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ABSTRACT

In this paper, we propose CLIP-Dissect, a new technique to automatically describe
the function of individual hidden neurons inside vision networks. CLIP-Dissect
leverages recent advances in multimodal vision/language models to label internal
neurons with open-ended concepts without the need for any labeled data or hu-
man examples. We show that CLIP-Dissect provides more accurate descriptions
than existing methods for last layer neurons where the ground-truth is available as
well as qualitatively good descriptions for hidden layer neurons. In addition, our
method is very flexible: it is model agnostic, can easily handle new concepts and
can be extended to take advantage of better multimodal models in the future. Fi-
nally CLIP-Dissect is computationally efficient and can label all neurons from five
layers of ResNet-50 in just 4 minutes, which is more than 10× faster than existing
methods. Our code is available at https://github.com/Trustworthy-ML-Lab/CLIP-
dissect.

1 INTRODUCTION

Deep neural networks (DNNs) have demonstrated unprecedented performance in various machine
learning tasks spanning computer vision, natural language processing and application domains such
as healthcare and autonomous driving. However, due to their complex structure, it has been chal-
lenging to understand why and how DNNs achieve such great success across numerous tasks. Un-
derstanding how the trained DNNs operate is essential to trust their deployment in safety-critical
tasks and can help reveal important failure cases or biases of a given model.

One way towards understanding DNNs is to inspect the functionality of individual neurons, which
is the focus of our work. This includes methods based on manual inspection (Erhan et al., 2009;
Zeiler & Fergus, 2014; Zhou et al., 2015; Olah et al., 2017; 2020; Goh et al., 2021), which provide
high quality explanations and understanding of the network but require large amounts of manual
effort. To address this issue, researchers have developed automated methods to describe the func-
tionality of individual neurons, such as Network Dissection (Bau et al., 2017) and Compositional
Explanations (Mu & Andreas, 2020). In (Bau et al., 2017), the authors first created a new dataset
named Broden with pixel labels associated with a pre-determined set of concepts, and then use Bro-
den to find neurons whose activation pattern matches with that of a pre-defined concept. In (Mu
& Andreas, 2020), the authors further extend Network Dissection to detect more complex concepts
that are logical compositions of the concepts in Broden. Although these methods based on Network
Dissection can provide accurate labels in some cases, they have a few major limitations: (1) They
require a densely annotated dataset, which is expensive and requires significant amount of human la-
bor to collect; (2) They can only detect concepts from the fixed concept set which may not cover the
important concepts for some networks, and it is difficult to expand this concept set as each concept
requires corresponding pixel-wise labeled data.

To address the above limitations, we propose CLIP-Dissect, a novel method to automatically dissect
DNNs with unrestricted concepts without the need of any concept labeled data. Our method is
training-free and leverages pre-trained multi-modal models such as CLIP (Radford et al., 2021)
to efficiently identify the functionality of individual neuron units. We show that CLIP-Dissect (i)
provides high quality descriptions for internal neurons, (ii) is more accurate at labeling final layer
neurons where we know the ground truth, and (iii) is 10×-200× more computationally efficient
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Figure 1: Labels generated by our method CLIP-Dissect, NetDissect (Bau et al., 2017) and MI-
LAN (Hernandez et al., 2022) for random neurons of ResNet-50 trained on ImageNet. Displayed
together with 5 most highly activating images for that neuron. We have subjectively colored the
descriptions green if they match these 5 images, yellow if they match but are too generic and red
if they do not match. In this paper we follow the torchvision (Marcel & Rodriguez, 2010) naming
scheme of ResNet: Layer 4 is the second to last layer and Layer 1 is the end of first residual block.
MILAN(b) is trained on both ImageNet and Places365 networks, while MILAN(p) is only trained
on Places365.

than existing methods. Finally, we show how one can use CLIP-Dissect to better understand neural
networks and discover that neurons connected by a high weight usually represent similar concepts.

2 BACKGROUND AND RELATED WORK

Network dissection. Network dissection (Bau et al., 2017) is the first work on understanding
DNNs by automatically inspecting the functionality (described as concepts) of each individual neu-
ron1. They identify concepts of intermediate neurons by matching the pattern of neuron activations
to the patterns of pre-defined concept label masks. In order to define the ground-truth concept la-
bel mask, the authors build an auxiliary densely-labeled dataset named Broden, which is denoted
as DBroden. The dataset contains a variety of pre-determined concepts c and images xi with their
associated pixel-level labels. Each pixel of images xi is labeled with a set of relevant concept c,
which provides a ground-truth binary mask Lc(xi) for a specific concept c. Based on the ground-
truth concept mask Lc(xi), the authors propose to compute the intersection over union score (IoU)
between Lc(xi) and the binarized mask Mk(xi) from the activations of the concerned k-th neuron

unit over all the images xi in DBroden: IoUk,c =
∑

xi∈DBroden
Mk(xi)∩Lc(xi)∑

xi∈DBroden
Mk(xi)∪Lc(xi)

.

If IoUk,c > η, then the neuron k is identified to be detecting concept c. In (Bau et al., 2017),
the authors set the threshold η to be 0.04. Note that the binary masks Mk(xi) are computed via
thresholding the spatially scaled activation Sk(xi) > ξ, where ξ is the top 0.5% largest activations
for the neuron k over all images xi ∈ DBroden and Sk(xi) has the same resolution as the pre-defined
concept masks by interpolating the original neuron activations Ak(xi).

(Bau et al., 2020) propose another version of Network Dissection, which replaces the human anno-
tated labels with the outputs of a segmentation model. This gets rid of the need for dense annotations

1We follow previous work and use ”neuron” to describe a channel in CNNs.
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in Dprobe, but still requires dense labels for training the segmentation model and the concept set is
restricted to the concepts the segmentation model was trained on. For simplicity, we focus on the
original Network Dissection algorithm (with human labels) in this work unless otherwise mentioned.

MILAN. MILAN (Hernandez et al., 2022) is a contemporary automated neuron labeling method
addressing the issue of being restricted to detect predefined concepts. They can generate unrestricted
descriptions of neuron function by training a generative images-to-text model. The approach of
(Hernandez et al., 2022) is technically very different from ours as they frame the problem as learning
to caption the set of most highly activating images for a given neuron. Their method works by
collecting a dataset of human annotations for the set of highly activating images of a neuron, and
then training a generative model to predict these human captions. Thus, MILAN requires collecting
this curated labeled data set, which limits its capabilities when applied to machine learning tasks
outside this dataset. In contrast our method does not require any labeled data for neuron concepts
and is training-free.

CLIP. CLIP stands for Contrastive Language-Image Pre-training (Radford et al., 2021), an effi-
cient method of learning deep visual representations from natural language supervision. CLIP is
designed to address the limitation of static softmax classifiers with a new mechanism to handle
dynamic output classes. The core idea of CLIP is to enable learning from practically unlimited
amounts of raw text, image pairs by training an image feature extractor (encoder) EI and a text
encoder ET simultaneously. Given a batch of N image xi and text ti training example pairs denoted
as {(xi, ti)}i∈[N ] with [N ] defined as the set {1, 2, . . . , N}, CLIP aims to increase the similarity of
the (xi, ti) pair in the embedding space as follows. Let Ii = EI(xi), Ti = ET (ti), CLIP maximizes
the cosine similarity of the (Ii, Ti) in the batch of N pairs while minimizing the cosine similarity of
(Ii, Tj), j ̸= i using a multi-class N-pair loss (Sohn, 2016; Radford et al., 2021). Once the image
encoder EI and the text encoder ET are trained, CLIP can perform zero-shot classification for any
set of labels: given a test image x1, we can feed in the natural language names for a set of M labels
{tj}j∈[M ]. The predicted label of x1 is the label tk that has the largest cosine similarity among the
embedding pairs: (I1, Tk).

3 METHOD

In this section, we describe CLIP-Dissect, an automatic, flexible and generalizable neuron labeling
method for vision networks from popular convolutional neural networks (CNNs) to SOTA vision
transformers (ViT). An overview of CLIP-Dissect algorithm is illustrated in Figure 2 and described
in detail in Sec 3.1. We then introduce and discuss a few theoretically inspired choices for similarity
function in Sec 3.2. Finally in Sec 3.3 we discuss how our method can benefit from more powerful
models in the future.

3.1 CLIP-DISSECT OVERVIEW

Inputs & Outputs. The CLIP-Dissect algorithm has 3 inputs: (i) DNN to be dissected/probed,
denoted as f(x), (ii) a set of probing images, denoted as Dprobe where |Dprobe| = N , (iii) a set of
concepts, denoted as S, |S| = M .

The output of CLIP-Dissect is the neuron labels, which identify the concept associated with each
individual neuron. Compared with Network Dissection, our goals are the same – we both want to
inspect and detect concepts associated with each neuron. The input (i) is also the same, as we both
want to dissect the DNN f(x); however, the inputs (ii) and (iii) have differences. Specifically, in
CLIP-Dissect, our Dprobe does not require any concept labels and thus can be any publicly available
dataset such as CIFAR-100, ImageNet, a combination of datasets or even unlabeled images collected
from the internet. On the other hand, Network Dissection (Bau et al., 2017) can only use a Dprobe that
has been densely labeled with the concepts from the concept set S. As a result, users of Network
Dissection are limited to the Dprobe = DBroden and the fixed concept set S of Broden unless they
are willing to create their own densely labeled dataset. In contrast, the concept set S and probing
dataset Dprobe in our framework are decoupled – we can use any text corpus to form the concept set
S and any image dataset Dprobe independent of S in CLIP-Dissect, which significantly increases the
flexibility and efficiency to detect neuron concepts.
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Figure 2: Overview of CLIP-Dissect: a 3-step algorithm to dissect neural network of interest

Algorithm. There are 3 key steps in CLIP-Dissect:

1. Compute the concept-activation matrix P . Using the image encoder EI and text encoder
ET of a CLIP model, we first compute the text embedding Ti of the concepts ti in the
concept set S and the image embedding Ii of the probing images xi in the probing dataset
Dprobe. Next, we calculate the concept-activation matrix P ∈ RN×M whose (i, j)-th ele-
ment is the inner product Ii · Tj , i.e. Pi,j = Ii · Tj .

2. Record activations of target neurons. Given a neuron unit k, compute the activation Ak(xi)
of the k-th neuron for every image xi ∈ Dprobe. Define a summary function g, which takes
the activation map Ak(xi) as input and returns a real number. Here we let g be the mean
function that computes the mean of the activation map over spatial dimensions, but g can
be any general scalar function. We record g(Ak(xi)), for all i, k.

3. Determine the neuron labels. Given a neuron unit k, the concept label for k is de-
termined by calculating the most similar concept tm with respect to its activation vec-
tor qk = [g(Ak(x1)), . . . , g(Ak(xN ))]⊤, qk ∈ RN . The similarity function sim is
defined as sim(tm, qk;P ). In other words, the label of neuron k is tl, where l =
argmaxm sim(tm, qk;P ). Below we discuss different ways to define sim.

3.2 SIMILARITY FUNCTION

There are many ways to design the similarity function sim, and this choice has a large effect on the
performance of our method. In particular, simple functions like cosine similarity perform poorly,
likely because they place too much weight on the inputs that don’t activate the neuron highly. We
focus on the following 4 similarity functions and compare their results in the Table 3:

• Cos. Cosine similarity between the activation vector (qk) of the target neuron k and the
concept activation matrix P:,m from CLIP with the corresponding concept tm:

sim(tm, qk;P ) ≜
P⊤
:,mqk

||P:,m|| · ||qk||
(1)

• Rank reorder. This function calculates the similarity between qk and P:,m by creating a
vector q′k, which has the values of qk in the order of P:,m. I.e. q′k is generated by reordering
the elements of qk according to the ranks of the elements in P:,m. The full similarity
function is defined below, and is maximized when the qk and P:,m have the same order:

sim(tm, qk;P ) ≜ −∥q′k − qk∥p (2)
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• WPMI (Weighted Pointwise Mutual Information). A mathematically grounded idea to
derive sim based on mutual information as used in (Wang et al., 2020), where the label of
a neuron is defined as the concept that maximizes the mutual information between the set of
most highly activated images on neuron k, denoted as Bk, and the concept tm. Specifically:

sim(tm, qk;P ) ≜ wpmi(tm, qk) = log p(tm|Bk)− λ log p(tm), (3)
where p(tm|Bk) = Πxi∈Bk

p(tm|xi) and λ is a hyperparameter.
• SoftWPMI. Finally, we propose a generalization of WPMI where we use the probability
p(x ∈ Bk) to denote the chance an image x belongs to the example set Bk. Standard
WPMI corresponds to the case where p(x ∈ Bk) is either 0 or 1 for all x ∈ Dprobe while
SoftWPMI relaxes the binary setting of p(x ∈ Bk) to real values between 0 and 1.
This gives us the following function:

sim(tm, qk;P ) ≜ soft wpmi(tm, qk) = logE[p(tm|Bk)]− λ log p(tm) (4)
where we compute logE[p(tm|Bk)] = log(Πx∈Dprobe [1 + p(x ∈ Bk)(p(tm|x) − 1)]). As
shown in our experiments (Table 3), we found SoftWPMI give the best results among the
four and thus we use it in all our experiments unless otherwise mentioned.

Due to page constraint, we leave the derivation and details on how to calculate WPMI and SoftWPMI
using only CLIP products matrix P , as well as our hyperparameter choices to Appendix A.1.

3.3 COMPABILITY WITH FUTURE MODELS

The current version of our algorithm relies on the CLIP (Radford et al., 2021) multimodal model.
However, this doesn’t have to be the case, and developing improved CLIP-like models has received a
lot of attention recently, with many recent works reporting better results with an architecture similar
to CLIP (Yu et al., 2022; Yuan et al., 2021; Zhai et al., 2022; Pham et al., 2021). If these models
are released publicly, we can directly replace CLIP with a better model without any changes to
our algorithm. As a result, our method will improve over time as general ML models get more
powerful, while existing works (Bau et al., 2017; Hernandez et al., 2022) can’t really be improved
without collecting a new dataset specifically for that purpose. Similar to ours, the segmentation
version of Network Dissection (Bau et al., 2020) can also be improved by using better segmentation
models, but each improved segmentation model will likely work well for only a few tasks.

4 EXPERIMENTS

In this section, we provide both qualitative and quantitative results of CLIP-Dissect in Sec 4.1 and 4.2
respectively. We also provide an ablation study on the choice of similarity function in Sec 4.3
and compare computation efficiency in Sec 4.4. Finally, we show that CLIP-Dissect can detect
concepts that do not appear in the probing images in Sec 4.5. We evaluate our method through
analyzing two pre-trained networks: ResNet-50 (He et al., 2016) trained on ImageNet (Deng et al.,
2009), and ResNet-18 trained on Places-365 (Zhou et al., 2017). Our method can also be applied to
modern architectures such as Vision Transformers as discussed in Appendix A.5. Unless otherwise
mentioned we use 20,000 most common English words2 as the concept set S.

Due to the page limit, we leave additional 9 experimental results in the Appendix. Specifically, Ap-
pendix A.2 shows additional qualitiative results discussed in Section 4.1. Appendix A.3 showcases
our ability to detect low-level concepts but also discusses some limitations, such as sometimes out-
putting higher level concepts than warranted. Appendix A.4 shows how our method can be applied
to generate compositional concepts, and Appendix A.5 shows that our method can be applied to
Vision Transformer architecture and provides qualitative results. In Appendix A.6 we experiment
with another potential method to measure quality of neuron explanations and show it also favors
CLIP-Dissect. Appendix A.7 discusses the limitations of only displaying top-5 images for qualita-
tive evaluations and showcases a wider range for some neurons. In Appendix A.8 we discuss how
our method can be used to decide whether a neuron is interpretable or not. Appendix A.9 shows
the qualitative effect of different similarity functions. Finally, in Appendix A.10 we evaluated our
description quality for 500 randomly chosen neurons, and found descriptions generated by CLIP-
Dissect to be a good match for 65.5% of the neurons on average.

2Source: https://github.com/first20hours/google-10000-english/blob/master/20k.txt
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4.1 QUALITATIVE RESULTS

Figure 1 shows examples of descriptions for randomly chosen hidden neurons in different layers
generated by CLIP-Dissect and the two baselines: Network Dissection (Bau et al., 2017) and MI-
LAN (Hernandez et al., 2022). We do not compare against Compositional Explanations (Mu & An-
dreas, 2020) as it is much more computationally expensive (at least 200 times slower) and comple-
mentary to our approach as their composition could also be applied to our explanations. We observe
that not every neuron corresponds to a clear concept and our method can detect low-level concepts
on early layers and provide more descriptive labels than existing methods in later layers, such as
the ’graduating’ and ’nursery’ neurons. These results use the union of ImageNet validation set and
Broden as Dprobe. In general we observe that MILAN sometimes gives very accurate descriptions
but often produces descriptions that are too generic or even semantically incorrect (highlighted as
red labels), while Network Dissection is good at detecting low level concepts but fails on concepts
missing from its dataset. We compared against two versions of MILAN: MILAN(b) was trained to
describe neurons of networks trained on ”both” ImageNet and Places365, and MILAN(p) was only
trained on Places365 neurons to test its generalization ability. Additional qualitative comparisons
for interpretable neurons are shown in Figures 6 and 7 in Appendix A.2.

4.2 QUANTITATIVE RESULTS

Besides the qualitative comparison, in this section we propose the first quantitative evaluation to
compare our methods’s performance with baselines. The key idea is to compare the neuron labels
generated for neurons where we have access to the ground truth descriptions – i.e. the final layer of
a network, as the ground truth concept of the output layer neuron is the name of the corresponding
class (class label). This allow us to objectively evaluate the quality of the generated neuron labels,
which avoids the need for human evaluation and uses real function of the target neurons while human
evaluations are usually limited to describing a few most highly activating images. We propose below
two metrics for measuring the quality of explanations:

a) Cos similarity: We measure the cosine similarity in a sentence embedding space between the
ground truth class name for the neuron (e.g. ”sea lion” in Fig 3) and the explanation generated
by the method. For embeddings, we use two different encoders: the CLIP ViT-B/16 text encoder
(denoted as CLIP cos) and the all-mpnet-base-v2 sentence encoder (denoted as mpnet cos). See
Figure 3 for an example of the similarity scores for descriptions of a single neuron.

b) Accuracy: We compute accuracy for a method as the percentage of neurons that the method as-
signs the exact correct label i.e. the class name. Note that we only measure accuracy in situations
where the method chooses from a concept set that includes the exact correct label, such as Net-
work Dissection for models trained on Places365 (not for ImageNet models since ImageNet labels
are missing from Broden). We also did not measure accuracy of MILAN as MILAN generates
explanations without a concept set and thus is unlikely to match the exact wording of the class
name.

Table 1: The cosine similarity of predicted labels compared to ground truth labels on final layer
neurons of ResNet-50 trained on ImageNet. The higher similarity the better. We can see that our
method performs better when Dprobe and concept set are larger and/or more similar to training data.

Method Dprobe Concept set S CLIP cos mpnet cos

Network Dissection (baseline) Broden Broden 0.6929 0.2952
MILAN(b) (baseline) ImageNet val - 0.7080 0.2788

ImageNet val Broden 0.7393 0.4201
ImageNet val 3k 0.7456 0.4161
ImageNet val 10k 0.7661 0.4696
ImageNet val 20k 0.7900 0.5257

CLIP-Dissect (Ours) ImageNet val ImageNet 0.9766 0.9458

CIFAR100 train 20k 0.7300 0.3664
Broden 20k 0.7407 0.3945
ImageNet val 20k 0.7900 0.5257
ImageNet val + Broden 20k 0.7900 0.5233
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Table 2: Performance when labeling final layer neurons of a ResNet18 trained on Places365. Accu-
racy measured on 267/365 neurons whose label is a directly included in Broden labels.

Method Dprobe Concept set S gt label annotation Top1 Acc CLIP cos mpnet cos

Net-Dissect (baseline) Broden Broden Yes 43.82% 0.8887 0.6697

CLIP-Dissect (ours) Broden Broden No 58.05% 0.9106 0.7024

Figure 3: Example of a final layer neuron: we compare the descriptions generated by different meth-
ods and our metrics. Accuracy only evaluated for CLIP-Dissect with ImageNet labels as concept set
since it is the only method where exact correct answer is a possible choice and therefore accuracy
makes sense.

In Table 1, we can see that the labels generated by our method are closer to ground truth in sentence
embedding spaces than those of Network Dissection or MILAN regardless of our choice of Dprobe

or concept set S. We can also see that using a larger concept set (e.g. 3k v.s. 20k) improves
the performance of our method. Table 2 shows that our method outperforms Network Dissection
even though this task is favorable to their method (as the Places365 dataset has large overlaps with
Broden). We highlight that CLIP-Dissect can reach higher accuracy even though Network Dissection
has access to and relies on the ground truth labels in Broden while ours does not.

4.3 CHOICE OF SIMILARITY FUNCTION

Table 3 compares the performance of different similarity functions used in CLIP-Dissect. We use
accuracy and cos similarity in embedding space as defined in Sec 4.2 to measure the quality of
descriptions. We observed that SoftWPMI performs the best and thus it is used in all other ex-
periments unless otherwise mentioned. The effect of similarity function is shown qualitatively in
Appendix A.9. Table 3 also showcases how CLIP-Dissect can give final layer neurons the correct
label with a very impressive 95% accuracy.

Table 3: Comparison of the performance between similarity functions. We look at the final layer of
ResNet-50 trained on ImageNet (same as Tab 1). We use S = 20k for cosine similarity and S =
ImageNet classes for top1 accuracy. We can see SoftPMI performs best overall.

Dprobe

Metric Similarity function CIFAR100
train

Broden ImageNet
val

ImageNet val
+ Broden

Average

mpnet cos 0.2761 0.215 0.2823 0.2584 0.2580
cos similarity Rank reorder 0.3250 0.3857 0.4901 0.5040 0.4262

WPMI 0.3460 0.3878 0.5302 0.5267 0.4477
SoftWPMI 0.3664 0.3945 0.5257 0.5233 0.4525

Top1 accuracy cos 8.50% 5.70% 15.90% 11.40% 10.38%
Rank reorder 36.30% 57.50% 89.80% 89.90% 68.38%
WPMI 23.80% 47.10% 87.00% 86.90% 61.20%
SoftWPMI 46.20% 70.50% 95.00% 95.40% 76.78%
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4.4 COMPUTATIONAL EFFICIENCY

Table 4 shows the runtime of different automated neuron labeling methods when tasked to label
all the neurons of five layers in ResNet-50. We can see our method runs in just 4 minutes, more
than 10, 60 and 200+ times faster than the baselines MILAN (Hernandez et al., 2022), Network
Dissection (Bau et al., 2017) and Compositional Explanations (Mu & Andreas, 2020) respectively.

Table 4: The time it takes to describe the layers [’conv1’, ’layer1’, ’layer2’, ’layer3’, ’layer4’] of
ResNet-50 via different methods using our hardware(Tesla P100 GPU).We can see CLIP-Dissect is
much more computationally efficient than existing methods.

Method CLIP-Dissect Network Dissection Compositional Explanations MILAN

Runtime 3min50s >4 hrs >>14 hours 55min 30s

4.5 DETECTING CONCEPTS MISSING FROM Dprobe

One surprising ability we found is that our method is able to assign the correct label to a neuron even
if Dprobe does not have any images corresponding to that concept. For example, CLIP-Dissect was
able to assign the correct dog breed to 46 out of 118 neurons detecting dog breeds, and correct bird
species to 22 out of 59 final layer neurons of ResNet-50 trained on ImageNet, while using CIFAR-
100 training set as Dprobe, which doesn’t include any images of dogs or birds. This is impossible for
any label based methods like NetDissect (Bau et al., 2017) and Compositional Explanations (Mu &
Andreas, 2020) (as IoU will be 0 for any concept not in Dprobe), and unlikely for methods based on
captioning highly activated images like MILAN (Hernandez et al., 2022) (as humans won’t assign a
caption missing from activated images). Example labels and highest activating probe images can be
seen in Figure 4.

Figure 4: Example of CLIP-Dissect correctly labeling neurons that detect the little blue heron and
the great white heron based on pictures of dolphins and dinosaurs in CIFAR. CIFAR100 does not
contain any bird images but CLIP-Dissect can still get correct concept.

5 USE CASE OF CLIP-DISSECT

In this section, we present a simple experiment to showcase how we can use CLIP-Dissect to gain
new insights on neural networks. By inspecting the ResNet-50 network trained on ImageNet with
CLIP-Dissect, we discover the following phenomenon and evidence for it: the higher the weight
between two neurons, the more similar concepts they encode, as shown in Figure 5. This makes
sense since a high positive weight causally makes the neurons activate more similarly, but the extent
of this correlation is much larger than we expected, as each final layer neuron has 2048 incoming
weights so we would not expect any single weight to have that high of an influence. A consequence
of the similarity in concepts is that the second-to-last layer already encodes quite complete repre-
sentations of certain final layer classes in individual neurons, instead of the representation for these
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classes being spread across multiple neurons. For example Fig 5a shows that the 3 neurons with
highest outgoing weights already seem to be accurately detecting the final layer concept/class label
they’re connected to.

To make these results more quantitative, in Figure 5b we measure the similarity of concepts encoded
by the neurons connected via highest weights in the final layer of ResNet-50. For layer4 neurons,
we used CLIP-Dissect to determine their concept, while for the final layer neurons we used the
ground truth i.e. class label in text form. We can clearly see that higher weights connect more
similar concepts together, and the average similarity decreases exponentially as a function of k when
averaging similarities of neurons connected via the top k weights. To further test this relationship,
we found that the mpnet cos similarity between concepts encoded by two neurons and the weight
connecting them are correlated with r = 0.120 and p-value < 10−300(probability of no correlation
is practically 0) when calculated over all 2 million weights in the final layer. If we only look at the
highest 50000 weights, the correlation is even higher with r = 0.258, p-value < 10−300.

(a) Visualization of 3 highest weights of final layer. (b) Average cosine similarity between concepts.

Figure 5: a) 3 highest weights of the final layer of ResNet-50 trained on ImageNet, we can see
neurons connected by the highest weights are detecting very much the same concept. b) Cosine
similarities between the concepts of neurons connected by highest weights. The higher the weight
between neurons, the more similar a concept they represent.

6 LIMITATIONS AND CONCLUSIONS

Limitations: The main limitation of our method compared to previous work is that it’s not taking
advantage of the spatial information of neuron activations. This causes some difficulties in detecting
lower level concepts, but we are still able to detect many low level/localized patterns as discussed
in Section A.3. Secondly, our method currently works well only on concepts and images that CLIP
works well on, and while this already covers a larger set of tasks than what existing neuron label-
ing methods perform well on, CLIP-Dissect may not work out of the box on networks trained on
tasks that require highly specific knowledge such as classifying astronomical images. However, our
method is compatible with future large vision-language models as long as they share a similar struc-
ture to CLIP, and CLIP-like models trained for a specific target domain. Finally, not all neurons can
be described well by simple terms such as single word explanations. While we can augment the
space of descriptions using a different concept set S, or creating compositional explanations as dis-
cussed in Appendix A.4, some neurons may have a very complicated function or perform different
functions at different activation ranges. For the most part, current methods including ours will be
unable to capture this full picture of complicated neuron functions.

Conclusions: In this work, we have developed CLIP-Dissect, a novel, flexible and computationally
efficient framework for automatically identifying concepts of hidden layer neurons. We also pro-
posed new methods to quantitatively compare neuron labeling methods, which is based on labeling
final layer neurons. We have shown CLIP-Dissect can match or outperform previous automated la-
beling methods both qualitatively and quantitatively and can even detect concepts missing from the
probing dataset. Finally we used CLIP-Dissect to discover that neurons connected by a high weight
often represent very similar concepts.
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A APPENDIX

A.1 SIMILARITY FUNCTION DETAILS AND DERIVATION

Rank reorder hyperparameters:

The results of Table 3 are using top 5% of most highly activating images for each neuron and using
p = 3 for the lp-norm.

WPMI:

In this section, we show that one choice of similarity function sim(tm, qk;P ) can be derived based
on the weighted point-wise mutual information (wpmi). Note that wpmi is also used in (Hernandez
et al., 2022) but in a different way – our approach can compute wpmi directly from the CLIP products
P and does not require any training, while (Hernandez et al., 2022) train two models to estimate
wpmi.

To start with, by definition, the wpmi between a concept tm and the most highly activated images
Bk of neuron k can be written as

wpmi(tm, qk) = log p(tm|Bk)− λ log p(tm) (5)

Here Bk is the set of images that most highly activates neuron k, i.e. the top indices of qk. First we
can compute p(tm|xi) = softmax(aPi,:)m, where softmax(z)n = ezn∑N

j=1 ezj
with z ∈ RN , Pi,: is the

i-th row vector of the concept-activation matrix P and a is a scalar temperature constant. This is the
probability that CLIP assigns to a concept tm for image xi when used as a classifier.

We then define p(tm|Bk) as the probability that all images in Bk have the concept tm, which gives
us p(tm|Bk) = Πxi∈Bk

p(tm|xi). Thus, we have

log p(tm|Bk) =
∑

xi∈Bk

log p(tm|xi) (6)

which is the 1st term in Eq (5). Next, we can approximate the 2nd term p(tm) in Eq (5) as follows:
p(tm) is the probability that a random set of images B will be described by tm. Since we don’t
know the true distribution for a set of images, an efficient way to approximate this is to average the
probability of tm over the different neurons we are probing. This can be described by the following
equation:

p(tm) = EB [p(tm|B)] ≈
∑

j∈C p(tm|Bj)

|C|
=

∑
j∈C Πxi∈Bj

p(tm|xi)

|C|
(7)

where C is the set of neurons in the layer we are probing. Thus we can plug Eq. (6) and Eq. (7) in
to Eq. (5) to compute wpmi through the CLIP model:

wpmi(tm, qk) =
∑

xi∈Bk

log p(tm|xi)− λ log

∑
j∈C

Πxi∈Bj
p(tm|xi)

+ λ log |C| (8)

So we can use the above Eq (8) in our CLIP-Dissect and set sim(tm, qk;P ) = wpmi(tm, qk) in the
algorithm.

For our experiments we use a = 2, λ = 0.6 and top 28 most highly activating images for neuron
k as Bk which were found to give best quantitave results when describing final layer neurons of
ResNet-50.

SoftWPMI:

SoftWPMI is an extension of wpmi as defined by Eq. (8) into settings where we have uncertainty
over which images should be included in the example set Bk. In WPMI the size of example set is
defined beforehand, but it is not clear how many images should be included, and this could vary
from neuron to neuron. In this description, we assume that there exists a true Bk which includes
images from Dprobe if and only if they represent the concept of neuron k. We then define binary
indicator random variables Xk

i = 1[xi ∈ Bk] which take value 1 if the ith image is is in set the Bk,
and we define Xk = {Xk

1 , ..., X
k
M}.
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Our derivation begins from the observation that we can rewrite p(tm|Bk) from above as:

p(tm|Bk) = Πxi∈Bk
p(tm|xi) = Πxi∈Dprobe

p(tm|xi)
1[xi∈Bk] = Πxi∈Dprobe

p(tm|xi)
Xk

i (9)

Now:

EXk
i
[p(tm|xi)

Xk
i ] = p(xi ∈ Bk)p(tm|xi) + (1− p(xi ∈ Bk)) = 1 + p(xi ∈ Bk)(p(tm|xi)− 1)

(10)

If we assume the Xk
i are statistically independent, we can write:

EXk [p(tm|Bk)] = Πxi∈Dprobe
EXk

i
[p(tm|xi)

Xk
i ] = Πxi∈Dprobe

[1 + p(xi ∈ Bk)(p(tm|xi)− 1)]

(11)

⇒ logEXk [p(tm|Bk)] =
∑

xi∈Dprobe

log(1 + p(xi ∈ Bk)(p(tm|xi)− 1)) (12)

Note Equation (10) goes to 1 if p(xi ∈ Bk) = 0 (i.e. no effect in a product) and to p(tm|xi) if
p(xi ∈ Bk) = 1. So Eq. (12) reduces to Eq. (6) of standard WPMI if p(xi ∈ Bk) is either 1 or 0 for
all xi ∈ Dprobe. In other words, we are considering a ”soft” membership in Bk instead of ”hard”
membership of standard WPMI.

To get the second term for wpmi, p(tm), i.e. probability that text tm describes a random example
set Bk, we can approximate it like we did in Eq. (7) by using the example sets for other neurons we
are interested in.

p(tm) = EBi
[EXi [p(tm|Bi)]] ≈

∑
j∈C EXj [p(tm|Bj)]

|C|

→
∑

j∈C EXj [p(tm|Bj)]

|C|
=

∑
j∈C Πx∈Dprobe

[1 + p(x ∈ Bj)(p(tm|x)− 1)]

|C|
(13)

Finally, we can compute full SoftWPMI with Eq. (12) and Eq. (13) and use it as similarity function
in CLIP-Dissect:

soft wpmi(tm, qk) =
∑

xi∈Dprobe

log(1 + p(xi ∈ Bk)(p(tm|xi)− 1))

−λ log

∑
j∈C

Πx∈Dprobe
[1 + p(x ∈ Bj)(p(tm|x)− 1)]

+ λ log |C| (14)

One thing we haven’t yet discussed is the choice of p(x ∈ Bk). There is flexibility and this prob-
ability could be derived from the activations of neuron k on image x, by for example by taking a
scaled sigmoid, or it could be based on the ranking of the image.

For our experiments we found ranking based probability to perform the best, and used p(x ∈ Bk)
linearly decreasing from 0.998 of the most highly activating image for neuron k to 0.97 for 100th
most highly activating image and 0 for all other images. Thus in practice we only have to use the
100 images when calculating SoftWPMI instead of full Dprobe which is much more computationally
efficient. For other hyperparameters we used a = 10 and λ = 1.

A.2 ADDITIONAL QUALITATIVE RESULTS

Additional visualization on ResNet-18 and ResNet-50 in Figs 6 and 7, continued from Section 4.1.
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Figure 6: Explanations of most interpretable neurons in the second to last layer of ResNet-18 trained
on Places365. Displayed together with 5 most highly activating images for that neuron. We have
subjectively colored the descriptions green if they match these 5 images, yellow if they match but
are too generic and red if they do not match. Both Network Dissection and CLIP-Dissect do very
well while MILAN struggles to explain some neurons. MILAN(b) is trained on both ImageNet and
Places365 networks, while MILAN(i) is only trained on ImageNet. Both MILAN networks perform
similarly here but the ImageNet version misses/is too generic for more neurons, such as labeling
a bus neuron as ”vehicles”. The neurons on the left have highest IoU according to MILAN while
neurons on the right have highest similarity to the concept according to our similarity function.
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Figure 7: Explanations of most interpretable neurons in the second to last layer of ResNet-50 trained
on ImageNet. Displayed together with 5 most highly activating images for that neuron. We have
subjectively colored the descriptions green if they match these 5 images, yellow if they match but are
too generic and red if they do not match. Both CLIP-Dissect and Network Dissection perform well
on these most interpretable neurons except for a few failures by Network Dissection, while MILAN
often gives concepts that are too generic. MILAN(b) is trained on both ImageNet and Places365
networks, while MILAN(p) is only trained on Places365. We can see the Places trained model is
struggling more with concepts like spiders, indicating issues with generalization.
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A.3 LOW LEVEL CONCEPTS

In this section we show additional results of probing low level concepts, using two networks trained
on ImageNet, ResNet-50 and ResNet-152. For ResNet-152 we also compare against human annota-
tions for these neurons from MILAnnotations (Hernandez et al., 2022).

The results for ResNet-152 can be seen in Figure 8. We can see CLIP-Dissect is able to accurately
detect many lower level concepts, such as colors in Conv1 neurons 1,3,10 and Layer1 neuron 4,
as well as detecting that neuron 3 of Layer1 activates specifically for the text/label, without having
access to the activation pattern, while MILAN fails to detect this.

However, CLIP-Dissect does also have some failure modes on lower level patterns.

• Failure to differentiate between concept and correlated objects: This leads to higher
level outputs than desired. For example: CLIP-Dissect gives the concept underwater to
conv1 neuron 16, while the true concept is probably more similar to blue (human annotators
also made this mistake), or conv1 neuron 28 where CLIP-Dissect outputs zebra while the
neuron is likely just detecting stripes. The worst example of this is neuron conv1 neuron 24,
which simply activates on white background, but this is entirely missed by CLIP-Dissect
as it’s not good at focusing on the background.

• Unintrepretable neurons: Some neurons seem to be not interpretable, e.g. Conv1 neuron
2. CLIP-Dissect outputs music which seems incorrect, but neither human annotators or
MILAN were able to assign a clear concept for the neuron either. See Appendix A.8 for
more analysis on uninterpretable neurons.

Similar observations also hold for the ResNet-50 model as can be seen in Figure 9. Note we do not
have human annotations to compare against for this network.

16



Published as a conference paper at ICLR 2023

Figure 8: Descriptions for select neurons in early layers of ResNet-152, showcasing both the suc-
cesses and failure modes of CLIP-Dissect. For this figure we used max as the summary function g
for CLIP-Dissectto be comparable to MILAnnotations. For evaluation we used the MILAN model
trained on only Places models to avoid overfitting.
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Figure 9: Descriptions of most interpretable neurons (highest similarity/IoU) of an early layer in
ResNet-50.
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A.4 COMPOSITIONAL CONCEPTS

In the sections above our method has focused on choosing the most fitting concept from the pre-
defined concept set. While changing the concept set in CLIP-Dissect is as easy as editing a text file,
we show it can also detect more complex compositional concepts. We experimented with generating
explanations by searching over text concatenations of two concepts in our concept space. To reduce
computational constraints, we only looked at combinations of 100 most accurate single word labels
for each neuron. Example results are shown in Fig 10. While the initial results are promising,
some challenges remain to make these compositional explanations more computationally efficient
and consistent, which is an important direction for future work.

Figure 10: An example of compositional explanations generated by our method for two neurons of
ResNet50 trained on ImageNet.

A.5 VISION TRANSFORMER

Since our method does not rely on the specifics of CNNs in its operation, we can easily extend it to
work on different architectures, such as the Vision Transformer, specifically ViT-B/16 (Dosovitskiy
et al., 2020) model trained on ImageNet. We have visualized most interpretable neurons, their highly
activating images and their descriptions in Figure 11. Interestingly, we found the highly interpretable
neurons to be very location focused, i.e. kitchens or highways despite the network being trained on
object level labels (ImageNet).
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Figure 11: Most interpretable neurons after the ’encoder’ module (one of the last layers) of a Vision
Transformer.
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A.6 PREDICTING INPUT CLASS FROM NEURON DESCRIPTIONS

In this section we follow reviewer suggestion and study whether the class of the image can be pre-
dicted based on descriptions of highly activating neurons. We perform an experiment on the neurons
in the second-to-last layer (last hidden layer) and study if the descriptions of highly activating neu-
rons in this layer can be used to predict what class the input is from.

As we show in below experiments, the neuron description generated from CLIP-Dissect gives overall
higher prediction accuracy than the neuron descriptions from prior work (Network Dissection and
MILAN), which suggests our proposed method generates better neuron description than prior work.
Below we outline the steps we used to predict the class of an image based on the internal neuron
descriptions from different neuron labelling methods:

1. Following our notation in Sec 3, for an image xi, record the activations of neurons in the
second-to-last layer g(Aj(xi)) (where j denotes the neuron index) as well as the predicted
class c.

2. Find the neuron with the highest positive contribution to the predicted class c, which can
be computed as k = argmaxj Wc,j · g(Aj(xi)).

3. Obtain the description tk for neuron k using an automated description method.
4. Find the class name that is most similar to the description of the highest contributing neu-

ron, and predict this class as the images class. Similarity is measured using an average
of cosine similarities in the sentence embedding space of CLIP text encoder and mpnet
sentence embedding space discussed in section 4.2.

We performed this experiment on ResNet-50 trained on ImageNet, and found that predicting with
the above algorithm and CLIP-Dissect neuron descriptions we were able to correctly predict the
class of 10.28% of the images. In contrast, when we used descriptions from Network Dissection
we were only able to predict the class of 3.36% of the images, and with MILAN(base) only 2.31%
of the time. This gives evidence towards our CLIP-Dissect descriptions being higher quality than
Network Dissection and MILAN. It’s worth noting that overall we would not expect to reach a very
high predictive accuracy using the above method as the most contributing neuron often does have a
completely different role than the target class. However if we study the same network with different
neuron description methods, we would expect a better neuron description method would return a
higher prediction accuracy, assuming at least some of the important neurons indeed do have similar
role to the class itself. This method has the benefit of being automated, going beyond visualizing few
most highly activating images and being able to analyze hidden layer description quality. We think
methods like this are an interesting future direction for evaluating neuron description methods.

A.7 VISUALIZING WIDER RANGE OF ACTIVATIONS

So far our qualitative evaluation has focused on whether the description matches the 5 or 10 images
in Dprobe that activate the neuron the most. However this does not give a full picture of the function
of the neuron, and in this section we explore how the neurons activate on a wider range of input
images. In particular, in Figures 12 and 13 we visualize the most interpretable neurons of two layers
of ResNet-18 (Places 365) and ResNet-50 (ImageNet) by uniformly sampling images from the top
0.1%, 1% 5% of most highly activating images. We can see that the descriptions tend to match
quite well for the 0.1% of most highly activating images, but the top 1% and top 5% images start
to be of quite different concepts only slightly related to the description. We also notice that low
level concepts like colors tend to be more consistently represented in top 1% and 5% images while
higher level concepts are not. This result is somewhat expected as the Dprobe does not have that many
images for each higher level concept, but highlights the need to explore neuron activations beyond
just the few most highly activated images.
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Figure 12: Most interpretable neurons of ResNet-18, showcasing randomly sampled images of a
wide range of most highly activating images for that neuron.
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Figure 13: Most interpretable neurons of ResNet-50, showcasing randomly sampled images of a
wide range of most highly activating images for that neuron.
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A.8 INTERPRETABILITY CUTOFF

Our method can also be used to quantify which neurons are ’interpretable’. Since each description
for a neuron is associated with a similarity score, and the higher the similarity the more accurate
the description, we consider a neuron k with description t as interpretable if sim(t, qk;P ) > τ . To
choose the best cutoff τ , we leverage our experiment in section A.10. In particular, we choose the
lowest τ such that interpretable neurons will have an average description score of 0.75 or higher
(compared to 0.655 of all neurons). This gives us a cutoff threshold τ = 0.16 with the proposed
SoftWPMI similarity function. In contrast, the neurons with SoftWPMI ≤ τ have an average de-
scription score of 0.5257, which is lower than that of interpretable neurons (0.75) and all neurons
(0.655). Thus, it suggests that the similarity score of SoftWPMI is a useful indicator of description
quality. Using this cutoff τ , we find 69.7% of neurons in ResNet-18 (Places-365) and 77.8% of
neurons in ResNet-50 (ImageNet) to be interpretable, indicating that around 20-30% of neurons do
not have a simple explanation for their functionality, i.e. are ’uninterpretable’.

A.9 QUALITATIVE EFFECT OF SIMILARITY FUNCTION

Figure 14 shows the descriptions generated by our CLIP-Dissect when using simple cosine similarity
as the similarity function. As we can see the performance is very poor, only adequately describing
one of the 8 neurons displayed, highlighting the need for more sophisticated similarity functions we
introduced.

Figure 14: Explanations for same neurons as Figure 1 showcasing the qualitative difference between
using a simple cos similarity as the similarity function for CLIP-Dissect vs our best performing
SoftWPMI similarity function.
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A.10 LARGER SCALE EXPERIMENT ON DESCRIPTION QUALITY

In this section we perform a larger scale analysis of the neuron description quality provided by
CLIP-Dissect. We evaluated the description quality of 50 randomly selected neurons for each of the
5 layers and 2 models studied, for a total of 1000 evaluations. Each evaluator was presented with 10
most highly activating images, and answered the question: ”Does the description: ’{}’ match this
set of images?” An example of the user interface is shown in Figure 15. Each evaluation had three
options which we used with the following guidelines:

• Yes - Most of the 10 images are well described by this description

• Maybe - Around half (i.e. 3-6) of the images are well described, or most images are de-
scribed relatively well (accurate but too generic, or slightly inaccurate)

• No - Most images are poorly described by this caption

Figure 15: Example of the user interface for our evaluation of description quality.

These evaluations were turned into a numeric score with the following formula: yes:1, maybe:0.5,
no:0. Table 5 shows the average description score across different neurons and evaluators for each
of the layers evaluated. This average score can be thought of as the percentage of neurons well
described. We observed that overall the descriptions are good for 55-80% of neurons depending
on the layer, with the average score across all evaluations being 0.655. In addition we notice that
the very early and very late layers are most interpretable, corresponding to clear low or high level
concepts, while the middle layers seem to be harder to describe. It is worth noting that we are
evaluating random neurons here, i.e. the neurons are selected randomly, so the displayed neuron
may not be interpretable in the first place – in many cases when the description does not match are
because the neuron itself is not ’interpretable’, i.e. there is no simple description that corresponds to
the neurons functionality.

Even with the evaluation guidelines described above, these evaluations are subjective, and we found
that our two evaluators agreed on 68.4% of the neurons with the vast majority of disagreements
being between yes/maybe or maybe/no, with only 2.4% of neurons having a yes from one evaluator
and no from another. For transparency, we have included all 50 neurons, their descriptions and two
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Table 5: The average description scores of the CLIP-Dissect descriptions for neurons of different
layers. An average score of 1.0 indicates all descriptions match the neurons highly activating images,
0.0 means none do, and 0.5 could mean anything from all neurons ’maybe’ match or half the neurons
fully match and half don’t at all.

Model\Layer conv1 layer1 layer2 layer3 layer4

ResNet-18 (Places 365) 0.805 0.635 0.635 0.410 0.695
ResNet-50 (ImageNet) 0.815 0.670 0.550 0.640 0.695

evaluator’s evaluations (E1, E2) of these descriptions for ResNet-50 layer conv1 in Figures 16, 17
and 18 and for ResNet-50 layer4 in Figures 19, 20 and 21
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Figure 16: Random neurons of ’conv1’ in ResNet-50 (ImageNet), and E1, E2’s evaluation on the
description of CLIP-Dissect (PART 1). 27
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Figure 17: Random neurons of ’conv1’ in ResNet-50 (ImageNet), and E1, E2’s evaluation on the
description of CLIP-Dissect (PART 2)
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Figure 18: Random neurons of ’conv1’ in ResNet-50 (ImageNet), and E1, E2’s evaluation on the
description of CLIP-Dissect (PART 3)
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Figure 19: Random neurons of ’layer 4’ in ResNet-18 (Places 365), and E1, E2’s evaluation on the
description of CLIP-Dissect (PART 1) 30
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Figure 20: Random neurons of ’layer 4’ in ResNet-18 (Places 365), and E1, E2’s evaluation on the
description of CLIP-Dissect (PART 2) 31
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Figure 21: Random neurons of ’layer 4’ in ResNet-18 (Places 365), and E1, E2’s evaluation on the
description of CLIP-Dissect (PART 3)

32


	Introduction
	Background and Related Work
	Method
	CLIP-Dissect Overview
	Similarity function
	Compability with future models

	Experiments
	Qualitative results
	Quantitative results
	Choice of similarity function
	Computational efficiency
	Detecting concepts missing from Dprobe

	Use case of CLIP-Dissect
	Limitations and conclusions
	Appendix
	Similarity function details and derivation
	Additional qualitative results
	Low level concepts
	Compositional Concepts
	Vision Transformer
	Predicting input class from neuron descriptions
	Visualizing wider range of activations
	Interpretability cutoff
	Qualitative effect of similarity function
	Larger scale experiment on description quality


