just because it feels heavier? P3: I think we should measure it first
before jumping to conclusions! P1: (Weighs green block against red) Yes! The green is heavier, but I think
we should check against another 10-gram block to confirm. P2: Good point! But what if we’re overthinking
this? What if it’s not 20 grams? Maybe we should try weighing it against the purple block? P3: That’s an
interesting idea! We could find out if the green block is less than 30 grams. P1: (Weighs green block against
purple) Oh wow, it’s balancing! So, the green block is definitely less than 30 grams. P2: So, it must be 20
grams then! What’s next? P3: Let’s measure the purple block now. I’m really curious about how heavy it is!
P1: (Weighs purple block against green) It’s heavier! It must be the next heavier one, but I’m not sure about
its exact weight. P2: Maybe we should measure it against the yellow block next?
### Assistant:

Gold (GPT-4o)
Friction Let’s not assume anything about the yellow block’s weight until we weigh it against the purple one!

Model Outputs
FAAF Belief State: P1 believes the green block weighs 20 grams, P2 is unsure about the exact weight of the green

block, and P3 is cautious about making assumptions about the purple block’s weight.
Friction: Wait, are we jumping to conclusions about the green block’s weight? We’ve only confirmed it’s
less than 30 grams, but we haven’t ruled out the possibility that it’s actually 15 or 25 grams. Let’s make sure
we’re not overestimating its weight before moving on to the next block.

DPO Belief State: P1 believes that the blue block weighs 10 grams since it balances with the red block. P2 is
considering the possibility that the green block might weigh 20 grams since it feels heavier, but is uncertain
and open to further measurement. P3 is considering the weight of the purple block, is curious, and wants to
measure it to confirm its weight, but is not assuming a specific value yet.
Friction: Hold on, maybe we’re jumping to conclusions about the green block’s weight. What if it’s not 20
grams? Can we really confirm that by just feeling it? Let’s consider other possibilities and make sure we’re
not relying on unverified assumptions.

PPO Belief State: P1 believes the green block is probably 20 grams based on its perceived "heft" (assumed
connection between weight and feeling). P2 is cautious and thinks they shouldn’t jump to conclusions. P3 is
open-minded and willing to consider multiple options.
Friction: You know, we’re getting ahead of ourselves by assuming the green block weighs 20 grams based
on its size or feeling. Can we take a step back and really think about this? We’ve already found one block
with the same weight as the red block. What if we weigh the green block against something else, like the
yellow block? That would give us a better sense of where its weight really falls.

SFT Belief State: P1 believes the yellow block is likely 50g. P2 is unsure about the yellow block’s weight but
thinks it might be 50g. P3 is unsure about the yellow block’s weight and thinks it might be 50g or heavier.
Friction: What if we measure the yellow block against the green block? That would give us some clarity
about its weight.

Table 9: Comparison of model-generated friction interventions on the evaluation prompts of the Simulated WTD
dataset.
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Prompt You are an expert in collaborative task analysis and reasoning. Your task is to analyze the dialogue history
involving three participants (P1, P2, and P3) trying to deduce the weights of certain blocks.
For each dialogue:
<belief_state> Identify reasoning flaws or misunderstandings. </belief_state>
<rationale> Justify the need for intervention and its impact. </rationale>
<friction> Generate an intervention to prompt reflection and alignment. </friction>
User Dialogue:
P1: this is nine rb so P3: oh no they don’t have any hints here P3: Eighty gram sounds seems like a ninety
gram to me but P3: it’s cool we have to i guess eighty alright P2: Eighty let’s let’s go for eighty Yeah P3: I
would go for ninety but you guys are going for eighty Alright Cool Okay P1: I would have gone for one thirty
P2: Eighty there you go Yeah P4: For the final part of this test read the scenario and estimate the weight of the
missing second mystery block P2: what’s this P4: You will have two attempts to estimate and explain your
answer you can now continue the survey P1: can you read it out loud or something P3: well the factory that
creates the wooden blocks did not send us the second mystery block P2: Okay P3: you have two opportunities
to estimate the weight of the second block explain in one two sentences how you determined your estimate
indicate the weight of the second mystery block P1: fibonacci like let’s say that’s the first one according to
our translate thirteen one thirty P2: eight mystery block’s the first one so eight plus five thirteen yeah there is
one thirty eight plus five P3: is mystery block the first mystery block or the second mystery block P2: just do
it P3: Wait wait wait a second P3: so mystery block was the first mystery block P2: Yeah P3: and we already
did that now this is yeah oh okay okay okay okay right P2: yeah the second one means according to that
statement is the second one mystery block two P2: So eight plus five one thirty P1: makes sense to me as
much sense as i can make of it
### Assistant:

Gold (GPT-4o)
Friction Let’s not assume anything about the yellow block’s weight until we weigh it against the purple one!

Model Outputs
FAAF Belief State: P1 believes that the second mystery block is 130 grams, based on the Fibonacci sequence and

the weight of the first mystery block. P2 believes that the second mystery block is also 130 grams, following
P1’s reasoning. P3 is unsure and questioning the assumption that the second mystery block is the same as the
first mystery block.
Friction: Hey guys, I think we’re making a mistake here. We already estimated the weight of the first mystery
block, and now we’re assuming the second mystery block is the same? That doesn’t seem right. Can we take
a step back and think about this? Maybe there’s another way to approach this?

DPO Belief State: P1 believes the pattern is linear and straightforward, assuming each block weighs 5 grams more
than the previous one (e.g., 13 = 8 + 5, 18 = 13 + 5). P2 also assumes a linear pattern but thinks the mystery
block is the second one. P3 is skeptical about the pattern, especially the value 80.
Friction: Wait a minute, are we too quick to assume the pattern is linear? What if there’s another factor at
play? For instance, what if the weights are related to the block’s surface area or material composition? Could
our assumptions be leading us down the wrong path?

PPO Belief State: P1 believes that the first mystery block has a weight of 130g, as they mentioned "fibonacci
like, let’s say that’s the first one, according to our translate, thirteen, one thirty". P2 believes that the second
mystery block has a weight of 135g, as they calculated "eight plus five, thirteen, yeah, there is one thirty eight
plus five". P3 is unsure and hesitant, questioning the accuracy of the previous estimates.
Friction: Hey, let’s take a step back and re-examine our assumptions. Before we jump to conclusions, can
we re-read the instructions and see if there’s any additional information we missed? Maybe we can approach
this problem from a different angle, rather than relying on our initial guesses?

SFT Belief State: P1 believes the second mystery block is likely 130 grams based on the Fibonacci sequence. P2
believes the second mystery block is 80 grams based on the initial estimates. P3 believes the second mystery
block could be either 80 grams or 90 grams, expressing confusion about the weight.
Friction: I think we might have misinterpreted the blocks again.

Table 10: Comparison of model-generated friction interventions on the evaluation prompts of the Original WTD
dataset.
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Prompt You are an expert in collaborative task analysis and reasoning. Participants must test the rule: "All cards with
vowels have an even number on the other side." A common mistake is verifying only one direction—ignoring
the need to check whether odd-numbered cards might have vowels. This incomplete reasoning risks false
validation.
For each dialogue:
<belief_state> Identify reasoning flaws or misunderstandings. </belief_state>
<rationale> Justify the need for intervention and its impact. </rationale>
<friction> Generate an intervention to prompt reflection and alignment. </friction>
User Dialogue:
Alpaca: The task we just submitted
Narwhal: "the instructions aren’t clear"
Falcon: Which card did you choose? I chose U and 4
Narwhal: So which cards to turn?
Alpaca: So what did everyone submit? I did U and 5.
Duck: "I agree but we’re supposed to flip the U and 4, right?"
Narwhal: U and B
Duck: Why would you flip B?
Narwhal: Because they are both letters.
Falcon: We should choose cards with vowels or an even number, I guess just U and 4.
Narwhal: U,4
Alpaca: Well, at least we have a consensus on U.
Narwhal: U
Narwhal: U
Alpaca: Yes, we all said the letter U is one of the cards to flip.
### Assistant:

Gold (GPT-4o)
Friction How do you see consonants related to the even number requirement? Is it necessary in our current tests?

Model Outputs
FAAF Belief State: Alpaca and Narwhal seem to be focusing on the "vowel" part of the rule, but not considering the

"even number" part. Duck is trying to correct Narwhal, but Narwhal is not listening to the correction. Falcon
is partially correct in suggesting that they should choose cards with vowels or even numbers, but doesn’t
specify which ones.
Friction: Hey, wait a minute! We’re only considering one side of the rule. What about the other side? What
if we flip a card with an odd number and it has a vowel? Wouldn’t that mean we need to flip it too?

DPO Belief State: None
Friction: Can we clarify the reasoning behind our choices? Let’s try to think about both directions of the
rule. What would happen if we choose a card with an odd number? Would it necessarily mean it doesn’t have
a vowel, or could it still have a vowel? How about the other direction? If we choose a card with a vowel,
would it necessarily have an even number?

PPO Belief State: Narwhal states that ‘B’ is not a vowel, which implies a misunderstanding of the rule regarding
non-vowel cards.This affects reasoning as it leads to a potential oversight of the necessity to test odd-numbered
cards, which could lead to incorrect conclusions about the rule.
Friction: What does that mean for the other cards we should check?

SFT Belief State: Duck states ‘the other one is 5,’ which implies they believe the 4 is already accounted for, while
it is unclear whether 4 is being considered as part of the rule.The lack of clarity on whether the 4 is being
considered could lead to confusion about the relevance of the odd-numbered card in the context of the rule.
Friction: Could we clarify if the 4 is being considered as part of the rule or not?

Table 11: Comparison of model-generated friction interventions on the evaluation prompts of the DeliData dataset.
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Prompt You are an expert in collaborative task analysis and reasoning. Participants must test the rule: "All cards with
vowels have an even number on the other side." A common mistake is verifying only one direction—ignoring
the need to check whether odd-numbered cards might have vowels. This incomplete reasoning risks false
validation.
For each dialogue:
<belief_state> Identify reasoning flaws or misunderstandings. </belief_state>
<rationale> Justify the need for intervention and its impact. </rationale>
<friction> Generate an intervention to prompt reflection and alignment. </friction>
User Dialogue:
Dolphin: "thinking about it, I guess it wouldn’t matter what the C has on it"
Llama: would be E be one to turn?
Dolphin: "wouldn’t you want to also check the 5, to test the theory? because if there is a vowel on the other
side, that would disprove the theory"
Dolphin: E would definitely need to be turned
Kiwi: Oh true, the 5 might need to be turned as well
Dolphin: so, maybe E & 5 is the answer?
Llama: I agree with the 5. unsure with the 6. but i dont think C should be turned
Llama: E and 5 seems like the best answer to me as well
Kiwi: Yes E and 5
Dolphin: ok, that is what i am going to chose, e & 5
Kiwi: 5
Kiwi: E,5
Llama: same
Llama: E,5
Dolphin: it says we have to participate in the chat for at least 5 minutes before making our final selection.
have we been chatting for 5 minutes?
### Assistant:

Gold (GPT-4o
Friction What makes you think ‘just E’ is sufficient? Can you clarify your reasoning?

Model Outputs
FAAF Belief State: The participants seem to be engaging in a discussion about the rule "All cards with vowels have

an even number on the other side." However, there appears to be a misunderstanding about the directionality
of the rule. They are focusing on testing the rule by checking only one direction (vowels to even numbers)
without considering the other direction (even numbers to vowels).
Friction: Can we flip both sides of the coin to test the rule? Let’s not just focus on one direction. What if
we assume the rule holds true for odd numbers as well? How would that affect our understanding of the
situation?

DPO Belief State: It appears that the participants are making progress in their understanding of the rule, but there
is still a potential contradiction in their reasoning.
Friction: Hey team, let’s reflect on our reasoning. When we say ’all cards with vowels have even numbers,’
are we only considering one direction or both? Are we making assumptions about certain cards being
irrelevant? Can you think of any scenarios where an odd-numbered card might have a vowel on the other
side? Let’s take a moment to consider all possible outcomes before making our final decision.

PPO Belief State: Kiwi suggests turning the 5 and E, but there is a misunderstanding about the importance of the
5 in relation to the rule. The implication is that Kiwi believes the 5 is crucial to test the rule, which could lead
to incorrect conclusions if the group doesn’t fully understand why the 5 is necessary.
Friction: What do you think is the significance of the 5 in relation to the rule?

SFT Belief State: Kiwi’s statement ‘E and 5’ suggests a final conclusion without addressing potential errors, while
it doesn’t acknowledge the need for a more thorough discussion.This creates a misalignment in the reasoning
process, as Kiwi may not fully consider the implications of their conclusion, potentially leading to incorrect
submissions.
Friction: Could you explain why you’re confident in choosing ‘E and 5’ without further discussion?

Table 12: Comparison of model-generated friction interventions on the evaluation prompts of the DeliData dataset.
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