

000 INSTANTCHARACTER: PERSONALIZE ANY CHARAC- 001 TERS WITH A SCALABLE DIFFUSION TRANSFORMER 002 FRAMEWORK

003 **Anonymous authors**

004 Paper under double-blind review

010 ABSTRACT

013 Current learning-based subject customization approaches, predominantly relying
014 on U-Net architectures, suffer from limited generalization ability and compromised
015 image quality. Meanwhile, optimization-based methods require subject-specific
016 fine-tuning, which inevitably degrades textual controllability. To address these
017 challenges, we propose InstantCharacter—a scalable framework for character
018 customization built upon a foundation diffusion transformer. InstantCharacter
019 demonstrates three fundamental advantages: first, it achieves open-domain person-
020 alization across diverse character appearances, poses, and styles while maintaining
021 high-fidelity results. Second, we introduce a scalable dual-adapter architecture
022 with stacked transformer encoders, which effectively processes open-domain char-
023 acter features and seamlessly interacts with the latent space of modern diffusion
024 transformers. Third, to effectively train the framework, we construct a large-scale
025 character dataset containing 10-million-level samples. The dataset is systematically
026 organized into paired (multi-view character) and unpaired (text-image combi-
027 nations) subsets. Our dual-adapter structure addresses the challenge of generating
028 multi-character images by enhancing subject consistency through the image adapter
029 and improving layout control of multiple subjects through the text adapter. Qual-
030 itative experiments demonstrate the advanced capabilities of InstantCharacter in
031 generating high-fidelity, text-controllable, and character-consistent images, setting
032 a new benchmark for character-driven image generation.

043 Figure 1: Open-domain character personalization with InstantCharacter.

054

1 INTRODUCTION

055
 056 Character-driven image generation aims to create images that incorporates the user-defined character
 057 image and text prompts, playing a crucial role in various creative endeavors such as storytelling
 058 illustration, comic creation, game character design, and more. These capabilities enable a wide
 059 range of applications in entertainment, film production, e-commerce advertising, and beyond. Recent
 060 advancements in generative diffusion transformers have demonstrated unprecedented capabilities
 061 in synthesizing high-fidelity images from textual descriptions. Nevertheless, the potential of these
 062 state-of-the-art models for personalized image generation remains underexplored, especially in the
 063 context of creating character-driven visual narratives that embody human-like attributes.

064 Current methodologies for generating consistent images of specified subjects primarily rely on tuning-
 065 or adapter-based approaches. Adapter-based approaches Li et al. (2023); Ye et al. (2023); Mou et al.
 066 (2024) extract visual features through a subject encoder and integrate them into the image noise
 067 space via cross-attention mechanism. While these techniques achieve certain subject consistency
 068 and text controllability on UNet-based models, they struggle to personalize open-domain characters
 069 with diverse identities, poses, and styles. Although effective for customizing open-domain characters,
 070 tuning-based approaches Ruiz et al. (2023) require fine-tuning the model to reconstruct subject
 071 images, leading to long customization time and limited text controllability. Moreover, inference-time
 072 fine-tuning becomes computationally prohibitive for modern large-scale diffusion transformer models
 073 with billions of parameters.

074 Compared to traditional UNet-based architectures Rombach et al. (2022); Podell et al. (2023), modern
 075 Diffusion Transformers (DiTs) Esser et al. (2024); Labs (2024) exhibit powerful generative priors
 076 and offer unparalleled flexibility and capacity. However, fully unleashing their potential is non-trivial,
 077 as it requires a robust adapter network compatible with the framework to ensure alignment between
 078 character-specific features and vast generative latent space. In addition, training such an adapter
 079 necessitates adequate training data and effective training strategies. We observe that directly applying
 080 traditional adapters to large-scale DiTs often fails, as these adapters are primarily designed for UNet
 081 architectures and cannot scale effectively to models with billions of parameters, such as Flux Labs
 082 (2024) with 12 billion parameters.

083 To achieve generalized character personalization without compromising inference-time efficiency
 084 and textual editability, we propose InstantCharacter, a scalable diffusion transformer framework
 085 designed for character-driven image generation. InstantCharacter offers three key advantages:
 086 1. **Generalizability.** It can flexibly personalize any character with different appearances, actions,
 087 and styles, ranging from photorealistic portraits to anime game assets. 2. **Scalability.** We develop
 088 a scalable dual-adapter architecture that can effectively integrate character features and interact
 089 with the latent space of modern DiTs. The image adapter interacts with noise tokens to inject
 090 character-specific features, while the text adapter engages with text tokens to enhance layout control
 091 by incorporating visual elements into textual embeddings. 3. **Versatility.** To enable efficient training,
 092 we collect a versatile 10-million-level character dataset, which contains paired (multi-view character)
 093 and unpaired (text-image combinations) subsets. Accordingly, we propose an efficient three-stage
 094 training strategy to accommodate heterogeneous data samples. Specifically, we decouple character
 095 consistency (unpaired data), textual controllability (paired data), and image fidelity (high-resolution
 096 data) to prevent mutual interference between high-fidelity identity maintenance and prompt-guided
 097 character manipulations.

098 We implement InstantCharacter based on the powerful FLUX1.0-dev model. Qualitative and quan-
 099 titative comparisons with previous work demonstrate InstantCharacter’s advanced capabilities in
 100 generating high-fidelity, text-controllable, and character-consistent images.

101

2 RELATED WORK

102
 103 **T2I Diffusion Models.** Recent advances Esser et al. (2024); Podell et al. (2023); Rombach et al.
 104 (2022) in text-to-image generation have witnessed a paradigm shift from traditional U-Net archi-
 105 tectures Rombach et al. (2022) to more powerful diffusion transformers Esser et al. (2024) (DiTs).
 106 While early diffusion models such as stable diffusion (SD) demonstrated remarkable image synthesis
 107 capabilities, modern DiT-based systems like SD3 Esser et al. (2024) and FLUX.1 Labs (2024) have
 108 set new benchmarks in generation quality through their transformer-based architectures and advanced

108 techniques like rectified flows. This architectural evolution presents both opportunities and challenges
 109 for character-centric applications, while DiTs offer superior generation capacity, their adaptation
 110 for identity-preserving tasks remains largely underexplored. Our work bridges this critical gap by
 111 developing the first DiT-based framework specifically optimized for character customization.

112 **Personalized Character Generation.** Recent advances in personalized image generation have
 113 evolved from tuning-based to adapter-based approaches. Early methods Ruiz et al. (2023); Chefer
 114 et al. (2023); Feng et al. (2025); Kumari et al. (2023); Gal et al. (2022) relied on fine-tuning the entire
 115 diffusion model for each new subject, which was computationally expensive and suffered from poor
 116 generalization due to limited training data. To address these issues, recent works Ye et al. (2023); Li
 117 et al. (2023); Mou et al. (2024); Wang et al. (2024b); Li et al. (2024); Huang et al. (2024); Wang et al.
 118 (2024a); Mao et al. (2024); Song et al. (2024); Gal et al. (2023) introduced adapter-based techniques
 119 that avoid test-time fine-tuning. For instance, IP-Adapter Ye et al. (2023) employs a clip image
 120 encoder to extract subject features and injects them into a frozen diffusion model via cross-attention,
 121 enabling efficient personalization. However, these adapter-based methods are built upon UNet-based
 122 architectures with restricted capacity, causing them to struggle in low-fidelity outputs and limited
 123 generalization ability.

124 While some concurrent works Tan et al. (2024); Zhang et al. (2025); Mao et al. (2025) have also
 125 utilized DiT-based models for image customization, they typically concatenate the condition image
 126 tokens and noise tokens, and train LoRAs to endow DiT models with customization capabilities.
 127 Our approach is distinguished by the introduction of a novel dual-adapter architecture that does not
 128 require training LoRAs, which are known to often compromise the inherent image fidelity of the base
 129 model. Furthermore, our adapter design demonstrates superior capability in modeling subject-specific
 130 details, thereby enabling our method to achieve highly consistent character customization.

133 3 METHODOLOGY

134
 135
 136 Modern DiTs Esser et al. (2024); Labs (2024) have demonstrated unprecedented fidelity and capacity
 137 compared to traditional UNet-based architectures, offering a more robust foundation for generation
 138 and editing tasks. Building upon these advances, we present InstantCharacter, a novel framework
 139 that extends DiT for generalizable and high-fidelity character-driven image generation. As illustrated
 140 in Fig. 2 and Fig. 3, InstantCharacter’s architecture centers around three key innovations. First, a
 141 scalable dual-adapter architecture is developed to effectively parse character features and seamlessly
 142 interact with DiTs latent space. Second, a progressive three-stage training strategy is designed to
 143 adapt to our collected versatile dataset, enabling separate training for character consistency and text
 144 editability. Third, we devise a new pipeline for constructing training data pairs for multi-character
 145 customization. By synergistically combining flexible adapter design and phased learning strategy,
 146 we enhance the general character customization capability while maximizing the preservation of
 147 the generative priors of the base DiT model. In the following sections, we will detail the adapter’s
 148 architecture and elaborate on our progressive training strategy.

150 3.1 SCALABLE DUAL-ADAPTER DESIGN

151
 152 Recent DiT models Esser et al. (2024); Labs (2024) employ a multi-modal attention mechanism
 153 that enables deep interaction and fusion between image and text modalities. To accommodate this
 154 architecture, we propose a dual-adapter architecture to integrate information from reference images
 155 into both image tokens and text tokens separately. To better adapt to DiT models, we propose a
 156 full-transformer structure that enables scalability by increasing layer depth and hidden feature sizes.
 157 As shown in Fig. 2, our approach features two distinct adapters: an image adapter and a text adapter.
 158 The image adapter is designed to interact with noisy image tokens, allowing for the effective injection
 159 of character-specific features into the image generation process. Meanwhile, the text adapter engages
 160 with text tokens to enhance layout control and achieve better separation of multiple characters by
 161 integrating visual features into their respective textual embeddings. Subsequently, we will present a
 162 detailed introduction to the two adapter modules.

Figure 2: Our framework seamlessly integrates a scalable dual-adapter architecture with a pretrained DiT model. The image adapter consists of multiple stacked transformer encoders that incrementally refine character representations, enabling effective interaction with the latent space of the DiT. The text adapter is a time resampler that integrates visual features into text embeddings. The training process employs a three-stage progressive strategy, beginning with unpaired low-resolution pretraining and culminating in paired high-resolution fine-tuning.

3.1.1 IMAGE ADAPTER

This adapter is designed to inject abundant character features into the noise space, thereby improving character consistency of the generated images. We first leverage pre-trained large vision foundation encoders to extract general character features, benefiting from their open-domain recognition abilities. Previous methods Ye et al. (2023); Li et al. (2024) typically rely on CLIP Radford et al. (2021) for its aligned visual and textual features. However, while CLIP is capable of capturing abstract semantic information, it tends to lose detailed texture information, which is crucial for maintaining character consistency. To this end, we replace CLIP with SigLIP Zhai et al. (2023), which excels in capturing finer-grained character information. In addition, we introduce DINOv2 Oquab et al. (2023) as another image encoder to enhance the robustness of features, reducing the loss of features caused by background or other interfering factors. Finally, we integrate DINOv2 and SigLIP features via channel-wise concatenation, resulting in a more comprehensive representation of characters.

Transformer Encoders: Since SigLIP and DINOv2 are pre-trained and inferred at a relatively low resolution of 384, the raw output of general vision encoders, denoted by $F^{\text{siglip}} \in R^{n \times c1}$ and $F^{\text{dino}} \in R^{n \times c2}$ where n and $c1, c2$ denote the number of tokens and channels, may lose fine-grained features when processing high-resolution character images. To mitigate this issue, we employ a dual-stream feature fusion strategy to explore **low-level** and **region-level** features, respectively. First, we directly extract low-level features, denoted by $F_l^{\text{siglip}} \in R^{n \times c1}$ and $F_l^{\text{dino}} \in R^{n \times c2}$, from the shallow layers of the general vision encoders, capturing details that are often lost in higher layers. Second, we divide the reference image into multiple non-overlapping patches and feed each patch into the vision encoder to obtain region-level features, denoted by $F_r^{\text{siglip}} \in R^{n \times c1}$ and $F_r^{\text{dino}} \in R^{n \times c2}$. Then these two distinct feature streams undergo hierarchical integration through dedicated intermediate transformer encoders, as shown in Fig. 2 (a). Specifically, each feature pathway is independently processed by a separate transformer encoder to integrate with high-level semantic features, which can be formulated as:

$$A = \text{Attention}(F^Q, F_r^K, F_r^V), \text{ and } A = \text{Attention}(F^Q, F_l^K, F_l^V), \quad (1)$$

where Attention denotes the standard transformer attention operation. $F \in R^{n \times (c1+c2)}$ denotes the concatenated feature of F^{siglip} and F^{dino} in channel dimension. The same concatenation strategy is

Figure 3: Multi-character data construction pipeline.

applied to F_l and F_r . Subsequently, the refined feature embeddings from both pathways are concatenated along the token dimension, denoted by $F_{\text{concat}} \in R^{2n \times (c1+c2)}$, establishing a comprehensive fused representation that captures multi-level complementary information.

Time Resampler: The refined character features F_{concat} are projected into the denoising space via a projection head and interact with the latent noise. We implement this through a timestep-aware Q-former Ye et al. (2023) that processes F_{concat} as key-value pairs while dynamically updating a set of learnable queries F_I through attention mechanisms, *i.e.*, $F_I = \text{Attention}(F_I^Q, F_{\text{concat}}^K, F_{\text{concat}}^V)$. The transformed query features F_I are then injected into the denoising space via learnable cross-attention layers. Denote the image hidden states of the DiT blocks as H_I , the cross-attention can be formulated as follows:

$$H_I = H_I + \text{Attention}(H_I^Q, F_I^K, F_I^V), \quad (2)$$

For the multi-character scenario, we employ several routing masks following existing works He et al. (2025; 2024), and the cross attention can be simply modified as follows:

$$H_I = H_I + \sum_{i=1}^m M_i \cdot \text{Attention}(H_I^Q, F_{I_i}^K, F_{I_i}^V), \quad (3)$$

where m denotes the number of characters and M_i denotes the corresponding character mask.

3.1.2 TEXT ADAPTER

Although the image adapter facilitates the interaction between character features and the latent noise space, it struggles to separate multiple characters, often leading to the mixing of different character features. Given that the text prompt can control the overall layout of the generation and effectively distinguish different characters, we introduce an additional text adapter. This adapter injects the features of each subject into the corresponding text tokens, allowing for precise control and differentiation of individual characters within the generated content. Specifically, the text adapter integrates character image features F_i^{siglip} where $i \in \{1, \dots, m\}$ into a group of learnable tokens F_{Ti} through a timestep-aware Q-Former Ye et al. (2023). We denote the text tokens for the i -th character as C_{Ti} . Consequently, these unique character features are embedded within the text tokens through a cross-attention mechanism:

$$C_{Ti} = C_{Ti} + \text{Attention}(C_{Ti}^Q, F_{Ti}^K, F_{Ti}^V), \quad \text{where } i \in \{1, \dots, m\}. \quad (4)$$

3.2 TRAINING STRATEGIES

To enable effective training of the framework, we first curate a high-quality dataset of 10 million images containing diverse full-body humans/characters, including both unpaired images for learning robust character consistency and paired sets for achieving precise text-to-image alignment.

As shown in Fig. 2 (c), our training regimen is meticulously designed to optimize character consistency, text controllability, and visual fidelity. To achieve character consistency, we first train with unpaired data, where the character image is incorporated as reference guidance to reconstruct itself and preserve

270 structural consistency. We discovered that using a resolution of 512 is significantly more efficient
 271 than 1024.

272 In the second phase, we continue training at a low resolution (512) but switch to paired training
 273 data. By taking the character image as input, we aim to generate images of the character in different
 274 actions, poses, and styles within a new scene based on a given textual description. This training
 275 stage efficiently eliminates the copy-paste effect and enhances text controllability, ensuring that the
 276 generated images accurately follow the textual condition.

277 The final phase involves high-resolution joint training using both paired and non-paired images. We
 278 found that a limited number of high-resolution training iterations can substantially improve the visual
 279 quality and texture of the images. This stage leverages high-quality images to achieve high-fidelity
 280 and textually controlled character images.

282 283 3.3 MULTI-CHARACTER DATA CONSTRUCTION PIPELINE

284 Obtaining paired multi-character images is challenging, yet crucial for enhancing multi-character
 285 personalization performance. Traditional approaches Xiao et al. (2024a); He et al. (2025) use single
 286 images containing multiple characters as the training dataset and reconstruct the image using the
 287 character features from the image itself. However, this method can easily result in copy-paste effects,
 288 as seen in the fourth column of Fig. 6, similar to what occurs in our training stage 1. By leveraging the
 289 exceptional performance of the base model in synthesizing multi-subject images and the outstanding
 290 capabilities of InstantCharacter in generating single-subject customizations, we can easily construct
 291 paired multi-character images and reuse them to train InstantCharacter.

292 We thus propose a data construction pipeline illustrated in Fig. 3: (1) we first employ a DiT-based
 293 image generation model to create a high-quality image featuring multiple characters; (2) we then use
 294 an existing image segmentation method Zheng et al. (2024) to separate the two characters from the
 295 generated image; and (3) finally, using each segmented character as a reference image, we generate
 296 single-character images with diverse backgrounds, actions, and viewpoints by feeding the model with
 297 varied prompts.

298

299 300 4 EXPERIMENTS

301 302 4.1 EXPERIMENTAL SETUP

303 **Implementation Details:** We utilize Flux as our pretrained diffusion transformer model. The image
 304 adapter is designed as two four-layer transformers, with input queries derived from high-level semantic
 305 features, and key and value features specifically crafted from low-level and region-level features. The
 306 time resampler (for both image and text adapters) adopts a similar approach to IPAdapter Ye et al.
 307 (2023). Our model undergoes training in three stages with batch sizes of 192, 192, and 64, for 200K,
 308 50K, and 50K iterations, respectively, across 64 NVIDIA H20 GPUs. We employ a learning rate of
 309 $2e - 5$ with a warm-up phase of 2000 steps.

310 **Datasets:** In addition to the off-the-shelf benchmarks of OmniContext Wu et al. (2025a) and Unsplash-
 311 50 Gal et al. (2024), we constructed a new benchmark named Character350, comprising 350 test cases.
 312 This dataset was created by manually curating 35 canonical subjects from an extensive collection
 313 of characters and designing 10 distinct prompts for each. To evaluate the performance on more
 314 than a single character, we select 105 samples containing two characters from Character350 as the
 315 Two-Character105 benchmark. We report the performance on Character350 and Two-Character105
 316 in main paper and present more results on other benchmarks in the supplementary files.

317 **Objective Metrics:** Following existing work Ruiz et al. (2023), we evaluate our model using DINO-
 318 I Caron et al. (2021), CLIP-I, CLIP-T, and Image Reward (IR) Xu et al. (2023) scores. DINO-I
 319 and CLIP-I are employed to assess subject similarity. To minimize background interference, we
 320 calculate subject similarity after segmenting both the reference and generated subjects using Language
 321 SAM Kirillov et al. (2023). For evaluating text controllability, we use CLIP-T and Image Reward
 322 (IR). The CLIP-T metric is determined by calculating the cosine similarity in the CLIP text-image
 323 embedding space. Additionally, ImageReward, which is considered a more reliable metric that aligns
 with human preferences, is utilized to further assess controllability.

Subjective Metrics: Besides, we provide subjective metrics to provide comprehensive studies. Specifically, we first introduce Gemini-T and Gemini-I by repurposing Gemini to evaluate the text controllability and subject consistency scores. Please refer to the supplementary file for more details. Furthermore, we conducted a user study where 50 participants subjectively assessed the generated images from different methods, focusing particularly on identity preservation and fine detail fidelity.

Baselines: For single-character generation, we primarily compare our method against DiT-based approaches, which currently achieve state-of-the-art performance. Our baselines include FLUX-based methods: OminiControl Tan et al. (2024), EasyControl Zhang et al. (2025), ACE++ Mao et al. (2025), and UNO Wu et al. (2025b). For multi-subject generation, we compare to MS-Diffusion Wang et al. (2024c), OmniGen Xiao et al. (2024b), and UNO Wu et al. (2025b). For evaluation, we curated open-domain character images excluded from training; images and prompts are provided in the supplementary material.

Table 1: Quantitative results on Character350 benchmark.

	Objective Metrics				Subjective Metrics		
	IR↑	CLIP-T↑	CLIP-I↑	DINO↑	Gemini-I↑	Gemini-T↑	User study (Win Rate) ↓
Ours	0.994	0.308	0.795	0.604	<u>8.300</u>	<u>9.137</u>	-
OminiControl	0.564	0.312	0.697	0.490	3.480	7.500	85%
ACE++	0.707	0.297	0.763	<u>0.610</u>	5.171	8.457	80%
UNO	0.051	0.284	0.849	0.765	8.720	7.154	80%
EasyControl	1.230	0.312	0.678	0.495	2.351	9.691	67%
DSD	0.954	0.304	0.696	0.541	3.354	8.849	74%
OneDiffusion	0.889	0.301	0.699	0.506	4.300	9.023	76%

Table 2: Quantitative results on Two-Character105 dataset

	IR↑	CLIP-T↑	Gemini-T↑	CLIP-I↑	DINO↑	Gemini-I↑
Ours	0.491	0.301	7.895	0.641	0.509	9.210
UNO	<u>0.593</u>	0.302	7.105	0.735	0.642	6.210
OmniGen	0.625	0.304	6.600	0.808	<u>0.722</u>	7.714
MS-Diffusion	0.255	<u>0.303</u>	5.486	<u>0.793</u>	0.724	8.314
OneDiffusion	0.491	0.301	7.543	0.641	0.509	1.019

4.2 COMPARISON WITH BASELINES

Qualitative Results: Our analysis of **single-character customization**, as illustrated in Fig. 4, reveals distinct limitations in existing methods. While OminiControl and EasyControl struggle to preserve character identity features, ACE++ maintains only partial fidelity in simple scenarios but falters with action-oriented prompts. UNO, on the other hand, enforces excessive consistency at the cost of text editability, particularly for generating actions and backgrounds. In contrast, InstantCharacter consistently outperforms these approaches, achieving superior preservation of character details with high fidelity and precise text controllability. This advantage stems from our proposed image adapter, which excels at capturing open-domain character details through region-level and low-level transformer encoding, as further supported by the quantitative measurements in Tab. 1.

As illustrated in Fig. 5, our approach also excels in **multi-subject customization**, with InstantCharacter maintaining robust character consistency and precise text alignment. In contrast, UNO frequently loses essential character details, while OmniGen and MS-Diffusion exhibit failures in feature preservation or introduce artifacts (e.g., erroneous additions/omissions). InstantCharacter’s multi-subject capability stems from strong single-subject performance, enhanced by a dedicated text adapter for multi-subject generation. Additional qualitative results are included in the supplementary material due to space limitations.

Quantitative Results: We evaluate subject consistency and text editability across methods, with results summarized in Tab. 1 and Tab. ftab:twocharacter105. While UNO achieves the highest CLIP-I/DINO-I scores for subject consistency, it comes at the cost of poor text controllability. Fig. 4 reveals that its generations often exhibit low-quality customizations with incoherent backgrounds and actions, reflected in its subpar CLIP-T and ImageReward metrics. Conversely, OminiControl and ACE++ perform well on CLIP-T/ImageReward but underperform on other consistency measures. Our approach strikes an optimal balance: it maintains competitive consistency scores while achieving superior text alignment, as evidenced by both quantitative metrics and qualitative results. Note that in the user study, our method outperforms previous methods significantly, we achieve overall higher win rates, which further validates the superiority of our approach.

Figure 4: Qualitative comparison on character personalization. Our method generally shows the best image fidelity and character consistency while maintaining the desirable textual controllability.

Figure 5: Qualitative comparison on multi-character personalization.

Ablation Study: We investigate the comprehensive ablation study to investigate the effects of different components. As shown in Tab. 3, since Transformers Encoder (TE) is designed to integrate both fine-grained low-level and region-level features. The absence of TE leads to a significant performance drop with -8.9% CLIP-I and -8.3% DINO scores, underscoring its crucial role in identity preservation. A similar performance degradation is observed upon removing the time-resampler (TR) module. This is because the TR module serves as a bridge between reference image features and the noise space, enabling more effective integration of character features to enhance consistency, while also allowing for flexible adaptation to complex text-driven modifications. By integrating all proposed modules,

Figure 6: Qualitative ablation results.

Table 3: Ablation on Character350 bechmark.

	IR↑	CLIP-T↑	Gemini-T↑	CLIP-I↑	DINO↑	Gemini-I↑
Ours-Full	0.994	0.308	9.137	0.795	0.604	8.300
Ours-Stage2	0.788	0.304	8.714	0.793	0.611	7.957
Ours-Stage1	-0.870	0.258	4.631	0.928	0.877	9.586
Ours w/o TE	0.935	0.312	9.163	0.706	0.521	3.997
Ours w/o TR	1.313	0.318	9.769	0.612	0.399	0.606

our model achieve best balance between visual quality and textual faithfulness. We also show some qualitative comparisons in Fig. 6. We can observe that omitting either the TR or TE module leads to a significant decrease in the character consistency. This demonstrates that both modules play a crucial role in accurately extracting character features.

We further analyze the model’s performance across training stages. Although the model achieves the best CLIP-I and DINO scores after Stage 1 (trained on low resolution unpaired images), it suffers from copy-paste behavior, achieving high character consistency but poor text controllability, as shown in the 4-th column in Fig. 6. Stage 2 (trained on low resolution paired images) substantially improves text alignment. Finally, Stage 3 (trained high resolution images) enhances visual quality while preserving both consistency and controllability. Fig. 6 qualitatively validates the necessity of this multi-stage training paradigm.

5 CONCLUSION

We present InstantCharacter, an innovative diffusion transformer framework that significantly advances character-driven image generation. Our solution delivers three fundamental advantages: first, it achieves unprecedented open-domain personalization across diverse character appearances, poses, and styles while preserving high-fidelity quality; second, it develops a scalable dual-adapter architecture that effectively processes character features and interacts with diffusion transformers’ latent space; third, it establishes an effective three-stage training methodology to separately optimize character consistency and textual control. Qualitative results validate InstantCharacter’s superior performance in generating high-fidelity, character-consistent, and text-controllable images. More broadly, our work offers insights for adapting foundation diffusion transformers to specialized generation tasks, potentially inspiring new developments in controllable visual synthesis.

486 REFERENCES
487

- 488 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
489 Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of the*
490 *IEEE/CVF international conference on computer vision*, pp. 9650–9660, 2021.
- 491 Hila Chefer, Yuval Alaluf, Yael Vinker, Lior Wolf, and Daniel Cohen-Or. Attend-and-excite:
492 Attention-based semantic guidance for text-to-image diffusion models. *ACM transactions on*
493 *Graphics (TOG)*, 42(4):1–10, 2023.
- 494 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
495 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
496 high-resolution image synthesis. In *Forty-first international conference on machine learning*, 2024.
- 497 Haoran Feng, Zehuan Huang, Lin Li, Hairong Lv, and Lu Sheng. Personalize anything for free with
498 diffusion transformer. *arXiv preprint arXiv:2503.12590*, 2025.
- 499 Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H Bermano, Gal Chechik, and Daniel
500 Cohen-Or. An image is worth one word: Personalizing text-to-image generation using textual
501 inversion. *arXiv preprint arXiv:2208.01618*, 2022.
- 502 Rinon Gal, Moab Arar, Yuval Atzmon, Amit H Bermano, Gal Chechik, and Daniel Cohen-Or.
503 Encoder-based domain tuning for fast personalization of text-to-image models. *ACM Transactions*
504 *on Graphics (TOG)*, 42(4):1–13, 2023.
- 505 Rinon Gal, Or Lichten, Elad Richardson, Or Patashnik, Amit H Bermano, Gal Chechik, and Daniel
506 Cohen-Or. Lcm-lookahead for encoder-based text-to-image personalization. In *European Confer-*
507 *ence on Computer Vision*, pp. 322–340. Springer, 2024.
- 508 Junjie He, Yifeng Geng, and Liefeng Bo. Uniportrait: A unified framework for identity-preserving
509 single-and multi-human image personalization. *arXiv preprint arXiv:2408.05939*, 2024.
- 510 Junjie He, Yuxiang Tuo, Binghui Chen, Chongyang Zhong, Yifeng Geng, and Liefeng Bo. Anystory:
511 Towards unified single and multiple subject personalization in text-to-image generation. *arXiv*
512 *preprint arXiv:2501.09503*, 2025.
- 513 Mengqi Huang, Zhendong Mao, Mingcong Liu, Qian He, and Yongdong Zhang. Realcustom:
514 narrowing real text word for real-time open-domain text-to-image customization. In *Proceedings*
515 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 7476–7485, 2024.
- 516 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
517 Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *Proceedings*
518 *of the IEEE/CVF International Conference on Computer Vision*, pp. 4015–4026, 2023.
- 519 Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli Shechtman, and Jun-Yan Zhu. Multi-concept
520 customization of text-to-image diffusion. In *Proceedings of the IEEE/CVF conference on computer*
521 *vision and pattern recognition*, pp. 1931–1941, 2023.
- 522 Black Forest Labs. Flux: Official inference repository for flux.1 models. 2024.
- 523 Dongxu Li, Junnan Li, and Steven Hoi. Blip-diffusion: Pre-trained subject representation for
524 controllable text-to-image generation and editing. *Advances in Neural Information Processing*
525 *Systems*, 36:30146–30166, 2023.
- 526 Zhen Li, Mingdeng Cao, Xintao Wang, Zhongang Qi, Ming-Ming Cheng, and Ying Shan. Photomaker:
527 Customizing realistic human photos via stacked id embedding. In *Proceedings of the IEEE/CVF*
528 *conference on computer vision and pattern recognition*, pp. 8640–8650, 2024.
- 529 Chaojie Mao, Jingfeng Zhang, Yulin Pan, Zeyinzi Jiang, Zhen Han, Yu Liu, and Jingren Zhou. Ace++:
530 Instruction-based image creation and editing via context-aware content filling. *arXiv preprint*
531 *arXiv:2501.02487*, 2025.
- 532 Zhendong Mao, Mengqi Huang, Fei Ding, Mingcong Liu, Qian He, and Yongdong Zhang. Re-
533 alcusom++: Representing images as real-word for real-time customization. *arXiv preprint*
534 *arXiv:2408.09744*, 2024.

- 540 Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, and Ying Shan. T2i-
 541 adapter: Learning adapters to dig out more controllable ability for text-to-image diffusion models.
 542 In *Proceedings of the AAAI conference on artificial intelligence*, volume 38, pp. 4296–4304, 2024.
 543
- 544 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 545 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 546 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.
 547
- 548 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 549 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 550 synthesis. *arXiv preprint arXiv:2307.01952*, 2023.
 551
- 552 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 553 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 554 models from natural language supervision. In *International conference on machine learning*, pp.
 555 8748–8763. PMLR, 2021.
 556
- 557 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 558 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 559 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.
 560
- 561 Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
 562 Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In *Proceed-
 563 ings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 22500–22510,
 564 2023.
 565
- 566 Kunpeng Song, Yizhe Zhu, Bingchen Liu, Qing Yan, Ahmed Elgammal, and Xiao Yang. Moma:
 567 Multimodal llm adapter for fast personalized image generation. In *European Conference on
 568 Computer Vision*, pp. 117–132. Springer, 2024.
 569
- 570 Zhenxiong Tan, Songhua Liu, Xingyi Yang, Qiaochu Xue, and Xinchao Wang. Ominicontrol:
 571 Minimal and universal control for diffusion transformer. *arXiv preprint arXiv:2411.15098*, 3,
 572 2024.
 573
- 574 Qinghe Wang, Baolu Li, Xiaomin Li, Bing Cao, Liqian Ma, Huchuan Lu, and Xu Jia. Characterfactory:
 575 Sampling consistent characters with gans for diffusion models. *arXiv preprint arXiv:2404.15677*,
 576 2024a.
 577
- 578 Qixun Wang, Xu Bai, Haofan Wang, Zekui Qin, Anthony Chen, Huaxia Li, Xu Tang, and Yao Hu.
 579 Instantid: Zero-shot identity-preserving generation in seconds. *arXiv preprint arXiv:2401.07519*,
 580 2024b.
 581
- 582 X. Wang, Siming Fu, Qihan Huang, Wanggui He, and Hao Jiang. Ms-diffusion: Multi-subject
 583 zero-shot image personalization with layout guidance. *CoRR*, abs/2406.07209, 2024c. doi: 10.
 584 48550/ARXIV.2406.07209. URL <https://doi.org/10.48550/arXiv.2406.07209>.
 585
- 586 Chenyuan Wu, Pengfei Zheng, Ruiran Yan, Shitao Xiao, Xin Luo, Yueze Wang, Wanli Li, Xiyan
 587 Jiang, Yexin Liu, Junjie Zhou, et al. Omnigen2: Exploration to advanced multimodal generation.
 588 *arXiv preprint arXiv:2506.18871*, 2025a.
 589
- 590 Shaojin Wu, Mengqi Huang, Wenxu Wu, Yufeng Cheng, Fei Ding, and Qian He. Less-to-more general-
 591 ization: Unlocking more controllability by in-context generation. *arXiv preprint arXiv:2504.02160*,
 592 2025b.
 593
- 594 Guangxuan Xiao, Tianwei Yin, William T Freeman, Frédéric Durand, and Song Han. Fastcomposer:
 595 Tuning-free multi-subject image generation with localized attention. *International Journal of
 596 Computer Vision*, pp. 1–20, 2024a.
 597
- 598 Shitao Xiao, Yueze Wang, Junjie Zhou, Huaying Yuan, Xingrun Xing, Ruiran Yan, Chaofan Li,
 599 Shuting Wang, Tiejun Huang, and Zheng Liu. Omnigen: Unified image generation. *arXiv preprint
 600 arXiv:2409.11340*, 2024b.
 601

- 594 Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao Dong.
 595 Imagereward: Learning and evaluating human preferences for text-to-image generation. *Advances*
 596 *in Neural Information Processing Systems*, 36:15903–15935, 2023.
 597
- 598 Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image prompt
 599 adapter for text-to-image diffusion models. *arXiv preprint arXiv:2308.06721*, 2023.
 600
- 601 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
 602 image pre-training. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 603 pp. 11975–11986, 2023.
 604
- 605 Yuxuan Zhang, Yirui Yuan, Yiren Song, Haofan Wang, and Jiaming Liu. Easycontrol: Adding
 606 efficient and flexible control for diffusion transformer. *arXiv preprint arXiv:2503.07027*, 2025.
 607
- 608 Peng Zheng, Dehong Gao, Deng-Ping Fan, Li Liu, Jorma Laaksonen, Wanli Ouyang, and Nicu
 609 Sebe. Bilateral reference for high-resolution dichotomous image segmentation. *arXiv preprint*
 610 *arXiv:2401.03407*, 2024.

610 A APPENDIX

611 In this appendix, we begin by claiming the LLM usage in the paper and the ethics statement, and
 612 we then detail the training objectives for both single and multiple character customization models.
 613 Next, we offer a clear visualization of the training data, which includes unpaired single images as
 614 well as paired images featuring single and multiple characters. Following this, we provide additional
 615 experimental results including more numerical performance on extended benchmarks and more
 616 visualization results across single and multiple character customizations. Finally, we discuss the
 617 limitations of InstantCharacter and propose potential improvements.
 618

619 **LLM Usage:** We would like to disclose that during the preparation of this manuscript, we utilized
 620 a large language model (LLM) to assist with certain textual modifications and improvements. The
 621 primary content, ideas, and scientific contributions remain my own original work. The LLM was
 622 used solely as a tool to enhance the clarity and readability of the manuscript.
 623

624 **Ethics Statement:** In conducting this research, we have employed publicly available image datasets
 625 gathered through web scraping. We ensured that the data collection process complied with relevant
 626 laws and website terms of service. Our usage of these datasets is strictly for research purposes and
 627 adheres to ethical guidelines to respect individuals' privacy and anonymity. We are committed to
 628 using this data responsibly to advance technological progress within the community while ensuring
 629 that our work does not infringe upon the rights or well-being of the individuals represented in the
 630 dataset.
 631

632 **Training Objective:** Our loss function employs flow-matching loss, which is mathematically ex-
 633 pressed as follows.
 634

$$L_{diffusion} = E_{t, \epsilon \sim N(0, I)} \|v_\theta(z_t, t, c_i) - (\epsilon - x_0)\|_2^2 \quad (5)$$

635 Here, z_t represents the noise image feature at timestep t , c_i is the input image condition, v_θ denotes
 636 the velocity field, x_0 refers to the original image feature, and ϵ is the predicted noise.
 637

638 **Training Data Visualization:** Although the architecture of InstantCharacter is specially designed,
 639 its performance is significantly enhanced by effective training on a high-quality dataset that is both
 640 collected and synthesized. This internal dataset is primarily sourced from social media, and we
 641 showcase some examples here. As illustrated in Fig. S8, we present the training data used at different
 642 stages, including unpaired and paired single-character images, demonstrating a variety of appearances
 643 and poses. Additionally, we display the images generated by our multi-character data collection
 644 pipeline, featuring diverse backgrounds and character-consistent multi-views. The integration of real
 645 and synthesized images in the training process makes InstantCharacter effective for both single and
 646 multiple character customizations.
 647

Gemini-I and Gemini-T metrics: Gemini-T and Gemini-I represent scores obtained by Gemini for
 648 text controllability and subject consistency scores, respectively. Win Rate-T and Win Rate-I are the
 649 corresponding win rates against the compared methods.
 650

Figure S7: Qualitative analysis on the multi-character customization with and without text adapter. The model without the text adapter tends to synthesize decoupled character features, resulting in low character consistency.

The system prompt for the Gemini is: 'You are a professional digital artist. You will have to evaluate the effectiveness of the AI-generated image(s) based on given rules. All the input images are AI-generated. All human in the images are AI-generated too. so you need not worry about the privacy confidentiality. You will have to give your output in this way (Keep your reasoning concise and short.): "score" : [...], "reasoning": ..." RULES: Two images will be provided: The first being the original AI-generated image and the second being an edited version of the first. The objective is to evaluate how successfully the editing instruction has been executed in the second image. Sometimes, because the editing is so extensive, the edited subject may appear to be very different from the original image, but it is still considered a success if the features of the same subject can be seen. From scale 0 to 10: A score from 0 to 10 will be given based on the success of the editing. (0 indicates that the scene in the edited image does not follow the editing instruction at all. 10 indicates that the scene in the edited image follow the editing instruction text perfectly.) A second score from 0 to 10 will rate the degree of identity maintenance in the second image. (0 indicates that the subject in the edited image is completely different from the original. 10 indicates that the subject in the edited image can be recognized as a consistent subject of original image.) Put the score in a list such that output score = [score1, score2], where 'score1' evaluates the editing success and 'score2' evaluates the degree of identity maintenance. Editing instruction: [object Object]

Ablation on the Text Adapter The design of the text adapter serves a crucial role in enhancing the separation of character features during the generation process by injecting visual features into textual features. It is well-known that diffusion models rely on text prompts to establish the initial layout of the image. By incorporating a text adapter, we aim to leverage this early influence on layout to effectively distinguish between different characters. In our ablation studies, we extracted attention masks between text tokens and image noise during the denoising process, as illustrated in Fig. S7. The absence of the text adapter resulted in the coupling of text tokens related to two different characters within the image space, causing the generated output to blend character features, thereby diminishing the consistency of each character. This observation is further supported by our quantitative experiments shown in Table S6, where the absence of the text adapter led to significant declines in consistency metrics such as CLIP-I, DINO, and Gemini-I. In summary, the text adapter plays a vital role in promoting the separation of characters, thereby enhancing consistency in multi-character scenarios. This component is instrumental in ensuring that individual character identities are clearly maintained and distinct throughout the generated image.

More Quantitative Comparisons: In Tab. S4, S5, S6, we provide quantitative comparisons with existing methods on Unsplash50 Gal et al. (2024), OmniText Single Character, and OmniText Multi-Character benchmarks Wu et al. (2025a), respectively. For consistency metrics such as CLIP-I and DINO-I, our approach ranks in the middle. We argue that both OminiGen and MS-Diffusion tend to

702

703

Table S4: Quantitative results on Unsplash50 test data.

	IR\uparrow	CLIP-T\uparrow	Gemini-T\uparrow	CLIP-I\uparrow	DINO\uparrow	Gemini-I\uparrow
Ours	0.452	0.260	6.672	0.774	0.607	7.047
OminiControl	-0.261	0.271	5.766	0.665	0.425	3.286
ACE++	-0.471	0.255	4.594	0.791	0.638	6.870
UNO	-1.049	0.228	2.948	0.869	0.800	8.760
EasyControl	0.710	0.284	7.333	0.704	0.596	2.583
DSD	0.501	0.281	7.542	0.702	0.557	3.484
OneDiffusion	0.440	0.266	6.771	0.669	0.519	3.214

712

713

Table S5: Quantitative results on OmniText Single Character dataset.

	IR\uparrow	CLIP-T\uparrow	Gemini-T\uparrow	CLIP-I\uparrow	DINO\uparrow	Gemini-I\uparrow
Ours	0.701	0.324	8.100	0.792	0.645	8.440
OminiControl	0.529	0.337	6.680	0.693	0.502	3.260
ACE++	0.320	0.312	7.000	0.780	0.634	5.720
UNO	0.512	0.315	7.620	0.809	0.662	8.540
EasyControl	0.908	0.332	7.780	0.726	0.582	4.280
DSD	0.707	0.332	7.265	0.722	0.538	4.061
OneDiffusion	0.240	0.310	5.980	0.725	0.540	4.660

723

724

Table S6: Quantitative results on OmniText Multi-Character dataset.

	IR\uparrow	CLIP-T\uparrow	Gemini-T\uparrow	CLIP-I\uparrow	DINO\uparrow	Gemini-I\uparrow
Ours	0.446	0.274	7.020	0.641	0.509	6.460
wo text adapter	0.412	0.253	6.320	0.482	0.468	6.230
UNO	-0.213	0.266	5.660	0.727	0.553	4.280
OmniGen	-0.367	0.252	5.900	0.653	0.507	8.300
MS-Diffusion	-0.181	0.275	5.860	0.774	0.653	8.600
OneDiffusion	-0.367	0.252	3.620	0.653	0.507	1.680

732

733

734

replicate the reference characters without adequately considering the text description, resulting in poor interactive effects between different characters in the generated images. This issue is evident in Fig. S11; for instance, in the third row, where the prompt specifies a "hugging" action, existing methods generally fail to achieve this, whereas our approach successfully synthesizes harmonious interactions between the two characters. Additionally, this is reflected in the controllability metric IR, where our method significantly outperforms others. In summary, InstantCharacter excels at generating character interactions while maintaining desirable character consistency. Additionally, we conduct an ablation study on Unsplash50 and OmniText and report the results in Tab. S7 and Tab. S8, respectively. We achieve consistent performance improvements by integrating the different modules to balance visual quality and textual faithfulness.

744

745

746

747

748

749

750

More Qualitative Results: As illustrated in Fig. S10, S11, we present additional qualitative results on single and multiple character personalization. These results clearly demonstrate InstantCharacter’s outstanding performance across a wide range of character inputs and prompts, maintaining subject consistency, textual controllability, and high image fidelity. These advantages persist even in multi-character personalization scenarios. We attribute this success to the dual-adapter design of InstantCharacter, where the image adapter enhances character detail modeling and the text adapter promotes separated injection of multiple character features.

751

752

753

754

755

Discussion and Limitation: While InstantCharacter has established a new benchmark in character personalization, there are still some limitations that can be addressed. Firstly, we have observed that for open-domain characters, maintaining facial identity consistency in generated images is not always achieved. Enhancing facial identity consistency could be a potential improvement for InstantCharacter, and one possible approach is to integrate semantic face embeddings into the image adapter. We leave this exploration for future work.

756

757

Table S7: Ablation on Unsplash-50.

	IR ↑	CLIP-T ↑	Gemini-T ↑	CLIP-I ↑	DINO ↑	Gemini-I ↑
Ours-Full	0.452	0.260	6.672	0.774	0.607	7.047
Ours-Stage2	-0.088	0.262	6.464	0.783	0.633	5.792
Ours-Stage1	-1.377	0.214	1.224	0.921	0.888	9.516
Ours-wo-ccp	-0.168	0.267	6.714	0.707	0.585	2.005
Ours-wo-resampler	0.776	0.290	7.146	0.586	0.428	0.234
Ours-Siglip + TE	0.415	0.255	6.121	0.719	0.599	6.833
Ours-Siglip only	0.420	0.263	6.230	0.678	0.568	5.410
Ours-Clip only	0.435	0.264	6.815	0.560	0.482	4.760

766

767

Table S8: Ablation on OmniContext.

	IR ↑	CLIP-T ↑	Gemini-T ↑	CLIP-I ↑	DINO ↑	Gemini-I ↑
Ours-Full	0.701	0.324	8.100	0.792	0.645	8.440
Ours-Stage2	0.425	0.321	7.820	0.780	0.637	8.620
Ours-Stage1	-0.544	0.288	4.620	0.923	0.885	9.820
Ours-wo-ccp	0.517	0.327	7.900	0.731	0.590	4.440
Ours-wo-resampler	0.942	0.334	8.040	0.673	0.489	0.740
Ours-Siglip + TE	0.682	0.315	7.350	0.733	0.621	8.112
Ours-Siglip only	0.688	0.325	7.460	0.692	0.590	6.820
Ours-Clip only	0.695	0.326	8.010	0.572	0.505	6.150

778

Secondly, in the task of multi-character customization, our method benefits from the dual adapter design, which effectively preserves the visual characteristics of each character. However, there remains an issue of feature confusion, particularly in terms of style, where the style of one character, such as an anime character, may inadvertently influence the style of another, such as a real-life character. Character confusion is a common challenge in this field, and future improvements to InstantCharacter could focus on better modeling of character style features to address this issue.

Thirdly, although we initially proposed a multi-character data collection pipeline and validated its performance in scenarios involving two subjects, the pipeline encounters challenges in extreme cases with five or more characters. The first bottleneck is the difficulty of generating images with multiple characters (five or more) using current DiTs. The second bottleneck is the substantial computational resources required to synthesize character-consistent images with InstantCharacter. For instance, generating 100K paired images took two weeks using 64 NVIDIA H20 GPUs, and producing a million images would be even more resource-intensive. Therefore, exploring how to effectively use a limited number of paired images containing 2-4 different characters to train a more robust model capable of handling scenarios with five or more character-consistent images would be a promising direction for improving InstantCharacter.

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827

Figure S8: Visualization on training images.

828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Figure S9: More qualitative results across different characters.

Figure S10: More qualitative results on single-character customization.

Figure S11: More qualitative results on multi-character customization.