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Abstract

As Machine Learning (ML) models grow in001
size and demand higher-quality training data,002
the expenses associated with re-training and003
fine-tuning these models are escalating rapidly.004
Inspired by recent impressive achievements of005
Large Language Models (LLMs) in different006
fields, this paper delves into the question: can007
LLMs efficiently improve an ML’s performance008
at a minimal cost? We show that, through our009
proposed training-free framework LLMCORR,010
an LLM can work as a post-hoc corrector to011
propose corrections for the predictions of an012
arbitrary ML model. In particular, we form a013
contextual knowledge database by incorporat-014
ing the dataset’s label information and the ML015
model’s predictions on the validation dataset.016
Leveraging the in-context learning capability017
of LLMs, we ask the LLM to summarise the018
instances in which the ML model makes mis-019
takes and the correlation between primary pre-020
dictions and true labels. Following this, the021
LLM can transfer its acquired knowledge to022
suggest corrections for the ML model’s predic-023
tions. Our experimental results on the challeng-024
ing molecular predictions show that LLMCORR025
improves the performance of a number of mod-026
els by up to 39%1.027

1 Introduction028

In recent decades, Machine Learning (ML) mod-029

els have become increasingly prevalent in various030

real-world applications (Butler et al., 2018; Dixon031

et al., 2020; Zhong et al., 2023). As ML mod-032

els grow in size and demand higher-quality train-033

ing data, the expenses associated with re-training034

and fine-tuning these models to achieve superior035

performances are escalating rapidly (Devlin et al.,036

2018; He et al., 2021). Hence, there is an urgent037

need to develop effective, lightweight and practical038

1The code and models are available at https://
anonymous.4open.science/r/LlmCorr.
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Figure 1: Harnessing LLMs as post-hoc correctors. A
fixed LLM is leveraged to propose corrections to an
arbitrary ML model’s predictions without additional
training or the need for additional datasets.

solutions for users to improve their ML model’s 039

predictions. 040

Large Language Models (LLMs) exhibit un- 041

precedented capabilities in understanding and gen- 042

erating human-like text, making them invaluable 043

across a wide range of Natural Language Pro- 044

cessing (NLP) tasks, including machine transla- 045

tion (Hendy et al., 2023), commonsense reason- 046

ing (Krishna et al., 2023) and coding tasks (Bubeck 047

et al., 2023). While LLMs have showcased their 048

effectiveness across an array of NLP applications, 049

the full extent of their potential in broader fields re- 050

mains largely unexplored (Zhang et al., 2024). This 051

paper delves into the essential research question: 052

can LLMs effectively improve an ML’s performance 053

at a minimal cost? 054

To answer the research question, we propose 055

a groundbreaking framework, LLMCORR, which 056

extends the application scope of LLMs by posi- 057

tioning them as training-free post-hoc correctors 058

(illustrated in Figure 1). A fixed LLM is leveraged 059

to propose corrections to an arbitrary ML model’s 060

predictions without introducing additional training 061

or the need for additional datasets. 062

At its core, LLMCORR consists of three main 063

steps: (1) After completing the training of the ML 064

model, we collect the dataset’s available label infor- 065

mation, along with the primary predictions made 066
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by the ML model on the validation set, to construct067

a contextual knowledge database. We anticipate068

that the established database records the contextual069

knowledge about the types of instances for which070

the ML models produce accurate or inaccurate pre-071

dictions, as well as the correlation between the072

primary predictions and the true labels. A recent073

breakthrough known as In-Context Learning (ICL)074

(Liu et al., 2023) has enhanced the adaptability075

of LLMs by enabling them to acquire contextual076

knowledge during inference, eliminating the need077

for extensive fine-tuning (Clark et al., 2020). (2)078

Consequently, given the target data with a primary079

prediction generated by the ML model, we extract080

the relevant contextual knowledge from the knowl-081

edge database to form a prompt. Given the input082

token constraints of current LLMs, transmitting all083

contextual information to one prompt for querying084

becomes impractical (Touvron et al., 2023; Achiam085

et al., 2023). To address this limitation, we intro-086

duce an embedding-based information retrieval ap-087

proach, which can efficiently locate similar data088

likely to offer relevant insights with the target data.089

(3) Finally, we query the LLM using the created090

prompts for suggestions to refine the target data’s091

primary prediction. To mitigate the knowledge hal-092

lucination (Huang et al., 2023), we implement a093

self-correction mechanism when the LLM demon-094

strates a tendency to make substantial modifications095

to the ML model’s prediction.096

The training-free nature of LLMCORR carries097

several natural advantages: (i) LLMCORR facili-098

tates the straightforward application of LLMs, elim-099

inating the necessity for expensive re-training and100

fine-tuning for an arbitrary ML model. (ii) One101

of the most obvious limitations of LLMs is their102

reliance on unstructured text (Guo et al., 2023), but103

LLMCORR can be adapted to arbitrary scenarios104

by incorporating different ML models.105

To validate the effectiveness of LLMCORR, we106

deploy it in the face of structured molecule graph107

data within the domain of biology, e.g., predicting108

the functionality of molecules. Through extensive109

experiments conducted on six real-world bench-110

mark datasets covering diverse subjects, we em-111

pirically demonstrate that LLMCORR significantly112

elevates the quality of predictions across diverse113

ML models, achieving notable improvements, up114

to 39%. Furthermore, we conduct comprehensive115

follow-up ablation studies and analyses to validate116

the efficacy of LLMCORR’s designs and elucidate117

the impact of key factors.118

2 Related Work 119

Large Language Models. Traditional language 120

models are typically trained on sequences of to- 121

kens, learning the likelihood of the next token de- 122

pendent on the previous tokens (Vaswani et al., 123

2017). Recently, Brown et al. (2020) demonstrated 124

that increasing the size of language models and the 125

amount of training data can result in new capabili- 126

ties, such as zero-shot generalisation, where mod- 127

els can perform text-based tasks without specific 128

task-oriented training data. Consequently, Large 129

Language Models (LLMs) have experienced expo- 130

nential growth in both size and capability in recent 131

years (Brown et al., 2020; Touvron et al., 2023; 132

Achiam et al., 2023). A wide range of NLP appli- 133

cations have been reshaped by LLMs, including 134

machine translation (Hendy et al., 2023), common- 135

sense reasoning (Krishna et al., 2023) and coding 136

tasks (Bubeck et al., 2023). In this work, we in- 137

novatively harness LLMs as post-hoc correctors, 138

further extending the application scope of LLMs. 139

In-Context Learning. While the impressive per- 140

formance and generalisation capabilities of lan- 141

guage models have rendered them highly effec- 142

tive across various tasks (Wei et al., 2022a), they 143

have also resulted in larger model parameters and 144

increased computational costs for additional fine- 145

tuning on new downstream tasks (Hu et al., 2021a). 146

To address this challenge, recent research has intro- 147

duced In-Context Learning (ICL), enabling LLMs 148

to excel at new tasks by incorporating a few task 149

samples directly into the prompt (Liu et al., 2023). 150

Despite the success of these methods in improving 151

LLM performance, their potential for correcting 152

predictions made by ML models has not been thor- 153

oughly explored. This work investigates the utility 154

of LLMs as post-hoc correctors to rectify incorrect 155

predictions by leveraging their ICL abilities. 156

Post-hoc Corrector for Machine Learning Mod- 157

els. Driven by the increasing prevalence of ML 158

models in diverse real-world applications (Butler 159

et al., 2018; Dixon et al., 2020; Zhong et al., 2023), 160

academia and industry have invested significant 161

efforts in enhancing ML effectiveness. However, 162

the majority of existing research focuses on refin- 163

ing the design of the ML module. Meanwhile, 164

as ML models grow in size and demand higher- 165

quality training data, the expenses associated with 166

re-training and fine-tuning these models are esca- 167

lating rapidly (Devlin et al., 2018; He et al., 2021). 168

Hence, there is an urgent need to develop effec- 169
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tive, lightweight and practical solutions for users to170

improve their ML model’s predictions adaptively.171

While some studies (Huang et al., 2021; Zhong172

et al., 2022) propose post-processing techniques to173

adjust ML model predictions on node-wise tasks174

of graph-structured data, their solutions often lack175

scalability across different types of data. This work176

introduces a novel and versatile post-hoc corrector177

framework applicable to an arbitrary ML model.178

3 Preliminary and Problem179

This paper aims to leverage LLMs as post-hoc cor-180

rectors to enhance predictions made by an arbitrary181

ML model. Specifically, we focus on addressing182

challenging prediction tasks on structured molecule183

graph data within the field of biology. For instance,184

consider the supervised molecule property predic-185

tion task, where molecules can be represented using186

various formats such as SMILES string (Weininger,187

1988) and geometry structures (Zhang et al., 2024)188

(as shown in Figure 8). However, a notable limita-189

tion of existing LLMs is their reliance on unstruc-190

tured text, rendering them unable to incorporate191

essential geometry structures as input (Li et al.,192

2023; Guo et al., 2023). To overcome this limi-193

tation, Fatemi et al. (2023) propose encoding the194

graph structure into text descriptions. In this paper,195

as depicted in Figure 8, we extend this concept by196

encoding both the molecule’s atom features and197

graph structure into textual descriptions.198

Notion. Given a molecule, we formally represent199

it as a graph G = (S,G,D), where S, G and D200

denote the SMILES string, geometry structures and201

generated atom feature and graph structure descrip-202

tions of G. y ∈ Y stands for the label for G.203

Problem Setup. Given a set of molecules M =204

{G1,G2, . . . ,Gm}, where MT ⊂ M contains205

molecules with known labels yv for all Gv ∈ MT .206

Our objective is to predict the unknown labels yu207

for all Gu ∈ Mtest, where Mtest = M\MT . In208

addition, MT is split into two subsets: Mtrain and209

Mval, where Mtrain is the training set and Mval210

works as the validation set.211

ML Models. The conventional approach to tackle212

molecule property prediction tasks is employing213

ML models. Take the supervised molecule property214

prediction task as an example. The goal is to learn a215

mapping function fML : M → Ŷ , by minimising216

loss function value minΘ
∑n

i=1 L(Ŷ i
train,Y i

train),217

where Θ represents the set of trainable parameters218

of fML. Subsequently, fML can be employed on219

test dataset Mtest to generate predictions Ŷtest. 220

Leveraging LLMs as Post-hoc Correctors. In 221

recent decades, significant efforts have been de- 222

voted to enhancing the effectiveness, robustness, 223

and generalisation of advanced ML models (fML). 224

However, the potential for improving the quality of 225

ML model predictions after completing the train- 226

ing process remains largely unexplored. With the 227

trend of ML models increasing in size and requiring 228

higher-quality training data, the costs associated 229

with re-training and fine-tuning ML models are 230

rapidly escalating. This paper intends to explore 231

the possibility of positioning LLMs (fLLM ) as post- 232

hoc correctors to refine predictions of an arbitrary 233

fML. Compared with re-training and fine-tuning 234

a model, this work has outstanding advantages in 235

terms of cost and versatility. 236

4 Methodology 237

In this section, we outline the workflow of LLM- 238

CORR, designed as a post-hoc corrector to refine 239

predictions generated by any ML model. As illus- 240

trated in Figure 2, the key idea is to leverage the 241

LLM’s ICL ability to summarise the types of data 242

in which the ML model makes mistakes and the 243

correlation between primary predictions and true 244

labels, thereby refining the ML’s prediction on the 245

test dataset. To achieve this goal, LLMCORR com- 246

prises three main steps: (1) Contextual knowledge 247

database construction; (2) Contextual knowledge 248

retrieval; (3) Prompt engineering and query. 249

4.1 Contextual Knowledge Database 250

Construction 251

After completing the training of the ML model 252

(fML) on the training set Mtrain, we gather com- 253

prehensive data from both the training set Mtrain 254

and the validation set Mval, along with the primary 255

predictions Ŷval made by fML on the validation 256

set. Subsequently, we construct a contextual knowl- 257

edge database D based on the collected data. No- 258

tably, the knowledge database D not only contains 259

information regarding the original training and val- 260

idation datasets but also provides insights into the 261

types of molecules for which the ML models gener- 262

ate accurate or inaccurate predictions. Additionally, 263

it captures the relationship between the initial pre- 264

diction Ŷval and the true label Yval. We anticipate 265

that this essential contextual knowledge will em- 266

power the LLM (fLLM ) to refine the predictions 267

Ŷtest made by fML on the test dataset Mtest. 268
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The SMILES string of molecule-1 is {}. Molecule-1 
can be presented as a graph…. Molecule-1 can…
…
The SMILES string of molecule-2 is {}. Molecule-2 
can be presented as a graph…. ML model 
predicts it… In fact, molecule-1 cannot…
…
The SMILES string of molecule-3 is {}. Molecule-3 
can be presented as a graph…. ML model 
predicts it… Predict if molecule-2 can…

Self-correction

ML Model Training

Figure 2: A high-level overview of LLMCORR, harnessing Large Language Models (LLMs) as post-hoc correctors
to refine predictions made by an arbitrary Machine Learning (ML) model.

4.2 Contextual Knowledge Retrieval269

The effectiveness of the LLMCORR heavily re-270

lies on the richness and relevance of the informa-271

tion received by the LLM, as it determines the272

task-specific contextual knowledge available to273

the LLM. However, due to the input token con-274

straints of existing LLMs, transmitting all contex-275

tual knowledge into the LLM is impractical (Tou-276

vron et al., 2023; Achiam et al., 2023). After con-277

structing the contextual knowledge database D, the278

next challenge is to retrieve relevant contextual279

knowledge for a given query data Qu = (Gu, ŷu)280

from either the validation set Mval or the test set281

Mtest. To address this limitation, we propose an282

Embedding-based Information Retrieval (EIR) ap-283

proach. The EIR technique comprises two primary284

steps: (1) Utilising a text encoder (fEmb) on avail-285

able textual descriptions of molecule Gu, we gener-286

ate embedding vectors fEmb : (S,D) → Z for287

molecules from the knowledge database D and288

the query data Qu. (2) Calculating the similar-289

ity between the query data Zu and molecules in290

the knowledge database based on the obtained em-291

beddings Zv,∀Gv ∈ D. Different selection strate-292

gies can be employed to retrieve various contextual293

knowledge based on the ranking. In this study,294

we retrieve the top-k similar data as the contextual295

knowledge. We delve into the influence of different296

retrieval selection strategies in Section 5.2.297

Addressing Data Leakage Concerns. It is im-298

portant to recognise that when the query data Qu 299

comes from the validation dataset Mval, precau- 300

tions are taken to prevent retrieving information 301

about Qu to avoid data leakage. Then, LLMCORR’s 302

performance on Mval can be assessed in a man- 303

ner consistent with traditional ML pipeline, e.g., 304

hyper-parameters selection. 305

4.3 LLMCORR Prompt Engineering 306

The goal in prompt engineering is to find the correct 307

way to formulate a question Q in such a way that an 308

LLM (fLLM ) will return the corresponding answer 309

A essentially represented as A = fLLM (Q). In 310

this work, our goal is to provide the LLM with help- 311

ful and comprehensive contextual knowledge re- 312

garding molecules and the ML model’s behaviours 313

on the validation set so that it can make precise 314

corrections to the ML model’s predictions on the 315

test dataset. A variety of approaches exist for mod- 316

ifying the fLLM so that it could better perform 317

downstream tasks such as fine-tuning (Clark et al., 318

2020) and LoRA (Hu et al., 2021a). However, these 319

methods typically require access to the internals of 320

the model and heavy computation capability, which 321

can limit their applicability in many real-world sce- 322

narios. In this work, we are instead interested in the 323

case where fLLM and its parameters are fixed, and 324

the system is available only for users in a black box 325

setup where fLLM only consumes and produces 326

text. We believe this setting to be particularly valu- 327

able as the number of proprietary models available 328
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Figure 3: LLMCORR prompt template. Multiple con-
textual knowledge from training and validation datasets
can be included by expanding the template.

and their hardware demands increase.329

LLMCORR Prompting. To this end, we propose330

a novel prompt that serves to position LLMs as331

post-hoc correctors, refining predictions made by332

an arbitrary ML model. Different from existing333

prompts that often work as predictors (Fatemi et al.,334

2023) or explainers (He et al., 2023), leveraging335

LLMs as correctors combining the strengths of336

LLMs’ in context-based question answering with337

the ML model’s proficiency in learning from spe-338

cific datasets. Specifically, the proposed LLM-339

CORR prompt template is illustrated in Figure 3,340

which mainly consists of following components:341

1. Instruction: Provides general guidance to the342

LLM, clarifying its role in the conversation.343

2. Contextual knowledge from the training dataset:344

Includes SMILES string, molecule atom feature345

and structure descriptions, and molecule label 346

information of the training dataset. 347

3. Contextual knowledge from the validation 348

dataset: Includes SMILES string, molecule 349

atom feature and structure descriptions, 350

molecule label information and the ML model’s 351

predictions of the validation dataset. This 352

equips the LLM with insights into the ML 353

model’s error patterns, enhancing its ability to 354

refine predictions on the test dataset. 355

4. Question: Tasks the LLM to refine the ML 356

model’s predictions for the query data, draw- 357

ing on the provided contextual knowledge. 358

It’s worth noting that by expanding the template’s 359

sections on contextual knowledge from the training 360

and validation datasets, multiple instances of con- 361

textual knowledge from the knowledge database 362

D can be included. Subsequently, we query the 363

LLM with generated prompts to obtain an initial 364

response concerning the refined prediction of the 365

query data, along with probability values and ex- 366

planations, offering significant interpretability. 367

Figure 4: Self-correction prompt template.

Self-correction Prompting. An inherent limita- 368

tion of existing LLMs is their tendency to gener- 369

ate hallucinations producing content that deviates 370

from real-world facts or user inputs (Ganguli et al., 371

2023; Huang et al., 2023). One promising solu- 372

tion is known as self-correction, where the LLM is 373

prompted or guided to rectify errors in its own out- 374

put (Pan et al., 2023). In this work, after obtaining 375

corrected prediction ỹu from the LLM, we intro- 376

duce a self-correction mechanism (prompt template 377

is shown in Figure 4) if the LLM makes significant 378

modifications on the primary prediction generated 379

by the ML (for classification tasks - reversing the 380

prediction label; for regression tasks - modifying 381

the prediction value range by more than 20%). As 382

demonstrated empirically in our experiments (see 383

Section 5.2), this approach can prevent LLM from 384

hallucinating incorrect corrections in many cases. 385
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Extensibility. LLMCORR is designed as a post-386

hoc corrector framework that leverages the ICL387

capability of LLMs. As illustrated in Figure 2,388

LLMCORR is adaptable to an arbitrary ML model,389

showcasing its remarkable extensibility. With the390

trend of ML models increasing in size and requiring391

higher-quality training data, the costs associated392

with enhancing ML models by re-training and fine-393

tuning are rapidly escalating. LLMCORR emerges394

as a promising, general-purpose practical solution395

in the LLM era. LLMCORR is summarised in Al-396

gorithm 1 in Appendix B.397

5 Are LLMs Post-hoc Correctors?398

In this section, we evaluate the effectiveness of399

LLMs as post-hoc correctors. Our experimen-400

tal analysis focuses on the challenging structured401

molecular graph property prediction tasks.402

Dataset. We consider six widely used403

molecule datasets from the OGB benchmark404

(Hu et al., 2021b), including ogbg-molbace,405

ogbg-molbbbp, ogbg-molhiv, ogbg-molesol,406

ogbg-molfreesolv and ogbg-mollipo. Detailed407

descriptions are summarised in Appendix C.408

ML Models. To investigate whether LLMCORR409

can effectively improve predictions across various410

types of ML models. We consider ML models411

of three different categories: (1) Language Model412

(LM) that only takes text information as inputs, i.e.,413

DeBERTa (He et al., 2021). (2) Graph Neural Net-414

works (GNNs) that capture the molecule’s geome-415

try structure information. We consider two classic416

GNN variants, i.e., GCN (Kipf and Welling, 2017)417

and GIN (Xu et al., 2019), and two SOTA GNN418

variants collected from the OGB leaderboards (Hu419

et al., 2021b), i.e., HIG and PAS (Wei et al., 2021).420

(3) And we consider one recently released hybrid421

framework, TAPE (He et al., 2023), in our experi-422

ments. TAPE leverages LM and LLMs to capture423

textual information as features, which can be used424

to boost GNN performance. The implementation425

details are discussed in Appendix D.426

LLMs. In this work, we are interested in where427

the LLM’s parameters are fixed, and the system is428

available for users in a black box setup where the429

LLM only consumes and produces text. We believe430

this setting to be particularly valuable as most users431

would practically have access to LLMs. In this case,432

we consider GPT-3.5 and GPT-4 (Achiam et al.,433

2023) as LLMs in this work, and GPT-3.5 is the434

major LLM for most experiments. All responses435

are obtained by calling their official APIs. Because 436

the generated descriptions following (Fatemi et al., 437

2023) have tons of tokens, easily over the LLM’s 438

input token constraints, hence we do not include 439

descriptions in the LLMCORR prompt in this study. 440

5.1 Main Results 441

Observation 1: LLMCORR is a potent post-hoc 442

corrector. Examining the molecule graph prop- 443

erty prediction performance across six datasets in 444

Table 1, it’s evident that LLMCORR consistently 445

delivers substantial enhancements over various ML 446

models, with improvements reaching up to 39% in 447

terms of RMSE. This consistent and notable per- 448

formance underscores the effectiveness of LLMs 449

within our framework LLMCORR, serving as pro- 450

ficient post-hoc correctors to refine the primary 451

predictions generated by ML models. 452

Observation 2: The significance of geometric 453

structure. Table 1 underscores the superiority of 454

models incorporating geometric structure over oth- 455

ers. This highlights the crucial role of geometric 456

structure in accurately predicting a molecule’s prop- 457

erty. However, LLMCORR currently cannot directly 458

incorporate geometric structure in the prompt due 459

to limitations in the token count of generated de- 460

scriptions over the LLM’s constraints. Addressing 461

this limitation is identified as a promising avenue 462

for future exploration. 463

Observation 3: Enhanced assistance for lower- 464

performing ML models. Furthermore, we observe 465

that LLMCORR provides more substantial assis- 466

tance when the performance of ML models is lower. 467

This trend is noticeable across various datasets; for 468

instance, LLMCORR boosts LM performance from 469

0.6163 to 0.6915 with a 12.2% improvement on 470

the test dataset of ogbg-molbace. Even though the 471

ultimate performance still falls short compared to 472

GNN models, the magnitude of improvement is 473

most significant. 474

Observation 4: GPT-4 underperforms com- 475

pared to GPT-3.5. Table 2 displays the molecule 476

graph property prediction performance and execu- 477

tion time for three datasets, comparing GPT-3.5 478

and GPT-4. Interestingly, we find that despite its 479

larger training data and more complex fine-tuning 480

process, GPT-4 exhibits inferior performance com- 481

pared to GPT-3.5 in this study. We hypothesise 482

that this discrepancy may be attributed to inter- 483

ventions such as reinforcement learning through 484

human feedback. 485
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Table 1: Molecule graph property prediction performance for the ogbg-molbace, ogbg-molbbbp, ogbg-molhiv,
ogbg-molesol, ogbg-molfreesolv and ogbg-mollipo datasets. Classification tasks are evaluated on ROC-AUC
(↑: higher is better), and regression tasks are evaluated on RMSE (↓: lower is better). The improvements of
LLMCORR over the ML predictive models are reported below LLMCORR’s performance.

ogbg-molbace ogbg-molbbbp ogbg-molhiv ogbg-molesol ogbg-molfreesolv ogbg-mollipo
ROC-AUC ↑ RMSE ↓

Valid Test Valid Test Valid Test Valid Test Valid Test Valid Test
LM 0.5584 0.6163 0.9307 0.6727 0.5024 0.5037 2.1139 2.2549 6.6189 4.4532 1.2095 1.1066

LMLlmCorr 0.6110
+9.4%

0.6915
+12.2%

0.9481
+1.9%

0.6897
+2.5%

0.6253
+24.5%

0.6154
+22.2%

1.4113
-33.2%

1.3747
-39.0%

5.7195
-13.6%

3.5595
-20.1%

1.0210
-15.6%

0.9468
-14.4%

GCN 0.7879 0.7147 0.9582 0.6707 0.8461 0.7376 0.8538 1.0567 2.8275 2.5096 0.6985 0.7201

GCNLlmCorr 0.8203
+4.1%

0.7718
+8.0%

0.9595
+0.0%

0.7045
+5.0%

0.8540
+0.9%

0.7529
+2.1%

0.7744
-9.3%

0.9108
-13.8%

2.0325
-28.1%

2.2102
-11.9%

0.6874
-1.6%

0.7043
-2.2%

GIN 0.8042 0.7833 0.9611 0.6821 0.8406 0.7601 0.7685 0.9836 2.4141 2.2435 0.6503 0.7100

GINLlmCorr 0.8336
+3.7%

0.8214
+4.9%

0.9710
+1.0%

0.6982
+2.4%

0.8523
+1.4%

0.7822
+2.9%

0.7418
-3.5%

0.9137
-7.1%

2.1790
-9.7%

1.9219
-14.3%

0.6219
-4.4%

0.6995
-1.5%

TAPE 0.7824 0.7410 0.9421 0.6994 0.8364 0.7514 0.8351 0.9872 2.8453 2.2134 0.6839 0.7168

TAPELlmCorr 0.8074
+3.2%

0.7788
+5.1%

0.9653
+2.5%

0.6996
+0.0%

0.8406
+0.5%

0.7693
+2.4%

0.7966
-4.6%

0.9605
-2.7%

2.6184
-8.0%

2.0470
–7.5%

0.6751
-1.3%

0.7074
-1.3%

HIG 0.8213 0.8094 0.9730 0.6974 0.8400 0.8393 0.7756 0.9504 2.3590 2.2546 0.6130 0.7036

HIGLlmCorr 0.8294
+1.0%

0.8135
+0.5%

0.9748
+0.2%

0.7074
+1.4%

0.8489
+1.1%

0.8447
+0.6%

0.7536
-2.8%

0.9322
-1.9%

2.3556
-0.1%

1.8799
-16.6%

0.6040
-1.5%

0.6920
-1.6%

PAS 0.8199 0.7473 0.9403 0.6618 0.8273 0.8402 0.8791 1.0348 2.3500 2.3546 0.6715 0.7088

PASLlmCorr 0.8230
+0.4%

0.7920
+6.0%

0.9671
+2.9%

0.6842
+3.4%

0.8422
+1.8%

0.8490
+1.0%

0.8251
-6.1%

0.9859
-4.7%

2.1130
-10.1%

1.9320
-17.9%

0.6342
-5.6%

0.6897
-2.7%

Table 2: Molecule graph property prediction performance and execution time for the ogbg-molbace, ogbg-molesol
and ogbg-molfreesolv datasets, with different LLMs. Classification tasks are evaluated on ROC-AUC (↑: higher
is better), and regression tasks are evaluated on RMSE (↓: lower is better).

ogbg-molbace ogbg-molesol ogbg-molfreesolv
ROC-AUC ↑ Execution RMSE ↓ Execution RMSE ↓ Execution

Valid Test Valid Test Valid Test
GCNLlmCorr

GPT3.5 0.8203 0.7718 ∼9.5 min 0.7744 0.9108 ∼11.5 min 2.0325 2.2102 ∼10.5 min
GCNLlmCorr

GPT4 0.7910 0.7713 ∼155 min 0.8953 1.0105 ∼204min 6.5331 3.5777 ∼107min
GINLlmCorr

GPT3.5 0.8336 0.8214 ∼9.6 min 0.7418 0.9137 ∼12.1 min 2.1790 1.9219 ∼11.7 min
GINLlmCorr

GPT4 0.8022 0.7875 ∼148 min 1.1384 0.9552 ∼192min 7.4731 3.9611 ∼112min

Table 3: Molecule graph property prediction performance for the ogbg-molbace, ogbg-molbbbp, ogbg-molhiv,
ogbg-molesol, ogbg-molfreesolv and ogbg-mollipo datasets. Classification tasks are evaluated on ROC-AUC
(↑: higher is better), and regression tasks are evaluated on RMSE (↓: lower is better).

ogbg-molbace ogbg-molbbbp ogbg-molhiv ogbg-molesol ogbg-molfreesolv ogbg-mollipo
ROC-AUC ↑ RMSE ↓

Valid Test Valid Test Valid Test Valid Test Valid Test Valid Test
LLMIP 0.5690 0.5756 0.4606 0.5399 0.5519 0.5892 2.6221 2.0422 6.1699 4.4421 1.9836 1.8411
LLMIPD 0.4835 0.5534 0.4643 0.4664 0.4732 0.5693 3.7395 3.1721 8.1598 7.2877 2.6464 2.5046
LLMIE 0.4769 0.5220 0.4463 0.5237 0.5487 0.5419 2.1055 2.5549 5.9059 4.3097 2.1044 1.9158
LLMIED 0.5299 0.4761 0.4742 0.4091 0.5361 0.5512 3.9001 4.2289 7.4837 5.3689 2.4191 2.4219
LLMFS−1 0.4822 0.5122 0.5955 0.4954 0.5229 0.5268 1.7699 2.8762 6.4785 4.7553 1.9810 1.8432
LLMFS−2 0.4277 0.6090 0.6019 0.5075 0.5619 0.5731 1.9271 2.1020 5.5078 4.5606 1.9138 1.8118
LLMFS−3 0.5405 0.5949 0.6000 0.5388 0.5475 0.5616 1.9548 1.9963 6.3753 4.7241 1.8291 1.7923
LLMFS−10 0.4973 0.5160 0.5214 0.4740 0.6233 0.6114 1.4735 1.4661 5.9601 4.2810 1.5178 1.4493
LLMFS−30 0.6110 0.6354 0.5164 0.5245 0.6251 0.6276 2.7207 2.3669 6.7362 4.6829 1.8060 1.4808
LLMFS−50 0.5749 0.6027 0.4572 0.4682 0.5312 0.5843 2.7465 2.5133 6.3208 4.3760 1.8499 1.3644

Observation 5: LLMs exhibit limited compet-486

itiveness as predictors. Given LLMCORR’s re-487

markable performance as correctors, another in-488

triguing question arises: can LLM generate ac-489

curate predictions directly? To investigate, we490

conduct additional experiments where the LLM491

is tasked with directly predicting the molecule’s 492

property. For detailed findings, please refer to Ap- 493

pendix E due to space constraints. As shown in 494

the results of Table 3, LLMs do not demonstrate 495

competitive performance as predictors. This obser- 496

vation reinforces the efficacy of LLMCORR, which 497
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leverages LLMs as post-hoc correctors.498

5.2 Ablation Study499

Table 4: Ablation study of LLMCORR on
ogbg-molbace and ogbg-molesol with variants
of contextual knowledge retrieval.

ogbg-molbace ogbg-molesol
ROC-AUC ↑ RMSE ↓

GINLlmCorr 0.8214 0.9137
w/ Jump 0.7799 1.0696
w/ Random 0.7868 1.1116
LMLlmCorr 0.6915 1.3747
w/ Jump 1.4633 1.9781
w/ Random 1.9517 2.0615

Variants of contextual knowledge retrieval.500

Within the EIR of LLMCORR, the selection of top-501

k data from the knowledge database following sim-502

ilarity calculations is a critical step. This ablation503

study explores alternative approaches such as Jump504

and Random. In Random, k data are randomly se-505

lected from the knowledge database, disregarding506

similarity rankings. On the other hand, Jump se-507

lects k evenly spaced indices, ensuring diversity in508

the selected data. Results from Table 4 suggest that509

selecting top-k data yields optimal results, with510

Jump outperforming Random. We posit that LLMs511

benefit from closely relevant knowledge to generate512

effective corrections.513

Figure 5: Ablation study of LLMCORR with a dif-
ferent number of contextual knowledge data (k) on
ogbg-molbace and ogbg-molesol datasets.

Impact of k. In the EIR, the parameter k dictates514

the number of knowledge instances sampled from515

the database to construct LLMCORR’s prompt, thus516

influencing the knowledge presented to the LLM.517

It is observed (Figure 5) that larger k values corre-518

late with improved performance, underscoring the519

significance of comprehensive knowledge to guide520

LLMs for enhanced performance.521

Effect of fEmb. Another ablation study concerning522

the EIT process examines the influence of differ-523

ent fEmb functions. Figure 6 suggests that larger524

Figure 6: Ablation study of LLMCORR on six datasets
with different fEmb.

fEmb values yield superior performance on bench- 525

mark testing, aiding LLMCORR in achieving better 526

results. This is attributed to accurate semantic em- 527

beddings facilitating the identification of relevant 528

instances during the EIT process, reinforcing the 529

importance of selecting top-k relevant knowledge 530

instances. 531

Figure 7: Ablation study of LLMCORR on six datasets
w/ and w/o self-correction.

Impact of self-correction. Upon completion of 532

LLMCORR’s inference process, the LLM is tasked 533

with self-correction if major modifications to pri- 534

mary predictions are made. Figure 7 illustrates 535

LLMCORR’s performance on the test dataset across 536

six datasets, revealing instances where the self- 537

correction component leads to uncertain impacts. 538

This phenomenon is attributed to the LLM becom- 539

ing hesitant and cautious after the questioning. De- 540

signing a more effective self-correction prompt 541

emerges as an intriguing area for future investi- 542

gation. 543

6 Concluding Discussion 544

We have introduced a novel framework, LLMCORR, 545

a training-free, lightweight, yet effective approach, 546

harnessing the in-context learning capabilities of 547

LLMs to improve the predictions of arbitrary ML 548

models. Through this simple and versatile ap- 549

proach, we have demonstrated significant improve- 550

ments over a number of ML models on different 551

challenging tasks. As LLMs continue to improve 552

in performance and in-context learning capabilities, 553

LLMCORR stands to directly benefit from these 554

advancements. 555
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7 Limitations and Ethic Statement556

Limitations. While LLMCORR demonstrates sim-557

plicity and effectiveness in improving the predic-558

tions of an arbitrary ML model, our verification559

was confined to structured molecular graph prop-560

erty prediction tasks. Further extensive empirical561

investigations across diverse domains are warranted562

to establish its generalisability. Additionally, con-563

sidering the purported enhanced ICL capabilities564

of GPT-4 on various benchmark tasks (OpenAI,565

2023), it is noteworthy that our findings (as dis-566

cussed in Section 5.1 and illustrated in Table 2)567

reveal GPT-4’s underperformance compared to the568

GPT-3.5 model. This discrepancy merits further ex-569

ploration to elucidate the underlying reasons. More-570

over, while LLMCORR’s prompt template accom-571

modates the insertion of molecule atom features572

and geometry structure descriptions, limitations573

stemming from the LLM’s input token constraints574

prevented their inclusion in the prompt. Lastly,575

while our approach incorporates contextual knowl-576

edge into the prompt, its utility is constrained by577

several factors, including limited flexibility. For578

example, further leveraging different techniques,579

e.g., RAG (Lewis et al., 2020), to involve more con-580

textual knowledge into the LLM is also a fruitful581

direction. Further enhancements in this regard are582

warranted to maximise LLMCORR’s effectiveness.583

Ethic Statement. Our proposed framework, LLM-584

CORR, is designed as a post-hoc corrector aims at585

improving the prediction of an arbitrary ML model.586

However, given the emergent in-context learning587

ability within LLMs, which typically consist of588

billions of parameters, the accessibility of com-589

putational resources may inadvertently introduce590

disparities in the utilisation of these methods. Re-591

search groups with limited access to computational592

resources will be handicapped, while resourceful593

groups will be able to investigate and advance the594

future directions of this research. Throughout our595

work, we did not utilise any private or sensitive596

information. However, it’s essential to note that if597

any private information were to be inadvertently598

exposed to an LLM during internal pertaining and599

fine-tuning stages, LLMCORR does not offer any600

privacy filtration mechanism. Therefore, there ex-601

ists the potential for privacy concerns associated602

with the underlying model to manifest through the603

output provided by LLMCORR.604

References 605

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama 606
Ahmad, Ilge Akkaya, Florencia Leoni Aleman, 607
Diogo Almeida, Janko Altenschmidt, Sam Altman, 608
Shyamal Anadkat, et al. 2023. Gpt-4 technical report. 609
CoRR, abs/2307.09288. 610

Maciej Besta, Nils Blach, Ales Kubicek, Robert Ger- 611
stenberger, Lukas Gianinazzi, Joanna Gajda, Tomasz 612
Lehmann, Michal Podstawski, Hubert Niewiadomski, 613
Piotr Nyczyk, et al. 2023. Graph of thoughts: Solv- 614
ing elaborate problems with large language models. 615
CoRR, abs/2308.09687. 616

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie 617
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind 618
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 619
Askell, Sandhini Agarwal, Ariel Herbert-Voss, 620
Gretchen Krueger, Tom Henighan, Rewon Child, 621
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, 622
Clemens Winter, Christopher Hesse, Mark Chen, Eric 623
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, 624
Jack Clark, Christopher Berner, Sam McCandlish, 625
Alec Radford, Ilya Sutskever, and Dario Amodei. 626
2020. Language models are few-shot learners. In 627
Proceedings of the 2020 Annual Conference on Neu- 628
ral Information Processing Systems (NeurIPS), pages 629
1877–1901. 630

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, 631
Johannes Gehrke, Eric Horvitz, Ece Kamar, Peter 632
Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. 633
2023. Sparks of artificial general intelligence: Early 634
experiments with gpt-4. CoRR, abs/2303.12712. 635

Keith T Butler, Daniel W Davies, Hugh Cartwright, 636
Olexandr Isayev, and Aron Walsh. 2018. Machine 637
learning for molecular and materials science. Nature, 638
559(7715):547–555. 639

Peter Clark, Oyvind Tafjord, and Kyle Richardson. 2020. 640
Transformers as soft reasoners over language. CoRR, 641
abs/2002.05867. 642

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 643
Kristina Toutanova. 2018. Bert: Pre-training of deep 644
bidirectional transformers for language understand- 645
ing. CoRR, abs/1810.04805. 646

Matthew F Dixon, Igor Halperin, and Paul Bilokon. 647
2020. Machine learning in finance, volume 1170. 648
Springer. 649

Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi. 650
2023. Talk like a graph: Encoding graphs for large 651
language models. CoRR, abs/2310.04560. 652

Deep Ganguli, Amanda Askell, Nicholas Schiefer, 653
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A Illustration of Molecule 801

Representations 802

Molecule SMILES: OC(=O)C1=CC=CC=C1O

Description:
This molecule can be represented as a 
graph among atoms 0(O), 1(C), …. 
Atom 0 has 7 atomics, has a positive 
charge of 5, has 0 hydrogen atom…
Atom 0 is connected to Atom 1 and 
Atom …

Geometry 
Structure

Figure 8: A molecule can be represented in different
forms, e.g., SMILES string, text description and geome-
try structure.

Molecules can be represented using various for- 803

mats such as SMILES string (Weininger, 1988) and 804

geometry structures (Zhang et al., 2024) (as shown 805

in Figure 8). However, a notable limitation of ex- 806

isting LLMs is their reliance on unstructured text, 807

rendering them unable to incorporate essential ge- 808

ometry structures as input (Li et al., 2023; Guo 809

et al., 2023). To overcome this limitation, Fatemi 810

et al. (2023) propose encoding the graph structure 811

into text descriptions. In this paper, as depicted in 812

Figure 8, we extend this concept by encoding both 813

the molecule’s atom features and graph structure 814

into textual descriptions. 815

B Algorithm 816

Algorithm 1: LLMCORR

Input: Dataset M = {G1,G2, . . . ,Gm},
ML model fML, LLM fLLM

Output: Refined predictions Ỹ
1 Complete training of fML : M → Ŷ by

minΘ
∑n

i=1 L(Ŷ i
train,Y i

train) ;
2 Construct a contextual knowledge database

D = {Mtrain,Mval, Ŷval} ;
3 for Gu ∈ {Mval ∪Mtest} do
4 ŷu = fML(Gu)
5 Qu = (Gu, ŷu)
6 Create a prompt Pu using Qu and

retrieved contextual knowledge
Du ⊂ D

7 Query the LLM and contain the refined
prediction ỹu = fLLM (Pu)

8 end

We outline the process of LLMCORR in Algo- 817

rithm 1. Given a dataset M, an ML model fML, a 818

11



LLM fLLM . After completing the training of the819

ML model (fML) on the training set Mtrain (line820

1), we construct a contextual knowledge database821

D by incorporating the dataset’s label information822

and the ML model’s prediction on the validation823

dataset Mval (line 2). Given a query data Gu, we824

create a prompt Pu using its primary prediction825

generated by fML and relevant contextual knowl-826

edge Du (line 3-6). Finally, we query the LLM827

(fLLM ) to obtain the refined prediction ỹu (line 7).828

C Dataset Description829

We consider six benchmark molecule property pre-830

diction datasets that are common within ML re-831

search, which are summarised in Table 5.832

1. ogbg-molbace. The ogbg-molbace dataset833

provides quantitative (IC50) and qualitative (bi-834

nary label) binding results for a set of inhibitors835

of human b-secretase 1 (BACE-1). All data836

are experimental values reported in the scien-837

tific literature over the past decade, some with838

detailed crystal structures available. Molecu-839

leNet (Wu et al., 2018) merged a collection of840

1,522 compounds with their 2D structures and841

binary labels, built as a classification task.842

2. ogbg-molbbbp. The Blood–Brain Barrier Pen-843

etration (BBBP) dataset comes from scientific844

studies on the modelling and prediction of bar-845

rier permeability. As a membrane separating846

circulating blood and brain extracellular fluid,847

the blood–brain barrier blocks most drugs, hor-848

mones and neurotransmitters. Thus penetration849

of the barrier forms a long-standing issue in850

the development of drugs targeting the central851

nervous system. This dataset includes binary852

labels for over 2,039 compounds on their per-853

meability properties. Scaffold splitting is also854

recommended for this well-defined target.855

3. ogbg-molhiv. The HIV dataset was introduced856

by the Drug Therapeutics Program (DTP) AIDS857

Antiviral Screen, which tested the ability to in-858

hibit HIV replication for 41,127 compounds.859

Screening results were evaluated and placed into860

three categories: confirmed inactive (CI), con-861

firmed active (CA) and confirmed moderately862

active (CM). We further combine the latter two863

labels, making it a classification task between in-864

active (CI) and active (CA and CM). As we are865

more interested in discovering new categories866

of HIV inhibitors, scaffold splitting is recom-867

mended for this dataset.868

4. ogbg-molesol. ESOL is a small dataset con- 869

sisting of water solubility data for 1,128 com- 870

pounds. The dataset has been used to train mod- 871

els that estimate solubility directly from chemi- 872

cal structures (as encoded in SMILES strings). 873

Note that these structures don’t include 3D co- 874

ordinates, since solubility is a property of a 875

molecule and not of its particular conformers. 876

5. ogbg-molfreesolv. The Free Solvation 877

Database (FreeSolv) provides experimental 878

and calculated hydration-free energy of small 879

molecules in water. A subset of the compounds 880

in the dataset is also used in the SAMPL blind 881

prediction challenge. The calculated values 882

are derived from alchemical free energy calcu- 883

lations using molecular dynamics simulations. 884

We include the experimental values in the bench- 885

mark collection and use calculated values for 886

comparison. 887

6. ogbg-mollipo. Lipophilicity is an important 888

feature of drug molecules that affects both mem- 889

brane permeability and solubility. This dataset, 890

curated from the ChEMBL database (Mendez 891

et al., 2019), provides experimental results of 892

the octanol/water distribution coefficient (log D 893

at pH 7.4) of 4200 compounds. 894

D Implementation 895

Implementation. We implement ML predictive 896

models following their available official implemen- 897

tations. For instance, we adopt the available code 898

of variant GNN models on the OGB benchmark 899

leaderboards, e.g., GCN2, GIN3, HIG 4 and PAS 5. 900

About DeBERTa, we adopt its official implemen- 901

tation 6 and incorporate it within the pipeline of 902

TAPE 7. For the LLMs, we simply call the API 903

provided by OpenAI with default hyper-parameter 904

settings. We empirically tried with some combina- 905

tions of recommended important hyper-parameters, 906

e.g., temperature and top_P, yet did not observe 907

significant improvement. To realise the embedding- 908

based information retrieval for LLMCORR, we 909

2https://github.com/snap-stanford/ogb/tree/
master/examples/graphproppred/mol

3https://github.com/snap-stanford/ogb/tree/
master/examples/graphproppred/mol

4https://github.com/TencentYoutuResearch/
HIG-GraphClassification

5https://github.com/LARS-research/PAS-OGB
6https://huggingface.co/microsoft/

deberta-v3-base
7https://github.com/XiaoxinHe/TAPE

12

https://github.com/snap-stanford/ogb/tree/master/examples/graphproppred/mol
https://github.com/snap-stanford/ogb/tree/master/examples/graphproppred/mol
https://github.com/snap-stanford/ogb/tree/master/examples/graphproppred/mol
https://github.com/snap-stanford/ogb/tree/master/examples/graphproppred/mol
https://github.com/TencentYoutuResearch/HIG-GraphClassification
https://github.com/TencentYoutuResearch/HIG-GraphClassification
https://github.com/LARS-research/PAS-OGB
https://huggingface.co/microsoft/deberta-v3-base
https://huggingface.co/microsoft/deberta-v3-base
https://github.com/XiaoxinHe/TAPE


Table 5: Statistics summary of datasets used in our empirical study and splits from benchmark (Wu et al., 2018; Hu
et al., 2020).

Dataset #Graphs Avg.
#Nodes

Avg.
#Edges #Train #Valid #Test Task Type

ogbg-molbace (Wu et al., 2018) 1,513 34.1 73.7 1,210 151 152 Binary class.
ogbg-molbbbp (Wu et al., 2018) 2,039 24.1 51.9 1,631 204 204 Binary class.
ogbg-molhiv (Wu et al., 2018; Hu et al., 2020) 41,127 25.5 27.5 32,901 4,113 4,113 Binary class.
ogbg-molesol (Wu et al., 2018) 1,128 13.3 27.4 902 113 113 Regression
ogbg-molfreesolv (Wu et al., 2018) 642 8.7 16.8 513 64 65 Regression
ogbg-mollipo (Wu et al., 2018) 4,200 27.0 59.0 3,360 420 420 Regression

adopt two capable embedding models (fEmb) pro-910

vided by OpenAI 8, e.g., text-embedding-3-large911

and text-embedding-3-small. In this work, we912

mainly adopt text-embedding-3-large for better em-913

pirical performance. We perform careful discus-914

sions about the influence of different variants in915

Section 5.2.916

E Are LLMs Predictors?917

Following the thorough demonstration of LLM-918

CORR’s efficacy as a post-hoc corrector in Sec-919

tion 5.1, a fundamental question emerged: does920

LLMCORR’s remarkable performance stem from921

the LLM’s ability to comprehend and rectify the922

ML model’s predictions, or does it possess an in-923

herent capability to predict molecule properties?924

To answer this question, undertake another series925

of empirical investigations. Specifically, we devise926

predictor prompts that task LLMs with directly927

predicting molecule properties, devoid of any infor-928

mation regarding the predictions made by the ML929

model. In the following sections, we will present930

our designed prompts and demonstrate the experi-931

mental results.932

Figure 9: Zero-shot prompt templates.

8https://platform.openai.com/docs/models/
embeddings

Figure 10: Few-shot prompt template. Multiple con-
textual knowledge can be included by expanding the
template.

E.1 Predictor Prompt Engineering 933

Zero-shot Prompting. The first set of prompts 934

(IP, IE) simply provides the LLM with molecule 935

and task descriptions and asks it to generate the 936

desired output with a desired format without any 937

prior training or knowledge on the task, as illus- 938

trated in Figure 9. The only guidance we provide 939

to the LLM is instruction, which tells about a little 940

background context. Particularly, IP only asks the 941

LLM to provide predictions, while IE further asks 942

for explanations, which may ask the LLM to clarify 943

the thought process in explanation generation and 944

provide helpful evidence to help users understand 945

the given prediction. In addition, if we fill out the 946

description of IP and IE, which derives IPD and 947

IPD prompts. 948

Few-shot Prompting. The second kind of prompt 949

(FS) that we propose provides the LLM with a 950

small number of examples of the task, along with 951

the desired outputs (Brown et al., 2020). The model 952

then learns from these examples to perform the task 953

on new inputs. This approach can be categorised as 954

a simple in-context learning (ICL) technique, An 955

example prompt template is shown in Figure 10. 956
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FS-k indicates k contextual knowledge instances957

are included in the prompt. In this work, we do958

not discuss the FSD prompts since the generated959

descriptions have tons of tokens, which will easily960

go over the LLM’s input constraints.961

We note there are also some popular recent962

ICL techniques, e.g., Chain-of-thought (CoT) (Wei963

et al., 2022b), Tree-of-thought (ToT) (Yao et al.,964

2023), Graph-of-thought (GoT) (Besta et al., 2023)965

and Retrieval Augmented Generation (RaG) (Lewis966

et al., 2020), which are theoretically available to967

support complicated tasks and include large knowl-968

edge context. However, our initial experiments969

showed that methods, e.g., CoT, ToT and GoT, per-970

form much worse for molecule property prediction971

tasks due to the significant difficulties in designing972

proper chain thoughts without solid expertise. RaG973

implementations that we tested are unstable and974

slow with query, and they fall short of the relatively975

simpler FS’s performance. We argue it is caused by976

the unqualified information retrieval system, and977

we will discuss it in the future work discussion978

section.979

E.2 Results - LLMs work as Predictors980

From the results of Table 3, we can observe that the981

LLM can generate predictions about the molecule’s982

property. However, LLM’s performances are not983

significantly competitive compared with the ML984

models’ performance. Hence, we argue existing985

LLMs are not competitive predictors and employ-986

ing LLMs as effective predictors is still an open987

challenge.988
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