
Scaling Laws for Upcycling Mixture-of-Experts
Language Models

Anonymous Author(s)
Affiliation
Address
email

Abstract

Pretraining large language models (LLMs) is resource-intensive, often requiring1

months of training time even with high-end GPU clusters. There are two approaches2

of mitigating such computational demands: reusing smaller models to train larger3

ones (upcycling), and training computationally efficient models like mixture-of-4

experts (MoE). In this paper, we study the upcycling of LLMs to MoE models, of5

which the scaling behavior remains underexplored. Through extensive experiments,6

we identify empirical scaling laws that describe how performance depends on7

dataset size and model configuration. Particularly, we show that, while scaling8

these factors improves performance, there is a novel interaction term between9

the dense and upcycled training dataset that limits the efficiency of upcycling10

at large computational budgets. Based on these findings, we provide guidance11

to scale upcycling, and establish conditions under which upcycling outperforms12

from-scratch trainings within budget constraints.13

1 Introduction14

Large-scale neural network architectures, such as dense transformers [Vaswani et al., 2017], have seen15

remarkable success across a wide range of tasks, particularly achieving human-level capabilities in16

natural language processing [Achiam et al., 2023]. However, they often demand an enormous amount17

of computation, imposing challenges of computational efficiency and scalability. Sparse models like18

mixture-of-experts (MoE) architectures [Shazeer et al., 2017, Lepikhin et al.], have emerged as an19

alternative achieving better efficiency-performance trade-off via partial activation (routing) of neural20

parameters when processing the input. Even so, MoE still requires substantial compute power to21

reach its full potential [Wei et al., 2024, Dai et al., 2024, Yang et al., 2024].22

One direction to further accelerate training convergence is leveraging smaller pretrained models to23

guide the training of larger MoE models. Komatsuzaki et al. propose upcycling, which reuses the24

dense checkpoint to continued pretrain the upcycled MoE. The MoE is expected to specialize and25

optimize routing rapidly by leveraging the pretrained dense model weights.26

Despite the promise of efficient MoE training via upcycling, the effectiveness and limitations of this27

technique remain unclear. While some [Wei et al., 2024, He et al., 2024] have already adopted it to28

training large-scale MoEs, Muennighoff et al. [2024] reported negative results where upcycling can29

slow down training convergence. We believe these seemingly contradictory conclusions are due to30

insufficient comprehensive studies and assessments. There is also a lack of guidance on how and31

when to upcycle MoE, hampering a wider adoption of this technique.32

In this paper, we seek to better understand large language model’s (LLM) upcycling to MoE via a33

series of controlled experiments, spanning up to a few hundred billion (B) training tokens and models34

up to 7B total parameters. Specifically, we uncover precise power-law scalings for the language35

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

modeling performance (cross-entropy loss) with respect to training dataset size (for both dense and36

upcycled MoE training), and the model configuration, including the total number of parameters37

(model size). Building on these results, we provide a framework for assessing when upcycling offers38

advantages over from-scratch training and how performance gains depend on dataset size and model39

configuration.40

Main results. The major technical findings of this paper are summarized below. Let D1, D2 be41

the number of tokens used to train the dense model and upcycled MoE respectively. Denote the42

cross-entropy test loss of the upcycled MoE by L. We find that the upcycled MoE satisfies the43

following relation for a wide range of model configuration:44

L = AD−α1
1 D−α2+α3 logD1

2 + E (1)

where αi’s (i = 1, 2, 3) are positive scaling exponents, and A,E are constants independent of D1, D2.45

2 Experimental Design and Results46

In this Section, we describe the design of our experiments, before presenting some of the experimental47

results. Additional details, including ablation studies are available in Appendix C.48

Dense models in consideration. We train a suite of dense models with model sizes 15M, 44M, 0.1B,49

0.2B, 0.5B and 1B. The model configuration (number of layers, nlayer, hidden dimension dmodel, and50

MLP hidden dimension, dmlp) used in this paper is summarized in Table 3 of Appendix C.51

Learning rate schedule. We are interested in training models with different numbers of training52

token budget. Previous work [Hoffmann et al., 2022] used the cosine learning rate (LR) schedule and53

trained separate models for each number of training token budget, which is resource-consuming. We54

instead employ the warmup-stable-decay (WSD) learning rate schedule [Bi et al., 2024, Hu et al.,55

2024], which requires only a single model sweep with a sufficiently large number of training tokens.56

Dataset. We use training dataset derived from the CommonCrawl portion of Slimpajama-DC [Shen57

et al., 2023], containing 368B tokens in total. The test loss is calculated from the default validation58

set (0.3B tokens) defined therein. In Appendix D, we train models on two different datasets (Japanese59

language and source code datasets) to study the scaling behavior across datasets. We show some of60

the resulting test loss curves of our upcycling experiments in Figure 3 (see model evaluation with61

standard benchmarks in Appendix C.9).62

3 Scaling Laws63

3.1 Scaling Law for Dataset Sizes64

We fix the model size while varying D1,2 to study the scaling behavior with respect to these variables.65

To determine the functional form of the scaling law, L(D1, D2), we require it to satisfy certain66

properties:67

Requirement 1. L(D1, D2) follows the power law with respect to D2, as shown empirically in68

Figure 1. This aligns with the power-law ansatz, treating upcycling as analogous to standard MoE69

training with dataset size D2, initialized with dense parameters rather than random weights:70

L(D1, D2) = LD1
(D2) = AD−α

2 + E (2)

Requirement 2. As D2 → 0, the loss should reduce to the power-law scaling behavior of the dense
counterpart with respect to D1, consistent with the function-preserving initialization of upcycling:

limD2→0L(D1, D2) = AD−α
1 + E

We investigate the following functional forms of power law satisfying these requirements:71

Multiplicative:72

L(D1, D2) ≈ AD−α1
1 D−α2+α3 logD1

2 + E (3)

Additive:73

L(D1, D2) ≈ AD−α1
1 + FD−α2+α3 logD1

2 + E (4)

2

Both forms include an interaction term (α3 logD1) in the scaling exponent, capturing the interplay74

between D1 and D2.75

Empirical comparisons of functional forms. We empirically compare these functional forms,76

including the special case where D1 and D2 have no interaction. The optimization uses the Huber77

loss (δ = 10−3) and the BFGS algorithm, fitting the logarithm of the loss via the LogSumExp trick78

applied to the RHS of Equations 3 and 4. The leave-one-out root mean square error (RMS) serves as79

the fit metric.80

The fit is performed on a 0.1B dense model upcycled to MoE architectures with nexpert = {4, 8} and81

nTopK = {1, 2} , trained on a 5× 5 grid of D1, D2. The fitting results are shown in Table 1, where82

we can see that the multiplicative functional form (with non-zero interaction) achieves consistently83

the lowest leave-one-out RMS error across the experimented MoE architectures. Henceforth, we84

adopt Equation 3 in our scaling laws.85

3.1.1 Interpretations86

Several quantitative and qualitative observations can be made from the scaling law of dataset sizes.87

From our fit (Table 8 in Appendix E), we notice a trend α2 ≳ α1 ≫ α3. This means that while88

increasing either of D1 and D2 helps improve performance, as upcycled training has a slightly larger89

exponent (α2), increasing D2 helps train faster.90

Upcycled MoE has a better head start (effective scaling factor is smaller). Fixing D1, we see that91

the effective scaling factor for D2 is AD−α1
1 . Increasing D1 lowers the effective scaling factor, and92

hence the loss of upcycling. Indeed, fixing D2, we see that the model performs better with increasing93

D1 in Figure 3.94

Upcycled MoE trains slower with larger sunk cost (effective scaling exponent is smaller). Again95

fixing D1, we see that the effective scaling exponent with respect to D2 is α2 − α3 logD1. This96

means that the larger the sunk cost (D1) is, the loss decreases more slowly with D2, indicating97

diminishing returns from increasing D2 at higher D1 values, agreeing with Figure 1’s results.98

(nexpert,nTopK) (4,1) (4,2) (8,1) (8,2)

Mul. 0.0111 0.0081 0.0105 0.0031
Mul. (α3 = 0) 0.0169 0.0085 0.0180 0.0095
Add. 0.0165 0.00843 0.0167 0.0093
Add.(α3 = 0) 0.0196 0.0117 0.0430 0.0113

Table 1: Multiplicative scaling law with interaction consistently achieves lowest error. Leave-
one-out RMS error for fitting the loss for MoEs upcycled from a dense 0.1B model, with functional
forms of Equations 3, 4, and specific cases with α3 = 0. The first and second number in the bracket
of the first row indicates the MoE architecture’s parameter, nexpert and nTopK respectively.

3.2 Joint Scaling Law99

In this Section, we show that the upcycled MoE follows a joint scaling law with respect to dataset100

size and model size, provided the MoE architecture is fixed. For our study, we adopt a widely used101

MoE configuration (nexpert = 8, nTopK = 2), which has been implemented in several large-scale,102

publicly available models, including Mixtral-8x7B and 8x22B [Jiang et al., 2024].103

The straightforward functional form is as follows.104

L(D1, D2, N2) = AD−α1
1 D−α2+α3 logD1

2 +BN−β2

1 + E (5)

Fitting. Towards this end, we fit three separate scaling laws, corresponding to dense, MoE, and105

upcycled trainings, incorporating dataset and model sizes (the first two are fitted with the functional106

form of Equation 7). In Figure 4, we show that the fitted result of upcycling scaling law extrapolates107

well, achieving validation RMS error of 0.015.108

3

Figure 1: Top: D2 has power-law scaling. We show scaling behavior of upcycled training tokens
(D2) for different values of dense tokens (D1). Bottom: Interaction term explains decreasing
exponents. The fitted exponents in the upper plots are used to fit the logarithm of D1, and are shown
to agree well with the functional form.

3.3 Training MoE from Scratch versus Upcycling109

Past studies [Komatsuzaki et al., Muennighoff et al., 2024] have explored the efficiency of training an110

MoE from scratch compared to upcycling a dense model. Komatsuzaki et al. found that upcycling111

retains an advantage up to 120% of the sunk cost (D1). For instance, to match the performance of112

an upcycled MoE trained with an additional 0.4 trillion (T) tokens after 2T dense tokens, training113

an MoE from scratch would require 2.4T tokens—effectively saving 2T tokens in upcycled training.114

Conversely, Muennighoff et al. [2024] reported that training from scratch requires less than 100%115

of the sunk cost under different settings, indicating that it could be more efficient. These seemingly116

contradictory results suggest that upcycling efficiency depends on both sunk cost and model size.117

To investigate this, we define D∗ the number of tokens required for training from scratch to match118

the performance of an upcycled MoE with the same sunk cost, i.e.,119

LMoE
N1

(D∗) = LUpc.
N1

(D1 = D∗, D2 = D∗) (6)

Since the above equation involves non-integer polynomial exponents, we solve it numerically and120

approximate the solution analytically. Figure 5 shows that D∗ decreases with increasing model size,121

with D∗ equal to 4B tokens for an 8x1B model. When D2 ≲ D∗, the required DMoE to catch up122

is more than 100% of D1: upcycling remains more efficient than training from scratch. However,123

for D2 ≳ D∗, the efficiency reverses, favoring training from scratch. Our findings indicate that:124

Upcycling is more efficient than training an MoE from scratch for lower sunk cost and training125

token budget, but its efficiency diminishes as the sunk cost or model size increases.126

We consider other application and implication of the joint scaling law in Appendix G.127

4 Discussion and Conclusion128

In this paper, we have presented compelling evidence that MoE upcycling follows novel scaling laws129

with dataset and model configuration, revealing trade-offs due to interactions between dataset sizes.130

While our empirical formulae successfully capture the observed scaling behavior, the underlying131

mechanism, particularly the interaction term, remains theoretically unexplained. To our knowledge,132

formal justification for such interactions is lacking in the literature [Bahri et al., 2024, Paquette et al.].133

Future work could explore it through optimization dynamics or loss landscape analysis. Additionally,134

extending our scaling laws to alternative MoE architectures and encoder-decoder models would help135

assess their generality and implications.136

4

References137

J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida, J. Altenschmidt,138

S. Altman, S. Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.139

Y. Bahri, E. Dyer, J. Kaplan, J. Lee, and U. Sharma. Explaining neural scaling laws. Proceedings of140

the National Academy of Sciences, 121(27):e2311878121, 2024.141

Y. Bengio, N. Léonard, and A. Courville. Estimating or propagating gradients through stochastic142

neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.143

X. Bi, D. Chen, G. Chen, S. Chen, D. Dai, C. Deng, H. Ding, K. Dong, Q. Du, Z. Fu, et al. Deepseek144

llm: Scaling open-source language models with longtermism. arXiv preprint arXiv:2401.02954,145

2024.146

S. Biderman, H. Schoelkopf, Q. G. Anthony, H. Bradley, K. O’Brien, E. Hallahan, M. A. Khan,147

S. Purohit, U. S. Prashanth, E. Raff, et al. Pythia: A suite for analyzing large language models148

across training and scaling. pages 2397–2430. PMLR, 2023.149

Y. Bisk, R. Zellers, J. Gao, Y. Choi, et al. Piqa: Reasoning about physical commonsense in natural150

language. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages151

7432–7439, 2020.152

W. Cai, J. Jiang, F. Wang, J. Tang, S. Kim, and J. Huang. A survey on mixture of experts. arXiv153

preprint arXiv:2407.06204, 2024.154

T. Chen, I. Goodfellow, and J. Shlens. Net2net: Accelerating learning via knowledge transfer. arXiv155

preprint arXiv:1511.05641, 2015.156

A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W. Chung,157

C. Sutton, S. Gehrmann, et al. Palm: Scaling language modeling with pathways. Journal of158

Machine Learning Research, 24(240):1–113, 2023.159

A. Clark, D. de Las Casas, A. Guy, A. Mensch, M. Paganini, J. Hoffmann, B. Damoc, B. Hechtman,160

T. Cai, S. Borgeaud, et al. Unified scaling laws for routed language models. pages 4057–4086.161

PMLR, 2022.162

P. Clark, I. Cowhey, O. Etzioni, T. Khot, A. Sabharwal, C. Schoenick, and O. Tafjord. Think you have163

solved question answering? try arc, the ai2 reasoning challenge. arXiv preprint arXiv:1803.05457,164

2018.165

T. Computer. Redpajama: an open dataset for training large language models, October 2023. URL166

https://github.com/togethercomputer/RedPajama-Data.167

D. Dai, C. Deng, C. Zhao, R. Xu, H. Gao, D. Chen, J. Li, W. Zeng, X. Yu, Y. Wu, et al. Deepseekmoe:168

Towards ultimate expert specialization in mixture-of-experts language models. arXiv preprint169

arXiv:2401.06066, 2024.170

T. Dao, D. Fu, S. Ermon, A. Rudra, and C. Ré. Flashattention: Fast and memory-efficient exact171

attention with io-awareness. Advances in Neural Information Processing Systems, 35:16344–16359,172

2022.173

W. Du, T. Luo, Z. Qiu, Z. Huang, Y. Shen, R. Cheng, Y. Guo, and J. Fu. Stacking your transformers:174

A closer look at model growth for efficient llm pre-training. arXiv preprint arXiv:2405.15319,175

2024.176

D. Eigen, M. Ranzato, and I. Sutskever. Learning factored representations in a deep mixture of177

experts. arXiv preprint arXiv:1312.4314, 2013.178

W. Fedus, B. Zoph, and N. Shazeer. Switch transformers: Scaling to trillion parameter models with179

simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39, 2022.180

5

https://github.com/togethercomputer/RedPajama-Data

L. Gao, J. Tow, B. Abbasi, S. Biderman, S. Black, A. DiPofi, C. Foster, L. Golding, J. Hsu,181

A. Le Noac’h, H. Li, K. McDonell, N. Muennighoff, C. Ociepa, J. Phang, L. Reynolds,182

H. Schoelkopf, A. Skowron, L. Sutawika, E. Tang, A. Thite, B. Wang, K. Wang, and A. Zou.183

A framework for few-shot language model evaluation, 07 2024. URL https://zenodo.org/184

records/12608602.185

A. Hägele, E. Bakouch, A. Kosson, L. Von Werra, M. Jaggi, et al. Scaling laws and compute-optimal186

training beyond fixed training durations. Advances in Neural Information Processing Systems, 37:187

76232–76264, 2024.188

E. He, A. Khattar, R. Prenger, V. Korthikanti, Z. Yan, T. Liu, S. Fan, A. Aithal, M. Shoeybi,189

and B. Catanzaro. Upcycling large language models into mixture of experts. arXiv preprint190

arXiv:2410.07524, 2024.191

T. Henighan, J. Kaplan, M. Katz, M. Chen, C. Hesse, J. Jackson, H. Jun, T. B. Brown, P. Dhari-192

wal, S. Gray, et al. Scaling laws for autoregressive generative modeling. arXiv preprint193

arXiv:2010.14701, 2020.194

D. Hernandez, J. Kaplan, T. Henighan, and S. McCandlish. Scaling laws for transfer. arXiv preprint195

arXiv:2102.01293, 2021.196

J. Hestness, S. Narang, N. Ardalani, G. Diamos, H. Jun, H. Kianinejad, M. M. A. Patwary, Y. Yang,197

and Y. Zhou. Deep learning scaling is predictable, empirically. arXiv preprint arXiv:1712.00409,198

2017.199

J. Hestness, N. Ardalani, and G. Diamos. Beyond human-level accuracy: Computational challenges200

in deep learning. pages 1–14, 2019.201

J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford, D. de Las Casas,202

L. A. Hendricks, J. Welbl, A. Clark, et al. Training compute-optimal large language models.203

Proceedings of the 36th International Conference on Neural Information Processing Systems,204

pages 30016–30030, 2022.205

S. Hu, Y. Tu, X. Han, C. He, G. Cui, X. Long, Z. Zheng, Y. Fang, Y. Huang, W. Zhao, et al. Minicpm:206

Unveiling the potential of small language models with scalable training strategies. arXiv preprint207

arXiv:2404.06395, 2024.208

A. Q. Jiang, A. Sablayrolles, A. Roux, A. Mensch, B. Savary, C. Bamford, D. S. Chaplot, D. d. l.209

Casas, E. B. Hanna, F. Bressand, et al. Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.210

J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Radford, J. Wu,211

and D. Amodei. Scaling laws for neural language models. arXiv preprint arXiv:2001.08361, 2020.212

D. Kocetkov, R. Li, L. Jia, C. Mou, Y. Jernite, M. Mitchell, C. M. Ferrandis, S. Hughes, T. Wolf,213

D. Bahdanau, et al. The stack: 3 tb of permissively licensed source code. Transactions on Machine214

Learning Research.215

A. Komatsuzaki, J. Puigcerver, J. Lee-Thorp, C. R. Ruiz, B. Mustafa, J. Ainslie, Y. Tay, M. Dehghani,216

and N. Houlsby. Sparse upcycling: Training mixture-of-experts from dense checkpoints.217

V. A. Korthikanti, J. Casper, S. Lym, L. McAfee, M. Andersch, M. Shoeybi, and B. Catanzaro.218

Reducing activation recomputation in large transformer models. Proceedings of Machine Learning219

and Systems, 5:341–353, 2023.220

J. Krajewski, J. Ludziejewski, K. Adamczewski, M. Pióro, M. Krutul, S. Antoniak, K. Ciebiera,221

K. Król, T. Odrzygóźdź, P. Sankowski, et al. Scaling laws for fine-grained mixture of experts.222

arXiv preprint arXiv:2402.07871, 2024.223

T. Le Scao, T. Wang, D. Hesslow, S. Bekman, M. S. Bari, S. Biderman, H. Elsahar, N. Muennighoff,224

J. Phang, O. Press, C. Raffel, V. Sanh, S. Shen, L. Sutawika, J. Tae, Z. X. Yong, J. Launay,225

and I. Beltagy. What language model to train if you have one million GPU hours? pages226

765–782, Abu Dhabi, United Arab Emirates, Dec. 2022. Association for Computational Lin-227

guistics. doi: 10.18653/v1/2022.findings-emnlp.54. URL https://aclanthology.org/2022.228

findings-emnlp.54.229

6

https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
https://aclanthology.org/2022.findings-emnlp.54
https://aclanthology.org/2022.findings-emnlp.54
https://aclanthology.org/2022.findings-emnlp.54

D. Lepikhin, H. Lee, Y. Xu, D. Chen, O. Firat, Y. Huang, M. Krikun, N. Shazeer, and Z. Chen.230

Gshard: Scaling giant models with conditional computation and automatic sharding.231

J. Liu, L. Cui, H. Liu, D. Huang, Y. Wang, and Y. Zhang. Logiqa: a challenge dataset for machine232

reading comprehension with logical reasoning. pages 3622–3628, 2021.233

L. Liu, Y. J. Kim, S. Wang, C. Liang, Y. Shen, H. Cheng, X. Liu, M. Tanaka, X. Wu, W. Hu, et al.234

Grin: Gradient-informed moe. arXiv preprint arXiv:2409.12136, 2024.235

K. M. Lo, Z. Huang, Z. Qiu, Z. Wang, and J. Fu. A closer look into mixture-of-experts in large236

language models. arXiv preprint arXiv:2406.18219, 2024.237

I. Loshchilov, F. Hutter, et al. Fixing weight decay regularization in adam. arXiv preprint238

arXiv:1711.05101, 5, 2017.239

H. Mikami, K. Fukumizu, S. Murai, S. Suzuki, Y. Kikuchi, T. Suzuki, S.-i. Maeda, and K. Hayashi.240

A scaling law for syn2real transfer: How much is your pre-training effective? pages 477–492.241

Springer, 2022.242

N. Muennighoff, A. Rush, B. Barak, T. Le Scao, N. Tazi, A. Piktus, S. Pyysalo, T. Wolf, and C. A.243

Raffel. Scaling data-constrained language models. Advances in Neural Information Processing244

Systems, 36:50358–50376, 2023.245

N. Muennighoff, L. Soldaini, D. Groeneveld, K. Lo, J. Morrison, S. Min, W. Shi, P. Walsh,246

O. Tafjord, N. Lambert, et al. Olmoe: Open mixture-of-experts language models. arXiv preprint247

arXiv:2409.02060, 2024.248

D. Paperno, G. Kruszewski, A. Lazaridou, N.-Q. Pham, R. Bernardi, S. Pezzelle, M. Baroni,249

G. Boleda, and R. Fernández. The lambada dataset: Word prediction requiring a broad dis-250

course context. Proceedings of the 54th Annual Meeting of the Association for Computational251

Linguistics (Volume 1: Long Papers), pages 1525–1534, 2016.252

E. Paquette, C. Paquette, L. Xiao, and J. Pennington. 4+ 3 phases of compute-optimal neural scaling253

laws. The Thirty-eighth Annual Conference on Neural Information Processing Systems.254

T. Porian, M. Wortsman, J. Jitsev, L. Schmidt, and Y. Carmon. Resolving discrepancies in compute-255

optimal scaling of language models. Advances in Neural Information Processing Systems, 37:256

100535–100570, 2024.257

J. S. Rosenfeld, A. Rosenfeld, Y. Belinkov, and N. Shavit. A constructive prediction of the general-258

ization error across scales.259

K. Sakaguchi, R. L. Bras, C. Bhagavatula, and Y. Choi. Winogrande: An adversarial winograd260

schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.261

N. Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.262

N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and J. Dean. Outrageously large263

neural networks: The sparsely-gated mixture-of-experts layer. 2017.264

Z. Shen, T. Tao, L. Ma, W. Neiswanger, Z. Liu, H. Wang, B. Tan, J. Hestness, N. Vassilieva,265

D. Soboleva, et al. Slimpajama-dc: Understanding data combinations for llm training. arXiv266

preprint arXiv:2309.10818, 2023.267

M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catanzaro. Megatron-lm:268

Training multi-billion parameter language models using model parallelism. arXiv preprint269

arXiv:1909.08053, 2019.270

D. Soboleva, F. Al-Khateeb, R. Myers, J. R. Steeves, J. Hestness, and N. Dey. SlimPajama: A 627B271

token cleaned and deduplicated version of RedPajama, June 2023. URL https://huggingface.272

co/datasets/cerebras/SlimPajama-627B.273

J. Su, M. Ahmed, Y. Lu, S. Pan, W. Bo, and Y. Liu. Roformer: Enhanced transformer with rotary274

position embedding. Neurocomputing, 568:127063, 2024.275

7

https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B

X. Sun, Y. Chen, Y. Huang, R. Xie, J. Zhu, K. Zhang, S. Li, Z. Yang, J. Han, X. Shu, et al. Hunyuan-276

large: An open-source moe model with 52 billion activated parameters by tencent. arXiv preprint277

arXiv:2411.02265, 2024.278

H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,279

P. Bhargava, S. Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv280

preprint arXiv:2307.09288, 2023.281

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin.282

Attention is all you need. Advances in neural information processing systems, 30, 2017.283

T. Wei, B. Zhu, L. Zhao, C. Cheng, B. Li, W. Lü, P. Cheng, J. Zhang, X. Zhang, L. Zeng, et al.284

Skywork-moe: A deep dive into training techniques for mixture-of-experts language models. arXiv285

preprint arXiv:2406.06563, 2024.286

J. Welbl, N. F. Liu, and M. Gardner. Crowdsourcing multiple choice science questions. W-NUT 2017,287

page 94, 2017.288

A. Yang, B. Yang, B. Hui, B. Zheng, B. Yu, C. Zhou, C. Li, C. Li, D. Liu, F. Huang, et al. Qwen2289

technical report. arXiv preprint arXiv:2407.10671, 2024.290

A. Zeng, X. Liu, Z. Du, Z. Wang, H. Lai, M. Ding, Z. Yang, Y. Xu, W. Zheng, X. Xia, et al. Glm-130b:291

An open bilingual pre-trained model. arXiv preprint arXiv:2210.02414, 2022.292

B. Zhang, Z. Liu, C. Cherry, and O. Firat. When scaling meets llm finetuning: The effect of data,293

model and finetuning method.294

P. Zhang, G. Zeng, T. Wang, and W. Lu. Tinyllama: An open-source small language model. arXiv295

preprint arXiv:2401.02385, 2024.296

8

A Preliminaries297

A.1 Model details298

Dense model. Our dense models are decoder-only transformers pretrained with an autoregressive299

language modeling objective. The architecture is most similar to Llama2 models [Touvron et al.,300

2023], incorporating advances such as SwiGLU [Shazeer, 2020] and rotary position embedding [Su301

et al., 2024]. We use the Llama tokenizer of vocabulary size 32,000.302

Mixture-of-Experts. The MoE model in consideration is the same as our dense model, but with all303

MLP blocks replaced by multiple blocks (experts) with the same configuration [Fedus et al., 2022].304

A router consisting of a single-layer MLP outputs the routing probability of the tokens to the experts.305

The model configuration has two key parameters: nexpert, representing the number of experts, and306

nTopK, which specifies how many of the highest-probability experts each token is routed to at each307

layer. The output of the experts is linearly combined and passed to the next layer.308

The MoE and its corresponding dense model with model size Ndense, consisting of nexpert experts, is309

denoted with a prefix ”nexpert”, e.g., 8x1B where the dense correspondent is of 1B in model size. We310

refer to the number of non-embedding model parameters (that is, total number of parameters minus311

the number of embedding and language modeling head parameters) used for computation per token312

as the number of active parameters.313

Upcycling. The upcycling scenario assumes that one is given a pretrained dense model and would314

like to train an MoE with the same configuration but replacing the MLPs with the MoE modules315

[Komatsuzaki et al.]. By replicating the dense model’s MLP weight nexpert to form the experts, the316

knowledge from the dense model can be reused to accelerate the training of the MoE compared to317

training the MoE from scratch (from random parameter initialization). Other modules’ weights are318

copied from the dense counterparts directly, with the router’s initial weights randomized. See Figure319

2 for an illustration of upcycling. We employ this technique for our study.320

A.2 Power-law Ansatz321

There is an extensive literature showing that the loss of training deep learning models has a simple322

power-law behavior: L = A
Xα + E, for single variable X , including model size and dataset size323

[Hestness et al., 2017, 2019, Rosenfeld et al., Henighan et al., 2020]. 1 We use this ansatz in this324

work.

Attention

Norm

Add

Norm

Add

MLP 1 MLP nMLP 5

Add

Router

……

MoE module

Attention

Norm

Add

Norm

Add

MLP
(multi-layer
perceptron)

Duplicate

Trained for tokensD1 Trained for tokensD2
Dense model (Llama etc.) of size N1 Upcycled MoE (Mixtral etc.)

Input Input

Output

Copy

Output

× nlayer × nlayer

TopK

Figure 2: Upcycling and factors affecting MoE’s performance. Upcycling involves initiating the
weights of the MoE (activating nTopK experts per token) by reusing the weights (duplicating the
weights of MLPs nexpert times) of an existing dense transformer of size N1 that has been trained for
D1 tokens. The (upcycled) MoE is further trained for D2 tokens. Language modeling performance
improves when scaling these factors. We study and develop formulae (scaling laws) consisting of
these factors to predict the empirical performance.

1The actual form we assume is L = A
(X+1)α

+ E such that the loss is finite at the limit X → 0. However,
since the values of X we consider are often much larger than 1 (106 or more), we approximate it as L = A

Xα +E
for notational convenience.

9

Hoffmann et al. [2022] have shown that when training a dense transformer, the cross-entropy loss is325

well-described by the following ”Chinchilla” scaling law:326

L = AD−α +BN−β + E (7)

The first and second terms quantify the limitation of learning due to limited dataset and model sizes327

respectively. The scaling exponents, α, β control how fast the loss decreases with respect to dataset328

and model sizes respectively. E is a constant: it is the irreducible loss representing the inherent329

entropy of text. All parameters are to be fitted with experimental observations. We also assume330

Equation 7 for models trained from scratch.331

B Related Work332

Mixture-of experts. While interests in developing open MoE LLMs are relatively recent [Hu et al.,333

2024, Yang et al., 2024, Dai et al., 2024, Liu et al., 2024, Sun et al., 2024], the use of MoE in deep334

learning can be traced to early 2010s [Eigen et al., 2013, Bengio et al., 2013]. See Cai et al. [2024]335

for a detailed survey of modern MoE models.336

Upcycling. Leveraging pretrained models to expedite the training of larger dense models is also337

known as model growth [Chen et al., 2015]. In the context of training MoEs reusing dense pretrained338

models, Komatsuzaki et al. are the first studying such a scenario with encode-decoder models.339

There are studies [Hu et al., 2024, Yang et al., 2024, Lo et al., 2024, Wei et al., 2024, Muennighoff340

et al., 2024, He et al., 2024] offering insights into upcycling decoder-only transformers, systematic341

investigation has not been presented. Wei et al. [2024] made only a rough recommendation: use342

upcycling when the budget for training is smaller than twice the budget used for dense training, while343

we provide a more general guideline.344

Scaling laws. Power-law scaling appears in a variety of natural and human-made phenomena. Scaling345

studies that are perhaps closest to our work are those considering two-stage training, e.g., transfer346

learning, fine-tuning, and model growth [Mikami et al., 2022, Zhang et al., Du et al., 2024]. A347

notable similar phenomenon in transfer learning is ossification, where pretraining can hurt fine-tuning348

performance [Hernandez et al., 2021]. However, to our knowledge, no prior work incorporates an349

interaction term (α3 in Equation 1) to capture such effects.350

In the context of MoE, Clark et al. [2022] studied how different architectural choices affect MoE’s351

scaling, while Krajewski et al. [2024] investigated fine-grained experts’ scaling behavior. The latter352

work fits a joint scaling law with respect to dataset and model sizes, but we find differences in353

the obtained parameters. It is likely due to several differences in methodology: the largest dense354

model they experimented with was smaller (85M), and they did not tune the LR for each model size.355

Nevertheless, our findings that MoE scales better than its dense counterpart with sufficiently large356

computational budget do agree with theirs.357

C More on architecture and experimental design358

A B α/α1 α2 α3 β

Dense 8.83 12.3 0.088 − − 0.116

MoE 32.0 7.05 0.161 − − 0.080

Upcycled 16.3 8.53 0.043 0.085 7.98e-4 0.112
Table 2: Fitted parameters for joint scaling laws. Note that for MoE, we fit the parameters with
variable N1 (instead of N2) for comparison conveniences. The irreducible loss applicable to all laws,
E, is fitted to be 0.165.

10

Figure 3: Loss curves of upcycling. Intermediate test losses of the 8x0.1B MoE (2 experts activated
per token) trained for a variety of total number of tokens, D2, when upcycled from a dense model
pretrained with various numbers of training tokens (D1) in B.

Figure 4: Fits of the joint upcycling scaling law.

Figure 5: Left: Upcycling improves with sparsity and the number of active parameters. We
find that upcycling to MoE which is sparser and has more active parameters improves performance.
The z-axis shows the value of cross-entropy loss. See Section ?? for details. Right: Efficiency of
upcycling diminishes with sunk cost and model size. For all additional token budgets for upcycling
a Mixtral-like MoE above the curve(s), training MoE from scratch is more efficient, whereas for all
token budgets below it, upcycling is more efficient. Shown are the numerical (blue) and analytical
(red) solutions of Equation 11. See Section G.1 for details.

11

C.1 Megatron-LM configuration359

Infrastructure. Our experiments are performed on multiple nodes, each consisting of 8 NVIDIA360

H100 80 GB GPUs, interconnected via InfiniBand HDR. The software we use for training is the361

Megatron-LM library [Shoeybi et al., 2019].362

We use and modify the Megatron-LM (core v0.8.0) library for our experiments. 2 Models are363

trained with data type bfloat16. Except for the largest MoE we train (8x1B), which has tensor364

parallelism configured to be 2, all models are trained with data and sequence parallelisms only365

[Korthikanti et al., 2023]. Other optimization libraries used include FlashAttention [Dao et al., 2022]366

and TransformerEngine. 3 See the example scripts included in the supplementary material.367

C.2 Model configuration368

Let us elaborate more on our architectural choices. The intermediate hidden dimension size, dMLP,369

is set to be 4dmodel. We do not implement bias in the linear layers. We also do not use techniques370

geared for treating training instabilities (which we did not encounter in our study), such as Z-loss371

or QK normalization. Efficiency-motivated implementations like grouped query attention are not372

considered as well for simplicity. The number of attention head is chosen to increase with model size373

following practices in the LLM literature. Other designs of the architecture follow Llama2’s closely374

[Touvron et al., 2023]. See Table 3 for the model configurations. They are selected such that the ratio375

nlayer/dmodel lies in the range 32 to 64, as in Kaplan et al. [2020]. We use the smaller models for376

ablation studies.377

C.3 MoE configuration378

Let us describe the routing mechanism within the MoE module studied in this work. Denote the379

number of experts by nexpert, the number of activated experts by nTopK, and the output of expert i by380

Oexp,i. At each layer, the output tokens x of the attention layer are passed to a router, which consists of381

a single-layer perceptron with weight W , responsible for calculating (G1(x), G2(x), ..., Gnexpert(x)),382

where383

G(x) = Softmax(TopK(W · x)) (8)
The TopK operation ensures that only nexpert experts are activated for each token, resulting in sparse
computation. The output of the MoE module, OMoE, is the weighted expert outputs which can be
written as follows:

OMoE =

nexpert∑
i=1

Gi(x)Oexp,i(x)

Note that this is also known as token-choice algorithm. Furthermore, we do not use the token-384

dropping mechanism as in Fedus et al. [2022]. We also do not study MoE variants such as shared385

experts [Dai et al., 2024] and fine-grained experts [Krajewski et al., 2024], as upcycling these variants386

is not straightforward.387

Let us move to discussing the load-balancing loss. It has the form [Fedus et al., 2022]:

Laux =
4η

T 2
·
nexperts∑

i=1

 T∑
j=1

Pj,i

 ·Qi

 ,

where η is the coefficient for the auxiliary loss, T is the number of tokens, Pj,i the router output388

probability for token j to be assigned to token i, and Qi is the number of token assigned to expert i.389

We ablate the coefficient in Appendix C.7.390

C.4 Ablation of learning rate schedules391

Here, we compare the performances of using WSD and the commonly used learning rate (LR)392

cosine schedules. Dense model and MoE used in our ablation are 0.1B and 8x44m respectively, with393

training configuration given in Table 6. We can see from Figure 6 that both schedules yield similar394

performances.395

2https://github.com/NVIDIA/Megatron-LM
3https://github.com/NVIDIA/TransformerEngine

12

https://github.com/NVIDIA/Megatron-LM
https://github.com/NVIDIA/TransformerEngine

Figure 6: Comparing WSD and cosine schedules of learning rate. Left: we see that different
schedules cause little differences between the losses, for both dense and MoE training. Right: the
learning rate schedules in use are shown.

C.5 Training configuration396

The common setup of training is shown in Table 4, and the model-dependent setup (warmup iteration,397

standard deviation of the normal distribution for initializing weights, maximum iteration run, battch398

size, tuned LR) is shown in Table 5. As described in the main text, we use the WSD schedule for399

training. The number of warmup steps of the WSD LR schedule is set to be roughly the same as400

the total model size [Porian et al., 2024]. Linear decay to 10% of the maximum LR value is used in401

the last stage of the schedule, with the length set to be around 10% of the training length, following402

Hägele et al. [2024].403

Logarithmically-spaced intermediate checkpoints are saved and used to emulate different numbers of404

token budget. We also increase both the training length and batch size with model size following405

common practices without performing precise tuning.406

Model nlayer dmodel nhead Ndense N total
MoE (8 experts)

15M 9 320 4 14,751,680 92,189,120
44M 12 480 8 44,248,800 276,538,080
0.1B 15 640 8 98,323,840 614,496,640
0.2B 21 832 8 232,623,040 1,453,845,952
0.5B 26 1120 16 521,889,760 3,261,732,320
1B 30 1504 16 1,085,859,424 6,786,500,704

Table 3: Dense models used in our study and their parametric details. Note that dMLP, is set to be
4dmodel. In the last column, we show the total non-embedding model parameters of the corresponding
MoE with 8 experts.

Configuration Details
Context length 1,024
Embedding tying False
Optimizer AdamW [Loshchilov et al., 2017]
Adam β1 0.9
Adam β2 0.95
Adam ϵ 1e-8
Weight decay 0.1
Gradient clipping 1.0

Table 4: Training configuration used throughout the paper.

13

Model warmup iter. init. size Max iter. batch size LR (8x)

15M 200 0.035 17,600 128 8e-3 (2e-3)
44M 200 0.029 17,600 256 4e-3 (2e-3)
0.1B 200 0.025 17,600 512 4e-3 (2e-3)
0.2B 400 0.022 35,200 512 2e-3 (2e-3)
0.5B 800 0.019 70,400 512 4e-4 (4e-4)
1B 800 0.016 70,400 1024 4e-4 (4e-4)

Table 5: Model-dependent training configuration. ”init. size” refers to the standard deviation of
the normal distribution used for initializing the weights. ”Max iter.” refers to the maximum iteration
run on the model. The MoE counterpart uses the same configuration except for the learning rate (last
column).

Configuration Details
Batch size 512
train iter. 4,000
Warmup iter. 200
Auxiliary loss coeff. 10−3

Table 6: Training configuration for ablation studies.

C.6 Upcycled training’s configuration407

We initialize the router weights from a normal distribution with zero mean and variance of 2/5dmodel408

[Le Scao et al., 2022, Chowdhery et al., 2023, Zeng et al., 2022] (the same initialization is used for409

from-scratch trainings).410

Regarding the learning rate (LR) of upcycled training, there are several choices: using the LR at the411

end of dense training with a constant LR schedule, i.e., treating upcycled training as a kind of fine412

tuning; using the LR of dense/MoE training [Komatsuzaki et al., He et al., 2024]. We consider these413

three choices without retuning the LR. With the other training settings are set to be the same as the414

one used in training the dense models, including the use of the WSD LR schedule, we find that using415

the MoE LR leads to better performance. See Figure 7.416

As a side note, we observe that the loss for the constant LR schedule decreases monotonically, while417

the loss increases initially for other cases; there is a rewarming stage when using the WSD LR418

schedules, which can also be observed in Figure 3.419

Let us further comment on alternative upcycling methods that could potentially further accelerate420

training. Adding some form of noises to the dense MLP weights, or modifying partially the weights421

would intuitively help upcycled training generalize faster. Our preliminary experiments however422

did not see any advantages of doing so. Note that this observation is also consistent with previous423

negative reports [Komatsuzaki et al., Wei et al., 2024, Muennighoff et al., 2024]. Henceforth, we424

simply copy the weights directly from the dense model to perform upcycled training.425

Figure 7: Ablation of LR when upcycling an 8x0.1B MoE. We compare the performance of
upcycled training (from a dense model trained for 2B tokens) using constant LR (2× 10−4, LR at the
end of dense training), LR used for dense training, and LR used for MoE training. We find that the
latter works the best. The training setup follows Table 6.

14

C.7 Ablation of auxiliary coefficients for load-balancing loss426

The auxiliary loss affects the load-balancing loss (smaller values meaning more balanced expert427

usage) as well as the cross-entropy loss. We plot these losses in Figure 8 for training a 8x0.1B MoE.428

We see that, setting the coefficient to be too small leads to imbalance in expert usage, while setting429

the coefficient to be too large interferes with the cross-entropy loss. We set it to around 10−3 which430

gives the right balance. We did not make finer tuning of the coefficients and adopted 10−3 in our431

experiments.432

Figure 8: Ablating auxiliary coefficients. Left: Cross-entropy losses, where it can be seen that
auxiliary coefficient of 1 performs worst. Right: Load-balancing losses, where the larger the
coefficient is, the smaller the load-balancing loss becomes. Setting the coefficient to be 10−3 gives
the right balance between these two losses.

C.8 Ablation of dataset repetition for upcycling433

In our experiments, we have used the same dataset for training both dense and upcycled models,434

following practices of [He et al., 2024]. As an ablation, we split our dataset to two non-overlapping435

portions, and perform the two-stage training with the distinct datasets. In Figure 9, we find that436

the difference in performance is very small. This also aligns with previous investigation on data437

repetition, where it is shown that there is a little difference in performance up to 4 times of repetition438

[Muennighoff et al., 2023].439

Figure 9: Ablation of data repetition when upcycling an 8x0.1B MoE. We do not observe notable
difference in the loss. The training setup follows Table 6.

C.9 Evaluation with standard benchmarks and comparison with other existing models440

We compare the performance of our trained 1B models against existing models with similar sizes,441

Pythia [Biderman et al., 2023] and TinyLlama [Zhang et al., 2024], based on standard natural language442

processing benchmarks, ARC [Clark et al., 2018], lambada [Paperno et al., 2016], logiqa [Liu et al.,443

2021], piqa [Bisk et al., 2020], sciq [Welbl et al., 2017], and winogrande [Sakaguchi et al., 2021].444

Table 7 shows the results. First, we see that the dense model perform similarly to the open models,445

indicating that our models have been trained correctly. Second, we see that the upcycled model446

achieves overall the best performance (note that the total tokens used for dense and upcycled training447

15

are around 100B, similar to those under comparison), also indicating that upcycling has progressed448

correctly and improved the scores.449

Models Pythia-1B TinyLlama-1.1B 1B Upcycled 8x1B
Datasets Pile Slimpajama & Starcoder Slimpajama Slimpajama
Tokens 100B 103B 74B 37B

ARC-c 25.59 24.32 27.65 30.12
ARC-e 47.26 44.91 52.10 56.14
lambada 53.52 - 45.08 49.72
logiqa 29.49 - 26.11 27.65
piqa 69.31 67.30 65.89 67.19
sciq 77.3 - 78.10 82.00
winogrande 51.22 53.28 54.93 57.77
Avg. 50.53 - 49.98 52.94

Table 7: Benchmarks’ performance comparison across models. Reported scores are accuracies
(normalized by byte length whenever applicable). The first two columns are scores of existing models.
The last two columns are evaluation results of models trained in this work. The upcycled 8x1B model
is upcycled from the 1B model. Our models are evaluated with the LM Evaluation Harness v0.4.0
library [Gao et al., 2024].

C.10 Estimated Total GPU hours450

Instead of reporting the actual runtimes on our cluster, which varied in our experiments due to many451

factors affecting the cluster (number of available nodes, congestion, etc.), we give a theoretical452

estimate of total GPU hours used for obtaining the joint scaling law, which involves running the453

largest tested model with most training tokens in this paper.454

The estimate is as follows. We calculate the FLOPs for training the dense, MoE, upcycled MoE455

models with maximum iterations using the 6ND approximation, ignoring the additional FLOPs456

required to continued pretrain models with shorter iterations (as we can reuse the intermediate457

checkpoints). We further assume that the per-second TFLOPs of the GPU is 400, and is the same for458

both dense and MoE models. 4 We obtain,459

Dense model: 6.14× 1017 FLOPs460

MoE: 1.08× 1018 FLOPs461

Upcycled MoE: 5.38× 1018 FLOPs462

The total GPU hours are henceforth approximately 4,900. We note that the exact total GPU hours463

used are larger as we have run various additional studies as detailed in the paper. We further note that464

using the cosine learning rate schedule would cost about twice more GPU hours when varying the465

number of training token budget.466

D Generalization across other datasets467

We show that the scaling behavior studied in the main text generalizes across datasets in use. Aside468

from Slimpajama [Computer, 2023, Soboleva et al., 2023, Shen et al., 2023] used in the main text, we469

test with two additional datasets: Japanese portion of the CommonCrawl corpus, and the Stack code470

dataset [Kocetkov et al.]. We use a tokenizer of enlarged vocabulary size of 102,400 when training471

with the former dataset. 5 We upcycle a 0.1B model with the training configuration set to the same472

as those used for the experiments presented in the main text. The results are presented in Figure 10,473

where the scaling behaves similarly to those presented in Figure 1, suggesting that our scaling law for474

4https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/core/transformer/moe/
README.md. Note that MoE requires more GPU memory to store its total model parameters, inducing overhead
that may slow down training.

5https://huggingface.co/sbintuitions/sarashina2-70b

16

https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/core/transformer/moe/README.md
https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/core/transformer/moe/README.md
https://huggingface.co/sbintuitions/sarashina2-70b

dataset are independent of dataset in use. We however do not further study scaling law for model475

configuration and the joint scaling law due to computational constraints.

Figure 10: Scaling behavior generalizes across datasets used. Left: Japanese dataset. Right: Code
dataset.

476

E More results on scaling law for dataset sizes477

E.1 Fitting across architectures478

Figure 8 shows the fitting of the scaling law for dataset sizes across architectures (fixing dense model479

size to 0.1B).

(nexpert,nTopK) (4,1) (4,2) (8,1) (8,2)

α1 0.28 0.19 0.29 0.18
α2 0.29 0.20 0.30 0.20
α3 0.01 0.008 0.01 0.008

Table 8: Fitted exponents of the scaling law for dataset sizes across architectures.

480

E.2 More validation of Equation 1481

We first make an observation from Figure 1 that the slope of the fitted lines, that is, the scaling482

exponent as in Equation 2 is decreasing with D1. Let us consider the scaling factors A fitted in Figure483

1. The scatter plot of A’s in Figure 11 leads us to deduce that the following relation:484

A ∝ D−η
1 (9)

Indeed, we find that the above equation fits well in the Figure. Substituting it to Equation 2, we485

obtain at the RHS a term of the form D−η
1 D−α

2 , indicating that Equation 1 arises not only from first486

principles as in the main text, but from empirical observations as well.487

E.3 Bilinear form488

We would also like to note that by taking the logarithm of the first term of Equation 3, we have489

α1 logD1 + α2 logD2 + α3 logD1 logD2, which is bilinear in terms of logD1 and logD2 (that490

is, linear with each variable separately), indicating that the multiplicative term with interaction is a491

natural generalization of the single-variable power law.492

F More Results on the Joint Scaling Law493

F.1 Validating Requirement 3494

We show in Figure 12 that the upcycled model empirically satisfies power-law scaling with respect to495

N1, i.e., Requirement 3, repeated below for convenience.496

17

Figure 11: Top: Fitting plots same as those in Figure 1. Bottom: Fitting scaling factor has
power-law behavior. The fitted scaling factors are shown to fit well with Equation 9.

Requirement 3. LD1,D2
(N1) = BD1,D2

N−β
1 + ED1,D2

.497

Figure 12: Upcycled model has power-law behavior with respect to N1.

F.2 Another functional form satisfying Requirements 3 and 4498

For convenience purposes, let us repeat Requirement 4:499

Requirement 4. limD2→0L(D1, D2, N1) = AD−α
1 + BN−β

1 + E, i.e., approaching Chinchilla500

scaling law.501

There is another functional form satisfying Requirement 3 and 4:502

L(D1, D2, N2) =
A

Dα1
1

+
B

Dα2
2 Nβ2−α3 logD2

1

+ E (10)

Fitting the above equation however yields negative exponents, which are, empirically, α1 =503

0.10, α2 = −0.07, β = −0.08, α3 = −0.008. We reject the hypothesis of this functional form504

as the loss is predicted to increase with dataset/model sizes, violating the power-law ansatz as well as505

empirical observation.506

F.3 Why fitting scaling laws separately?507

We provide reasoning on why we fit three scaling laws separately, instead of fitting an unified scaling508

law which holds for all three dense, MoE from-scratch, and upcycled training scenarios.509

18

The scaling law for MoE trained from scratch is expected to have parameters different from those510

for upcycled training (that is, they are not equal to each other at D1 → 0), because upcycled511

MoEs are initialized with identical MLP/expert weights from the dense models, while MoEs trained512

from-scratch have different initial (random) MLP/expert weights. Thus, we expect them to scale513

differently.514

Similarly, we expect the scaling law for dense model has parameters different from those for upcycled515

training at the limit D2 → 0. As can be seen from Figure 3, the upcycled training undergoes a516

rewarming phase in the beginning, where the loss increases initially before decreasing. This causes a517

deviation from the dense model scaling law at D2 → 0, although we still expect it to correlate with518

the dense model scaling law, i.e., Requirement 2 should hold based on function preservation and519

(empirical) observations that rewarming does not completely de-correlate the loss behaviors.520

Finally, our preliminary investigations also show that unified scaling law does not fit well. We521

consequently consider them separately. Moreover, we note that there can be other possibilities of522

functional forms that we do not explore further.523

G More implication of the Joint Scaling Law524

G.1 Training MoE from Scratch versus Upcycling525

Past studies [Komatsuzaki et al., Muennighoff et al., 2024] have explored the efficiency of training an526

MoE from scratch compared to upcycling a dense model. Komatsuzaki et al. found that upcycling527

retains an advantage up to 120% of the sunk cost (D1). For instance, to match the performance of528

an upcycled MoE trained with an additional 0.4 trillion (T) tokens after 2T dense tokens, training529

an MoE from scratch would require 2.4T tokens—effectively saving 2T tokens in upcycled training.530

Conversely, Muennighoff et al. [2024] reported that training from scratch requires less than 100%531

of the sunk cost under different settings, indicating that it could be more efficient. These seemingly532

contradictory results suggest that upcycling efficiency depends on both sunk cost and model size.533

To investigate this, we define D∗ the number of tokens required for training from scratch to match534

the performance of an upcycled MoE with the same sunk cost, i.e.,535

LMoE
N1

(D∗) = LUpc.
N1

(D1 = D∗, D2 = D∗) (11)

Since the above equation involves non-integer polynomial exponents, we solve it numerically and536

approximate the solution analytically (Equation ??). Figure 5 shows that D∗ decreases with increasing537

model size, with D∗ equal to 4B tokens for an 8x1B model. When D2 ≲ D∗, the required DMoE538

to catch up is more than 100% of D1: upcycling remains more efficient than training from scratch.539

However, for D2 ≳ D∗, the efficiency reverses, favoring training from scratch. Our findings indicate540

that: Upcycling is more efficient than training an MoE from scratch for lower sunk cost and541

training token budget, but its efficiency diminishes as the sunk cost or model size increases.542

G.2 Compute Allocation and Compute-Optimal Upcycling543

Given a fixed total floating-point operation (FLOPs) budget C, we analyze how to optimally allocate544

compute between dense training and upcycled training. Specifically, we solve:545

min
D1,D2,N1

L(D1, D2, N1) s.t. FLOPs(D1, D2, N1) = C

We find that for a given compute budget without any pretrained models, training a compute-optimal546

dense or MoE model from scratch outperforms the two-stage dense-to-upcycled MoE approach547

(see Figure 14 in Appendix G.4). This suggests: If no pretrained model exists, direct training is548

preferable to upcycling for optimal performance.549

In scenarios where a pretrained dense model is already available, we can determine the compute-550

optimal scaling of MoE upcycling. The compute cost of upcycled training is approximated as551

C2 = 6N2D2 [Kaplan et al., 2020]. Optimizing the compute leads to the scaling relations (see552

Appendix G.4 for derivation):553

Dopt
2 ∝ C

β
β+αeff
2 , Nopt

1 ∝ C
αeff

β+αeff
2 (12)

19

where αeff := α2 − α3 logD1. Notably, as D1 increases, αeff decreases, meaning larger pretrained554

models require disproportionately more tokens for efficient upcycling.555

For instance, applying this to the Llama2 models (7B, 13B, 70B), which were trained on 2T tokens556

[Touvron et al., 2023], we estimate that compute-optimal upcycling follows the scaling D2 ∝ N1.8
1 ,557

indicating that larger models require nearly quadratic increases in upcycling data.558

Overall, we find that upcycling is inefficient relative to from-scratch trainings when considering559

compute optimality.560

G.3 From-scratch training vs Upcycling561

We have shown in the main text that upcycling is only effective when the sunk cost or the model size562

is small. We further visualize this by plotting the losses for model sizes 1B, 7B and 70B, fixing D1 to563

various values, with respect to DMoE and D2 for from-scratch and upcycled training respectively in564

Figure 13.565

Figure 13: Token budget of from-scratch MoE training and when it catches up with upcycled
MoE’s performance. We compare loss-versus-token plots of from-scratch and upcycled MoE
trainings at various dense training budgets (sunk costs) and model sizes. Upcycling is considered to
be efficient only when DMoE > sunk cost. We observe that the efficiency of upcycling diminishes
with sunk cost and model size.

G.4 More on compute optimality of upcycling566

As mentioned in the main text, while training the Mixtral-like MoE from scratch is shown to be more567

efficient in the long run, it requires more compute (1.75 times larger than dense training). There is a568

compute-performance trade-off between these stages of training.569

We show in Figure 14 that the optimization results in Section G.2 that training from scratch can570

always be considered to be more performant.

Figure 14: Compute-optimal training. Upcycled training performs worse even when D1, D2, N1

are allocated optimally, compared to compute-optimal training of dense or MoE models.

571

20

G.5 Derivation of compute-optimal formula572

As in the main text, we want to scale N2, D2 optimally, Nopt
2 , Dopt

2 , given a FLOPs budget and fixing573

D1, while minimizing the loss L, which we write as LD1
(D2, N1). This is equivalent to solving the574

following:575

∂

∂D2
LD1

(D2, C2/10.5D2)

∣∣∣∣
D2=Dopt

2

= 0,

∂

∂N1
LD1

(C2/10.5N1, N1)

∣∣∣∣
N1=Nopt

1

= 0

where we have used N2 = 1.75N1 and C2 = 6N2D2. Solving the above equations leads to576

Dopt
2 = G

(
C2

10.5

)a

,

Nopt
1 = G−1

(
C2

10.5

)b

where577

G :=

(
Aeffαeff

Bβ

)1/(αeff+β)

a :=
β

αeff + β

b :=
αeff

αeff + β

Aeff := AD−α1
1

αeff := α2 − α3 logD1

We can henceforth relate Dopt
2 and Nopt

1 via

Dopt
2 = G

(
GNopt

1

)a/b ∝ (
Nopt

1

)β/α2−α3 logD1

and
Nopt

1 = G−1
(
G−1Dopt

2

)b/a ∝
(
Dopt

2

)(α2−α3 logD1)/β

21

	Introduction
	Experimental Design and Results
	Scaling Laws
	Scaling Law for Dataset Sizes
	Interpretations

	Joint Scaling Law
	Training MoE from Scratch versus Upcycling

	Discussion and Conclusion
	Preliminaries
	Model details
	Power-law Ansatz

	
	short
	Megatron-LM configuration
	Model configuration
	MoE configuration
	Ablation of learning rate schedules
	Training configuration
	Upcycled training's configuration
	Ablation of auxiliary coefficients for load-balancing loss
	Ablation of dataset repetition for upcycling
	Evaluation with standard benchmarks and comparison with other existing models
	Estimated Total GPU hours

	Generalization across other datasets
	More results on scaling law for dataset sizes
	Fitting across architectures
	More validation of Equation 1
	Bilinear form

	More Results on the Joint Scaling Law
	Validating Requirement 3
	Another functional form satisfying Requirements 3 and 4
	Why fitting scaling laws separately?

	More implication of the Joint Scaling Law
	Training MoE from Scratch versus Upcycling
	Compute Allocation and Compute-Optimal Upcycling
	From-scratch training vs Upcycling
	More on compute optimality of upcycling
	Derivation of compute-optimal formula

