© © N O O A W N =

Scaling Laws for Upcycling Mixture-of-Experts
Language Models

Anonymous Author(s)
Affiliation
Address

email

Abstract

Pretraining large language models (LLMs) is resource-intensive, often requiring
months of training time even with high-end GPU clusters. There are two approaches
of mitigating such computational demands: reusing smaller models to train larger
ones (upcycling), and training computationally efficient models like mixture-of-
experts (MoE). In this paper, we study the upcycling of LLMs to MoE models, of
which the scaling behavior remains underexplored. Through extensive experiments,
we identify empirical scaling laws that describe how performance depends on
dataset size and model configuration. Particularly, we show that, while scaling
these factors improves performance, there is a novel interaction term between
the dense and upcycled training dataset that limits the efficiency of upcycling
at large computational budgets. Based on these findings, we provide guidance
to scale upcycling, and establish conditions under which upcycling outperforms
from-scratch trainings within budget constraints.

1 Introduction

Large-scale neural network architectures, such as dense transformers [Vaswani et al., 2017, have seen
remarkable success across a wide range of tasks, particularly achieving human-level capabilities in
natural language processing [Achiam et al.,|2023]. However, they often demand an enormous amount
of computation, imposing challenges of computational efficiency and scalability. Sparse models like
mixture-of-experts (MoE) architectures [Shazeer et al., 2017, [Lepikhin et al.|, have emerged as an
alternative achieving better efficiency-performance trade-off via partial activation (routing) of neural
parameters when processing the input. Even so, MoE still requires substantial compute power to
reach its full potential [Wei et al.| 2024} Dai et al.| 2024 [Yang et al., [2024].

One direction to further accelerate training convergence is leveraging smaller pretrained models to
guide the training of larger MoE models. [Komatsuzaki et al.| propose upcycling, which reuses the
dense checkpoint to continued pretrain the upcycled MoE. The MoE is expected to specialize and
optimize routing rapidly by leveraging the pretrained dense model weights.

Despite the promise of efficient MoE training via upcycling, the effectiveness and limitations of this
technique remain unclear. While some [Wei et al., 2024, |[He et al., [2024]] have already adopted it to
training large-scale MoEs, [Muennighoff et al.|[2024] reported negative results where upcycling can
slow down training convergence. We believe these seemingly contradictory conclusions are due to
insufficient comprehensive studies and assessments. There is also a lack of guidance on how and
when to upcycle MoE, hampering a wider adoption of this technique.

In this paper, we seek to better understand large language model’s (LLM) upcycling to MoE via a
series of controlled experiments, spanning up to a few hundred billion (B) training tokens and models
up to 7B total parameters. Specifically, we uncover precise power-law scalings for the language
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modeling performance (cross-entropy loss) with respect to training dataset size (for both dense and
upcycled MoE training), and the model configuration, including the total number of parameters
(model size). Building on these results, we provide a framework for assessing when upcycling offers
advantages over from-scratch training and how performance gains depend on dataset size and model
configuration.

Main results. The major technical findings of this paper are summarized below. Let Dy, D, be
the number of tokens used to train the dense model and upcycled MoE respectively. Denote the
cross-entropy test loss of the upcycled MoE by L. We find that the upcycled MoE satisfies the
following relation for a wide range of model configuration:

L = ADy® pyeeteslel o p (1

where «;’s (¢ = 1,2, 3) are positive scaling exponents, and A, E are constants independent of Dy, D-.

2 Experimental Design and Results

In this Section, we describe the design of our experiments, before presenting some of the experimental
results. Additional details, including ablation studies are available in Appendix [C]

Dense models in consideration. We train a suite of dense models with model sizes 15M, 44M, 0.1B,
0.2B, 0.5B and 1B. The model configuration (number of layers, niayer, hidden dimension dyodel, and
MLP hidden dimension, dp,1p) used in this paper is summarized in Table E] of Appendix E}

Learning rate schedule. We are interested in training models with different numbers of training
token budget. Previous work [Hoffmann et al.| 2022]] used the cosine learning rate (LR) schedule and
trained separate models for each number of training token budget, which is resource-consuming. We
instead employ the warmup-stable-decay (WSD) learning rate schedule [Bi et al.,[2024} [Hu et al.|
2024], which requires only a single model sweep with a sufficiently large number of training tokens.

Dataset. We use training dataset derived from the CommonCrawl portion of Slimpajama-DC [Shen
et al.| 2023]], containing 368B tokens in total. The test loss is calculated from the default validation
set (0.3B tokens) defined therein. In Appendix D} we train models on two different datasets (Japanese
language and source code datasets) to study the scaling behavior across datasets. We show some of
the resulting test loss curves of our upcycling experiments in Figure 3 (see model evaluation with
standard benchmarks in Appendix [C.9).

3 Scaling Laws

3.1 Scaling Law for Dataset Sizes

We fix the model size while varying D; > to study the scaling behavior with respect to these variables.
To determine the functional form of the scaling law, L(D;, D2), we require it to satisfy certain
properties:

Requirement 1. L(D;, D5) follows the power law with respect to Do, as shown empirically in
Figure[I] This aligns with the power-law ansatz, treating upcycling as analogous to standard MoE
training with dataset size Ds, initialized with dense parameters rather than random weights:

L(Dy,D3) = Lp,(D2) = AD;*+ E 2)

Requirement 2. As Dy — 0, the loss should reduce to the power-law scaling behavior of the dense
counterpart with respect to D, consistent with the function-preserving initialization of upcycling:

hHlDQ_mL(Dl, D2> = ADl_a + E

We investigate the following functional forms of power law satisfying these requirements:
Multiplicative:
L(Dy, Dy) ~ ADy 1 Dy > teslos Dy L (3)
Additive:
L(Dy,Dy) =~ ADy® + FDy2toslosDr | p (4)
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Both forms include an interaction term (a3 log D1) in the scaling exponent, capturing the interplay
between D and Ds.

Empirical comparisons of functional forms. We empirically compare these functional forms,
including the special case where D, and D» have no interaction. The optimization uses the Huber
loss (§ = 10~?) and the BFGS algorithm, fitting the logarithm of the loss via the LogSumExp trick
applied to the RHS of Equations 3 and 4. The leave-one-out root mean square error (RMS) serves as
the fit metric.

The fit is performed on a 0.1B dense model upcycled to MoE architectures with nexpert = {4, 8} and
Nropk = {1,2}, trained on a 5 x 5 grid of Dy, Ds. The fitting results are shown in Table 1, where
we can see that the multiplicative functional form (with non-zero interaction) achieves consistently
the lowest leave-one-out RMS error across the experimented MoE architectures. Henceforth, we
adopt Equation [3in our scaling laws.

3.1.1 Interpretations

Several quantitative and qualitative observations can be made from the scaling law of dataset sizes.
From our fit (Table 8 in Appendix [E), we notice a trend oy 2 a1 >> a3. This means that while
increasing either of D1 and D5 helps improve performance, as upcycled training has a slightly larger
exponent (as), increasing Do helps train faster.

Upcycled MoE has a better head start (effective scaling factor is smaller). Fixing D, we see that
the effective scaling factor for Dy is AD; “*. Increasing D; lowers the effective scaling factor, and
hence the loss of upcycling. Indeed, fixing D2, we see that the model performs better with increasing
D; in Figure 3.

Upcycled MokE trains slower with larger sunk cost (effective scaling exponent is smaller). Again
fixing D, we see that the effective scaling exponent with respect to D5 is as — aglog D;. This
means that the larger the sunk cost (D) is, the loss decreases more slowly with Ds, indicating
diminishing returns from increasing D5 at higher D; values, agreeing with Figure 1’s results.

(Mexpert:NTopk) | (4,1) (4.2) @1 (82

Mul. 0.0111  0.0081 0.0105 0.0031
Mul. (g = 0) | 0.0169 0.0085 0.0180 0.0095
Add. 0.0165 0.00843 0.0167 0.0093

Add.(aeg = 0) | 0.0196 0.0117 0.0430 0.0113

Table 1: Multiplicative scaling law with interaction consistently achieves lowest error. Leave-
one-out RMS error for fitting the loss for MoEs upcycled from a dense 0.1B model, with functional
forms of Equations 3, 4, and specific cases with as = 0. The first and second number in the bracket
of the first row indicates the MoE architecture’s parameter, nexpert and nropk respectively.

3.2 Joint Scaling Law

In this Section, we show that the upcycled MoE follows a joint scaling law with respect to dataset
size and model size, provided the MoE architecture is fixed. For our study, we adopt a widely used
MOoE configuration (Nexpert = 8, NTopk = 2), which has been implemented in several large-scale,
publicly available models, including Mixtral-8x7B and 8x22B [Jiang et al., [2024]].

The straightforward functional form is as follows.

L(Dy, D3, N3) = ADy ™ Dy 2 teslos Py 4 pNP2 4 | )

Fitting. Towards this end, we fit three separate scaling laws, corresponding to dense, MoE, and
upcycled trainings, incorporating dataset and model sizes (the first two are fitted with the functional
form of Equation[7). In Figure[d we show that the fitted result of upcycling scaling law extrapolates
well, achieving validation RMS error of 0.015.



109

110
111
112
113
114
115
116
117

118
119

120
121
122
123
124
125
126

127

128

129
130

131
132
133
134
135
136

Dense tokens, D1
° 03B 281 &

Dense tokens, D1
o 128

Dense tokens, D1
o 928

= 1388

o 1858

36.98

73.88

= 048
+ 068
128
238

= 178
o 238 2251

4.68
9.28

Loss

L(D;) = AD;® +E

8x15M 8x0.1B 8x1B

3
03 04 06 1 2 2 34 [3 10 0 20 0 a0 )
Upcycled tokens, Dz (B) Upcycled tokens, D; (B) Upcycled tokens, D; (B)

—a(Dy)

8x15M
—a(D;) =ylogD; +E'

8x1B

0.09 1 1 ] 1 | 1 ] 1 ! 1 - . . . .
025 050 075 1.00 1.25 150 175 2.00 2.25 1 2 8 9 10 20 30 40 50 60 70

D1 (B) Ce Df (B)é ’ D1 (B)

Figure 1: Top: D, has power-law scaling. We show scaling behavior of upcycled training tokens
(D) for different values of dense tokens (D). Bottom: Interaction term explains decreasing
exponents. The fitted exponents in the upper plots are used to fit the logarithm of D;, and are shown
to agree well with the functional form.

3.3 Training MoE from Scratch versus Upcycling

Past studies [Komatsuzaki et al., Muennighoff et al.,[2024] have explored the efficiency of training an
MOoE from scratch compared to upcycling a dense model. [Komatsuzaki et al.| found that upcycling
retains an advantage up to 120% of the sunk cost (D). For instance, to match the performance of
an upcycled MoE trained with an additional 0.4 trillion (T) tokens after 2T dense tokens, training
an MoE from scratch would require 2.4T tokens—effectively saving 2T tokens in upcycled training.
Conversely, Muennighoff et al. [2024] reported that training from scratch requires less than 100%
of the sunk cost under different settings, indicating that it could be more efficient. These seemingly
contradictory results suggest that upcycling efficiency depends on both sunk cost and model size.

To investigate this, we define D* the number of tokens required for training from scratch to match
the performance of an upcycled MoE with the same sunk cost, i.e.,

LNB(D*) = L3P (D = D*, Dy = D¥) (6)

Since the above equation involves non-integer polynomial exponents, we solve it numerically and
approximate the solution analytically. Figure[5]shows that D* decreases with increasing model size,
with D* equal to 4B tokens for an 8x1B model. When D5 < D*, the required Dyog to catch up
is more than 100% of D;: upcycling remains more efficient than training from scratch. However,
for Dy = D*, the efficiency reverses, favoring training from scratch. Our findings indicate that:
Upcycling is more efficient than training an MoE from scratch for lower sunk cost and training
token budget, but its efficiency diminishes as the sunk cost or model size increases.

We consider other application and implication of the joint scaling law in Appendix [G]

4 Discussion and Conclusion

In this paper, we have presented compelling evidence that MoE upcycling follows novel scaling laws
with dataset and model configuration, revealing trade-offs due to interactions between dataset sizes.

While our empirical formulae successfully capture the observed scaling behavior, the underlying
mechanism, particularly the interaction term, remains theoretically unexplained. To our knowledge,
formal justification for such interactions is lacking in the literature [Bahri et al., 2024} [Paquette et al.].
Future work could explore it through optimization dynamics or loss landscape analysis. Additionally,
extending our scaling laws to alternative MoE architectures and encoder-decoder models would help
assess their generality and implications.
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A Preliminaries

A.1 Model details

Dense model. Our dense models are decoder-only transformers pretrained with an autoregressive
language modeling objective. The architecture is most similar to Llama2 models [Touvron et al.|
2023|], incorporating advances such as SwiGLU [Shazeer, [2020]] and rotary position embedding [Su
et al.| 2024]. We use the Llama tokenizer of vocabulary size 32,000.

Mixture-of-Experts. The MoE model in consideration is the same as our dense model, but with all
MLP blocks replaced by multiple blocks (experts) with the same configuration [Fedus et al., [2022].
A router consisting of a single-layer MLP outputs the routing probability of the tokens to the experts.

The model configuration has two key parameters: nexpert, representing the number of experts, and
NnTopK, Which specifies how many of the highest-probability experts each token is routed to at each
layer. The output of the experts is linearly combined and passed to the next layer.

The MoE and its corresponding dense model with model size Ngense, consisting of nexpert, EXperts, is
denoted with a prefix "nexpert”, €.., 8x1B where the dense correspondent is of 1B in model size. We
refer to the number of non-embedding model parameters (that is, total number of parameters minus
the number of embedding and language modeling head parameters) used for computation per token
as the number of active parameters.

Upcycling. The upcycling scenario assumes that one is given a pretrained dense model and would
like to train an MoE with the same configuration but replacing the MLPs with the MoE modules
[Komatsuzaki et al.]]. By replicating the dense model’s MLP weight nexpert to form the experts, the
knowledge from the dense model can be reused to accelerate the training of the MoE compared to
training the MoE from scratch (from random parameter initialization). Other modules’ weights are
copied from the dense counterparts directly, with the router’s initial weights randomized. See Figure
2 for an illustration of upcycling. We employ this technique for our study.

A.2 Power-law Ansatz

There is an extensive literature showing that the loss of training deep learning models has a simple
power-law behavior: L = % + F, for single variable X, including model size and dataset size
[Hestness et al., [2017,2019, [Rosenfeld et al., [Henighan et al.| 2020]. ['| We use this ansatz in this
work.

Dense model (Llama etc.) of size V, Upcycled MoE (Mixtral etc.)
Output Trained for D, tokens Output  Trained for D, tokens

e TR T N

MLP i t
(multi-layer PR LU MLPA - MLPS - '
perceptron) TopK.
t MoE module
Norm L Nom
t t
Add Add
t Copy t
Attention --r-orrorrremrenre s > Attention

+ 4
Norm Norm
\ ) 9 ; ",

I
Input Input

Figure 2: Upcycling and factors affecting MoE’s performance. Upcycling involves initiating the
weights of the MoE (activating nr,,k experts per token) by reusing the weights (duplicating the
weights of MLPS 7cyper¢ times) of an existing dense transformer of size /V; that has been trained for
D, tokens. The (upcycled) MoE is further trained for D5 tokens. Language modeling performance
improves when scaling these factors. We study and develop formulae (scaling laws) consisting of
these factors to predict the empirical performance.

"The actual form we assume is L = ﬁ + FE such that the loss is finite at the limit X — 0. However,

since the values of X we consider are often much larger than 1 (10° or more), we approximate it as L = % +E
for notational convenience.
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Hoffmann et al.| [2022] have shown that when training a dense transformer, the cross-entropy loss is
well-described by the following ”Chinchilla” scaling law:

L=AD“+BN P+ E @)

The first and second terms quantify the limitation of learning due to limited dataset and model sizes
respectively. The scaling exponents, «, 3 control how fast the loss decreases with respect to dataset
and model sizes respectively. F is a constant: it is the irreducible loss representing the inherent
entropy of text. All parameters are to be fitted with experimental observations. We also assume
Equation 7 for models trained from scratch.

B Related Work

Mixture-of experts. While interests in developing open MoE LLMs are relatively recent [Hu et al.,
2024 |Yang et al., 2024} [Dai et al., 2024, |Liu et al., 2024, |Sun et al., 2024], the use of MoE in deep
learning can be traced to early 2010s [Eigen et al.,|2013], |Bengio et al.,[2013]]. See|Cai et al.| [2024]]
for a detailed survey of modern MoE models.

Upcycling. Leveraging pretrained models to expedite the training of larger dense models is also
known as model growth [[Chen et al.| | 2015]. In the context of training MoEs reusing dense pretrained
models, [Komatsuzaki et al.| are the first studying such a scenario with encode-decoder models.
There are studies [Hu et al., 2024} [Yang et al., 2024} Lo et al., [2024, |Wei et al., 2024} Muennighoff]
et al.| 2024} He et al.,|2024] offering insights into upcycling decoder-only transformers, systematic
investigation has not been presented. Wei et al.| [2024]] made only a rough recommendation: use
upcycling when the budget for training is smaller than twice the budget used for dense training, while
we provide a more general guideline.

Scaling laws. Power-law scaling appears in a variety of natural and human-made phenomena. Scaling
studies that are perhaps closest to our work are those considering two-stage training, e.g., transfer
learning, fine-tuning, and model growth [Mikami et al.l 2022| [Zhang et al.| |Du et al., [2024]. A
notable similar phenomenon in transfer learning is ossification, where pretraining can hurt fine-tuning
performance [Hernandez et al.,[2021]]. However, to our knowledge, no prior work incorporates an
interaction term (cv3 in Equation 1)) to capture such effects.

In the context of MoE, |Clark et al.|[2022] studied how different architectural choices affect MoE’s
scaling, while Krajewski et al.|[2024] investigated fine-grained experts’ scaling behavior. The latter
work fits a joint scaling law with respect to dataset and model sizes, but we find differences in
the obtained parameters. It is likely due to several differences in methodology: the largest dense
model they experimented with was smaller (§85M), and they did not tune the LR for each model size.
Nevertheless, our findings that MoE scales better than its dense counterpart with sufficiently large
computational budget do agree with theirs.

C More on architecture and experimental design

| A B o/ s s B
Dense ‘ 8.83 12.3 0.088 — — 0.116
MoE ‘ 32.0 7.05 0.161 — — 0.080

Upcycled | 163 853 0.043 0.085 7.98e-4 0.112

Table 2: Fitted parameters for joint scaling laws. Note that for MoE, we fit the parameters with
variable N; (instead of N3) for comparison conveniences. The irreducible loss applicable to all laws,
FE, is fitted to be 0.165.
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Figure 3: Loss curves of upcycling. Intermediate test losses of the 8x0.1B MoE (2 experts activated
per token) trained for a variety of total number of tokens, D5, when upcycled from a dense model
pretrained with various numbers of training tokens (D;) in B.
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Figure 4: Fits of the joint upcycling scaling law.
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Figure 5: Left: Upcycling improves with sparsity and the number of active parameters. We
find that upcycling to MoE which is sparser and has more active parameters improves performance.
The z-axis shows the value of cross-entropy loss. See Section ?? for details. Right: Efficiency of
upcycling diminishes with sunk cost and model size. For all additional token budgets for upcycling
a Mixtral-like MoE above the curve(s), training MoE from scratch is more efficient, whereas for all
token budgets below it, upcycling is more efficient. Shown are the numerical (blue) and analytical

(red) solutions of Equation ﬂ;ﬂ

See Section [G.1] for details.
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C.1 Megatron-LM configuration

Infrastructure. Our experiments are performed on multiple nodes, each consisting of 8 NVIDIA
H100 80 GB GPUs, interconnected via InfiniBand HDR. The software we use for training is the
Megatron-LM library [Shoeybi et al., 2019].

We use and modify the Megatron-LM (core v0.8.0) library for our experiments. || Models are
trained with data type bfloatl6. Except for the largest MoE we train (8x1B), which has tensor
parallelism configured to be 2, all models are trained with data and sequence parallelisms only
[Korthikanti et al., [2023]]. Other optimization libraries used include FlashAttention [Dao et al., 2022]
and TransformerEngine. | See the example scripts included in the supplementary material.

C.2 Model configuration

Let us elaborate more on our architectural choices. The intermediate hidden dimension size, dyrp,
is set to be 4d0401. We do not implement bias in the linear layers. We also do not use techniques
geared for treating training instabilities (which we did not encounter in our study), such as Z-loss
or QK normalization. Efficiency-motivated implementations like grouped query attention are not
considered as well for simplicity. The number of attention head is chosen to increase with model size
following practices in the LLM literature. Other designs of the architecture follow Llama2’s closely
[Touvron et al., 2023]. See Table [3|for the model configurations. They are selected such that the ratio
Niayer/dmodel lies in the range 32 to 64, as in Kaplan et al.[[2020]. We use the smaller models for
ablation studies.

C.3 MokE configuration

Let us describe the routing mechanism within the MoE module studied in this work. Denote the
number of experts by Nexpert, the number of activated experts by nr,pk, and the output of expert ¢ by
Oecxp,i- Ateach layer, the output tokens x of the attention layer are passed to a router, which consists of
a single-layer perceptron with weight W, responsible for calculating (G1(x), G2 (), ..., Gnyper (7))
where

G(x) = Softmax(TopK(W - z)) (8)
The TopK operation ensures that only neypert €xperts are activated for each token, resulting in sparse
computation. The output of the MoE module, Oyjok, is the weighted expert outputs which can be
written as follows:

OMoE = Z Gi(2)Oexp.i(2)
i=1
Note that this is also known as token-choice algorithm. Furthermore, we do not use the token-
dropping mechanism as in |Fedus et al.|[2022]. We also do not study MoE variants such as shared
experts [Dai et al.,2024] and fine-grained experts [Krajewski et al.,[2024]], as upcycling these variants
is not straightforward.

Let us move to discussing the load-balancing loss. It has the form [Fedus et al., 2022]:

Nexperts

T
4
Eaux:%' Z ij,i 'Qi y
i=1 j=1
where 7 is the coefficient for the auxiliary loss, 1" is the number of tokens, P;; the router output
probability for token j to be assigned to token ¢, and @; is the number of token assigned to expert i.
We ablate the coefficient in Appendix

C.4 Ablation of learning rate schedules

Here, we compare the performances of using WSD and the commonly used learning rate (LR)
cosine schedules. Dense model and MoE used in our ablation are 0.1B and 8x44m respectively, with
training configuration given in Table[6] We can see from Figure[6] that both schedules yield similar
performances.

"https://github.com/NVIDIA/Megatron-LM
*https://github.com/NVIDIA/TransformerEngine
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Figure 6: Comparing WSD and cosine schedules of learning rate. Left: we see that different
schedules cause little differences between the losses, for both dense and MoE training. Right: the
learning rate schedules in use are shown.

C.5 Training configuration

The common setup of training is shown in Table 4, and the model-dependent setup (warmup iteration,
standard deviation of the normal distribution for initializing weights, maximum iteration run, battch
size, tuned LR) is shown in Table E} As described in the main text, we use the WSD schedule for
training. The number of warmup steps of the WSD LR schedule is set to be roughly the same as
the total model size [Porian et al.l 2024]]. Linear decay to 10% of the maximum LR value is used in
the last stage of the schedule, with the length set to be around 10% of the training length, following
Higele et al.|[2024].

Logarithmically-spaced intermediate checkpoints are saved and used to emulate different numbers of
token budget. We also increase both the training length and batch size with model size following
common practices without performing precise tuning.

Model ‘ Nlayer dmodel TMhead Ndense Nlt\;/([)g]%]l (8 experts)
15SM 9 320 4 14,751,680 92,189,120
44M 12 480 8 44,248,800 276,538,080
0.1B 15 640 8 98,323,840 614,496,640
0.2B 21 832 8 232,623,040 1,453,845,952
0.5B 26 1120 16 521,889,760 3,261,732,320
1B 30 1504 16 1,085,859,424 6,786,500,704

Table 3: Dense models used in our study and their parametric details. Note that dy,p, is set to be
4d0de1- In the last column, we show the total non-embedding model parameters of the corresponding
MoE with 8 experts.

Configuration Details

Context length 1,024

Embedding tying | False

Optimizer AdamW [Loshchilov et al., 2017
Adam [ 0.9

Adam (35 0.95

Adam € le-8

Weight decay 0.1

Gradient clipping | 1.0

Table 4: Training configuration used throughout the paper.
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Model \ warmup iter.  init. size Max iter. batch size LR (8x)

15M 200 0.035 17,600 128 8e-3 (2e-3)
44M 200 0.029 17,600 256 4e-3 (2e-3)
0.1B 200 0.025 17,600 512 4e-3 (2e-3)
0.2B 400 0.022 35,200 512 2e-3 (2e-3)
0.5B 800 0.019 70,400 512 4e-4 (4e-4)
1B 800 0.016 70,400 1024 4e-4 (4e-4)

Table 5: Model-dependent training configuration. “init. size” refers to the standard deviation of
the normal distribution used for initializing the weights. "Max iter.” refers to the maximum iteration
run on the model. The MoE counterpart uses the same configuration except for the learning rate (last
column).

Configuration Details
Batch size 512
train iter. 4,000
Warmup iter. 200
Aucxiliary loss coeff. | 1073

Table 6: Training configuration for ablation studies.

C.6 Upcycled training’s configuration

We initialize the router weights from a normal distribution with zero mean and variance of 2/5d0del
[Le Scao et al.| 2022} |(Chowdhery et al., 2023| Zeng et al.l 2022] (the same initialization is used for
from-scratch trainings).

Regarding the learning rate (LR) of upcycled training, there are several choices: using the LR at the
end of dense training with a constant LR schedule, i.e., treating upcycled training as a kind of fine
tuning; using the LR of dense/MoE training [Komatsuzaki et al.,|[He et al.,[2024]. We consider these
three choices without retuning the LR. With the other training settings are set to be the same as the
one used in training the dense models, including the use of the WSD LR schedule, we find that using
the MoE LR leads to better performance. See Figure

As a side note, we observe that the loss for the constant LR schedule decreases monotonically, while
the loss increases initially for other cases; there is a rewarming stage when using the WSD LR
schedules, which can also be observed in Figure E}

Let us further comment on alternative upcycling methods that could potentially further accelerate
training. Adding some form of noises to the dense MLP weights, or modifying partially the weights
would intuitively help upcycled training generalize faster. Our preliminary experiments however
did not see any advantages of doing so. Note that this observation is also consistent with previous
negative reports [Komatsuzaki et al., [Wei et al.| |2024, Muennighoff et al., [2024]]. Henceforth, we
simply copy the weights directly from the dense model to perform upcycled training.

—— Constant LR
MoE LR (2e-3)
—— Dense LR (4e-3)

«
2
S285

0.00 025 050 075 1..00 125 150 175 2.00
Tokens trained (B)

Figure 7: Ablation of LR when upcycling an 8x0.1B MoE. We compare the performance of
upcycled training (from a dense model trained for 2B tokens) using constant LR (2 x 10~%, LR at the
end of dense training), LR used for dense training, and LR used for MoE training. We find that the
latter works the best. The training setup follows Table [6]
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C.7 Ablation of auxiliary coefficients for load-balancing loss

The auxiliary loss affects the load-balancing loss (smaller values meaning more balanced expert
usage) as well as the cross-entropy loss. We plot these losses in Figure [§]for training a 8x0.1B MoE.

We see that, setting the coefficient to be too small leads to imbalance in expert usage, while setting
the coefficient to be too large interferes with the cross-entropy loss. We set it to around 10~3 which
gives the right balance. We did not make finer tuning of the coefficients and adopted 102 in our
experiments.

—— coeff=1
7 coeff=1e-3
—— coeff=1e-6

=
o

— coeff=1
coeff=1e-3
—— coeff=1e-6

=
n

I
»

L ot sl iy yive)
droniri L

=
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I
N

Load-balancing Loss

=
HA

57

0.00 025 050 075 1.00 125 150 1.75 2.00 0.0 0.5

1.0 2.0
Tokens trained (B) Tokens trained (B)

Figure 8: Ablating auxiliary coefficients. Left: Cross-entropy losses, where it can be seen that
auxiliary coefficient of 1 performs worst. Right: Load-balancing losses, where the larger the
coefficient is, the smaller the load-balancing loss becomes. Setting the coefficient to be 10~2 gives
the right balance between these two losses.

C.8 Ablation of dataset repetition for upcycling

In our experiments, we have used the same dataset for training both dense and upcycled models,
following practices of [He et al.,[2024]. As an ablation, we split our dataset to two non-overlapping
portions, and perform the two-stage training with the distinct datasets. In Figure 0] we find that
the difference in performance is very small. This also aligns with previous investigation on data
repetition, where it is shown that there is a little difference in performance up to 4 times of repetition
[Muennighoff et al., 2023|.

N\ —— No repetition
2.900 N Repeated

0 2.8257 R
N
2.8001
27751
2.7501 \
27251

0.0 0.5 1.0 1.5 2.0
Tokens trained (B)

Figure 9: Ablation of data repetition when upcycling an 8x0.1B MoE. We do not observe notable
difference in the loss. The training setup follows Table 6]

C.9 Evaluation with standard benchmarks and comparison with other existing models

We compare the performance of our trained 1B models against existing models with similar sizes,
Pythia [Biderman et al.|[2023|] and TinyLlama [Zhang et al.,[2024], based on standard natural language
processing benchmarks, ARC [Clark et al.,2018]], lambada [Paperno et al., 2016], logiqa [Liu et al.,
2021]], piqa [Bisk et al., 2020], sciq [Welbl et al.,|2017]], and winogrande [Sakaguchi et al., 2021]].

Table[/|shows the results. First, we see that the dense model perform similarly to the open models,
indicating that our models have been trained correctly. Second, we see that the upcycled model
achieves overall the best performance (note that the total tokens used for dense and upcycled training
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are around 100B, similar to those under comparison), also indicating that upcycling has progressed
correctly and improved the scores.

Models Pythia-1B TinyLlama-1.1B \ 1B Upcycled 8x1B
Datasets Pile Slimpajama & Starcoder | Slimpajama Slimpajama
Tokens 100B 103B 74B 37B
ARC-c 25.59 24.32 27.65 30.12
ARC-e 47.26 4491 52.10 56.14
lambada 53.52 - 45.08 49.72
logiqa 29.49 - 26.11 27.65
piqa 69.31 67.30 65.89 67.19
sciq 77.3 - 78.10 82.00
winogrande 51.22 53.28 54.93 57.77
Avg. 50.53 - | 4998 52.94

Table 7: Benchmarks’ performance comparison across models. Reported scores are accuracies
(normalized by byte length whenever applicable). The first two columns are scores of existing models.
The last two columns are evaluation results of models trained in this work. The upcycled 8x1B model
is upcycled from the 1B model. Our models are evaluated with the LM Evaluation Harness v0.4.0
library [Gao et al.| [2024].

C.10 Estimated Total GPU hours

Instead of reporting the actual runtimes on our cluster, which varied in our experiments due to many
factors affecting the cluster (number of available nodes, congestion, etc.), we give a theoretical
estimate of total GPU hours used for obtaining the joint scaling law, which involves running the
largest tested model with most training tokens in this paper.

The estimate is as follows. We calculate the FLOPs for training the dense, MoE, upcycled MoE
models with maximum iterations using the 6N D approximation, ignoring the additional FLOPs
required to continued pretrain models with shorter iterations (as we can reuse the intermediate
checkpoints). We further assume that the per-second TFLOPs of the GPU is 400, and is the same for
both dense and MoE models. [ﬂ We obtain,

Dense model: 6.14 x 107 FLOPs
MoE: 1.08 x 108 FLOPs
Upcycled MoE: 5.38 x 10'® FLOPs

The total GPU hours are henceforth approximately 4,900. We note that the exact total GPU hours
used are larger as we have run various additional studies as detailed in the paper. We further note that
using the cosine learning rate schedule would cost about twice more GPU hours when varying the
number of training token budget.

D Generalization across other datasets

We show that the scaling behavior studied in the main text generalizes across datasets in use. Aside
from Slimpajama [Computer;, 2023 [Soboleva et al., 2023 |Shen et al., 2023]] used in the main text, we
test with two additional datasets: Japanese portion of the CommonCrawl corpus, and the Stack code
dataset [Kocetkov et al.]. We use a tokenizer of enlarged vocabulary size of 102,400 when training
with the former dataset. E] We upcycle a 0.1B model with the training configuration set to the same
as those used for the experiments presented in the main text. The results are presented in Figure [T0}
where the scaling behaves similarly to those presented in Figure|l} suggesting that our scaling law for

*https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/core/transformer/moe/
README .md. Note that MoE requires more GPU memory to store its total model parameters, inducing overhead
that may slow down training.

https://huggingface.co/sbintuitions/sarashina2-70b
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dataset are independent of dataset in use. We however do not further study scaling law for model
configuration and the joint scaling law due to computational constraints.
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Figure 10: Scaling behavior generalizes across datasets used. Left: Japanese dataset. Right: Code
dataset.

E More results on scaling law for dataset sizes

E.1 Fitting across architectures

Figure 8| shows the fitting of the scaling law for dataset sizes across architectures (fixing dense model
size to 0.1B).

(Mexpert:NTopk) | (1) (42)  B,1)  (82)

o 028 0.19 029 0.18
(o 029 020 030 0.20
as 0.01 0.008 0.01 0.008

Table 8: Fitted exponents of the scaling law for dataset sizes across architectures.

E.2 More validation of Equation/[i]

We first make an observation from Figure [I] that the slope of the fitted lines, that is, the scaling
exponent as in Equation 2 is decreasing with D;. Let us consider the scaling factors A fitted in Figure
The scatter plot of A’s in Figure[IT|leads us to deduce that the following relation:

Ao D" ©)
Indeed, we find that the above equation fits well in the Figure. Substituting it to Equation 2, we

obtain at the RHS a term of the form D; 7 D5 ¢, indicating that Equation |1|arises not only from first
principles as in the main text, but from empirical observations as well.

E.3 Bilinear form
We would also like to note that by taking the logarithm of the first term of Equation 3, we have
aq log D1 4+ as log Do + azlog Dy log Do, which is bilinear in terms of log Dy and log D- (that

is, linear with each variable separately), indicating that the multiplicative term with interaction is a
natural generalization of the single-variable power law.

F More Results on the Joint Scaling Law

F.1 Validating Requirement 3

We show in Figure[T2]that the upcycled model empirically satisfies power-law scaling with respect to
Ny, i.e., Requirement 3, repeated below for convenience.

17



Dense tokens, D1
° 03B 28

Dense tokens, D1
o 128

Dense tokens, D1

o 928

= 1388

o 1858
36.98
73.88

= 048
+ 068
128
238

= 178
o 238 2251

4.68
9.28

Dy
Loss

L(D;) = AD;® +E

8x15M 8x0.1B 8x1B

03 04 06 1 2 2 34 [3 10 0 20 0 a0 )
Upcycled tokens, Dz (B) Upcycled tokens, D; (B) Upcycled tokens, D; (B)

1490

A(Dy) «D]"

1.480

A(D;) «D;" 122 A(D;) «D;"

_ 1475

9 1470
<

A(Dy)

1.465

1.460

1455

1.450 4 . : : ; - . : | | | | | | | |
025 050 075 100 125 150 175 200 225 1 2 3 4 5 6 71 8
D; (B) Dy (B) D, (B)

Figure 11: Top: Fitting plots same as those in Figure I, Bottom: Fitting scaling factor has
power-law behavior. The fitted scaling factors are shown to fit well with Equation 9}

497 Requirement 3. Lp, p,(N1) = Bp, p,N;* + Ep, p,.
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Figure 12: Upcycled model has power-law behavior with respect to V;.

F.2 Another functional form satisfying Requirements 3 and 4

For convenience purposes, let us repeat Requirement 4:

Requirement 4. limp, ,oL(D;y, Dy, N1) = AD;* + BNfﬁ + E, i.e., approaching Chinchilla
scaling law.

There is another functional form satisfying Requirement 3 and 4:

A B
L(D17D23N2): Dal +
1

pgenpeoniosnr T (10)

Fitting the above equation however yields negative exponents, which are, empirically, oy =
0.10,0 = —0.07,8 = —0.08, a3 = —0.008. We reject the hypothesis of this functional form

as the loss is predicted to increase with dataset/model sizes, violating the power-law ansatz as well as
empirical observation.

F.3 Why fitting scaling laws separately?

We provide reasoning on why we fit three scaling laws separately, instead of fitting an unified scaling
law which holds for all three dense, MoE from-scratch, and upcycled training scenarios.
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The scaling law for MoE trained from scratch is expected to have parameters different from those
for upcycled training (that is, they are not equal to each other at D; — 0), because upcycled
MokEs are initialized with identical MLP/expert weights from the dense models, while MoEs trained
from-scratch have different initial (random) MLP/expert weights. Thus, we expect them to scale
differently.

Similarly, we expect the scaling law for dense model has parameters different from those for upcycled
training at the limit D> — 0. As can be seen from Figure |3| the upcycled training undergoes a
rewarming phase in the beginning, where the loss increases initially before decreasing. This causes a
deviation from the dense model scaling law at Dy — 0, although we still expect it to correlate with
the dense model scaling law, i.e., Requirement 2 should hold based on function preservation and
(empirical) observations that rewarming does not completely de-correlate the loss behaviors.

Finally, our preliminary investigations also show that unified scaling law does not fit well. We
consequently consider them separately. Moreover, we note that there can be other possibilities of
functional forms that we do not explore further.

G More implication of the Joint Scaling Law

G.1 Training MoE from Scratch versus Upcycling

Past studies [Komatsuzaki et al., Muennighoff et al.|[2024] have explored the efficiency of training an
MoE from scratch compared to upcycling a dense model. [Komatsuzaki et al.| found that upcycling
retains an advantage up to 120% of the sunk cost (D). For instance, to match the performance of
an upcycled MoE trained with an additional 0.4 trillion (T) tokens after 2T dense tokens, training
an MoE from scratch would require 2.4T tokens—effectively saving 2T tokens in upcycled training.
Conversely, Muennighoff et al. [2024] reported that training from scratch requires less than 100%
of the sunk cost under different settings, indicating that it could be more efficient. These seemingly
contradictory results suggest that upcycling efficiency depends on both sunk cost and model size.

To investigate this, we define D* the number of tokens required for training from scratch to match
the performance of an upcycled MoE with the same sunk cost, i.e.,

LN®(D*) = L3P (Dy = D*, D, = D*) (11)

Since the above equation involves non-integer polynomial exponents, we solve it numerically and
approximate the solution analytically (Equation ??). Figure[5|shows that D* decreases with increasing
model size, with D* equal to 4B tokens for an 8x1B model. When Dy < D*, the required Dyior
to catch up is more than 100% of D;: upcycling remains more efficient than training from scratch.
However, for Dy 2 D*, the efficiency reverses, favoring training from scratch. Our findings indicate
that: Upcycling is more efficient than training an MoE from scratch for lower sunk cost and
training token budget, but its efficiency diminishes as the sunk cost or model size increases.

G.2 Compute Allocation and Compute-Optimal Upcycling

Given a fixed total floating-point operation (FLOPs) budget C', we analyze how to optimally allocate
compute between dense training and upcycled training. Specifically, we solve:
min L(Dl,DQ,Nl) s.t. FLOPS(Dl,DQ,Nl) =C
D1,D2,N1
We find that for a given compute budget without any pretrained models, training a compute-optimal
dense or MoE model from scratch outperforms the two-stage dense-to-upcycled MoE approach

(see Figure[14]in Appendix |G.4). This suggests: If no pretrained model exists, direct training is
preferable to upcycling for optimal performance.

In scenarios where a pretrained dense model is already available, we can determine the compute-
optimal scaling of MoE upcycling. The compute cost of upcycled training is approximated as
Cy = 6N D4 [Kaplan et al, 2020]. Optimizing the compute leads to the scaling relations (see
Appendix for derivation):

Xeff

B
DSP* oc Gy et NYPY oc €T (12)

19



554
555

556
557
558

559
560

561

562
563
564
565

566

567

568
569

571

where aeg = ao — aglog D;. Notably, as D; increases, aeg decreases, meaning larger pretrained
models require disproportionately more tokens for efficient upcycling.

For instance, applying this to the Llama2 models (7B, 13B, 70B), which were trained on 2T tokens
[Touvron et al.,[2023], we estimate that compute-optimal upcycling follows the scaling Dy o< N8,
indicating that larger models require nearly quadratic increases in upcycling data.

Overall, we find that upcycling is inefficient relative to from-scratch trainings when considering
compute optimality.

G.3 From-scratch training vs Upcycling

We have shown in the main text that upcycling is only effective when the sunk cost or the model size
is small. We further visualize this by plotting the losses for model sizes 1B, 7B and 70B, fixing Dy to
various values, with respect to Dyjog and D, for from-scratch and upcycled training respectively in
Figure

3 Dmoe> sunk cost 8x1B 2.4

\Dwoe = sunk cost —— Upcycled (D1=1.0e+09) 22| N\Dver< sunk cost | —— Upcycled (D1=2.0e+09)
R Upcycled (D1=1.4e+11) N\ Upcycled (D1=1.4e+12)
—— Upcycled (D1=2.0e+12) . —— Upcycled (D1=1.0e+13)
--- Scratch (D*=1.0e9) 2.0 >

=~ sunk cost

2.0{ — Upcycled (D1=1.0e+09) “>x
Upcycled (D1=4.7e+09)

—— Upcycled (D1=1.0e+11)
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Figure 13: Token budget of from-scratch MoE training and when it catches up with upcycled
MoE’s performance. We compare loss-versus-token plots of from-scratch and upcycled MoE
trainings at various dense training budgets (sunk costs) and model sizes. Upcycling is considered to
be efficient only when Dyjog > sunk cost. We observe that the efficiency of upcycling diminishes
with sunk cost and model size.

G.4 More on compute optimality of upcycling

As mentioned in the main text, while training the Mixtral-like MoE from scratch is shown to be more
efficient in the long run, it requires more compute (1.75 times larger than dense training). There is a
compute-performance trade-off between these stages of training.

We show in Figure [14] that the optimization results in Section that training from scratch can
always be considered to be more performant.

5.0
—e— Upcycled training

Dense training
—+— MoE training

4.0 \\
%]
(%]
9351

1016 1017 1018 1010 1020
FLOPs

Figure 14: Compute-optimal training. Upcycled training performs worse even when D1, Dy, N;
are allocated optimally, compared to compute-optimal training of dense or MoE models.
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s72 G.5 Derivation of compute-optimal formula

573 As in the main text, we want to scale Ny, Dy optimally, NyP*, DSP", given a FLOPs budget and fixing
574 Dy, while minimizing the loss L, which we write as Lp, (D2, N1). This is equivalent to solving the
575 following:

0
——Lp,(D2,C2/10.5D5) =0,
aDQ D2:Dgpt

0
L, (C2/10.5N,, NY) —0
aNl N1:prt

576 where we have used No = 1.75N; and Cy = 6 N3 D5. Solving the above equations leads to

o C’2 ¢
l)2pt :G<105) )

b
NP =Gt (02>

10.5
577 where
. Aot Qofp 1/(cets+B)
= 7Bﬂ
a = 7ﬁ
Qeff + B
o el
et +
Aeﬂ‘ = AD;al

Qeft = g — iz log Dy

We can henceforth relate DS** and N{P* via

Dgpt e (Gprt)a/b x (prt)ﬁ/wfas log D1

d
o prt — gt (G—ngpt)b/a - (Dgpc)(az—aa log D1)/8
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