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Abstract

Bayesian Neural Networks are often sought after for their strong and trustworthy1

predictive power. However, inference in these models is often computationally2

expensive and can be reduced using dimensionality reduction where the key goal is3

to find an appropriate subspace in which to perform the inference, while retaining4

significant predictive power. In this work, we propose a theoretical comparative5

study of the Principal Component Analysis versus the random projection for6

Bayesian Linear Regression. We find that the PCA is not always the optimal7

dimensionality reduction method and that the random projection can actually be8

superior, especially in cases where the data distribution is shifted and the labels9

have a small norm. We then confirm these results experimentally. Therefore, this10

work suggests to consider dimension reduction by random projection for Bayesian11

inference when noisy data are expected.12

1 Introduction13

Bayesian methods and especially Bayesian Neural Networks (BNN) [16, 18, 7] are often sought14

after for their strong and trustworthy predictive power. However, inference in these models is often15

computationally expensive, be it via Laplace inference [16, 14, 13], variational inference [11, 1, 6],16

Markov chain Monte Carlo [18, 19, 9, 8, 10], or ensemble-based inference [3, 5, 4]. To reduce the17

cost of this inference, different methods of dimensionality reduction have been studied where the key18

goal is to find an appropriate subspace in which to perform the inference, while retaining significant19

predictive power. This is similar to approaches known from Gaussian Processes [e.g., 2]. For BNNs,20

the methods based on the Principal Component Analysis (PCA) of the Stochastic Gradient Descent21

(SGD) trajectory or random projections seem to provide promising computational results as discussed22

in Maddox et al. [17] and Izmailov et al. [15].23

In this work, we propose a theoretical comparative analysis of these different dimensionality reduction24

methods. Namely, we will focus on the comparison between the PCA of the SGD trajectory and25

the random projection. Since deep learning models are theoretically hard to study, we will focus on26

Bayesian Linear Regression, which offers the advantage of having a tractable posterior distribution.27

Moreover, we will use predictive inference distribution as the criterion for comparison. We find,28

possibly surprisingly, that the PCA is not always the optimal dimensionality reduction method and29

that the random projection can actually be superior, especially in cases where the data is noisy and30

the labels have a small norm.31

2 Methods32

In this section we will introduce the problem and notation. Let us consider training inputs X ∈ Rn×d33

with associated labels Y ∈ Rn and test inputs X∗ ∈ Rn×d with labels Y ∗ ∈ Rn. We will denote34
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the singular values of X as (ri)i∈1,...,d and the ones of X∗ as (r∗i )i∈1,...,d. The parameters of our35

model are θ ∈ Rd, the noise variance is σ2, and the prior variance is λ2. The main problem we are36

interested in here is to project the data into a subspace of dimension k < d.37

2.1 Assumptions38

Assumption A: We assume a classical Bayesian Linear Regression model with d ≤ n and ho-39

moscedastic Gaussian noise, such that Y = Xθ + ν, ν ∼ N (0, σ2I) and Gaussian prior with40

parameter λ independent of X such that θ ∼ N (0, λ2I).41

Assumption B1: σ = λ = 1.42

2.2 Predictive Distribution in the Global Space43

The predictive distribution in the global space Pr(Y ∗|X∗, X, Y ) is Gaussian: Nglobal :=44

Y ∗|X∗, X, Y ∼ N (µS , S). Using Bayesian model averaging (the proof is detailed in Appendix 5),45

we obtain46

S = (I −X∗(X>X +X∗>X∗ + I)−1X∗>)−1 (1)

µS = SX∗(X>X +X∗>X∗ + I)−1X>Y (2)

2.3 Projected distribution47

Let PE ∈ Rd×k be the matrix such that its columns are generating the subspace E. We have48

P>E PE = Ik and PEP>E = H a projection matrix (H2 = H). Then, we can take both formulas49

for the global space 1,2 and multiply X and X∗ by PE to the right to compute the distribution of50

NE := Y ∗|X∗PE , XPE , Y ∼ N (µE , SE) with µE ∈ Rn and SE ∈ Rn×n.51

PCA projection Izmailov et al. [15] proposed to use a PCA on the SGD trajectory to select the52

subspace. As described in Gur-Ari et al. [12], this method is similar to keeping the eigenvectors53

associated with the largest eigenvalues of the Hessian, which in our Bayesian Linear Regression54

setup is similar to performing the PCA on X . If we use the Singular Value Decomposition (SVD)55

of X: X = URV with U, V being two orthogonal matrices of dimension n× n and d× d and R a56

diagonal matrix of dimension n× d containing the singular values (ri)i∈1,...,d of X . Rearranging57

U,R, V , we will assume that R contains the singular values in increasing order. Thus, the projection58

matrix PPCA for the PCA method is a submatrix of V containing the k eigenvectors associated to59

the k largest eigenvalues ri.60

Random Projection Instead of using PCA, we can alternatively project into a random subspace.61

To do so, we can construct a matrix Prand of dimension d× k containing d independent Gaussian62

vectors of dimension k: ε1, .., εd ∼ N (0, Ik) and Prand = (ε1, ..., εd)
>.63

2.4 KL-Divergence as Comparison Tool64

A good projection is a projection whose predictive distribution is as close as possible to the distribution65

in the global space, that is, whose expectation and covariance matrices are as close as possible to µS66

and S respectively. Different tools can be used to compare these distributions and we have chosen the67

Kullback-Leibler (KL) divergence which offers the nice advantage of being tractable and simple for68

Gaussian distributions. It gives for a subspace E:69

DE := DKL(NE‖Nglobal) =
1

2
(Tr(S−1SE) + (µS − µE)>S−1(µS − µE)− n+ ln(

|S|
|SE |

)) (3)

Our problem therefore consists of comparing DPCA with Drand.70

3 Results71

3.1 PCA is not perfect: a counter-example72

By the Eckart-Young theorem, PCA is the best low-rank approximation in terms of the Frobenius73

norm. However, here we instead care about the KL divergence between the global space and the74
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subspace, therefore the Eckart-Young theorem does not apply and PCA is not necessarily the best75

low-rank approximation. Here, we will derive a simple counter-example which proves that PCA is76

not optimal. To do so, we assume that n = 3, d = 2, and X = X∗ =

(
1 0
0 1
0 0

)
, PPCA =

(
1
0

)
and77

we compare it with the projection in the span of γ =

(
1
1

)
. As detailed in Appendix 6 if we choose78

the labels to be y2 = 0 and y1 = 0:79

Dγ ≈ 0.08 ≥ DPCA ≈ 0.07

However, if instead we take y2 = 1 and y1 = 0:80

Dγ ≈ 0.17 ≤ DPCA ≈ 0.24

This shows that the PCA is not a generally optimal solution.81

3.2 Study in Expectation82

3.2.1 The KL Divergence for PCA83

Theorem 1 Using the SVD decomposition of X = URV and noting that Q := U>Y we can derive84

the following equation under assumptions A, B1. The proof is given in Appendix 7.85

DPCA =
1

2
(

d∑
i=k+1

− r∗2i
1 + r2

i + r∗2i
− log(1− r∗2i

r2
i + r∗2i + 1

) +Q2
i

r2
i r
∗2
i

(1 + r2
i + r∗2i )(1 + r2

i )
) (4)

3.2.2 The KL Divergence for Random Projection86

Assumption B2: σ = λ = 1 and d is large enough.87

Assumption C: If Prand = (ε1, . . . , εd)
>, we assume that

∑d
i=1 r

2
i εiε

>
i and

∑d
i=1 r

∗2
i εiε

>
i are88

respectively equal to their expectations
∑d
i=1 r

2
i Ik and

∑d
i=1 r

∗2
i Ik.89

Under assumption A, B2, C, we can derive the KL divergence for the random projection in equation90

5:91

Drand =
1

2
(

d∑
i=1

− r∗2i
1 + r2

i + r∗2i
− log(1− r∗2i

1 + r2
i + r∗2i

)− Σ̂rand
r∗4i ε

>
i εi

1 + r2
i + r∗2i

+

d∑
i,j=1

QiQjGij)

(5)
with Σ̂rand := (1 +

∑d
i=1 r

2
i ε

2
i + 2

∑d
i=1 r

∗2
i ε

2
i )
−1 and G a matrix the coefficients of which are92

detailed in the proof in Appendix 8.93

3.2.3 Comparison of PCA and Random Projection94

To compare the PCA with the random projection we chose to evaluate their expected behaviour.95

Hence, we need to compare the values of DPCA with the expectation of Drand according to ε:96

Eε(Drand). We first observe with equations 4 and 5 that both KL divergences behave quite similarly.97

Yet, PCA seems to be more dependent on the data X as seen in the equation 4 with the sum beginning98

at k + 1. Thus, if the testing data X∗ is perturbed along the other axes of the projection, PCA99

should underperform compared to the random projection which does not depend on the choice of the100

projection eigenvector. In the following, we will assume that the testing data X∗ is perturbed with101

a small value δ and compare DPCA with the Eε(Drand) as functions of δ. We will thus make the102

following assumptions:103

Assumption D: X is the identity, i.e., X = diag(1, ..., 1) and PPCA = Id×k. We then perturb104

the test data X∗ by adding a small perturbation δ to the (k + 1)-th singular value of X: X∗ =105

diag(1, .., 1, 1 + δ, 1, .., 1).106

Small-norm outputs: The KL divergences of the two methods seem to have different behaviours107

depending on the norm of the Y outputs. We will therefore separate different cases starting by108

focusing firstly on small-norm outputs.109

Assumption E1: ‖Y ‖∞ ≤ 0.1 with high probability.110
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111

We can prove (Appendix 9) using assumptions A, B2, C, D, E1 that if we denote112

f(δ) := DPCA − Eε(Drand):113

f(0) w 0 and f is an increasing function (6)

Result 6 shows that without perturbation, PCA is better than random projection, however the latter114

is more responsive to perturbed data. We will now study experimentally the behaviour of both KL115

divergences as a function of δ and for small-norm outputs Y . To do so, we will generate vectors116

β ∼ N (0, 0.01Id) and obtain outputs such that Y = Xβ. Averaging over 10,000 runs, we obtain117

Figure 1, where we notice that the difference between both KL divergences increases with δ as proven118

in equation 6. Moreover, we can indeed see that for δ = 0, i.e., without perturbation, f(δ) ≤ 0 and

Figure 1: Drand and DPCA as function of δ for
n = 20 with ‖Y ‖∞ ≤ 0.1.

Figure 2: Drand and DPCA as function of δ for
n = 20 with ‖Y ‖∞ ≥ 10.

119
therefore PCA is better. As δ increases, f(δ) becomes quickly positive as shown on equation 6 and120

random projection is then better. Hence, PCA is better without perturbation but random projection121

reacts better to perturbations in δ for small outputs Y .122

Large-norm outputs:123

Assumption E2: ‖Y ‖∞ ≥ 10 with high probability.124

Using Assumption E2, we can reconsider the KL divergence for a subspace E to be only:125

DE =
1

2
(µS − µE)>S−1(µS − µE) (7)

The behaviour of this term is much more difficult to study than in the previous paragraph because it126

involves the outputs Y whose distribution is unknown. However, we are still able to prove that for127

large perturbations, the PCA performs better than the random projection as seen in the equation 8128

proven in Appendix 10 under Assumptions A, B2, C2, D, E2.129

lim
δ→∞

DPCA − E
ε
(Drand) = −

k∑
i=1

Q2
i

12
≤ 0 (8)

We repeated the same experiment as above with large-norm outputs, that is, we generate vectors130

β ∼ N (10, 0.01Id) and obtain outputs such that Y = Xβ. Again averaging over 10,000 runs, we131

obtain Figure 2, where we can notice that f(δ) increases and is always negative, thus the PCA is132

always better than the random projection for large-norm outputs.133

4 Conclusion134

In this study, we compared two dimensionality reduction methods for Bayesian linear regression:135

the PCA of the data (or similarly the SGD trajectory) and the random projection. We showed136

experimentally and theoretically that the PCA is better for noiseless data and also for large-norm137

outputs. However, for small-norm outputs and noisy data, the random projection can be superior.138
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Supplementary Material184

5 Appendix: Proof of equations 1 and 2185

We use the notation cste(.) for constant depending on the parameters (.).186

5.1 Assumptions187

Assumption 1: We take the classical Bayesian Linear Regression model:188

Y = Xθ + ν

with homeostatic Gaussian noise:189

ν ∼ N (0, σ2I) (9)

Finally we have:190

Y ∼ N (Xθ, σ2I)

And therefore our log-likelihood is:191

− 2 log Pr(Y |X, θ) =
(Y −Xθ)>(Y −Xθ)

σ2
+ cste (10)

Assumption 2: We only considers Gaussian prior of parameter λ independent of X such that:192

θ ∼ N (0, λ2I)

5.2 Computation of the distributions in the global space193

5.2.1 Posterior distribution194

Now that the model is fixed, we want to find the best weights θ given a dataset of inputs and outputs195

(X,Y ). With a Bayesian perspective we want to compute the posterior Pr(θ|X,Y ). Then we will be196

able to compute the predictive distribution, i.e the distribution of unseen data.197

Using Bayes’ rule and assumption 5.1 we obtain:198

Pr(θ|X,Y ) ∝ Pr(Y |X, θ) Pr(θ) (11)

Both right terms are Gaussian, thus our posterior is also Gaussian. Hence, ∃Σ ∈ Rd×d and ∃µ ∈ Rd199

such that:200

− 2 log Pr(θ|X,Y ) = (θ − µ)>Σ−1(θ − µ) + cste = θ>Σ−1θ − 2θ>Σ−1µ+ cste (12)

Using assumption 5.1 and equations 10, 12 and 11:201

−2 log Pr(θ, |X,Y ) =
(Y −Xθ)>(Y −Xθ)

σ2
+
θ>θ

λ2
+ cste

= θ>(
Ip
λ2

+
X>X

σ2
)θ − 2θ>

X>Y

σ2
+ cste

= θ>Σ−1θ − 2θ>Σ−1µ+ cste

By equalizing the terms in θ> and θ>θ we obtain:202

Σ = (
X>X

σ2
+

I

λ2
)−1 (13)

203

µ = Σ
X>Y

σ2
(14)
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5.2.2 Predictive distribution204

Now we have the keys to compute the predictive distribution, i.e for new data Y ∗, X∗ compute205

Pr(Y ∗|X∗, X, Y ) which is Gaussian. To take some notation, Y ∗|X∗, X, Y ∼ N (µS , S). To do so206

we will use the Bayesian model averaging technique:207

Pr(Y ∗|X∗, X, Y ) =

∫
Pr(Y ∗|X∗, θ,X, Y ) Pr(θ|X,Y )dθ

We first focus on the term in the integral208

C(θ) := Pr(Y ∗|X∗, θ,X, Y ) Pr(θ|X,Y ) ∼ N (µ̂, Σ̂) (15)

and we need now to find µ̂, Σ̂.209

i. Find µ̂, Σ̂: To do so, we will separate the constant part between cste, which depends neither on210

Y ∗ nor on θ, and csteY ∗ which is a sum of terms depending from Y ∗. Intuitively cste∗Y will actually211

represent the predictive distribution.212

−2 logC(θ) = −2 log[Pr(Y ∗|X∗, θ,X, Y ) Pr(θ|X,Y )]

= (θ − µ)>Σ−1(θ − µ) +
(Y ∗ −X∗θ)>(Y ∗ −X∗θ)

σ2
+ cste

= θ>(Σ−1 +
X∗>X∗

σ2
)θ − 2θ>(Σ−1µ+

X∗>Y ∗

σ2
) +

Y ∗>Y ∗

σ2
+ cste

= (θ − µ̂)>Σ̂−1(θ − µ̂) + csteY ∗ + cste

= θ>Σ̂−1θ − 2θ>Σ̂−1µ̂+ µ̂>Σ̂−1µ̂+ csteY ∗ + cste

where we successively used equations [10,12], separate the terms in θ and θ>θ, used the definition of213

the distribution of C(θ).214

By taking the third and last lines and by equalizing the terms in θ>θ and θ>, we obtain:215

Σ̂ = (Σ−1 +
X∗>X∗

σ2
)−1 (16)

216

µ̂ = Σ̂(Σ−1µ+
X∗>Y ∗

σ2
) (17)

Thus,217

C(θ) ∝ e
−1
2 (θ−µ̂)>Σ̂−1(θ−µ̂)+csteY ∗ (18)

ii. Integration218

Pr(Y ∗|X∗, X, Y ) =

∫
Pr(Y ∗|X∗, θ,X, Y ) Pr(θ|X,Y )dθ

=

∫
C(θ)dθ

∝
∫
e
−1
2 [(θ−µ̂)>Σ̂−1(θ−µ̂)+csteY ∗ ]dθ

∝ e
−1
2 csteY ∗ using the normalization property

This proves that cste∗Y contains all the information about the distribution of Y ∗|X∗, X, Y . Hence,219

cste∗Y = (Y ∗ − µS)>S−1(Y ∗ − µS) (19)

iii. Find cste∗Y : By taking the previous computation of −2 logC(θ) and equalizing again the third220

and last lines we can obtain:221

Y ∗>Y ∗

σ2
= µ̂>Σ̂−1µ̂+ csteY ∗ + cste

7



Thus,222

csteY ∗ =
Y ∗>Y ∗

σ2
− µ̂>Σ̂−1µ̂+ cste

=
Y ∗>Y ∗

σ2
− (Σ−1µ+

X∗>Y ∗

σ2
)>Σ̂Σ̂−1Σ̂(Σ−1µ+

X∗>Y ∗

σ2
) + cste

=
Y ∗>Y ∗

σ2
− (

XtY

σ2
+
X∗>Y ∗

σ2
)>Σ̂(

XtY

σ2
+
X∗>Y ∗

σ2
) + cste

=
Y ∗>Y ∗

σ2
− Y ∗>X∗

σ2
Σ̂
X∗>Y ∗

σ2
− 2

Y ∗>X∗

σ2
Σ̂
XtY

σ2
+ cste

= Y ∗>(
I

σ2
− X∗Σ̂X∗>

σ4
)Y ∗ − 2

Y ∗>X∗Σ̂XtY

σ4
+ cste

= (Y ∗ − µS)>S−1(Y ∗ − µS) + cste

Therefore by equalizing terms in Y ∗ and Y ∗>Y ∗ we obtain:223

S = (
I

σ2
− X∗Σ̂X∗>

σ4
)−1 (20)

224

µS = S(
X∗Σ̂X>Y

σ4
) (21)

6 Appendix: Proof of the Counter Example 3.1225

In this paragraph we will find a projection which can be more precise than the projection in the eigen226

vectors. To do so, we assume that σ = 1, λ = 1 and227

X = X∗ =

(
1 0
0 1
0 0

)
(22)

Moreover we are projecting only in 1 dimension. Thus we first project in the span of the first eigen228

vector P :229

P =

(
1
0

)
(23)

and we compare it with the projection in the span of ε:230

ε =

(
1
1

)
(24)

First we compute all matrices from paragraph 5.2:231

using equation 13 and 16.232

Σ̂ = (2
X>X

σ2
+

I

λ2
)−1 = (2

I2
1

+
I2
1

)−1 =
1

3
I2 (25)

using equation 1:233

S = (
I

σ2
− X∗Σ̂X∗>

σ4
)−1 = (

I

1
− X∗X∗>

3
)−1 = (

 2
3 0 0
0 2

3 0
0 0 1

)−1 =

 3
2 0 0
0 3

2 0
0 0 1

 (26)

using equation 2234

µS = SX>Σ̂XY =
1

3

 3
2 0 0
0 3

2 0
0 0 1

(1 0 0
0 1 0
0 0 0

)
Y =

 1
2 0 0
0 1

2 0
0 0 0

Y (27)

Now for the span of P with the exact same computation as above but with only one vector:235

Σ̂P =
1

3
(28)
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SP =

 3
2 0 0
0 1 0
0 0 1

 (29)

µP = SPX
>
P Σ̂PXPY =

1

3

 3
2 0 0
0 1 0
0 0 1

(1 0 0
0 0 0
0 0 0

)
Y =

 1
2 0 0
0 0 0
0 0 0

Y (30)

Now for ε:236

Σ̂ε = (2
ε>X>Xε

σ2
+

I

λ2
)−1 = (2

ε>ε

1
+
I

1
)−1 = (2

2

1
+
I

1
)−1 =

1

5
(31)

Sε = (
I

σ2
− X∗εΣ̂εε

>X∗>

σ4
)−1 = (

I

1
− X∗εε>X∗>

5
)−1 =

 4
3

1
3 0

1
3

4
3 0

0 0 1

 (32)

µε = Sε(X
∗ε)Σ̂ε(Xε)

>Y =
1

5

 4
3

1
3 0

1
3

4
3 0

0 0 1

(1 1 0
1 1 0
0 0 0

)
Y =

 1
3

1
3 0

1
3

1
3 0

0 0 0

Y (33)

Now we can compute the KL divergence terms:237

(µS − µP )>S−1(µS − µP ) = Y >

0 0 0
0 1

2 0
0 0 0

 2
3 0 0
0 2

3 0
0 0 1

0 0 0
0 1

2 0
0 0 0

Y =
y2

2

6
238

Tr(S−1SP ) = Tr

 2
3 0 0
0 2

3 0
0 0 1

 3
2 0 0
0 1 0
0 0 1

 =
8

3
239

log(
|S|
|SP |

) = log(
3

2
)

Now for ε:240

(µS − µε)>S−1(µS − µε) = Y >

 1
6

−1
3 0

−1
3

1
6 0

0 0 0

 2
3 0 0
0 2

3 0
0 0 1

 1
6

−1
3 0

−1
3

1
6 0

0 0 0

Y

=
1

54
(5y2

1 + 5y2
2 − 8y1y2)

241

Tr(S−1Sε) = Tr

 2
3 0 0
0 2

3 0
0 0 1

 4
3

1
3 0

1
3

4
3 0

0 0 1

 =
25

9
242

log(
|S|
|Sε|

) = log
27

20

Finally:243

DP ≈
y2

2

6
+ 0.07

244

Dε ≈
1

54
(5y2

1 + 5y2
2 − 8y1y2) + 0.08

If we take y2 = 0 and y1 = 0:245

Dε ≈ 0.08 ≥ DP ≈ 0.07

If we take y2 = 1 and y1 = 0:246

Dε ≈ 0.17 ≤ DP ≈ 0.24

9



7 Appendix: Computation of equation 4247

First we are taking the Singular Value Decomposition of X and X∗:248

X = URV and X∗ = UR∗V

with R = diag(ri)i=1,..,n ∈ Rn×d, R∗ = diag(r∗i )i=1,..,n ∈ Rn×d and U, V 2 orthogonal matrices249

of respectively size n and d. Using equation 1 we obtain:250

S = UDSU
> (34)

with251

DS = (I −R∗(R>R+R∗>R∗ + I)−1R∗>)−1

Using equation 2 we obtain with the notation Q = U>Y :252

µS = UDSR
∗(R>R+R∗>R∗ + I)−1R>Q (35)

For the PCA projection we can notice with the notation P = PPCA that P is containing the first k253

eigenvectors of X>X which are the first k lines of V , even if it means rearranging the order of its254

lines. Thus,255

PP> = V >(
Ik 0
0 0

)V

PP> and X>X are symmetric, have the same eigen vectors and thus they commute. Therefore, we256

have:257

(P>X>XP + P>X∗>X∗P + I)−1 = P>((X>X +X∗>X∗ + I))−1P

Hence,258

SPCA = UDPCAU
> (36)

with259

DPCA = (I −R∗V PP>V >(R>R+R∗>R∗ + I)−1V PP>V >R∗>)−1

= (I −R∗(R>R+R∗>R∗ + I)−1
k R∗>)−1

with the notation k which is equivalent to the multiplication by (
Ik 0
0 0

) or the selection to the first260

k diagonal terms. Moreover,261

µPCA = UDPCAR
∗(R>R+R∗>R∗ + I)−1

k R>Q (37)

Thus,262

µS − µPCA = U(DSR
∗(R>R+R∗>R∗ + I)−1 −DPCAR

∗(R>R+R∗>R∗ + I)−1
k )R>Q

:= UDkR
>Q

Therefore,263

(µS − µPCA)>S−1(µS − µPCA) = Q>RDkD
−1
S DkR

>Q

:= Q>∆Q

If we look at a diagonal coefficients of ∆: if i ∈ the chosen K eigen vectors264

∆i = 0

Otherwise:265

∆i = r2
i (

dSi r
∗
i

1 + r2
i + r∗2i

)2 1

dSi

=
r2
i r
∗2
i

(1 + r2
i + r∗2i )2(1− r∗2i

1+r2i +r∗2i
)

=
r2
i r
∗2
i

(1 + r2
i + r∗2i )(1 + r2

i )

10



Then,266

(µS − µK)>S−1(µS − µK) =
∑
i∈K̄

q2
i∆i

Moreover,267

Tr(S−1SPCA) = Tr(D−1
S DPCA)

= k +
∑
i∈K̄

1− r∗2i
1 + r2

i + r∗2i
+ n− d

= n−
∑
i∈K̄

r∗2i
1 + r2

i + r∗2i

268

log(
|S|
|SK |

) = −
∑
i∈K̄

log(1− r∗2i
r2
i + r∗2i + 1

)

Finally,269

DPCA =
1

2
(
∑
i∈K̄

− r∗2i
1 + r2

i + r∗2i
− log(1− r∗2i

r2
i + r∗2i + 1

) +Q2
i

r2
i r
∗2
i

(1 + r2
i + r∗2i )(1 + r2

i )
)

8 Appendix: Computation of equation 5270

In this part we assume A, B2, C and still σ = λ = 1. We still have for the global space the equations271

34 and 35.272

Now we need to compute the different terms of Drand. The projection is ε := Prand = (ε1, .., εd)
>273

with ∀i ∈ 1, ., d : εi ∼ N (0, Ik). First we compute:274

(ε>X>Xε+ ε>X∗>X∗ε+ Ik)−1 = (ε>V >R>RV ε+ ε>V >R∗>R∗V ε+ Ik)−1

= (ε>V >R>RV ε+ ε>V >R∗>R∗V ε+ Ik)−1

= (ε̃>R>Rε̃+ ε̃>R∗>R∗ε̃+ Ik)−1

= (

d∑
i=1

r2
i ε̃iε̃

>
i + r∗2i ε̃iε̃

>
i + Ik)−1

=
Ik

1 +
∑d
i=1(r2

i + r∗2i )

:= ΣIk

where we used the notation: ∀i ∈ 1, .., d, ε̃i := V εi ∼ N (0, Ik) and assumption C.275

Then:276

Srand = (In −X∗ε(ε>X>Xε+ ε>X∗>X∗ε+ Ik)−1X∗>)−1

= U(I − ΣR∗ε̃ε̃>R∗>)−1U>

= U(I + ΣR∗ε̃(Ik + ε̃>R∗>ΣR∗ε̃)−1ε̃>R∗>)U>

= U(I + ΣR∗ε̃(Ik + Σ

d∑
i=1

r∗2i ε̃iε̃
>
i )−1ε̃>R∗>)U>

= U(I + (
1

1 +
∑d
i=1(r2

i + r
∗2)
i

)
1

(1 + 1
1+

∑d
i=1(r2i +r∗2i )

∑d
i=1 r

∗2
i )

R∗ε̃ε̃>R∗>)U>

= U(I +
1

(1 +
∑d
i=1 r

2
i + 2

∑d
i=1 r

∗2
i )

R∗ε̃ε̃>R∗>)U>

11



where we successively used equation 1, ε̃ = V ε, Woodbury’s identity and the previous result.277

Thus,278

Srand = U(I +
1

(1 +
∑d
i=1 r

2
i + 2

∑d
i=1 r

∗2
i )

R∗ε̃ε̃>R∗>)U> (38)

Then using equation 2 and the projection with ε we have:279

µrand = Srand(X
∗εΣε>X>Y )

= SrandU(R∗ε̃Σε̃>R>U>Y )

= U(I +
1

(1 +
∑d
i=1 r

2
i + 2

∑d
i=1 r

∗2
i )

R∗ε̃ε̃>R∗>)(R∗ε̃Σε̃>R>U>Y )

= ΣU(I +
1

(1 +
∑d
i=1 r

2
i + 2

∑d
i=1 r

∗2
i )

R∗ε̃ε̃>R∗>)R∗ε̃ε̃>R>Q

where we used successively ε̃ = V ε, orthogonality of U and Q = U>Y .280

As ε and ε̃ are identically distributed, we will rename in the following ε̃ as ε. Therefore using 35 and281

previous result we obtain:282

µS − µrand = UFQ

with the notation: F := ((I − R∗(R>R + R∗>R∗ + I)−1R∗>)−1R∗(R>R + R∗>R∗ + I)−1 −283

Σ(I + 1
(1+

∑d
i=1 r

2
i +2

∑d
i=1 r

∗2
i )
R∗εε>R∗>)R∗εε>)R>.284

Then we have ∀i, j ∈ 1, .., p:285

Fij =

{
rir
∗
i

1+r2i
− Σ(1 + 1

(1+
∑d

i=1 r
2
i +2

∑d
i=1 r

∗2
i )
r∗2i ε

>
i εi)r

∗
i riε

>
i εi if i = j

−Σ(1 + 1
(1+

∑d
i=1 r

2
i +2

∑d
i=1 r

∗2
i )
r∗i r
∗
j ε
>
i εj)r

∗
i rjε

>
i εj else

286

(µS − µrand)>S−1(µS − µrand) = Q>F>U>UD−1
S U>UFQ

= Q>F (I −R∗(R>R+R∗>R∗ + I)−1R∗>)FQ

:= Q>GQ

Then we have ∀i, j ∈ 1, .., d:287

Gij =

 (1− r∗2i

1+r2i +r∗2i
)F 2
ii +

∑
k 6=i(1−

r∗2k

1+r2k+r∗2k
)F 2
ik if i = j

Fij(Fjj(1−
r∗2j

1+r2j+r∗2j
) + Fii(1− r∗2i

1+r2i +r∗2i
)) +

∑
k 6=i,j(1−

r∗2k

1+r2k+r∗2k
)FikFkj else

Finally we have:288

(µS − µrand)>S−1(µS − µrand) =

d∑
i,j=1

QiQjGij

Then,289

Tr(S−1Srand) = Tr(D−1
S (I +

1

(1 +
∑d
i=1 r

2
i + 2

∑d
i=1 r

∗2
i )

R∗εε>R∗>))

=

d∑
i=1

(1− r∗2i
1 + r2

i + r∗2i
)(1 +

1

(1 +
∑d
i=1 r

2
i + 2

∑d
i=1 r

∗2
i )

r∗2i ε
>
i εi) + n− d

using equations 34, 38.290

Moreover,291

log
|S|
|Srand|

= log |DS | − log |I +
1

(1 +
∑d
i=1 r

2
i + 2

∑d
i=1 r

∗2
i )

R∗εε>R∗>|

=

d∑
i=1

− log(1− r∗2i
1 + r2

i + r∗2i
)− Tr(

1

(1 +
∑d
i=1 r

2
i + 2

∑d
i=1 r

∗2
i )

R∗εε>R∗>)

=

d∑
i=1

− log(1− r∗2i
1 + r2

i + r∗2i
)− 1

(1 +
∑d
i=1 r

2
i + 2

∑d
i=1 r

∗2
i )

r∗2i ε
>
i εi

12



using that log |I +X| ≈ Tr(X) which is verified under assumption B2.292

Finally with Σ̂rand := 1
(1+

∑d
i=1 r

2
i +2

∑d
i=1 r

∗2
i )

,293

Drand =
1

2
(

d∑
i,j=1

QiQjGij +

d∑
i=1

− log(1− r∗2i
1 + r2

i + r∗2i
)− r∗2i

1 + r2
i + r∗2i

− Σ̂rand
r∗4i ε

>
i εi

1 + r2
i + r∗2i

)

(39)

9 Appendix: Proof of equation 6294

For small outputs equations 4 and 5 become under assumption C2:295

DPCA =
1

2
(

d∑
i=k+1

− r∗2i
1 + r2

i + r∗2i
− log(1− r∗2i

r2
i + r∗2i + 1

)) (40)

and296

Drand =
1

2
(

d∑
i=1

− r∗2i
1 + r2

i + r∗2i
− log(1− r∗2i

1 + r2
i + r∗2i

)− Σ̂rand
r∗4i ε

>
i εi

1 + r2
i + r∗2i

) (41)

Thus,297

DPCA − Eε(Drand)

=
1

2
(

k∑
i=1

log(1− r∗21

1 + r2
1 + r∗21

) +
r∗21

1 + r2
1 + r∗21

+ Eε(Σ̂rand

d∑
i=1

r∗4i ε
>
i εi

1 + r2
i + r∗2i

))

=
1

2
(

k∑
i=1

log(
2

3
) +

1

3
+ Eε(Σ̂rand

d∑
i 6=k+1

ε>i εi
3

+ Σ̂rand
(1 + δ)4ε>1 ε1
2 + (1 + δ)2

))

=
k

2
(log(

2

3
) +

1

3
+ Σ̂rand

d∑
i 6=k+1

k

3
+ Σ̂rand

k(1 + δ)4

2 + (1 + δ)2
)

=
k

2
(log(

2

3
) +

1

3
+

(d− 1)

12(1 + 3d+ 4δ + δ2)
+

1

4(1 + 3d+ 4δ + δ2)

(1 + δ)4

2 + (1 + δ)2
)

:= f(δ)

where we successively used assumption C2, D2, definition of ε. We have f(0) = k
2 (log( 2

3 )) + 1
3 +298

d
12(1+3d) ). As d ≥ 1:299

− 0.024 ∗ k ≤ f(0) ≤ 1

2
(log(

2

3
) +

1

3
+

1

36
) ≤ 0 (42)

Moreover:300

df

dδ
∝ 18δ6 + (81 + 27d)δ5 + (244 + 134d)δ4 + (374d+ 418)δ3 + (584d+ 334)δ2 (43)

+ (447d+ 93)δ + 126d ≥ 0 (44)

Hence, f is an increasing function.301

302

10 Appendix: Proof of equation 8303

For large outputs equations 4 and 5 become:304

DPCA =
1

2
(

d∑
i=k+1

r2
i r
∗2
i

(1 + r2
i + r∗2i )(1 + r2

i )
)

13



305

Drand =
1

2
(

d∑
i,j=1

QiQjGij)

Moreover:306

lim
δ→∞

Σ̂rand = 0

and307

lim
δ→∞

Σ = 0

Thus ∀i, j ∈ 1, .., d:308

lim
δ→∞

Fij = lim
δ→∞

{
rir
∗
i

1+r2i
if i = j

0 else

Hence,309

lim
δ→∞

Gij = lim
δ→∞

{
(

r2i r
∗2
i

(1+r2i )(1+r2i +r∗2i )
) if i = j

0 else

Therefore:310

lim
δ→∞

E
ε
(Drand) = lim

δ→∞

1

2
(

d∑
i=1

Q2
i (

r2
i r
∗2
i

(1 + r2
i )(1 + r2

i + r∗2i )
))

Thus:311

lim
δ→∞

DPCA − E
ε
(Drand) = −

k∑
i=1

Q2
i r

4
i

2(1 + 2r2
i )(1 + r2

i ))

As X is the identity we obtain finally,312

lim
δ→∞

DPCA − E
ε
(Drand) = −

k∑
i=1

Q2
i

12
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