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Abstract

A given causal system can be represented in a variety of ways. How do agents
determine which variables to include in their causal representations, and at what
level of granularity? Using techniques from information theory, we develop a
formal theory according to which causal representations reflect a trade-off between
compression and informativeness. We then show, across three studies (N=1,391),
that participants’ choices over causal models demonstrate a preference for more
compressed causal models when all other factors are held fixed, with some further
tolerance for lossy compressions.

1 Introduction and Formal Framework

Scientists often aim to produce causal models of the world that balance informativeness with compres-
sion. That is, they aim to model data-generating processes in a way that captures as much information
about those processes as possible, while omitting cumbersome or unnecessary details. For example,
epidemiologists might produce a model of cancer rates in a population that treats smoking as a binary
variable representing whether or not a person smokes cigarettes, but without specifying the average
number of cigarettes the person smokes per day, and omitting additional background variables such
as the person’s blood type. Ordinary agents face an analogous challenge: when representing the
social and physical world around us, each of us must determine which variables to include in our
causal models, and at what level of granularity. For example, a causal model of a toddler’s tantrums
could include whether they napped or not as a binary variable, or a finer-grained specification of the
number of minutes they napped; it could include the time of day, or omit this variable entirely. Any
such choice of variables instantiates a particular trade-off between informativeness and compression.
How do people navigate this choice in building causal models of the world?

To formalize this trade-off, we begin by using Bayesian networks to represent causal structure. Let
VP be a set of random variables that are all measurable with respect to the same probability space
P = (Ω,Σ, p). Let E be an acyclic set of ordered pairs, or edges, relating the variables in E . The set
of edges E allows us to define parent and descendant relations between variables in the obvious way.
A causal Bayes net is a pair GP = (VP , E) such that: i) according to the probability distribution p,
all elements of VP are independent of their non-descendants, conditional on their parents (Markov
Condition), ii) there is no set of edges E∗ ⊂ E such that (VP , E∗) satisfies the Markov condition
according to the probability distribution p (Minimality Condition), and iii) no variable in VP is a
coarsening of or identical to any other variable in VP (Co-possibility Condition).

For any variable set VP = {V1, . . . , Vn}, let VP(ω) be the vector [V1(ω), . . . , Vn(ω)]. This allows us
to define an equivalence relation ∼VP such that ω ∼VP ω′ iff VP(ω) = VP(ω

′). A compression of
a causal Bayes net GP = (VP , E) is any causal Bayes net ĜP = (V̂P , Ê) that: i) satisfies the Markov,
Minimality, and Co-possibility conditions according to P; ii) is such that for any ω, ω′ ∈ Ω, if
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ω ∼VP ω′, then ω ∼V̂P
ω′; and iii) there exists a pair ω, ω′ ∈ Ω, such that ω ̸∼VP ω′ but ω ∼V̂P

ω′.
In other words, a compression of a causal Bayes net is a second causal Bayes net that satisfies the
necessary criteria for representing the same target system as the first, while also defining a strictly
more general partition over possibility space. The compression-of relation between causal Bayes
nets defines a lexical ordering between causal representations of the same target system, such that
while we cannot definitively say, for any two causal Bayes nets, which is more compressed, we can
sometimes say of two Bayes nets that one is more compressed than the other (namely, when one is a
compression of the other).

Next, we define the degree to which a set of variables C is informative about an effect variable E,
where both variables are embedded in a causal Bayes net GP . We begin by noting that for given
causal Bayes net GP , we can calculate the probability distribution over any variable V in the set VP ,
given an intervention setting some set of variables X to some set of values x (denoted do(x)), using
the following formula (Pearl [2000]):

pGP (v|do(x)) =


p(v|parGP

(V )) if V ̸∈ X

1 if V ∈ X and v is consistent with x

0 otherwise
(1)

where parGP
(V ) denotes the values taken by the parents of V in GP . This allows us to derive the

probability distribution that would be defined over any variable in the causal Bayes net if any other
variable were set to some value via an exogenous, “surgical” intervention on the data-generating
system. This, in turn, allows us to define the causal mutual information between a set of causal
variables C and an effect variable E, where both variables are embedded in a causal Bayes net GP :

CMI(C, E,GP ) =
∑
c,e

q(c)p(e|do(c)) log2
p(e|do(c))

p(e)
, (2)

where q is a distribution over possible interventions on C (see Ay and Polani [2008] and Pearl [1994]
for a similar deployment of a distribution over interventions).

Suppose that a causal Bayes net ĜP is a compression of some other causal Bayes net GP . Both Bayes
nets contain an effect variable E, but may contain different causal variables C and Ĉ. The amount of
information about E that is lost as a result of replacing the less-compressed causal Bayes net with a
more compressed alternative is given by the equation:

L(GP , ĜP ,C, Ĉ, E) = CMI(C, E,GP )− CMI(Ĉ, E, ĜP ). (3)

This quantity is non-negative whenever the variable set Ĉ defines a strictly more general equivalence
class on Ω than C, and only takes the value zero in the case where compression does not result
in any change in the informativeness of the casual variables with respect to the effect variable of
interest. We hypothesized that as more information is lost due to compression (as measured by the
function defined in Eq. 3), participants will evaluate claims consistent with the more compressed
representation less positively relative to claims consistent with the less compressed representation.
In what follows, we present an experiment confirming this hypothesis. Two further experiments,
which in addition rule out alternative explanations of our findings, are reported in the supplemental
materials.

1.1 Previous Work

From a theoretical perspective, the work that is closest to our framework consists of previous attempts
to quantify properties of causal relationships in Bayesian networks using tools from information
theory. These include specific attempts to measure various aspects of causal relationships, such as:
proportionality, stability, power, abstraction, strength, or specificity using formalism from information
theory Pocheville et al. [2017], Korb et al. [2011], Griffiths et al. [2015], Hoel [2017], Beckers and
Halpern [2019], Bourrat [2021]. However, none of these approaches aim, as we do, to provide a
unified account of our preference for more or less compressed causal representations in terms of
information loss.
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2 Experiment 1

We presented participants with a description of the results of controlled experiments on a fictional
variety of mushroom, fly, or rock, and asked them to rate how good it would be to include various
claims in a summary of the described results. These claims included more and less compressed
causal claims. We manipulated the vignette used, the amount of information loss realized by the more
compressed causal claim, and whether the compression was achieved by coarse-graining a single
variable or removing a background variable from the representation.

2.1 Participants

Participants were 450 adults recruited via Prolific. 150 additional participants were excluded for
failing comprehension checks or for rating poor causal claims non-negatively. For both studies,
participation was restricted to users with a US-based IP address and a 95% rating based on at least
100 previous studies. Both studies were pre-registered, and IRB approval was obtained from the
authors’ university. Data, stimuli, and pre-registrations are available at https://osf.io/zm6kr/
?view_only=124c22b8b2dd4d64b44046c8784911db (Experiments 1-3).

2.2 Materials and Procedures

Participants read a vignette in which they learned about a novel causal system, including the results
of experiments involving that system. For example, in the insect vignette, participants were presented
with the following four facts resulting from experiments on the “Bricofly” insect: a) x% of all Bricofly
larvae raised in a warm, humid tank developed blue wings; b) 70% of all Bricofly larvae raised in
a warm, dry tank developed blue wings; c) 1% of all Bricofly larvae raised in a cold, humid tank
developed blue wings; d) 1% of all Bricofly larvae raised in a cold, dry tank developed blue wings.

The value of x was varied between subjects and set at either 70, 85, or 98. Participants were then
asked to rate, on a scale from -3 (very bad) to 3 (very good), how good it would be to include each of
the following statements in a summary of the findings of the descriptions given above:

• Compressed: Raising Bricofly larvae in a warm tank causes them to develop blue wings.
• High: Raising Bricofly larvae in a warm, humid tank causes them to develop blue wings.
• Low: Raising Bricofly larvae in a warm, dry tank causes them to develop blue wings.

The values of x correspond to information loss amounts for Compressed of 0, .01, and .06 respectively,
assuming a uniform distribution over possible interventions. Participants were randomly assigned
to one of eighteen possible conditions, which differed with respect to which of the three vignettes
they were shown, whether they were asked to evaluate a compressed claim achieved by coarsening
a causal variable or eliding a background variable, and the amount of information loss inherent in
compression. Finally, participants were also asked to evaluate three poor causal claims, constructed
by substituting the value of the primary causal factor (e.g., changing the warm tank to a cold tank).
These were included to help anchor the scale and verify participant understanding; we do not discuss
them further here in the interest of space.

2.3 Results

To test whether evaluation of less compressed causal claims relative to more compressed causal claims
increased as a function of information loss due to compression, we computed (as pre-registered) two
difference scores:

• V-A. The difference between the participant’s evaluation of Compressed and their evaluation
of High (e.g., the difference between the evaluation of ‘Raising Bricofly larvae in a warm
tank causes them to develop blue wings’ and the evaluation of ‘Raising Bricofly larvae in a
warm, humid tank causes them to develop blue wings’).

• V-B. The difference between the participant’s evaluation of Compressed and a uniform
average of their evaluations of High and Low (e.g., the difference between the evaluation
of ‘Raising Bricofly larvae in a warm tank causes them to develop blue wings’ and the
average evaluation of ‘Raising Bricofly larvae in a warm, humid tank causes them to develop
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Figure 1: Mean evaluations of claims in Experiment 1, with bars showing 95% CIs. ‘Loss’ corre-
sponds to information loss due to compression inherent in choosing Compressed over High and Low.
Mixed ANOVA for each value of Loss found that at Loss=0, Compressed was rated more highly than
both High (η2 = .025, p = .002) and Low (η2 = .041, p < .001). When Loss=.01, High was not
rated significantly higher than Compressed (η2 = .005, p = .156), but was rated higher than Low
(η2 = .050, p < .001). When Loss=.06, High was rated significantly higher than both Compressed
(η2 = .058, p < .001) and Low (η2 = .153, p < .001).

blue wings’ and ‘Raising Bricofly larvae in a warm, dry tank causes them to develop blue
wings’).

We regressed these dependent variables against independent variables denoting the assigned vignette
(Vignette), whether the more compressed claim was generated by coarsening a variable or eliding a
background condition (Mode of Compression), and the amount of information loss (Loss), as well as
all possible interactions. The regressions revealed that only Loss was a significant predictor of V-A
(β = −16.623, p < .001) and V-B (β = −9.852, p < .001). As a sanity check, we also analyzed
the difference between the participant’s evaluation of High and their evaluation of Low (V-C). As
expected, only Loss was a significant predictor of V-C, with the value of V-C increasing as the
probability of the effect given the description of the cause in High increases with Loss (β = 13.543,
p < .001). In an exploratory analysis, we measured the percentage of participants who strictly
preferred Compressed to High across all three loss levels. This percentage was approximately 36%
when Loss=0, 21% when Loss=.01, and 10% when Loss=.06.

3 Discussion and Conclusion

These results provide strong evidence in favor of the claim that participants’ relative evaluations of
more and less compressed causal claims are partially governed by the amount of information loss that
is inherent in the more compressed causal claim. As can be seen in Fig. 1, which plots participants’
absolute evaluations of each causal claim at each loss level, when there is no information loss,
participants evaluate more compressed causal claims significantly more highly than less compressed
causal claims, suggesting that people award simplicity and penalize unnecessary complexity in their
evaluation of causal claims. When information loss is moderate, there is no significant difference
between participants’ evaluations of more and less compressed causal claims, suggesting that some
participants prefer a compressed claim even when some information loss is inherent. That is, they are
tolerant of some amount of lossy compression in the causal representation of their environment. In
the supplemental materials, we report results from two further experiments. These results lend further
confirmation to our hypothesis, while also ruling out alternative explanations due to Cheng [1997]
and Lien and Cheng [2000]. In future work, we hope to explore connections between our results and
the formalization of lossy compression found in rate distortion theory (e.g., Berger [1971]).
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Supplemental Materials

4 Experiment 2

In Experiment 1, participants evaluated the three key causal claims (Compressed, High, and Low) on
the same screen. This could have introduced unintended task demands. For instance, participants
may have felt that endorsing Compressed was redundant with the endorsement of both High and Low,
or that endorsing Compressed (when the option to select more fine-grained options was available)
implied the causal irrelevance of the unspecified factor. To ensure that the results of Experiment 1
were robust to such considerations, we replicated the study with the amendment that participants
were shown the same data twice, and asked first to evaluate Compressed and second to independently
evaluate High and Low. Our results speak against an alternative interpretation of the results of
Experiment 1 that uses the causal power theory of Cheng [1997].

4.1 Participants

483 adults were recruited via Prolific. 117 additional participants were excluded for failing compre-
hension checks or rating poor causal claims non-negatively.

4.2 Materials and Procedures

The procedure was identical to that used in Experiment 1 with three exceptions. First, as described
above, participants were asked to evaluate Compressed as part of a separate task than their evaluation
of High and Low. Second, sentence (b) in both descriptions used in the first experiment was amended
to replace ‘70%’ with ‘55%’. Analogous replacements were made for the other two vignettes. Third,
the value of x in (a) and (b) was varied between subjects and set at either 55, 85, or 98, leading to
information loss amounts of 0, .04, and .11 respectively. Thus, we replicated Experiment 1 for a
different range of loss values.

4.3 Results

We performed the same regressions as in Experiment 1. Loss was a significant predictor of all
three dependent variables (V-A: β = −14.53, p < .001, V-B: β = −6.391, p < .001, V-C:
β = 16.303, p < .001). Fig. 2 shows the relationship between Loss and participants’ absolute
evaluations of Compressed, High, and Low. In an exploratory analysis, we measured the percentage
of participants who strictly preferred Compressed to High across all three loss levels. This percentage
was approximately 39% when Loss=0, 10% when Loss=.04, and 2% when Loss=.11.

The results of Experiment 2 also offer evidence against an alternative interpretation of our results.
Specifically, the causal power theory (Cheng [1997]) holds that agents evaluate causal claims posi-
tively to the extent that they optimize the following quantity, which we express in terms of Pearl’s
do-calculus:1

Power(c, e) =
p(e|do(c))− p(e|do(¬c))

1− p(e|do(¬c))
. (4)

Table 1 shows crucial calculations of causal power. If evaluations of causal claims are primarily driven
by differences in causal power, then we would expect that the difference between participants’ evalua-
tions of Compressed and their average evaluation of High and Low (i.e., the dependent variable V-B)
should be positively correlated with value of Power(Comp) - AVG[Power(High),Power(Low)]. How-
ever, if we use the data from Experiment 2 to regress V-B against Power(Comp) - AVG[Power(High),
Power(Low)], along with Mode of Compression, Vignette, and all interactions between these
three variables, we observe a significant predictive relationship between V-B and Power(Comp)
- AVG[Power(High), Power(Low)] going in the opposite direction (β = −65.853, p = .001) such
that higher values of Power(Comp) - AVG[Power(High), Power(Low)] are associated with lower
values of V-B. Thus, a causal power theory fails to predict a crucial dependent variable that our
information loss theory is able to successfully predict.

1The original formulation of causal power given in Cheng [1997] is not stated in terms of Pearl’s do-calculus.
Instead, it is written Power(c, e) = p(e|dc)−p(e|¬c)

1−p(e|¬c)
(see p. 374, Eq. 8). We state causal contrast in these terms

here to maintain formal consistency with our own measure of information loss.
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Figure 2: Mean evaluations of claims in Experiment 2, with bars showing 95% CIs. ‘Loss’ corre-
sponds to information loss due to compression inherent in choosing Compressed over High and Low.
Mixed ANOVA for each value of Loss found that at Loss=0, Compressed was rated more highly than
both High (η2 = .044, p < .001) and Low (η2 = .048, p < .001). At Loss=.04, High was rated more
highly than Compressed (η2 = .036, p < .001) and Low (η2 = .220, p < .001). At Loss=.11, High
was rated more highly than Compressed (η2 = .179, p < .001) and Low (η2 = .442, p < .001).

p(Effect|High) Power(Comp) Power(High) Power(Low)
Power(Comp) -

AVG[Power(High),Power
(Low) ]

.55 .545 .444 .444 .101

.85 .697 .815 .366 .106

.98 .763 .975 .325 .112

Table 1: Causal power values for causal claims in Experiment 2.

4.4 Discussion

Nevertheless, our results in Experiments 1 and 2 remain subject to two salient concerns. First,
Experiments 1-2 varied the granularity of a causal variable by adding or omitting qualifiers to a
variable (e.g., warm, humid tank versus warm tank). More canonical manipulations of variable
granularity involve a continuum that can be coarsened into discrete ranges (e.g., a scale with ten
values that is coarsened into two ranges of values). Thus, the results of Experiments 1-2 leave open
the possibility that these more canonical manipulations of granularity would show divergence between
effects of information loss on across different modes of compression. Second, Experiments 1 and 2
were not designed to differentiate our account from another alternative hypothesis: that evaluations of
more and less compressed causal claims do not reflect information loss, as our account suggests, but
instead differences in causal contrast (consistent with Lien and Cheng [2000]). Experiment 3 was
designed to addresses both of these concerns.

5 Experiment 3

Lien and Cheng [2000] develop an account of how people differentiate between genuine and spurious
causes, and in so doing present results in keeping with the claim that when agents choose between
candidate causal explanations of a given event, they choose the one that maximizes causal contrast,
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which is given by the following equation:2

Cont(c, e) = p(e|do(c))− p(e|do(¬c)). (5)

Applying this formula to the values from Experiments 1 and 2 reveals that as the probability of the
effect for High increases, the difference in contrast between the compressed causal claim and the high
causal claim decreases. So, it seems that our results in Experiment 1-2 might just as well be explained
by the hypothesis that participants are basing their judgments on the difference in contrast between
Compressed and High as they are by our hypothesis that participants are balancing compression
against information loss. To distinguish between these two hypotheses, we ran an experiment using
a similar paradigm to Experiments 1-2, but wherein participants were shown data sets for which
information loss and causal contrast generated different qualitative predictions. This design allows us
to test which of these two quantities is a more plausible candidate for the cue that participants are
using to evaluate causal claims. Experiment 3 also differed from Experiments 1-2 in manipulating
compression through coarsenings of a continuous quantity.

5.1 Participants

Participants were 458 adults recruited via Prolific. An additional 185 participants were excluded for
failing comprehension checks or rating poor causal claims non-negatively.

5.2 Materials and Procedures

Participants read a vignette in which they learned about a novel causal system, including the results
of experiments involving that system. As in Experiments 1 and 2, the fictional experiments involved
either insects, mushrooms, or rocks. For example, in the insect vignette, participants assigned to the
condition in which compression was achieved by coarsening a variable were presented with one of
the data scenarios shown in Table 2, and asked to evaluate the following three causal claims on a
scale from -3 to 3:

• Compressed: Raising Bricofly larvae in a moderate-temperature tank causes them to develop
blue wings.

• High: Raising Bricofly larvae in a moderately warm tank causes them to develop blue wings.

• Low: Raising Bricofly larvae in a moderately cold tank causes them to develop blue wings.

Table 2 also shows the values of both information loss and the difference in contrast between
Compressed and High for all three data sets. As can be seen from the table, Scenarios 2 and 3
both differ from Scenario 1 by the same amount with respect to the difference in contrast between
Compressed and High, but only Scenario 2 differs from Scenario 1 with respect to information loss.
Thus, if we believe that information loss and not causal contrast is affecting participants’ evaluations
of causal claims, then we would predict that participants will treat Scenarios 1 and 3 similarly, but
treat Scenario 2 differently from both Scenarios 1 and 3.

5.3 Results

Figure 3 shows the results of Experiment 3 for all three scenarios across both modes of compression.
As we were primarily concerned with differential evaluations of Compressed and High across different
scenarios, we ran mixed ANOVA for the within-participants difference between Compressed and
High in each scenario. We found that in Scenarios 1 and 3, Compressed was strictly preferred to
High (Scenario 1: η2 = .019, p = .001; Scenario 3: η2 = .032, p < .001). This is consistent with
participants favoring compression when information loss is zero. Moreover, the preference for the
claim Compressed over the claim High did not differ across Scenarios 1 and 3 (β = .041, p = .673),
which is consistent with the predictions of information loss, but not those of causal contrast (see
Table 3).

Unlike Scenarios 1 and 3, in Scenario 2, the causal claim High was strictly preferred to the causal
claim Compressed (η2 = .120, p < .001). This is consistent with the hypothesis that compression

2As in the case of causal power, we have re-written Lien and Cheng’s contrast measure in terms of Pearl’s
do-calculus. In the original formulation, causal contrast is written as Cont(c, e) = p(e|c)− p(e|c)
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Scenario 1 Scenario 2 Scenario 3

Tank
Condition

% of
Bricofly
Developing
Blue Wings

Tank
Condition

% of
Bricofly
Developing
Blue Wings

Tank
Condition

% of
Bricofly
Developing
Blue Wings

Extremely Cold
Tank (0-24
degrees)

1%
Extremely Cold
Tank (0-24
degrees)

1%
Extremely Cold
Tank (0-24
degrees)

43%

Moderately
Cold Tank (25-
49 degrees)

70%
Moderately
Cold Tank (25-
49 degrees)

70%
Moderately
Cold Tank (25-
49 degrees)

70%

Moderately
Warm Tank
(50-74 degrees)

70%
Moderately
Warm Tank
(50-74 degrees)

98%
Moderately
Warm Tank
(50-74 degrees)

70%

Extremely
Warm Tank
(55-99 degrees)

1%
Extremely
Warm Tank
(55-99 degrees)

1%
Extremely
Warm Tank
(55-99 degrees)

43%

Loss 0 Loss .06 Loss 0
Contr(Comp)-
Contr(High) .23

Contr(Comp)-
Contr(High) .09

Contr(Comp)-
Contr(High) .09

Table 2: Information loss and causal contrast for three different scenarios shown in Experiment 3.

Figure 3: Mean evaluations of causal claims for three scenarios in Experiment 3.

trades off with information loss, such that less compressed causal claims may be favored when
information loss is not negligible. Moreover, the difference in ratings between Compressed and High
differed across Scenarios 2 and 3 (β = −22.276, p < .001); this is consistent with the predictions of
information loss, but not with those of causal contrast (see Table 3).

5.4 Discussion

Although Lien and Cheng’s causal contrast theory was developed as an account of how people differ-
entiate between genuine and spurious causes, rather than how people determine a level of compression
at which to represent the causal structure of their environment, causal contrast nevertheless offers
a natural alternative to our own account of information loss in explaining why people might favor
more or less compressed causal claims. Experiment 3 was designed to provide a direct test of the
predictions of information loss versus those of causal contrast in explaining judgments like those
elicited in Experiments 1-3. The results provide clear support for information loss: differences in
information loss (holding differences in causal contrast fixed) predicted different patterns in ratings,
while differences in causal contrast (holding information loss fixed) did not.
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