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Abstract

Primal heuristics are important for solving mixed integer linear programs, because
they find feasible solutions that facilitate branch and bound search. A prominent
group of primal heuristics are diving heuristics. They iteratively modify and
resolve linear programs to conduct a depth-first search from any node in the
search tree. Existing divers rely on generic decision rules that fail to exploit
structural commonality between similar problem instances that often arise in
practice. Therefore, we propose L2Dive to learn specific diving heuristics with
graph neural networks: We train generative models to predict variable assignments
and leverage the duality of linear programs to make diving decisions based on the
model’s predictions. L2Dive is fully integrated into the open-source solver SCIP.
We find that L2Dive outperforms standard divers to find better feasible solutions
on a range of combinatorial optimization problems. For real-world applications
from server load balancing and neural network verification, L2Dive improves the
primal-dual integral by up to 7% (35%) on average over a tuned (default) solver
baseline and reduces average solving time by 20% (29%).

1 Introduction

Mixed integer linear programming problems are optimization problems in which some decision
variables represent indivisible choices and thus must assume integer values. They arise in numerous
industrial applications, e.g., workload apportionment to balance server loads. They can be used to
solve combinatorial problems or to verify the robustness of neural networks [ 1, 44]. We write a
mixed integer linear program Mt .= (c, PT), with A € R™*" b e R™, ¢c,z, € R", m,7 € R, and
7 C{1,...,n} indexing the variables restricted to be integrals, as

zT::minTch, PT:{xeR”|Ax=b,1§x§ﬁ,a;jEZVjeZ} (D
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Typically, mixed integer linear programs are solved with a variant of branch and bound search [29,
B&BJ. This approach recursively builds a search tree, whose root represents the original problem in (1).
Child nodes are created by introducing additional constraints (branching) to partition the set of feasible
solutions. B&B uses bounds on the optimal solution to prune the tree and direct the search. To obtain
strong upper bounds for z', modern solvers typically rely on an array of primal heuristics. These
are methods designed to quickly find good feasible solutions or an optimal solution zf € X := {z €
PT | cTx = 2T}, Primal heuristics include problem-specific methods [e.g., 34, 30], variants of large
neighborhood search [15, 13, 7, 38], rounding procedures [47, 4] or diving heuristics [see e.g., 6, 48].

Diving heuristics are a prominent group of primal heuristics. They are based on the linear program
(LP) relaxation M* := (¢, P*) of the problem in (1) given by

z*::miglcTam P={zeR"|Az=b, s <z <7} 2)
reP*
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(a) Traditional approach: Diving heuristics in branch and bound
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Figure 1: Traditional diving heuristics are based on generic manual heuristics and integrated efficiently
into the branch and bound solver. In contrast, our approach L2Dive learns application-specific diving
heuristics by collecting feasible solutions for a set of training instances to train a generative model. At
test time, L2Dive uses the model predictions and leverages the duality of linear programs for diving.
Finally, we integrate L2Dive into an open-source branch and bound solver.

Diving heuristics attempt to drive the LP solution * € X* := argmincTx s.t. x € P* towards
integrality. For this purpose, they conduct a depth-first search from any node in the search tree
by repeatedly modifying and resolving linear programs. Diving heuristics are popular, because
linear programs can typically be solved relatively fast and hence a number of diving heuristics have
been proposed. However, standard divers rely on generic rules that fail to exploit problem-specific
characteristics. This is particularly severe in applications, where similar problem instances are solved
repeatedly and structural commonality exists. In this setting, learning is a promising alternative to
design effective divers with the ultimate goal of improving solver performance.

We propose L2Dive to learn such application-specific diving heuristics. L2Dive collects good feasible
solutions for some instances of a particular application and trains a generative model to minimize a
variational objective on them. The model is a graph neural network that, for a given mixed integer
linear program, predicts an assignment of the integer variables. At test time, L2Dive uses the model
prediction and leverages the duality of linear programs to select variables for diving and tighten their
bounds. We fully integrate L2Dive into the open-source solver SCIP and demonstrate the effectiveness
of our approach in two sets of experiments. Our approach is illustrated in First, we compare L2Dive
against existing diving heuristics on a common benchmark of combinatorial optimization problems
and show that it finds better feasible solutions with the same diving budget. Second, we use L2Dive
within branch and bound and test it on two real-world applications where we find that L2Dive
improves overall solver performance. For server load balancing, it improves the average primal-dual
integral by up to 7% (35%) over a tuned (default) solver baseline and in neural network verification it
reduces average solving time by 20% (29%).

2 Background

2.1 Diving Heuristics

Diving heuristics conduct a depth-first search in the branch and bound tree to explore a single root-
leaf path. They iteratively modify and solve linear programs to find feasible solutions. Algorithm 1
illustrates a generic diving heuristic. A dive can be initiated from any node in the branch and
bound tree and will return a (possibly empty) set of feasible solutions X for the original mixed
integer linear program in (1). Typically, diving heuristics alternate between tightening the bound of
a single candidate variable z; with j € C C 7 (line 5) and resolving the modified linear program
(line 7), possibly after propagating domain changes [1]. The resultant solution may be integral
(x; € Z, Y5 € ) or admit an integral solution via rounding [line 9, 1]. Eventually, the procedure
is guaranteed to result in at least one primal-feasible solution (line 10) or an infeasible program
(line 6). However, in practice solvers may prematurely abort a dive to curb its computational costs,
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for example by imposing a maximal diving depth (line 2), an iteration limit on the LP solver or a
bound on the objective value.

Diving heuristics feature prominently in integer programming. In contrast to large neighborhood
search, they only require repeatedly solving linear programs (in complexity class P) instead of small
integer programs (NP-hard). As a result, they tend to be considerably faster and more applicable
in practice. Diving heuristics may also leverage sophisticated rounding methods in each iteration
which makes them more likely to be successful. Various diving heuristics have been proposed. We
briefly list and describe the most common ones in Appendix A. They mostly differ in how they
select variables for bound tightening (line 3). For example, fractional diving selects the variable with
the lowest fractionality |27 — [} + 0.5]] in the LP solution, while /inesearch diving computes a
score s; for each variable based on the LP solutions at the current and the root node. All of these
diving heuristics choose integer variables for diving from the same set of candidates C. This set
of divable variables typically excludes integer variables that are slack variables [10, Chapter 1.1]
or that have already been fixed (r = 7). In general, diving heuristics apply to any mixed integer
linear program. Empirically, however, standard divers often tend to be only effective for certain
problems. For example, we found Farkas diving to deliver good results on a class of facility location
problems, but to be ineffective for instances of maximum independent set (Section 5.1). As a result,
modern solvers use an array of different diving heuristics during branch and bound. Selectively tuning
this diving ensemble can be effective in improving solver performance on particular applications
(Section 5). In contrast, our approach is to directly learn problem-specific diving heuristics for
particular applications and demonstrate in our experiments that this yields improvements in solver
performance over using a (tuned) ensemble of divers as is common practice.

Algorithm 1: Generic Diving Heuristic

Input: M T with relaxation M*, maximal depth dpax
Output: X, a (possibly empty) set of feasible solutions
Require : s, a scoring function to select variables for bound tightening

d=1
while d < d,,,, do
J = argmax,ecc 5;
Either m; < [z}] or 7; < |27 ]
P FP*H{EJ- <z Sfj}
if P* is infeasible then break;
x* = argmin{cTz | x € P*}
if z* is roundable then
Z = round(z™*)
X +— XUz}
end
d—d+1

Possibly update candidates C
end

2.2 Solver Performance and Primal Performance

The most intuitive way to assess the performance of a solver for mixed integer linear programs
is by measuring solving time, i.e., the average time it takes to solve a set of instances. However,
realistic instances are often not solved to completion, because this may be prohibitively expensive or
a particular application only requires bounds on the optimal solution, which the solver readily yields.
In these cases, it is common to consider the primal-dual gap':

. mAE 0 <25 <00
"Ypd(zaz ): [(EIREE)) (3)
1 else

"Note that we use a definition of the primal-dual gap that is used in SCIP 7.0.2 for the computation of the
integral and do not quantify the gap or the integral in per cent.



Here, z := c7Z is the upper (also known as primal) bound given by the feasible solution Z and Z* is a
global lower (also known as dual) bound on the optimal solution z'. Performance can be measured
by solving instances with a fixed cutoff time 7" and then computing the primal-dual gap ~y,q(Z7, 25,
where Z and Z; denote the solver’s best lower and upper bounds at time ¢ (if non-existent, then —oo
and +o0 respectively).

Primal-dual integral Unfortunately, measuring the primal-dual gap at time 7" is suspectible to the
particular choice of cutoff time. This is particularly troublesome, because the lower and upper bounds
of branch and bound solvers tend to improve in a stepwise fashion. In order to alleviate this issue, it is
common to integrate the primal-dual gap over the solving time and measure the primal-dual integral:

T
TulT) = [yt 2 @)

Primal gap When directly comparing diving heuristics with each other, it can be useful to consider
primal performance instead of solver performance. Primal performance assesses the quality of the
feasible solution Z a heuristic may find and can be measured by the primal gap:

Ww(Z) =2— 21 )

Sometimes, the primal gap is normalized by || which can be useful when p is averaged across
disparate instances. We do not normalize -, in this work.

3 Learning to Dive

We propose L2Dive to learn application-specific diving heuristics with graph neural networks. L2Dive
uses a generative model to predict an assignment for the integer variables of a given mixed integer
linear program. This model is learnt from a distribution of good feasible solutions collected initially
for a set of training instances of a particular application. The model is a graph neural network closely
related to the model in Gasse et al. [17]. It is trained to minimize a variational objective. At test time,
L2Dive leverages insights from the duality of linear programs to select variables and tighten their
bounds based on the model’s predictions. We fully integrate L2Dive into the open-source solver SCIP.

3.1 Learning from feasible solutions

We propose to learn a generative model for good feasible solutions of a given instance M. For this
purpose, we first pose a conditional probability distribution over the variables z:

—cTz/7 ifreX
—00 else

log pr (x| M) :oc { (6)

The distribution p, (x| M) is defined with respect to a set of good feasible solutions X for the given
instance. Solutions with a better objective are given larger mass as regulated by the temperature 7,
while solutions that are not known to be feasible or are not good (z ¢ X)) are given no probability
mass. In practice, a model for diving will only need to make predictions on the divable variables
x¢ that are integral, non-fixed and not slack (Section 2). Hence, our model will target the marginal
distribution p¢ (zc|MT) := 3. 1{xc € &} p- (x| MT).

Our goal is to learn a generative model gy that closely approximates the distribution pC. The model

qo will be used to make predictions on unseen test instances for which p, and X’ are unknown. To

learn a good generative model, our objective is to minimize the Kullback-Leibler divergence between
c

p7 and gg,

c t
5 P (ec|MT)
L(p%||qe) = EpT c|M") (qe(:chT) (7

jointly over all training instances. The sum in (7) can be evaluated exactly, because the number of
good feasible solutions in X tends to be small. Our model for gy is a variant of the graph neural



network described in Gasse et al. [17] and we give details in Appendix B. This model represents a
mixed integer linear program as a bipartite graph of variables and constraints (Figure 3 in Appendix B)
and its core are two bi-partite graph convolutions between variables and constraints (Figure 2 in
Appendix B). Our variant uses some of the variable and constraint features from Paulus et al. [35]
as well as batch normalization. It makes conditionally independent predictions for each integer
variable, such that gg(zc| M) := [Terqo(z; |MT). For binary variables, gg(z;|MT) is a Bernoulli

distribution and the model outputs the mean parameter 6. For general integer variables, gg (x| M) is
a sequence of Bernoulli distributions over the bitwise representation of the variable’s integer domain
and the model outputs a mean for each. Although conditionally independent predictions limit our
model to unimodal distributions, this parameterization delivered strong empirical performance in our
experiments (Section 5). It is possible to choose more delicate models for gy, such as autoregressive
models, but those will typically impose a larger cost for evaluations.

Solution augmentation At train time, we rely on the availability of a set of good feasible solutions
X for each instance. This is required to define pg in (6) and evaluate the objective in (7) on all training
instances. Several choices for X" are possible, and the effectiveness of our approach may depend on
them. For example, if X only contains poor feasible solutions, we cannot reasonably hope to learn
any good integer variable assignments. The most obvious choice perhaps is to let ¥ = {2}, where
x' is the best solution the solver finds within a given time limit 7. However, solvers are typically
configured to not only store z', but also a set number of its predecessors. Thus, alternatively some
or all of the solutions in store could be used to define X" at no additional expense. Lastly, many
instances of combinatorial optimization (e.g., set cover, independent set) exhibit strong symmetries
and multiple solutions with the same objective value may exist as a result. These can be identified
by using a standard solver to enumerate the solutions of an additional auxiliary mixed integer linear
program as described in Appendix C. We used this method to augment solutions in X for some of
our experiments. This technique may be of independent interest, because the problem of handling
symmetries is ubiquitous in machine learning for combinatorial optimization [28]. While it can be
expensive to collect feasible solutions for each training instance regardless of the choice of X, this
cost may be curbed, because we do not require X to contain the optimal solution. Moreover, the cost
is incurred only once and ahead of training, such that all solver calls are embarassingly parallelizable
across instances. In some cases, a practitioner may be able to draw on previous solver logs and not
be required to expend additional budget for data collection. Finally, any training expense will be
ultimately amortized in test time service.

3.2 Using a generative model for diving

At test time, we use our generative model gy to predict an assignment for the divable integer variables
x¢ of a given instance. Typically, we will choose Z¢ = arg max gg(zc|MT) to predict an assignment,
but assignments can also be sampled from the model, if multiple dives are attempted in parallel. To
use the prediction for diving, we need to decide which variable to select (line 3 in Algorithm 1) and
how to tighten its bounds (line 4). Ideally, our decision rules will admit a feasible solution at shallow
depths, i.e., only a few bounds must be tightened to result in an integral or roundable solution to the
diving linear program. Which variables should we tighten for this purpose and how? Compellingly,
the theory of linear programming affords some insight:

Proposition 1. Let & be a feasible solution for M as in (1). For the linear program M?*, its dual
linear program M, is defined in (11) in Appendix D. Let y* = (y;, yx,Yx) be an optimal solution
for M}, Let J(%) and J(Z) index the set of variables that violate complementary slackness (12)
between T and y*, such that

<
S

J@) = {i | (& —x;) 3, > 0)
T@) =) | (5~ 7;) 9% > 0}

and define J () := J(&) U J(Z). Let M7 := (c, P}) be the linear program, where the bounds of all
variables indexed by J(Z) are tightened, such that

Pi=P'n{z eR"|x; >7;Vj€ J(@), z; <&; Vje J(@)}

Then, & is an optimal solution to the linear program M3, i.e., T € argmingeps cTz.



Proof. I is clearly a feasible solution for M7. y* is a feasible solution for the dual linear program of
M7, because it is feasible for M7,.  and y* satisfy complementary slackness, hence Z is optimal. [J

This suggests that for a prediction &¢, the bounds of variables in J(Z¢) should be tightened to restore
complementary slackness. If the integer variable assignment Z is feasible and the candidate set
includes all integer variables, this will yield a diving linear program for which the assignment is
optimal and that may be detected by the LP solver. Unfortunately, this is not guaranteed in the
presence of slack variables (where typically C C 7) or if multiple optimal solutions exist (some
of which may not be integer feasible). In practice, it may thus be necessary to tighten additional
variables in C. Inspired by Proposition 1, we propose the following dual reasoning rule to select to
select a variable j* € C for tightening

g7 = argmaxs; .= qo(2;) + 1{j € J(Zc)} ®)

This rule will select any variables in J(&¢) before considering other variables for tightening. The
score s breaks ties by selecting the variable in whose predictions the model is most confident in.
Conveniently, the set J(Z) can be easily computed on the fly from the dual values y*, which standard
LP solvers readily emit on every call at no additional expense. We tighten 7r; = &; if £; < 7 and
we tighten 7; = Z; if ; > 27 to replace line 4 in Algorithm 1. We update the candidate set C in
line 13 to exclude variables whose value has been fixed, i.e., m; = T; as usual. We validate dual
reasoning in an ablation study in section 5.1.

3.3 Deployment

We fully integrate L2Dive into the open-source solver SCIP 7.0.2 [16]. This solver exposes a plug-in
for diving heuristics that implements an optimized version of Algorithm 1 in the programming
language C. We extend the solver’s Python interface [32] to include this plug-in and use it to realize
L2Dive. This integration facilitates direct comparison to all standard divers implemented in SCIP
(Section 5.1) and makes it easy to include L2Dive in SCIP for use in branch and bound (Section 5.2).
Importantly, we call our generative model only once at the initiation of a dive to predict a variable
assignment. While predictions may potentially improve with additional calls at deeper depths, this
limits the in-service overhead of our method. It also simplifies the collection of training data and
produced good results in our experiments (Section 5).

4 Related Work

Nair et al. [33] propose a method that learns to tighten a subset of the variable bounds. It spawns
a smaller sub-integer program which is then solved with an off-the-shelf branch and bound solver
to find feasible solutions for the original program. Sonnerat et al. [4 1] improve this approach using
imitation learning. Others explore reinforcement learning [49] or hybrids [40], but only focus on
improving primal performance. All of these methods are variants of large neighborhood search
[39, 2, 36], where a neighborhood for local search is not proposed heuristically, but learnt instead. In
contrast, our approach L2Dive does not propose a fixed neighborhood and it does not require access
to a branch and bound solver to run. Instead, we use our model’s predictions to iteratively modify
and solve linear programs instead of sub-integer programs. In practice, linear programs tend to solve
significantly faster which makes L2Dive more applicable. Khalil et al. [26] propose a method to
learn variable assignments from good feasible solutions, but combine their model predictions with a
heuristic rule for node selection, whereas we consider diving.

Overall, there is vivid interest in exploring the use of machine learning for integer programming
[5, 52, 31]. With regard to branch and bound, several works learn models for variable selection
in branching [25, 3, 17, 19, 42, 51]. Others focus on node selection in the search tree [20, 50] or
deal with cutting plane management [35, 22, 43, 9, 45]. Further, related work includes both general
[23, 24, 46] and specific [12, 9, 8] attempts of learning to configure the solver. To the best of our
knowledge, we are the first to propose learning to dive to improve the performance of branch and
bound solvers.



5 Experiments

The goal of our work is to learn application-specific diving heuristics to improve on existing diving
heuristics. We view other primal methods (Section 4) as complementary, and accordingly compare
primarily to other diving heuristics. We evaluated the effectiveness of L2Dive in two different
experiments and on a total of six datasets. The first set of experiments (Section 5.1) was designed to
study the diving performance of L2Dive in isolation and compare it against existing diving heuristics.
On a benchmark of four synthetic combinatorial optimization problems from previous work [17],
we performed single dives with each diver and measured the average primal gap. We found that
L2Dive outperformed all existing divers on every dataset and produced the best solutions amongst
all divers. The second set of experiments (Section 5.2) directly included L2Dive into the branch
and bound process of the open-source solver SCIP. The solver called L2Dive in place of existing
diving heuristics and our goal was to improve overall performance on real-world mixed integer linear
programs. We considered instances from neural network verification [33] and server load balancing in
distributed computing [18]. We measured performance with L2Dive against the default configuration
and a highly challenging baseline that tuned the solver’s diving ensemble. We found that L2Dive
improved the average primal-dual integral by 7% (35%) on load balancing and improved average
solving time by 20% (29%) on neural network verification over the tuned (default) solver.

We collected data for training and validation: In all experiments, we extracted a bipartite graph input
representation of each instance’s root node. On all but two datasets, we chose X = {x'} where xT is
the best solution the solver finds within a given time limit 7". For set cover and maximum independent
set only, we observed strong symmetries and used the solution augmentation described in Appendix C.
We trained separate models for each dataset. We trained each model with ADAM [27] for 100 epochs
in the first set of experiments and for 10 epochs in the second set of experiments. We individually
tuned the learning rate from a grid of [1072,1073, 10~%]. For each dataset, we chose the batch size
to exhaust the memory of a single NVIDIA GeForce GTX 1080 Ti device. We validated after every
epoch and chose the model that achieved the best validation loss. In all experiments, we use the mode
prediction of the generative model and only perform a single dive from a given node. We do not
attempt multiple dives in parallel and did not use any accelerators at test time. In all experiments, we
only call L2Dive’s generative model once at the beginning of a dive to limit the in-service overhead
from serving the graph neural network.

5.1 Diving with L2Dive

With this first set of experiments, we studied the diving performance of L2Dive and compared
it against existing diving heuristics. We used the same benchmark as previous work [!7]. This
benchmark consists of four different classes of combinatorial optimization problems, including set
covering, combinatorial auctions, capacitated facility location and maximum independent sets. For
each class, we used 2000 instances in total; we trained on 1000 instances and validated and tested on
500 instances respectively. We presolved all instances before diving, but did not branch and disabled
cutting planes and other primal heuristics as our interest is solely in diving. We compared L2Dive
against all other standard diving heuristics that are implemented in the open-source solver SCIP and
do not require an incumbent solution. This includes coefficient, fractional, linesearch, pseudocost,
distributional, vectorlength [0] and Farkas diving [48]. We briefly describe these baseline divers in
Appendix A. In addition, we considered three trivial divers that respectively fix integer variables to
their lower (lower) or upper limit (upper) or either with equal probability (random). All divers ran
with the same diving budget (d,,,, = 100) and their execution was directly triggered by the user
after resolving the root node. We ignore the few test instance that were solved directly at root by
SCIP before we could initiate a dive.

L2Dive outperformed all other standard divers (Table 1). It achieved the lowest average test primal
gap on each of the four problem classes. The improvements over the best heuristic diver ranged
from roughly 15% for combinatorial auctions to more than 70% for independent sets. The trivial
divers only found solutions that are significantly worse, which indicates that L2Dive learnt to exploit
more subtle patterns in the problem instances to find better feasible solutions. Some baseline divers
(e.g., linesearch, distributional) failed to consistently outperform the trivial divers across all problem
classes and best heuristic diver varied (pseudocost diving for combinatorial auctions, Farkas diving
for facility location, vectorlength diving for set cover, independent set). This confirms that in practice
most diving heuristics tend to be specialized and work particularly well for particular problem classes.



Table 1: L2Dive finds better feasible solution on all four problem classes than existing diving
heuristics. Average primal gap with standard error on test set. Best diver is in bold and best heuristic
is in italics.

SET COVER COMB. AUCTION FAcC. LOCATION IND. SET

L2Dive 55 (3) 222 (7) 160 (10) 5(1)
Best heuristic 95 (3) 256 (8) 484 (7) 18 (2)
Coefficient 3,700 (55) 671 (11) 762 (9) 246 (4)
Distributional 3,900 (50) 1,504 (12) 760 (9) 196 (3)
Farkas 105 (3) 476 (9) 484 (7) -
Fractional 3,726 (57) 672 (10) 1,058 (11) 232 (4)
Linesearch 1,269 (24) 467 (10) 1,036 (15) 77 (1)
Pseudocost 195 (9) 256 (8) 505 (11) 32 (2)
Vectorlength 95 (3) 832 (20) 840 (19) 18(1)
Random 416 (13) 704 (12) 902 (14) 78 (2)
Lower 2,918 (63) 1,587 (11) 623 (8) 171 (5)
Upper 239 (6) 611 (11) 828 (14) 62 (2)

L2Dive is a generic recipe to design effective divers for any specific application. Finally, we found
that the mode predictions of our learnt models were rarely feasible (e.g., set cover, combinatorial
auctions) or yielded poor solutions (e.g., independent set). This highlights that learning a generative
model for diving may be a more promising approach than trying to predict feasible solutions directly.

In order to validate the dual reasoning rule proposed in subsection 3.2, we paired L2Dive with two
alternative rules for variable selection in capacitated facility location. The first ablative rule chooses
a variable j € C uniformly at random, i.e., grand U[o,1]- The second ablative rule simply uses

J
model confidence, i.e., s‘;-o"f = gp(&;) and unlike dual reasoning does not treat variables j € J(Z¢)

preferentially. We found that even when variables were selected uniformly at random (where the
model prediction is used only for bound tightening), L2Dive outperformed the best standard diver
(Table 2). However, selecting variables whose model predictions are more certain significantly
improved performance by a large margin, while additionally employing dual reasoning tended to
improve performance further for capacitated facility location. The effectiveness of dual reasoning
is likely problem-specific, as dual reasoning will collapse to the model confidence rule, if the set
J N C is empty. To test the generalization performance of L2Dive to larger instances, we performed
an additional ablation study and report the results in Appendix E.

Table 2: Dual reasoning in L2Dive tends to improve diving performance on capacitated facility
location. Even selecting variables for diving uniformly at random outperforms the best heuristic diver,
but using model confidence (and dual reasoning) facilitates significant improvements.

FAC. LOCATION

L2Dive 160 (10)
L2Dive (with s5”"7) 164 (10)
L2Dive (with s7°"%) 335 (14)
Best heuristic 484 (7)

5.2 L2Dive in branch and bound

With this second set of experiments, our goal was to use L2Dive within branch and bound to improve
solver performance on real-world mixed integer linear programs. To this end, we included L2Dive
into the open-source solver SCIP. We disabled all other diving heuristics in SCIP and dive with
L2Dive from the root node. We found this to work well, but results for L2Dive may likely improve
with a more subtle schedule for L2Dive or by integrating L2Dive into the solver’s diving ensemble.



We considered two strongly contrasting applications from previous work. The first application deals
with safely balancing workloads across servers in a large-scale distributed compute cluster. This
problem is an instance of bin-packing with apportionment and can be formulated as a mixed integer
linear program. We used the dataset from Gasse et al. [ 18] which contains 9900 instances for training
and 100 instances for validation and testing respectively. Solving these instances to optimality is
prohibitively hard? and we therefore set a time limit of Tjmie = 900 seconds, both for data collection
and test time evaluations. The second application deals with verifying the robustness of neural
networks. This problem can be formulated as a mixed integer linear program [1 |, 44]. We considered
the instances from Nair et al. [33], but used the same subset as Paulus et al. [35] who disregard trivial
and numerically unstable instances. This dataset contains 2384 instances for training, 519 instances
for validation and 545 instances for testing. These instances are challenging, but can mostly be solved
within a reasonable time. We set a limit of Tj;,;; = 3600 seconds, both for data collection and test
time evaluations.

To assess solver performance, we measure solving time 7" for neural network verification and the
primal-dual integral I',q(Tiimic) for server load balancing. Both measures fully account for the entire
in-service overhead of L2Dive (e.g., computing the bipartite graph representation from the tree node,
forward-propagating the generative model, diving etc.), because the L2Dive diver is directly included
into SCIP and called by the solver during the branch and bound process. Our experiments were
conducted on a shared distributed compute cluster. To reduce measurement variability, we ran all
test time evaluations repeatedly on machines equipped with the same Intel Xeon Gold 5118 CPU 2.3
GHz processors for three different seedings of the solver. We batched evaluations randomly across
instances and methods to be processed sequentially on the same machine. We report test set means
and standard errors over the three different random seeds.

Table 3: L2Dive improves the performance of the branch and bound solver SCIP on real-world
applications. When using L2Dive instead of standard divers, the average primal-dual integral for load
balancing improves by 7% (35%) and solving time on neural network verification shrinks by 20%
(29%) against the tuned (default) solver.

LOAD BALANCING NEURAL NETWORK VERIF.
Primal-dual Integral Wins  Solving Time Wins
SCIP
Default 4,407 (34) 0 55.8 (2.3) 54 (5)
No diving 4,221 (21) 0(0) 53.7 (0.6) 40 (4)
Tuned 3,067 (10) 7(3) 49.9 (2.8) 164 (3)
L2Dive 2,863 (13) 93 (3) 39.8 (2.3) 287 (5)

L2Dive improved solver performance ad-hoc (Table 3, L2Dive). On load balancing, L2Dive improved
the average primal-dual integral by over 30% from the solver at default settings (Table 3, Default). On
neural network verification, L2Dive reduced the average solving time from approximately 56 seconds
to less than 40 seconds (35%). As a control, we also ran SCIP without any diving and surprisingly
found small improvements on both datasets (Table 3, No diving). The solver’s default setting are
calibrated on a general purpose set of mixed integer programs and are typically a challenging baseline
to beat. However, our results suggests that SCIP’s divers are either ineffective or may be poorly
calibrated for these two applications. For this reason, we decided to tune the diving heuristics of the
solver to seek an even more challenging baseline for comparison. We leveraged expert knowledge and
random search to find strong diving ensembles in the the vicinity of the default configuration. Then,
we selected the best tuned solver configuration on a validation set using the same budget of solver
calls that L2Dive expended for data collection. Details are in Appendix F. Our tuned solver baseline
(Table 3, Tuned) significantly improved performance over Default, but was still outperformed by
L2Dive. This highlights that our approach to learn specific divers may be more promising than fitting
ensembles of generic diving heuristics to a particular application. Overall, L2Dive achieved the best
average performance on 93 (out of 100) test instances for load balancing, and achieved the best

Using a Xeon Gold 5118 CPU processor with 2.3 GHz and 8 GB of RAM, none of the instances could be
solved with SCIP 7.0.2 at default settings within an hour.



average performance on 287 (out of 545) test instances for neural network verification, more than the
three SCIP configurations collectively.

6 Conclusions

We presented L2Dive to learn application-specific diving heuristics for branch and bound. Our
approach combines ideas from generative modeling and relational learning with a profound under-
standing of integer programs and their solvers. We tested L2Dive on a range of applications including
combinatorial optimization problems, workload apportionment and neural network verification. It
found better feasible solutions than existing diving heuristics and facilitated improvements in over-
all solver performance. We view our work as yet another example that demonstrates the fruitful
symbiosis of learning and search to design powerful algorithms.

Broader Impact and Limitations

This work presents a method to use machine learning for improving the performance of branch and
bound solvers. Branch and bound is a powerful general-purpose method for solving mixed integer
linear programs which appear frequently across business, science and technology. Therefore, we
expect the impact of this work to be overwhelmingly beneficial. However, in cases where integer
programming is exploited with ill intentions, our work may potentially have a harmful societal impact.

There are limitations in learning diving heuristics for specific applications. For example, in some
cases the set of training instances may be small or collecting feasible solutions could be prohibitively
expensive. In such cases, it may be desirable to transfer models from other applications or to utilize
self-supervised representations that require fewer labelled examples for training [14]. This is a natural
direction to explore in the future, for this and other work at the intersection of machine learning and
integer programming. Alternatively, one may attempt to learn a universal diving heuristic using a
diverse set of instances from a variety of applications. However, the extent to which machine learning
can prove effective in this setting, for diving or other sub-routines, remains an open question.
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A Diving Heuristics

In Table 4, we briefly describe existing diving heuristics. In addition, SCIP’s diving ensemble includes
adaptive diving, conflict diving, objective pseudocost diving and guided diving. We did not compare
against these heuristics in Section 5.1, because they either choose from the other heuristics (adaptive),
were ineffective (conflict), require a feasible solution (guided) or do not use the generic diving
algorithm (objective pseudocost). However, these divers are active for the baselines in Section 5.2.
Berthold [6] gives a more detailed illustration of some of the divers.

Table 4: Overview of standard diving heuristics.

Diver | Description

Coefficient Selects the variable with the minimal number of (positive) up-locks or down-
locks and bounds it in the corresponding direction; ties are broken using
Fractional diving.

Distribution Selects a variable based on the solution density following [37].

Farkas Attempts to construct a Farkas proof, Farkas diving bounds a variable in the
direction that improves the objective value and selects the variable for which
the improvement in the objective is largest.

Fractional Selects the variable with the lowest fractionality |2} — [} +0.5]| in the current
LP solution z* and bounds it in the corresponding direction.
Linesearch Considers the ray originating at the LP solution of the root and passing through

the current node’s LP solution z*, selects the variable 7 whose coordinate
hyperplane z; = [} | or x; = [}] is first intersected by the ray.

Pseudocost Selects and bounds a variable based on its branching pseudocosts, its fraction-
ality and the LP solutions at the root and the current node.
Vectorlength Inspired by set partition constraints, selects a variable for which the quotient

between the objective cost from bounding it and the number of constraint it
appears in is smallest.

B Bipartite Graph and Graph Neural Network for L2Dive

B.1 Bipartite Graph

In our experiments, we represent a mixed integer linear program as a bipartite graph of variables and
constraints. This idea is taken from Gasse et al. [17] and has been adopted by many others since.
Each variable x; and each constraint A4;. in the program gives rise to a node in a bipartite graph. For
every non-zero coefficient A;; in a linear constraint of the program the nodes of the corresponding
variable j and constraint ¢ are joined by an undirected edge. Each node is associated with a vector
of features. We use the same features as Paulus et al. [35] but exclude cut-specific ones, such that
variable nodes use 36 features and constraint nodes use 69 features in total.

@ - —~©® Bipartite Graph
O - )—e
(-x1+ o+ R | = bz)_».

@+ Bl b,)—®

Variables Constraints

Figure 2: Our model uses a bipartite graph representation to represent a mixed integer linear program
as in [17]. Both variables and constraints of the program represent nodes in a bipartite graph. Edges
in the graph correspond to non-zero coefficients in the linear constraint of the program. We use the
same features for variables and constraints as in [35], but exclude cut-specific ones.
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B.2 Graph Neural Network

Our model is a graph neural network that closely resembles the model proposed in Gasse et al. [17]
and uses some of the modifications from Paulus et al. [35]. The model is sketched in Figure 2. After
separately applying batch normalization to both variable and constraint nodes, we embed all nodes in
a 64-dimensional space using a multi-layer perceptron with a single hidden layer. This is followed
by two bipartite graph convolutions, first from variables to constraints and then from constraints
to variables, as in Gasse et al. [17]. Finally, we predict from the convolved variable embedding
the parameters 6 of a probability distribution gg(x;|M 1) for each divable integer variable using
another multi-layer perceptron with a single hidden layer. Binary variables are the most common
variables in integer programs, and all the instances we considered feature exclusively binary divable
variables. For binary variables, g (;| M) is a Bernoulli distribution and the model outputs the mean
parameter 6, such that P(x; = 1) = 6. For general integer variables, we suggest to consider the
bitwise representation of the integer domain. For example, the domain of a variable that can assume
no more than eight unique integer values can be represented using at most four bits. Each of these
bits can be parameterized with its own Bernoulli distribution and the model outputs a mean for each.
This approach may be more favorable for diving than for other applications, because slack variables
from cutting plane constraints (whose domains are not known initially and may be large) are not
divable. In cases where outputting a fixed-size array of Bernoulli parameters may not be applicable,
a variable length array could be outputted by using a recurrent layer, such as an LSTM [21], as is
proposed in Nair et al. [33]. Alternatively, a fixed size array could still be used with an additional
bit to indicate integer overflow that must be handled appropriately. For example in diving, variables
for which the model predicts overflow may be ignored. Further, the frequency with which overflow
would be encountered in practice could plausibly be reduced by making predictions relative to the
current solution |2} | rather than with respect to the lower variable bound 7.

Embeddings Graph Convolutions MLP

Constraints

® (@ 00
‘> (......)

Variables

@
@

Figure 3: Our model is a graph neural network based on Gasse et al. [17] and Paulus et al. [35]. It
first embeds variable and constraint nodes using batch normalization and a single-layer feedforward
network. It then convolves variable and constraint features with two bi-partite graph convolutions
as in Gasse et al. [17]. Finally, for each variable it outputs the parameters of the distribution gy (z;)
using another single-layer feedforward network.

C Solution Augmentation by Counting Optimal Solutions

Many integer and mixed integer linear programs exhibit strong symmetries, particularly those from
combinatorial optimization. In these cases multiple optimal solution may exist, and in particular
different integer variable assignments that correspond to an optimal solution. It is possible to identify
those by first solving for z' to then define the auxiliary mixed integer linear program,

min ¢z, PY¥ ={z e Pl cTz =21} )
zePX

Standard solvers, including SCIP 7.0.2, can enumerate the set of feasible solutions P¥ of (9)
by adding a constraint handler whenever a new feasible integer variable assignment is found and
continuing the solving process. We use this solution augmentation for our experiments on set covering
and independent sets where the solver identified multiple optimal solutions in a short period of time.
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D Background: Linear Programming

In this section, we briefly review some concepts from linear programming and duality.
Definition 1 (Standard Form). A linear program M* of the form
min ¢’z subjectto Az =b, 1 <z <7 (10)

is said to be in standard form with variable bounds. A basis for this program is a triplet (L, B,U),
where x are the basic variables and x; = 7, and xy = Ty.

Definition 2 (Dual linear program). The dual linear program M7, of the program given in 10 is

[ max yrb+yInm+ylm  subjectto ATy +yr +yz =c¢, yr > 0,y7 <0, (11)
byYm Y -

Theorem 1 (Complementary Slackness). Let x* be a feasible solution to the linear program in
(10) and let y* := (y;, yr, yx) be a feasible solution to its corresponding dual linear program given
in (11). Then, x* and y* are optimal solutions for the two respective problems if and only if

(" —7m)Oyy, =0 (12)
(" —T)Oy==0 (13)

where © denotes the Hadamard product. The additional conditions y; © (Axz —b) = 0 and
(c — ATy — yr — yﬁ) ® x = 0 are satisfied because both x* and y* are feasible.

Proof. The conditions are derived from the definition of the dual program and strong duality in linear
programming [see e.g., 10]. O

E Additional experimental results

E.1 Generalization to larger instances

For capacitated facility location, we evaluated the generalization performance of L2Dive. For our
experiments in subsection 5.1, we trained and tested on the small instances from Gasse et al. [17] for
each problem class. In this additional experiment, we tested the L2Dive model trained on the small
capacitated facility location instances and evaluated it along with all standard divers on 100 large
capacitated facility location test instances from [17]. We find that L2Dive gracefully generalizes to
larger instances of the same problem class (Table 5). It achieves the lowest relative primal gap and
outperforms all standard divers on the larger test instances. Overall, the relative primal gap tends to
be larger which is expected as the larger instances tend to be more difficult to solve.

E.2 Relative primal gap

In Table 6 we report the relative primal gap for the experiments in section 5.1 . The relative primal
gap is computed as

(%) = 7(; (TZ|) (14)

where -y, (%) is as defined in equation (5). It is ill-defined, if the objective value is zero, but this was
not the case for any instances considered in our experiments. As the instances within each of the four
problem classes tend to have objective values of the same magnitude, the conclusions that can be
drawn from the relative primal gap do not differ from those we can draw from the absolute primal
gap in Table 1. We included the results here for completeness.
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small large

L2Dive 0.89 (0.05) 1.43(0.11)
Best heuristic 2.70(0.04) 2.25(0.10)
Coefficient 4.25(0.05) 5.35(0.17)
Distributional 4.24 (0.05) 5.05(0.17)
Farkas 2.70 (0.04) 3.16(0.11)
Fractional 5.91 (0.06) 9.38 (0.20)
Linesearch 5.78 (0.09) 4.56 (0.19)
Pseudocost 2.82(0.06) 2.25(0.10)
Vectorlength 4.68 (0.10) 3.09 (0.19)
Random 5.03 (0.08) 4.10(0.16)
Lower 3.48 (0.05) 4.01(0.13)
Upper 4.62 (0.08) 3.17(0.15)

Table 5: L2Dive outperforms standard divers on large test instances from capacitated facility location,
even when only trained on small instances. Average primal gap with standard error on test set.

Table 6: We report mean and standard error of the relative primal gap in equation (14) for the
experiments in subsection 5.1. The conclusions are the same as those drawn from Table 1.

SET COVER COMB. AUCTION FAC. LOCATION IND. SET

L2Dive 2.86 (0.14) 2.84 (0.09) 0.89 (0.05) 0.23 (0.02)
Best heuristic 5.06 (0.16) 3.27 (0.1) 2.70(0.04) 0.82 (0.05)
Coefficient 198.02 (2.23) 8.56 (0.14) 4.25(0.05) 10.91 (0.17)
Distributional 209.29 (1.79) 19.18 (0.15) 4.24 (0.05) 8.70 (0.11)
Farkas 5.57 (0.17) 6.08 (0.12) 2.70 (0.04) -
Fractional 198.82 (2.26) 8.57 (0.13) 5.91(0.06) 10.27 (0.16)
Linesearch 69.05 (1.29) 5.96 (0.12) 5.78 (0.09) 3.42 (0.05)
Pseudocost 10.44 (0.43) 3.27 (0.1) 2.82 (0.06) 1.44 (0.08)
Vectorlength 5.06 (0.16) 10.65 (0.26) 4.68 (0.10) 0.82 (0.05)
Random 22.07 (0.6) 8.99 (0.16) 5.03 (0.08) 3.46 (0.11)
Lower 153.59 (2.81) 20.23 (0.14) 3.48 (0.05) 7.59 (0.20)
Upper 12.69 (0.28) 7.81(0.14) 4.62 (0.08) 2.78 (0.09)

E.3 Execution Times

For completeness, we also report the execution times of all divers considered in the experiments in
subsection 5.1 in Table 7. On the instances considered, diving tends to be rapid and differences in
execution times are largely negligible (in contrast to differences in the quality of solutions found).
Extremely short execution times typically result from diving being aborted early, e.g., because the LP
was rendered infeasible.

F Tuning the SCIP solvers for diving

We leveraged expert knowledge and used random search to optimize the use of diving heuristics in
SCIP 7.0.2 for our baseline Tuned. The most important parameters to control the standard divers in
SCIP are freq and freqofs. For each diving heuristic, these parameters control the depth at which the
heuristic may be called or not called. By varying these parameters, diverse diving ensembles can be
realized that call different heuristics at different stages of the branch and bound search. We randomly
sample solver configurations by setting either freq = —1 (no diving), or freqg = 0.5 X freqetau]
(double frequency) or freq = frequsu (leave frequency at default) or freq = |2 X freqgepay] (halve
frequency) with equal probability and setting either freqofs = 0 or freqofs = freqofsjos,, With equal
probability independently for each diving heuristic. We run the solver with the usual time limits for
each configuration and each validation instance and pick the configuration with the lowest primal-dual
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Table 7: We report mean and standard deviation of the execution time for the experiments in
subsection 5.1. Diving on these instances is very fast and differences are mostly negligible. Extremely
short execution times tend to indicate that diving was aborted early, e.g., because the LP was rendered
infeasible.

SET COVER IND. SET COMB. AUCTION FAC. LOCATION

L2Dive 0.45 (0.05)  0.58 (0.15) 0.38 (0.08) 3.99 (0.76)
Coefficient 0.28 (0.13)  0.04 (0.01) 0.02 (0.01) 3.40 (0.61)
Distributional 0.25(0.11)  0.04 (0.01) 0.08 (0.02) 3.41(0.63)
Farkas 0.05 (0.03) - 0.02 (0.01) 3.66 (0.68)
Fractional 0.29 (0.14)  0.04 (0.01) 0.02 (0.01) 3.83 (0.60)
Linesearch 0.10 (0.04)  0.03 (0.01) 0.03 (0.01) 3.53(0.79)
Pseudocost 0.02 (0.01)  0.04 (0.02) 0.02 (0.00) 2.77 (0.76)
Vectorlength 0.02 (0.01)  0.02 (0.01) 0.05 (0.01) 1.82 (0.59)

Random 0.08 (0.04) 0.25 (0.10) 0.05 (0.01) 4.42 (1.50)

Lower 0.74 (0.43)  0.66 (0.26) 0.49 (0.07) 4.11 (0.79)

Upper 0.05 (0.02) 0.17 (0.08) 0.04 (0.01) 2.79 (1.02)

integral for server load balancing and with the lowest solving time for neural network verification.
For server load balancing, since the original validation dataset was relatively small, we created a
new validation dataset of 625 instances from the original training and validation sets. We optimized
over 16 random configurations and thus used a budget of 10,000 solver calls for load balancing. For
neural network verification, we used the original validation dataset of 505 validation instances. We
considered six random configurations and thus used a budget of 3,030 solver calls which is slightly
more than what L2Dive used for data collection (2903).

We did not tune any parameters to optimize the use of L2Dive, but this might improve performance.

18



	Introduction
	Background
	Diving Heuristics
	Solver Performance and Primal Performance

	Learning to Dive
	Learning from feasible solutions
	Using a generative model for diving
	Deployment

	Related Work
	Experiments
	Diving with L2Dive
	L2Dive in branch and bound

	Conclusions
	Diving Heuristics
	Bipartite Graph and Graph Neural Network for L2Dive
	Bipartite Graph
	Graph Neural Network

	Solution Augmentation by Counting Optimal Solutions
	Background: Linear Programming
	Additional experimental results
	Generalization to larger instances
	Relative primal gap
	Execution Times

	Tuning the SCIP solvers for diving

