

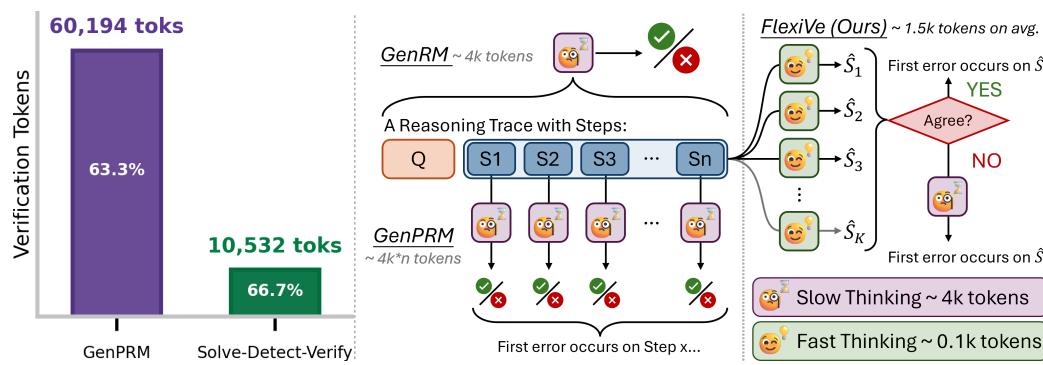
000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 Solve-Detect-Verify : INFERENCE-TIME SCALING WITH FLEXIBLE GENERATIVE VERIFIER

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

012 Complex reasoning with Large Language Models (LLMs) demands a careful balance
013 between accuracy and computational cost. Verification, crucial for reliability,
014 exacerbates this challenge. Existing methods often force a stark trade-off: robust
015 process-based verifiers incur prohibitive costs due to iterative recomputation, while
016 fast, efficient verifiers suffer from low precision. We introduce *FlexiVe*, a unified
017 generative verifier designed to navigate this trade-off. *FlexiVe* dynamically allo-
018 cates compute between rapid "fast thinking" and deliberative "slow thinking." A
019 key innovation is our training strategy: we use Reinforcement Learning (GRPO)
020 to specifically enhance the reliability of the fast mode. Remarkably, this targeted
021 training generalizes, elevating the slow mode to state-of-the-art open-source per-
022 formance. To optimally deploy *FlexiVe*, we propose the *Solve-Detect-Verify* (SDV)
023 pipeline. SDV moves beyond static Best-of-N ranking, employing an efficient
024 iterative refinement process that detects solution completion to curtail "overthink-
025 ing" and uses *FlexiVe*'s feedback for targeted correction. Our results demonstrate
026 significant improvements in both accuracy and efficiency. *FlexiVe* establishes a
027 new open-source¹ state-of-the-art on ProcessBench, outperforming the much larger
028 GenPRM-32B while requiring ~ 2.3 x fewer TFLOPS with 15x less training data.
029 On the challenging AIME 2024 benchmark, the full SDV pipeline achieves 83.3%
030 accuracy, surpassing strong baselines.



044 Figure 1: We introduce the *Solve-Detect-Verify* (SDV) pipeline, powered by our novel adaptive verifier,
045 *FlexiVe*, to optimize the accuracy-efficiency trade-off in LLM reasoning. **Left:** On AIME 2024, our
046 pipeline achieves higher accuracy (66.7% vs. 63.3%) while using nearly **6x fewer** verification tokens
047 than a standard process-based approach (GenPRM). **Right:** This efficiency is driven by *FlexiVe*'s
048 design. Unlike Process-Based verifiers (e.g., GenPRM) that incur accumulating overhead at each
049 step, *FlexiVe* analyzes the trace **holistically**. It employs a dynamic strategy: multiple low-cost "Fast
050 Thinking" checks ($\sim 0.1k$ tokens) are run first, escalating to high-cost "Slow Thinking" ($\sim 4k$ tokens)
051 only when consensus is lacking.

¹Our code is available at <https://anonymous.4open.science/r/flexive-7D5D>.

054 1 INTRODUCTION

056 Recent advances in Large Language Models (LLMs) have enhanced their capabilities in complex
 057 reasoning tasks, primarily through the generation of step-by-step reasoning traces (Wei et al., 2022;
 058 Kojima et al., 2022). This shift towards deeper, “System 2” processes (Kahneman, 2011; Li et al.,
 059 2025; Shao et al., 2024a), while crucial for accuracy, introduces a fundamental trade-off with
 060 computational efficiency.

061 This challenge is exacerbated by two factors. First, models often exhibit “overthinking” (Chen et al.,
 062 2024), generating redundant self-correction steps, begins with hesitation words or phrases (e.g.,
 063 “hmm”, “let me double check”) and redundant internal verification steps even after a correct inter-
 064 mediate solution might have been implicitly reached (Chen et al., 2024). Second, ensuring the reliability
 065 of these traces requires verification (Chen et al., 2025), which adds further complexity. Sophisticated
 066 Generative Reward Models.(GenRMs) (Liu et al., 2025; Zhang et al., 2025) can be computationally
 067 prohibitive (Singhi et al., 2025), while highly efficient mechanisms like “NoThinking” (Ma et al.,
 068 2025) in Figure 3, when adapted for verification, suffer severe drops in precision (see Figure 2).

069 This complex interplay reveals a clear methodological gap: the need for a flexible verifier that can
 070 adapt its computational effort, and an intelligent inference-time pipeline to deploy it strategically
 071 while streamlining the reasoning process. To address these compounded challenges, we introduce
 072 FlexiVe, a unified generative verifier, and the Solve-Detect-Verify (SDV) pipeline. Our contributions
 073 are summarized as follows:

- 074 • **FlexiVe : A Flexible, RL-Trained Generative Verifier** We introduce a single, unified
 075 model operating across the cost-performance spectrum: (1) a rapid “fast thinking” mode; (2)
 076 a deliberative “slow thinking” mode; and (3) a dynamic “flexible” mode, which utilizes a
 077 consensus strategy that first uses efficient, parallelizable “fast thinking” assessments of the
 078 entire reasoning trace to gauge verification difficulty. It escalates to deeper, “slow thinking”
 079 analysis only when initial consensus is low. A key innovation is our training strategy: we use
 080 Group Relative Policy Optimization (GRPO) (Shao et al., 2024a;b) to specifically enhance
 081 the reliability of the “fast thinking” mode. We find this targeted RL training not only fixes
 082 the low precision of fast verifiers but generalizes remarkably, elevating the “slow thinking”
 083 mode to state-of-the-art performance.
- 084 • **Solve-Detect-Verify (SDV)** We propose an inference-time pipeline that intelligently inte-
 085 grates the solver and verifier, moving beyond standard Best-of-N (BoN) ranking paradigms.
 086 SDV employs an iterative refinement process, **featuring a lightweight “Detect” module that**
 087 **leverages likelihood-based probing** (Kadavath et al., 2022; Lin et al., 2022; Yang et al.,
 088 2024) **to identify solution completion points and curtail “overthinking.”** Since FlexiVe’s
 089 feedback can be naturally used as an effective means for context engineering, the pipeline
 090 triggers FlexiVe to provide targeted, generative feedback that guides the solver to refine
 091 the response into a more accurate final solution. The entire detect-verify-refine cycle can
 092 be scaled; iterating the process yields accuracy gains. We demonstrate that this intelligent
 093 integration is significantly more effective than static ranking.
- 094 • **State-of-the-Art Efficiency and Accuracy** FlexiVe sets a new open-source SOTA on
 095 ProcessBench, outperforming larger models like GenPRM-32B while requiring ~2.3x fewer
 096 TFLOPS and, crucially, using **15x less training data**. On challenging benchmarks like
 097 AIME 2024, the full SDV pipeline achieves 83.3% accuracy. Notably, our pipeline achieves
 098 higher accuracy than a comparable GenPRM BoN setup while using only **1/6th** of the
 099 computational tokens.

100 Our work demonstrates that the path to efficient and reliable LLM reasoning lies not only in developing
 101 flexible components but, critically, in designing intelligent pipelines that integrate them effectively.

102 2 RELATED WORK

104 **Inference-Time Scaling Strategies** Inference-time scaling strategies increase test-time compute
 105 to improve reasoning accuracy (Welleck et al., 2024; Wang et al., 2025), using methods from self-
 106 consistency (Wang et al., 2023), verifier ranked Best-of-N (BoN) (Ichihara et al., 2025), to tree-based
 107 searches (Yao et al., 2023). While effective, these strategies are computationally intensive, spurring
 108 work on optimized decoding (Sun et al., 2024) and compute trade-offs (Wu et al., 2025a). As scaling

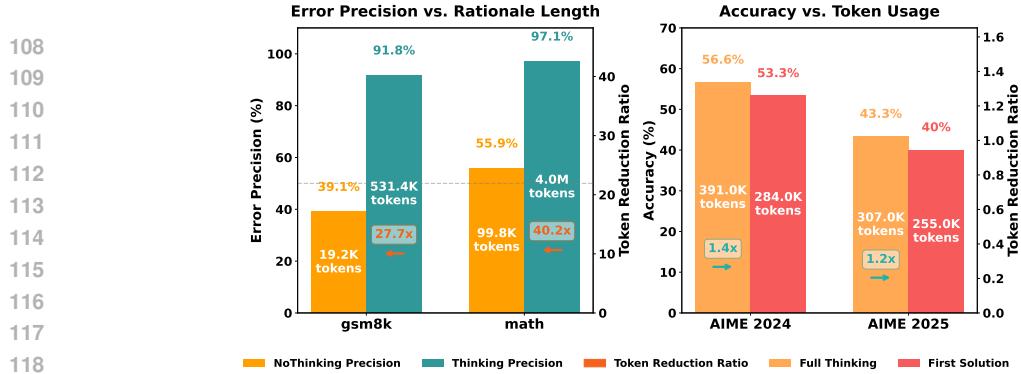


Figure 2: Empirical motivation for efficient verification and generation strategies. **(Left)** Comparison of error precision and token usage between *NoThinking* and *Thinking* verification on GSM8K and Math (ProcessBench). While *NoThinking* significantly reduces tokens, its error precision is substantially lower, suggesting high false positive rate. **(Right)** Accuracy and token usage comparison between generating a full solution (*Full Thinking*) and halting generation early upon detecting a complete intermediate solution (*First Solution*) on AIME 2024 and AIME 2025. Early detection offers significant token reduction with comparable accuracy.

generations alone is insufficient (Chen et al., 2025) and verifier-guided search has known flaws (Wu et al., 2025b; Zhao et al., 2025a), intelligent frameworks like Solve-Detect-Verify (SDV) are needed. **While building on established iterative refinement concepts (Madaan et al., 2023; Xie et al., 2023; Akyurek et al., 2023), SDV uniquely prioritizes efficiency through active detection and adaptive verification to avoid the computational redundancy (“overthinking”) typical of brute-force methods (Chen et al., 2024).**

Verification Paradigms Verification, while crucial, adds computational cost. Generative and process-based verifiers like GenRMs and PRMs (Lightman et al., 2023; Liu et al., 2025; Zhang et al., 2025) offer detailed feedback but can be demanding (Singhi et al., 2025). Recent work reduces annotation reliance via bootstrapping (Zelikman et al., 2022) or label-free methods like Math-Shepherd (Wang et al., 2024a). Hybrid models like GenPRM (Zhao et al., 2025b) integrate code execution within a process-based framework, motivating its use as a key baseline. Alternative paradigms like code-based self-verification (Zhou et al., 2024a; Wang et al., 2024b) and autoformalization (Zhou et al., 2024b) use code for precision but may lack general applicability. In contrast, FlexiVe performs efficient, holistic trace analysis with dynamic budget allocation, targeting broader use cases.

Adaptive Computation and Our Novelty Inspired by dual-process theory (Kahneman, 2011; Li et al., 2025), adaptive computation balances reasoning and efficiency (Graves, 2016). However, extreme efficiency methods like “NoThinking” (Ma et al., 2025) in Figure 3, when applied to verification, can yield low precision (Figure 2). The most related work, DyVe (Zhong et al., 2025), also uses “fast” and “slow” verification modes. However, its per-step approach incurs accumulating overhead. FlexiVe differs critically by (1) performing holistic, **consensus-based verification** on the entire reasoning trace to avoid iterative costs, and (2) optimizing its “fast” mode for reliable diagnosis via Reinforcement Learning (GRPO) (Shao et al., 2024a) for a more robust efficiency-accuracy balance.

3 METHOD

3.1 PROBLEM FORMULATION

System Components Our inference-time scaling framework uses two primary Large Language Model (LLM) components: a solver LLM and *FlexiVe*, our specialized generative verifier. Both are reasoning-capable models. The solver, an off-the-shelf LLM, generates initial candidate solutions. *FlexiVe* is specifically trained for verification, detailed in Section 3.2.

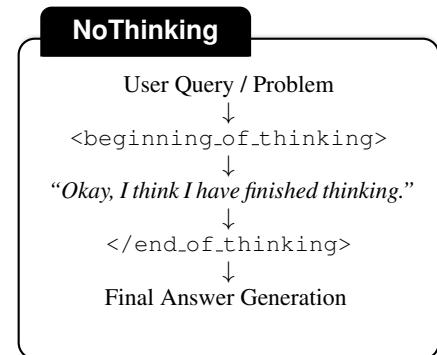


Figure 3: The *NoThinking* mechanism bypasses explicit thought generation, using a template to fill the thinking phase.

162 **Reasoning Trace Segmentation** A reasoning trace S_{trace} is parsed into an ordered sequence of
 163 N_s steps, $S_{trace} = (step_1, \dots, step_{N_s})$. Each $step_i$ is a contiguous text segment delineated by
 164 predefined "hesitation keywords" (e.g., "Wait, double-check", "Alternatively", "Hmm", "Let me
 165 check" listed in Appendix A.1.3 Figure 8). This segmented trace forms the input for verification.

166 **Verifier Architectures and Operation** The task of the verifier is to assess the correctness of S_{trace} .
 167 Architectures approach this differently, with significant implications for efficiency (Figure 1).

168 **Process-Based Verifiers** (e.g., GenPRM) conduct sequential, step-by-step verification. At each step
 169 t , the model must re-process the context of previous steps $(1 \dots t-1)$. This growing context leads to
 170 significant computational overhead, especially for long traces.

171 **Holistic Verifiers** (e.g., standard GenRM and *FlexiVe*) evaluate the entire trace in a single pass. This
 172 is inherently more efficient as the context size is fixed. While standard GenRMs often use a fixed,
 173 high computational budget, *FlexiVe* employs a dynamic strategy (Section 3.2) to modulate its effort.

174 In our framework, S_{trace} is formatted using a critic template Zheng et al. (2024a) as input for *FlexiVe*. It outputs $V_{out} = (F, idx_{pred})$, where F is a textual error analysis and idx_{pred} is the predicted
 175 index of the first error ($idx_{pred} = -1$ signifies no errors). We employ a generative approach where
 176 the model articulates reasoning (F) rather than just outputting a scalar probability. This is crucial for
 177 two reasons: (1) Generative verification generally yields better performance by forcing the model
 178 to articulate dependencies, providing richer supervision than scalar discriminators (Liu et al., 2025;
 179 Zhang et al., 2025); and (2) in the context of our *Solve-Detect-Verify* pipeline, the textual feedback
 180 (F) serves as actionable diagnostic information to guide the solver during the refinement stage, which
 181 a simple scalar score cannot provide.

182 3.2 *FlexiVe* : A UNIFIED GENERATIVE VERIFIER

183 *FlexiVe* is a unified generative verifier designed to operate across the entire spectrum of cost-
 184 performance trade-offs by leveraging a single model with three distinct inference-time modes. At one
 185 extreme, its **Fast Thinking (NoThinking)** mode, inspired by the "NoThinking" mechanism (Ma et al.,
 186 2025), this mode prioritizes extreme efficiency. It utilizes a specific template (see Figure 3) to bypass
 187 explicit thought generation, filling the thinking phase with a placeholder before directly outputting
 188 the verification result. This approach results in responses that are approximately 40 \times shorter than
 189 the "Slow Thinking" mode (see Figure 2), enabling high-throughput, parallel sampling with minimal
 190 latency. At the other, the **Slow Thinking (Think)** mode generates a full, detailed reasoning trace to
 191 maximize verification accuracy. Our novel **Flexible Allocation (Flex)** mode dynamically bridges
 192 these approaches, adaptively switching between Fast and Slow Thinking based on perceived task
 193 difficulty to optimally balance accuracy and cost.

194 **Reinforcement Training for Reliable Fast Thinking** A critical challenge for efficient verifiers is
 195 their low precision (Figure 2) under **NoThinking mode** (Figure 3). We address this through a targeted
 196 Reinforcement Learning strategy using Group Relative Policy Optimization (GRPO) (Shao et al.,
 197 2024a;b). Our goal is to maximize the reliability of the "fast thinking" mode while maintaining its
 198 efficiency.

199 To achieve this, we train *FlexiVe* specifically in the "fast thinking" configuration (activating the
 200 NoThinking template during training). The model predicts the index of the first error (idx_{gt}) or -1 if
 201 correct. GRPO optimizes the policy by maximizing a composite reward $R_i = R_{\text{correct}} + R_{\text{length}}$.

202 The correctness reward R_{correct} is defined by:

$$R_{\text{correct}}(idx_{pred}, idx_{gt}) = \begin{cases} 1.0 & \text{if } idx_{pred} = idx_{gt} \\ 0.0 & \text{otherwise} \end{cases}. \quad (1)$$

203 To prevent the model from "reward hacking" with verbose outputs and ensure efficiency within the
 204 "fast thinking" constraint, we apply a length-based regularization term, R_{length} , proportional to the
 205 length L of the generated response:

$$R_{\text{length}}(L) = -\lambda \cdot L. \quad (2)$$

206 The hyperparameter λ (empirically set to 0.1) is crucial to ensure the "fast thinking" mode remains
 207 token-efficient, preventing the RL policy from converging to verbose outputs that violate the efficiency
 208 goal. Training involves sampling G outputs per prompt and calculating advantages relative to the
 209 group's average (Shao et al., 2024a). A key finding, explored in Section 4.3, is that this targeted RL

216 training not only substantially improves "fast thinking" precision but also generalizes remarkably,
 217 enhancing the accuracy of the "slow thinking" mode.

218 **Flexible Allocation of Verification Budget (Flex@k)** The dynamic "Flexible" mode utilizes a
 219 two-stage verification process to tailor computational effort to the difficulty of the trace.

220 At inference time, the process begins with an efficient, parallelizable probing stage. *FlexiVe* performs
 221 k independent "Fast Thinking" runs, utilizing the token-efficient 'NoThinking' template, on the entire
 222 reasoning trace. The decision to escalate is determined dynamically by the consensus among these
 223 runs. Each run produces an outcome consisting of the predicted error index (or -1 if correct). We
 224 measure consensus by the agreement ratio:

$$R_{\text{agreement}} = \frac{\max_i a_i}{k}, \quad (3)$$

225 where a_i is the count of the most frequent outcome.

226 If the consensus is high ($R_{\text{agreement}} \geq \tau$), it signals a straightforward case, and the "Fast Thinking"
 227 result, V_{fast} , is accepted efficiently. If consensus is low, it indicates ambiguity, and the framework
 228 escalates to the second stage: performing $\max(1, \lceil k/8 \rceil)$ resource-intensive "Slow Thinking" runs to
 229 produce a robust final outcome, V_{slow} . Methodologically, 'Slow Thinking' re-processes the problem
 230 and solver responses without appending the template shown in Figure 3.

231 The overall verification result V is:

$$V = \begin{cases} V_{\text{fast}}, & \text{if } R_{\text{agreement}} \geq \tau, \\ V_{\text{slow}}, & \text{otherwise.} \end{cases} \quad (4)$$

232 The consensus threshold τ and sample count k are critical hyperparameters. We selected these based
 233 on a detailed sensitivity analysis (Appendix A.3.1) and Pareto frontier analysis (Section 4.3). We
 234 identify $\tau = 0.8$ and $k = 8$ (for Flex@8) as the optimal trade-off point (the "knee" of the performance
 235 curve), maximizing accuracy gains while minimizing computational overhead.

236 3.3 Solve-Detect-Verify

237 *Solve-Detect-Verify* is a framework designed to enhance LLM reasoning accuracy and efficiency
 238 through iterative refinement, moving beyond static Best-of-N ranking. It integrates three modules:
 239 Solve, Detect, and Verify/Refine. The full pipeline is summarized in Algorithm 2 in the Appendix.

240 **Solve** The 'Solve' stage initiates the process, wherein the solver LLM is tasked
 241 with generating an initial, step-by-step candidate solution (S_1) to a given problem.
 242 This stage forms the foundational attempt
 243 at problem-solving, producing a complete
 244 reasoning trace and a final answer for sub-
 245 sequent evaluation.

246 **Detect** The 'Detect' module, as illustrated
 247 in 1 continuously monitors the output for
 248 hesitation keywords (Appendix Figure 8).
 249 Upon detection, generation pauses, and
 250 the LLM assesses solution completeness
 251 via a log-probability check ($\log p(\text{Yes})$ vs.
 252 $\log p(\text{No})$). This check efficiently reuses
 253 over 90% of the generation prefix (KV
 254 cache), minimizing overhead. If deemed
 255 complete, the pipeline advances; otherwise,
 256 generation resumes. This curtails "over-
 257 thinking" and enables early verification.

258 **Verify and Refine** The candidate solution S_1 is assessed by *FlexiVe*. If correct, it is accepted.
 259 Otherwise, diagnostic feedback (F_1) guides the solver to generate a new solution, S_2 . This feedback
 260 loop acts as an efficient context engineering strategy to refine the model's reasoning path.

261 **Iterative Refinement and Scalability** The 'Verify and Refine' stages can be iterated to progressively
 262 improve the solution. The number of iterations, T , is a tunable parameter that creates a trade-off

Algorithm 1 Solve-Detect Stage of *Solve-Detect-Verify*

Input: Problem P , Solver M_{solve}
Output: Candidate Solution S_1

```

1: procedure SOLVEDECTECT( $P, M_{\text{solve}}$ )
2:    $S_1 \leftarrow \emptyset$ 
3:    $stop\_flag \leftarrow \text{false}$ 
4:   for  $k = 1$  to  $L_{\text{max}}$  do  $L_{\text{max}}$  is max length
5:      $t_k \sim M_{\text{solve}}(\cdot | P, S_1^{(k-1)})$ 
6:      $S_1^{(k)} \leftarrow S_1^{(k-1)} \oplus t_k$ 
7:     if  $t_k = \text{EOS}$  then
8:        $stop\_flag \leftarrow \text{true}$ 
9:     if  $S_1^{(k)}$  ends with  $kw \in \mathcal{K}_{\text{hesitation}}$  then
10:       $logp_{\text{Yes}} \leftarrow \log p_{M_{\text{solve}}}(\text{Yes} | \text{Prompt}_{\text{complete}}(S_1^{(k)}))$ 
11:       $logp_{\text{No}} \leftarrow \log p_{M_{\text{solve}}}(\text{No} | \text{Prompt}_{\text{complete}}(S_1^{(k)}))$ 
12:      if  $logp_{\text{Yes}} > logp_{\text{No}}$  then ▷ Compare log-probs
13:         $stop\_flag \leftarrow \text{true}$  ▷ Solution complete
14:      if  $stop\_flag$  then
15:        break
16:       $S_1 \leftarrow S_1^{(k)}$ 
17:   return  $S_1$ 

```

270 between computational cost and final accuracy. As shown in Figure 5 (top-right), each iteration yields
 271 monotonic accuracy gains, allowing the framework’s computational depth to be scaled according to
 272 specific performance and budget requirements.
 273

274 4 EXPERIMENTS

276 Our experiments address four primary questions: (1) How accurate and sample-efficient is *FlexiVe*
 277 compared to state-of-the-art (SOTA) verifiers? (2) Does *FlexiVe* offer a superior accuracy-efficiency
 278 trade-off (Pareto frontier) when measured in TFLOPS? (3) Does the *Solve-Detect-Verify* outperform
 279 standard inference-time scaling strategies like Best-of-N (BoN) ranking? (4) Are all components of
 280 the pipeline necessary and robust?

281 4.1 EXPERIMENTAL SETUP

282 For detailed experimental configurations, including hyperparameter settings and full dataset statistics,
 283 please refer to Appendix A.1.1.
 284

285 **Evaluation Tasks and Datasets** We assess *FlexiVe*’s step-level verification capability (F1 score)
 286 on the comprehensive ProcessBench benchmark (Zheng et al., 2024a) (GSM8K, MATH, Olympiad-
 287 Bench, OmniMATH). For the full *Solve-Detect-Verify*, we evaluate end-to-end task accuracy and
 288 efficiency on challenging mathematical datasets: AIME (2024, 2025) (Aim, 2024; 2025), AMC,
 289 CNMO (Liu et al., 2024), and OlympiadBench. Efficiency is measured using total generated tokens
 290 and, crucially, estimated TFLOPS² to account for architectural differences across baselines.
 291

292 **Baselines** On ProcessBench, *FlexiVe* is compared against established Process Reward Models
 293 (PRMs) (Zheng et al., 2024a), including GenPRM (7B and 32B) (Zhao et al., 2025b). For evaluating
 294 the *Solve-Detect-Verify*, DeepSeek-R1 14B (DS14B) and 32B models (Shao et al., 2024a) serve
 295 as the base “worker” LLMs. Performance is benchmarked against direct output, Self-Consistency
 296 (Majority Voting) (Wang et al., 2023), and BoN ranking using external verifiers.
 297

298 **FlexiVe Training** *FlexiVe* (14B) is initialized from DeepSeek-R1-Distill-Qwen-14B and trained
 299 using GRPO on the BIG-Bench Mistake dataset (Tyen et al., 2024). Notably, training utilized
 300 only 1,526 samples. The training focused specifically on the ‘fast mode’ (NoThinking mechanism
 301 activated) to optimize rapid, reliable error detection.
 302

303 Table 1: ProcessBench results reported with F1 scores. Results for *FlexiVe* are highlighted. **bold**
 304 indicates the best in the sub category. All *FlexiVe* variants are trained on only 1526 samples.
 305

306 Model	307 # Samples	308 GSM8K	309 MATH	310 Olympiad	311 Bench	312 Omni-	313 MATH	314 Avg.
<i>Proprietary Models</i>								
GPT-4o-0806	unk	79.2	63.6	51.4	53.5	61.9		
o1-mini	unk	93.2	88.9	87.2	82.4	87.9		
<i>Open Source Models (7-8B)</i>								
Qwen2.5-Math-PRM-7B	~344K	82.4	77.6	67.5	66.3	73.5		
RetrievalPRM-7B	404K	74.6	71.1	60.2	57.3	65.8		
Universal-PRM-7B	unk	85.8	77.7	67.6	66.4	74.3		
Direct Generative PRM-7B	23K	63.9	65.8	54.5	55.9	60.0		
GenPRM-7B w/ Code Exec (Pass@1)	23K	78.7	80.3	72.2	69.8	75.2		
GenPRM-7B w/ Code Exec (Maj@8)	23K	81.0	85.7	78.4	76.8	80.5		
<i>Open Source Models (14-32B) w/ Moderate Compute</i>								
Dyve-14B	117K	68.5	58.3	49.0	47.2	55.8		
GenPRM-32B w/o Code Exec (Maj@8)	23K	78.8	85.1	78.7	74.9	79.3		
<i>FlexiVe</i> (Flex@32)	1526	82.8	83.3	79.2	73.4	79.7		
<i>FlexiVe</i> (Flex@128)	1526	83.0	85.0	80.0	75.2	80.8		
<i>Open Source Models (14-32B) w/ High Compute</i>								
GenPRM-32B (Pass@1) w/ Code Exec	23K	83.1	81.7	72.8	72.8	77.6		
GenPRM-32B (Maj@8) w/ Code Exec	23K	85.1	86.3	78.9	80.1	82.6		
<i>FlexiVe</i> (Think@64)	1526	88.1	90.1	86.7	80.4	86.3		

323 ²Calculated as (input + output tokens) × model parameters, normalized.

FlexiVe Configurations We evaluate *FlexiVe* in three distinct configurations, where k denotes the number of verification samples: (1) **Think@k**: Fixed "slow" budget. Performs k independent "slow thinking" (deliberative) runs with a majority vote. (2) **NoThinking@k**: Fixed "fast" budget. Performs k independent, token-efficient "fast thinking" runs with a majority vote. (3) **Flex@k**: Adaptive budget. Begins with k "fast thinking" runs and escalates to "slow thinking" only if initial consensus is below threshold τ . Provides a dynamic trade-off.

4.2 FLEXIVE: A UNIFIED, STATE-OF-THE-ART VERIFIER

We first evaluate the verification capabilities of the *FlexiVe* model on the ProcessBench benchmark and analyze the effectiveness of its novel RL training strategy.

State-of-the-Art Open-Source Verification Accuracy Table 1 details the F1 scores across various mathematical reasoning datasets. In the "High Compute" setting, *FlexiVe* (Think@64) establishes a new state-of-the-art for open-source models, achieving an average F1 score of 86.3%. This notably outperforms the compute-intensive GenPRM-32B (Maj@8) augmented with code execution (82.6% Avg F1). In the "Moderate Compute" setting, the adaptive *FlexiVe* (Flex@128) achieves a strong average F1 score of 80.8%, surpassing GenPRM-32B (Maj@8) without code execution (79.3% Avg F1).

4.2.1 SAMPLE EFFICIENCY AND TRAINING STRATEGY ABLATION

A key advantage of *FlexiVe* is its sample efficiency and the robustness of its RL-based training objective. To isolate the contributions of our method from the underlying base model and data size, we conducted a rigorous ablation study with ProcessBench (Table 2).

RL vs. SFT on Identical Data: We trained baselines using the exact same dataset (BIG-Bench-Mistake, 1,526 samples) and base model (DeepSeek-R1-14B). As shown in the middle section of Table 2, standard Discriminative PRM training failed to generalize (12.9% Avg F1). Supervised Fine-Tuning (SFT) on the same data reached only 49.0% Avg F1. Notably, our RL strategy not only outperformed these baselines but also surpassed an SFT model trained on $6.5 \times$ more synthetic data. This confirms that the performance gains stem from the novel GRPO training strategy rather than data scale.

Base Model Selection We further validated our choice of base model. As shown in the top section of Table 2, while DeepSeek-R1-14B is a strong starting point (70.8% Avg F1), other open weights models like Llama-3-8B-Instruct and QwQ-32B-Preview lack the inherent reasoning capabilities required for effective verification. Crucially, *FlexiVe* significantly elevates the performance of the DeepSeek base model (from 70.8% to 75.6%), demonstrating that the gains are not merely inherited from the foundation model but are a result of our targeted alignment.

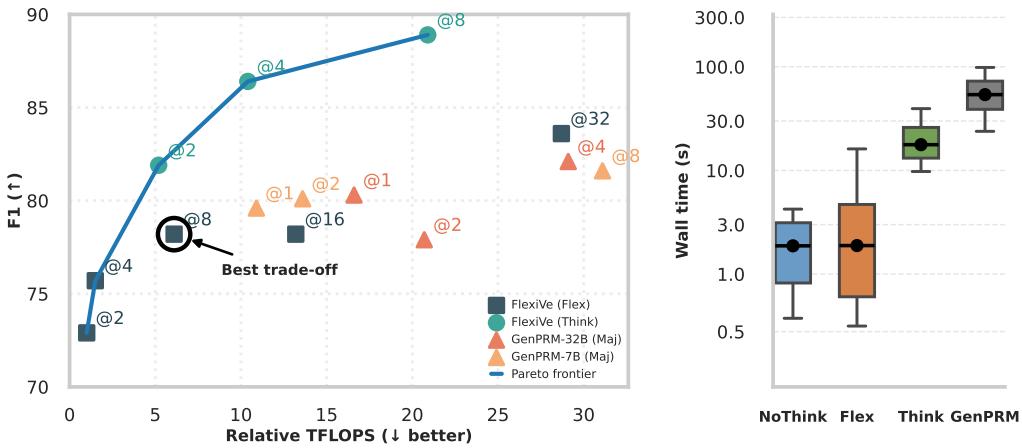
Table 2: **Ablation Study on Base Models and Training Strategies.** **Top:** Comparison of base models (Think@1). **Middle:** Comparison of training methods on identical data (1.5K samples). **Bottom:** Comparison of RL impact across different inference modes. The base model fails to adapt to the efficient "NoThink" and "Flex" protocols, whereas our RL training yields massive gains (e.g., +21.5% in NoThink mode).

Model / Configuration	Training Method	# Samples	GSM8K	MATH	Olym.	Omni.	Avg.
Base Model Selection (Think@1)							
Meta-Llama-3-8B-Instruct	None (Base)	-	26.8	13.2	12.3	13.2	16.4
QwQ-32B-Preview	None (Base)	-	75.5	59.2	35.7	35.3	51.4
DeepSeek-R1-14B	None (Base)	-	77.6	76.2	65.6	64.0	70.8
FlexiVe (Think@1)	RL (Ours)	1.5K	82.6	80.3	73.1	66.3	75.6
Training Strategy Ablation (Base: DeepSeek-R1-14B)							
Discriminative PRM	Math-Shepherd	1.5K	15.8	15.9	8.3	11.9	12.9
Discriminative PRM	SFT	1.5K	66.3	56.0	36.1	37.7	49.0
Generative Verifier	SFT	10K	71.9	69.0	59.7	47.9	62.1
FlexiVe (NoThink)	RL (Ours)	1.5K	82.6	80.3	73.1	66.3	75.6
RL Impact Across Inference Modes (Base: DeepSeek-R1-14B)							
Base Model (Flex@4)	None	-	57.9	62.8	59.6	59.5	60.0
FlexiVe (Flex@4)	RL (Ours)	1.5K	78.4	77.7	72.4	67.3	74.0
Base Model (NoThink@4)	None	-	39.5	36.0	33.9	39.0	37.1
FlexiVe (NoThink@4)	RL (Ours)	1.5K	66.8	61.3	53.8	52.5	58.6

378 **Generalization of RL Training Across Inference Modes** A crucial finding is that our RL training
 379 instills robust verification capabilities across *all* computational budgets, not just the standard "Think"
 380 mode. We extended our ablation study (Table 2, bottom) to evaluate the base model (DeepSeek-
 381 R1-14B) acting as a verifier under our "Flex" and "NoThink" protocols. It struggles significantly
 382 with the token-efficient "NoThink" template, achieving only 37.1% Avg F1. This confirms that
 383 standard reasoning models do not inherently possess the ability to verify efficiently without dedicated
 384 alignment. In contrast, *FlexiVe* (NoThink) achieves 58.6% Avg F1, a relative improvement of $\sim 58\%$.
 385 This "fast-thinking" reliability is what powers the adaptive "Flex" mode, where *FlexiVe* outperforms
 386 the base model by 14 percentage points (74.0% vs 60.0%). Thus, our RL strategy does not merely
 387 improve reasoning for verification. It unlocks a new, efficient inference mode that the base model
 388 lacks.

389 4.3 PARETO FRONTIER ANALYSIS: ACCURACY AND EFFICIENCY

390 We analyze the accuracy-efficiency trade-off of *FlexiVe* against GenPRM, evaluating its Pareto
 391 frontier dominance in both theoretical TFLOPS and empirical wall-clock time. The performance
 392 gap stems from key architectural differences: *FlexiVe* is a **holistic verifier** that processes traces in a
 393 single pass, while GenPRM is a **process-based verifier** that re-evaluates an expanding context at
 394 each step, leading to non-linear cost scaling.



412 Figure 4: Pareto frontier analysis on **ProcessBench MATH split**. **(Left)** F1 Score versus Relative
 413 TFLOPS. *FlexiVe* (Think@k) establishes the state-of-the-art frontier, achieving higher F1 scores at
 414 a lower computational cost relative to GenPRM-7B and GenPRM-32B. **(Right)** A comparison of
 415 wall-clock time. *FlexiVe* demonstrates substantially lower latency; its Flex mode is comparable to
 416 the NoThink baseline, while its Think mode is approximately 2.8x faster than GenPRM. The *FlexiVe*
 417 (Flex@8) configuration is identified as an optimal trade-off point.

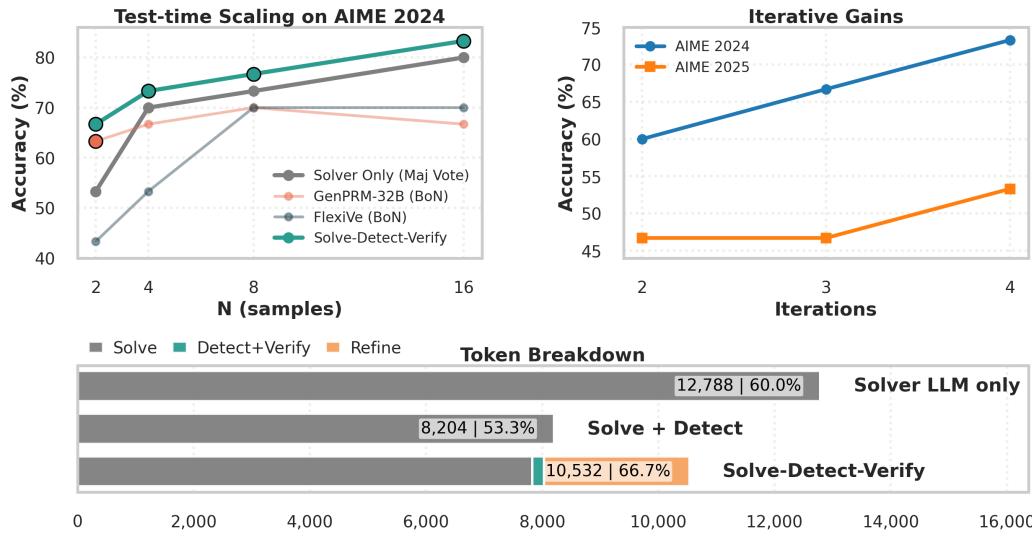
418 **TFLOPS and Wall-Time Efficiency** Figure 4 (left) shows that *FlexiVe* is more efficient. The
 419 *FlexiVe* (Think@k) configurations define a new state-of-the-art Pareto frontier. For instance, *FlexiVe*
 420 (Think@4) attains a higher F1 score (~ 87) than the best GenPRM-32B model (~ 84) while using less
 421 than half the computation (~ 12 vs. ~ 29 TFLOPS).

423 Crucially, considering wall-clock time reveals the distinct advantage of the Flex mode over the
 424 Think mode. While *FlexiVe* (Think@2) offers competitive TFLOPS efficiency, it requires executing
 425 high-latency "Slow Thinking" traces sequentially. In contrast, *FlexiVe* (Flex@8) executes eight
 426 low-latency "Fast Thinking" runs in parallel, escalating to slow thinking only when necessary. As
 427 shown in Figure 4 (right), this results in drastically different latencies: Flex mode achieves a median
 428 wall time of ~ 2 s (matching the 'NoThink' baseline), whereas Think mode requires ~ 18 s. Thus,
 429 while TFLOPS are comparable, Flex provides a superior accuracy-latency trade-off essential for
 430 real-world deployment.

431 **Optimal Trade-off Analysis and Hyperparameter Selection** The *FlexiVe* (Flex@8) configuration,
 432 highlighted in the figure, offers an optimal trade-off between cost and performance. It achieves a

432 substantial F1 score of 78 with a modest computational cost of 7 relative TFLOPS. This analysis
 433 provides a basis for hyperparameter selection, as this point represents the "knee" of the performance
 434 curve—securing most of the accuracy gains without the high expense of premium 'Think' modes.
 435 Given this ideal balance for resource-constrained applications, we adopt the Flex@8 setting for
 436 *FlexiVe* in the subsequent experiments involving the full Solve-Detect-Verify pipeline.

437 4.4 SOLVE-DETECT-VERIFY: AN EFFICIENT ALTERNATIVE TO BoN RANKING



457 Figure 5: Performance and efficiency analysis of the Solve-Detect-Verify (SDV) pipeline on AIME
 458 2024. **(Top-left)** SDV consistently outperforms standard Best-of-N (BoN) ranking methods in
 459 test-time accuracy scaling. **(Top-right)** The iterative nature of SDV yields monotonic accuracy
 460 improvements with each refinement step. **(Bottom)** A token breakdown for a single execution of the
 461 pipeline (Solve → Detect → Verify) reveals the pipeline's efficiency: the 'Detect' stage reduces token
 462 usage, while the 'Verify' stage adds targeted computation to significantly boost accuracy, resulting in
 463 a net efficiency gain over the baseline solver.

464 We evaluate our *Solve-Detect-Verify* framework, demonstrating that its iterative refinement process is
 465 a more effective and efficient inference-time strategy than standard Best-of-N (BoN) ranking. The
 466 analysis is grounded in performance on the AIME 2024 benchmark.

467 **Limitations of Standard BoN Ranking** A common scaling strategy, BoN ranking, relies on an
 468 external verifier to select the best among N candidate solutions. However, our findings indicate
 469 this approach has significant limitations. As shown in Figure 5 (top-left), prominent verifiers like
 470 GenPRM-32B struggle to outperform even a simple majority vote baseline. **We attribute this to**
 471 **ranking miscalibration**, a known issue when verifiers evaluate the lengthy and complex reasoning
 472 traces typical of "thinking" models (Wu et al., 2025b). **Unlike BoN**, which depends on precise
 473 scalar scoring for ranking, our Solve-Detect-Verify (SDV) pipeline consistently achieves the highest
 474 accuracy across all sample sizes (N). At $N = 16$, SDV reaches 83.3% accuracy, surpassing the
 475 strong majority vote baseline (80.0%) and substantially outperforming GenPRM-32B BoN (66.7%).
 476 This suggests that **active** iterative self-correction is a more robust scaling mechanism than **passive**
 477 one-shot external ranking.

478 **The Advantage of Iterative Refinement** The superior performance of SDV is attributable to its
 479 iterative refinement mechanism. Unlike BoN, which passively ranks static solutions, SDV actively
 480 improves upon them. Figure 5 (top-right) quantifies this benefit, showing a clear, monotonic increase
 481 in accuracy with each successive iteration on both the AIME 2024 and 2025 datasets. **(Note: Unlike**
 482 **the parallel sampling (N) in the left panel, this analysis tracks sequential refinement steps (T) on a**
 483 **single solution trajectory.)** For AIME 2024, accuracy improves from 60.0% after two iterations to
 484 over 70.0% after four, confirming that the refinement process is consistently productive.

485 **Component-wise Token Efficiency** The SDV pipeline is architected for efficiency, achieving superior
 486 accuracy without a corresponding increase in computational cost. The token breakdown in Figure 5

(bottom) provides a detailed analysis. The baseline 'Solver LLM only' approach uses an average of 12,788 tokens. **Detect** stage first prunes unnecessary generation paths, significantly reducing the average token count by over 35% to 8,204. **Verify** stage then applies targeted, corrective feedback, increasing the token count to 10,532 but yielding a substantial accuracy gain from 53.3% to 66.7%. Notably, we observe that the solver generates significantly fewer tokens during refinement compared to the initial phase. We hypothesize that while the base RL training encourages extensive exploration initially, the targeted feedback in the second pass constrains the search space, resulting in more concise corrections. The full SDV pipeline delivers a higher accuracy while consuming approximately 18% fewer tokens than the solver-only baseline, demonstrating a clear net gain in overall efficiency.

495 4.5 DISCUSSIONS

496 **Generalizability of Hesitation Detection** We acknowledge that our hesitation keywords were derived
 497 empirically. To assess their generalizability, we evaluated the 'Detect' module on models with distinct
 498 training paradigms (Table 19). The results indicate that the mechanism's effectiveness is tied to
 499 the training method. On RL-distilled models (e.g., Qwen3-8B), the detection behaves predictably,
 500 significantly reducing token usage (e.g., -3,576 tokens on AIME 2025) by pruning unproductive
 501 paths. Conversely, on SFT-trained models (e.g., S1-14B), the behavior is erratic, often increasing
 502 token usage (+2,374 tokens). This suggests that RL training instills a robust link between "verbalized
 503 hesitation" and model uncertainty, making our detection strategy a principled approach for the
 504 increasingly common class of RL-reasoning models.

505
 506 Table 3: Sensitivity of Hesitation Keyword Detection Across Training Paradigms. RL-distilled
 507 models show consistent token reduction, whereas SFT models exhibit erratic behavior.

509 Model (Training Paradigm)	510 Dataset	511 Baseline Acc. (%)	512 Solve+Detect Acc. (%)	513 Acc. $\Delta(pp)$	514 Token Δ
510 Qwen3-8B (RL-distilled)	AIME 2024	83.3	60.9	-22.4	-1,144
	AIME 2025	73.3	66.7	-6.6	-3,576
512 S1 14B (SFT-trained)	AIME 2024	30.0	26.7	-3.3	+2,206
	AIME 2025	13.3	33.3	+20.0	+2,374

515 **Component Robustness and Qualitative Analysis** Our extended analyses in the appendix validate
 516 the key design choices and robustness of our pipeline. The `Flex@k` verifier's dynamic escalation is
 517 governed by a consensus threshold ($\tau = 0.8$) that optimally balances accuracy gains with a nearly
 518 8x reduction in token usage compared to its full "slow thinking" mode (Appendix A.3.1, Table 18).
 519 Finally, the iterative refinement loop demonstrates practical utility by successfully correcting 25% of
 520 incorrect initial solutions on AIME 2024 (Appendix A.3.3). However, qualitative analysis shows that
 521 while feedback effectively restructures algebraic problems, its ability to guide corrections in complex
 522 geometric reasoning remains a limitation, pointing to clear avenues for future work (Appendix A.3.4).

523 5 CONCLUSION AND FUTURE WORK

524 **Conclusion** We introduce *FlexiVe*, a dynamic verifier balancing computational cost and accuracy,
 525 integrated into the *Solve-Detect-Verify* pipeline for efficient LLM reasoning enhancement. Experi-
 526 ments confirm that our pipeline, leveraging *FlexiVe*, achieves significant gains in both accuracy and
 527 token efficiency over baselines, highlighting flexible verification and intelligent pipeline design as a
 528 scalable path toward more reliable and efficient complex reasoning in LLMs.

529 **Limitation and Future Work** *FlexiVe* and *Solve-Detect-Verify* opens several exciting avenues
 530 for future research. Our empirical validation focuses on the challenging domain of mathematical
 531 reasoning, a standard practice for rigorously evaluating complex reasoning frameworks (Zhong et al.,
 532 2025; Zhao et al., 2025b; Zheng et al., 2024a; Wang et al., 2024a). A natural and promising next step
 533 is to extend the demonstrated benefits of *FlexiVe* to broader domains. This presents a straightforward
 534 opportunity to adapt the current "hesitation keywords", an effective heuristic for mathematical traces,
 535 to new linguistic patterns. From a systems perspective, the pipeline's computational profile reflects
 536 a deliberate trade-off for enhanced verification accuracy. We see a clear path to optimizing this by
 537 integrating state-of-the-art inference engines like vLLM (Kwon et al., 2023) or SGLang (Zheng et al.,
 538 2024b). These future steps represent a clear roadmap toward evolving our framework into a more
 539 general-purpose, highly efficient, and robust system for verified reasoning.

540
541 ETHICS STATEMENT

542 We have adhered to the ICLR Code of Ethics in the development and evaluation of this research.
 543 Our work focuses on improving the reasoning capabilities and inference efficiency of large language
 544 models on publicly available mathematical benchmark datasets (`gsm8k`, `math`, `olympiadbench`,
 545 and `omnimatht`). We acknowledge the dual-use nature of advanced AI problem-solvers; while they
 546 can serve as valuable tools for education and research, they could also be misused for academic
 547 dishonesty. The goal of our research is to contribute to the scientific understanding of AI reasoning
 548 and create more reliable and efficient systems, not to facilitate misuse. Our method, `FlexiVe`,
 549 uses pre-trained models without further fine-tuning, and we have made no effort to remove existing
 550 safety guards. We believe our work contributes to the transparent and responsible development of AI
 551 systems.

552
553 REPRODUCIBILITY STATEMENT

554 We are committed to the reproducibility of our research. All experiments were conducted using
 555 publicly available large language models and standard academic benchmarks, the specifics of
 556 which are detailed in the experimental setup section. To facilitate full reproduction of our results,
 557 we will make our source code publicly available upon publication. This release will include the
 558 implementation of the `FlexiVe` framework, scripts for running the evaluations, and the exact
 559 prompts used for generation and feedback (as shown in Figures 6, 7, etc.). Key hyperparameters
 560 and experimental settings, such as the number of voting samples (N) for each configuration, are
 561 described in our results tables (Tables 15-17) and throughout the appendix. Our code is available at
 562 <https://anonymous.4open.science/r/flexive-7D5D>.

563 REFERENCES

564 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
 565 Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models.
 566 In *Advances in Neural Information Processing Systems*, volume 35, pages 24824–24837. Curran
 567 Associates, Inc., 2022.

568 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
 569 language models are zero-shot reasoners. *arXiv preprint arXiv:2205.11916*, 2022.

571 Daniel Kahneman. *Thinking, fast and slow*. Farrar, Straus and Giroux, 2011.

573 Zhong-Zhi Li, Haotian Wang, Kaiyan Zhang, Yancheng He, Yujia Xie, Yuxiang Huang, Zhengliang
 574 Shi, HongCheng Li, Wenxuan Wang, Zhiwei He, Dian Yu, Haitao Mi, Dong Yu, Jie Tang, and
 575 AnBo Zhang. From system 1 to system 2: A survey of reasoning large language models. *arXiv
 576 preprint arXiv:2502.17419*, 2025.

577 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 578 Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
 579 mathematical reasoning in open language models, 2024a. URL <https://arxiv.org/abs/2402.03300>.

581 Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qizhi Liu,
 582 Mengfei Zhou, Zhuseng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu. Do not
 583 think that much for $2+3=?$ on the overthinking of o1-like llms. *arXiv preprint arXiv:2412.21187*,
 584 2024.

585 Jiefeng Chen, Jie Ren, Xinyun Chen, Chengrun Yang, Ruoxi Sun, and Sercan Ö. Arik. SETS:
 586 Leveraging self-verification and self-correction for improved test-time scaling. *arXiv preprint
 587 arXiv:2501.19306*, 2025.

588 Zijun Liu, Peiyi Wang, Runxin Xu, Shirong Ma, Chong Ruan, Peng Li, Yang Liu, and Yu Wu.
 589 Inference-time scaling for generalist reward modeling, 2025. URL <https://arxiv.org/abs/2504.02495>.

592 Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agarwal.
 593 Generative verifiers: Reward modeling as next-token prediction, 2025. URL <https://arxiv.org/abs/2408.15240>.

594 Nishad Singh, Hritik Bansal, Arian Hosseini, Aditya Grover, Kai-Wei Chang, Marcus Rohrbach, and
 595 Anna Rohrbach. When to solve, when to verify: Compute-optimal problem solving and generative
 596 verification for llm reasoning, 2025. URL <https://arxiv.org/abs/2504.01005>.

597 Wenjie Ma, Jingxuan He, Charlie Snell, Tyler Griggs, Sewon Min, and Matei Zaharia. Reasoning
 598 models can be effective without thinking, 2025. URL <https://arxiv.org/abs/2504.09858>.

600 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 601 Mingchuan Zhang, Y.K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
 602 matical reasoning in open language models, 2024b. URL <https://arxiv.org/abs/2402.03300v3>.

603 Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez, Nicholas
 604 Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, et al. Language models (mostly)
 605 know what they know. *arXiv preprint arXiv:2207.05221*, 2022.

606 Stephanie C. Lin, Jacob Hilton, and Owain Evans. Teaching models to express their uncertainty
 607 in words. *Trans. Mach. Learn. Res.*, 2022, 2022. URL <https://api.semanticscholar.org/CorpusID:249191391>.

608 Daniel Yang, Yao-Hung Tsai, and Makoto Yamada. On verbalized confidence scores for llms.
 609 *ArXiv*, abs/2412.14737, 2024. URL <https://api.semanticscholar.org/CorpusID:274859541>.

610 Sean Welleck, Amanda Bertsch, Matthew Finlayson, et al. From decoding to meta-generation:
 611 Inference-time algorithms for large language models. 2024.

612 Jingxuan Wang, Yiming Ming, Zhengliang Shi, et al. Inference-time scaling for complex tasks:
 613 Where we stand and what lies ahead. *arXiv preprint arXiv:2504.00294*, 2025.

614 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
 615 ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
 616 In *International Conference on Learning Representations (ICLR)*, 2023.

617 Yuki Ichihara, Yuu Jinnai, Tetsuro Morimura, Kaito Ariu, Kenshi Abe, Mitsuki Sakamoto, and Eiji
 618 Uchibe. Evaluation of best-of-n sampling strategies for language model alignment, 2025. URL
 619 <https://arxiv.org/abs/2502.12668>.

620 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Sha, Thomas L Chen, Boyuan Rius, Yuxuan Du, Yang Liu,
 621 Zipeng Jiang, Tushar Han, et al. Tree of thoughts: Deliberate problem solving with large language
 622 models. In *Advances in Neural Information Processing Systems (NeurIPS)*, volume 36, 2023.

623 Hanshi Sun, Momin Haider, Ruiqi Zhang, et al. Fast best-of-n decoding via speculative rejection. In
 624 *Advances in Neural Information Processing Systems (NeurIPS)*, 2024.

625 Yiming Wu, Zihan Sun, Sida Li, et al. Inference scaling laws: An empirical analysis of compute-
 626 optimal inference for llm problem-solving. In *International Conference on Learning Representa-
 627 tions (ICLR)*, 2025a.

628 Yiming Wu, Zihan Sun, Sida Li, et al. Scaling flaws of verifier-guided search in mathematical
 629 reasoning. *arXiv preprint arXiv:2502.00271*, 2025b.

630 Eric Zhao, Pranjal Awasthi, and Sreenivas Gollapudi. Sample, scrutinize and scale: Effective
 631 inference-time search by scaling verification. *arXiv preprint arXiv:2502.00891*, 2025a.

632 Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
 633 Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
 634 with self-feedback. In *Advances in Neural Information Processing Systems (NeurIPS)*, volume 36,
 635 2023.

636 Noah Xie, AI AUTODidax, M Sarmad Parvez, Michael Song, Zhenqiao Zhang, Ziyu Chen, Shrimai
 637 Joshi, Robert Gmyr, Yufan Li, Siyuan Li, et al. Reflexion: Language agents with verbal reinforce-
 638 ment learning. In *Advances in Neural Information Processing Systems (NeurIPS)*, volume 36,
 639 2023.

640

648 Afra Feyza Akyurek, Ekin Akyurek, Ashwin Kalyan, Peter Clark, Derry Tanti Wijaya, and Niket
 649 Tandon. RL4F: Generating natural language feedback with reinforcement learning for repairing
 650 model outputs. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, editors, *Proceedings of
 651 the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*,
 652 pages 7716–7733, Toronto, Canada, July 2023. Association for Computational Linguistics. doi:
 653 10.18653/v1/2023.acl-long.427. URL [https://aclanthology.org/2023.acl-long.
 654 427/](https://aclanthology.org/2023.acl-long.427/).

655 Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan Leike,
 656 John Schulman, Ilya Sutskever, and Karl Cognome. Let’s verify step by step. *arXiv preprint
 657 arXiv:2305.20050*, 2023.

659 Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D. Goodman. Star: Bootstrapping reasoning with
 660 reasoning. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2022.

662 Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, et al. Math-Shepherd: Verify and reinforce LLMs
 663 step-by-step without human annotations. In *Proceedings of the 62nd Annual Meeting of the
 664 Association for Computational Linguistics (ACL)*, 2024a.

666 Jian Zhao, Runze Liu, Kaiyan Zhang, Zhimu Zhou, Junqi Gao, Dong Li, Jiafei Lyu, Zhouyi Qian,
 667 Biqing Qi, Xiu Li, and Bowen Zhou. Genprm: Scaling test-time compute of process reward models
 668 via generative reasoning, 2025b. URL <https://arxiv.org/abs/2504.00891>.

673 Aojun Zhou, Ke Wang, Zimu Lu, et al. Solving challenging math word problems using gpt-4
 674 code interpreter with code-based self-verification. In *International Conference on Learning
 675 Representations (ICLR)*, 2024a.

676 Ke Wang, Houxing Ren, Aojun Zhou, et al. Mathcoder: Seamless code integration in llms for
 677 enhanced mathematical reasoning. In *International Conference on Learning Representations
 678 (ICLR)*, 2024b.

679 Jin Peng Zhou, Charles Staats, Wenda Li, et al. Don’t trust: Verify-grounding llm quantitative
 680 reasoning with autoformalization. *arXiv preprint arXiv:2403.18120*, 2024b.

682 Alex Graves. Adaptive computation time for recurrent neural networks. *arXiv preprint
 683 arXiv:1603.08983*, 2016.

685 Jianyuan Zhong, Zeju Li, Zhijian Xu, Xiangyu Wen, and Qiang Xu. Dyve: Thinking fast and slow
 686 for dynamic process verification, 2025. URL <https://arxiv.org/abs/2502.11157>.

688 Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji Lin, Keming Lu, Bowen Yu, Dayiheng Liu, Jin-
 689 gren Zhou, and Junyang Lin. Processbench: Identifying process errors in mathematical reasoning,
 690 2024a. URL <https://arxiv.org/abs/2412.06559>.

693 Aime 2024 dataset card. 2024. URL [https://huggingface.co/datasets/
 694 HuggingFaceH4/aime_2024](https://huggingface.co/datasets/HuggingFaceH4/aime_2024).

696 Aime 2025 dataset card. 2025. URL [https://huggingface.co/datasets/
 697 opencompass/AIME2025](https://huggingface.co/datasets/opencompass/AIME2025).

699 Junnan Liu, Hongwei Liu, Linchen Xiao, Ziyi Wang, Kuikun Liu, Songyang Gao, Wenwei Zhang,
 700 Songyang Zhang, and Kai Chen. Are your llms capable of stable reasoning? *arXiv preprint
 701 arXiv:2412.13147*, 2024.

704 Gladys Tyen, Hassan Mansoor, Victor Carbune, Peter Chen, and Tony Mak. LLMs cannot find
 705 reasoning errors, but can correct them given the error location. In *Findings of the Association
 706 for Computational Linguistics: ACL 2024*, pages 13894–13908, Bangkok, Thailand, August
 707 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.826. URL
 708 <https://aclanthology.org/2024.findings-acl.826>.

702 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
 703 Gonzalez, Hao Lee, and Ion Stoica. Efficient memory management for large language model
 704 serving with pagedattention. In *Proceedings of the ACM SIGOPS 29th Symposium on Operating*
 705 *Systems Principles (SOSP '23)*, page 1013–1029, New York, NY, USA, 2023. Association for
 706 Computing Machinery. doi: 10.1145/3600006.3613165. URL <https://doi.org/10.1145/3600006.3613165>.

707
 708 Lianmin Zheng, Siyuan Zhuang, Zhuohan Li, Cody Hao Yu, Lequn Li, Haotian Chen, Joseph E.
 709 Gonzalez, Ion Stoica, and Jonathan Ragan-Kelley. SGLang: Efficient and expressive struc-
 710 tured generation for large language models. In *Proceedings of the 18th Conference of the Eu-
 711 ropean Chapter of the Association for Computational Linguistics (EACL 2024)*, pages 1053–
 712 1071, St. Julian’s, Malta, 2024b. Association for Computational Linguistics. URL <https://aclanthology.org/2024.eacl-long.63>.

713
 714 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 715 and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International*
 716 *Conference on Learning Representations (ICLR)*, 2022. URL <https://openreview.net/forum?id=nZeVKeFYf9>.

717
 718 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Confer-
 719 ence on Learning Representations (ICLR)*, 2019. URL <https://openreview.net/forum?id=Bkg6RicqY7>.

720
 721 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
 722 Pierrick Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
 723 von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
 724 Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-Art natural
 725 language processing. In *Proceedings of the 2020 Conference on Empirical Methods in Natural*
 726 *Language Processing: System Demonstrations*, pages 38–45, Online, October 2020. Associa-
 727 tion for Computational Linguistics. URL <https://www.aclweb.org/anthology/2020.emnlp-demos.6>.

728
 729 Leandro von Werra, Lewis Schmid, Thomas Wolf, and Lewis Tunstall. Trl: Transformer reinforcement
 730 learning. <https://github.com/huggingface/trl>, 2020–2024.

731
 732 Lukas Biewald. Experiment tracking with weights and biases. <https://wandb.ai>, 2020. URL
 733 <https://www.wandb.com/>. Software available from wandb.com.

734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755

756 **A APPENDIX**
757758 **THE USE OF LARGE LANGUAGE MODELS**
759760 We use Large Language Models (LLMs), including ChatGPT and Gemini, solely for the purpose of
761 editing and polishing the writing in this paper.
762763 **BROADER IMPACT**
764765 The development of `FlexiVe` and the `Solve-Detect-Verify` pipeline represents a significant
766 step toward making advanced AI reasoning systems more practical, reliable, and efficient. By
767 designing a verifier that dynamically allocates computational resources—switching between rapid
768 “fast thinking” and meticulous “slow thinking”—our framework directly confronts the critical trade-
769 off between accuracy and efficiency that currently limits the deployment of large models. This
770 approach promotes a more sustainable and scalable paradigm for AI reasoning, reducing the reliance
771 on computationally expensive, brute-force methods like Best-of-N sampling with process-based
772 verifiers. Our work has the potential to enhance trust and safety in AI systems. By not only
773 identifying but also pinpointing the exact location of errors and providing targeted feedback for
774 correction, our pipeline improves the interpretability and debuggability of the reasoning process.
775 This iterative refinement is crucial for high-stakes domains where reliability is paramount, such as
776 automated scientific discovery, medical diagnostics, and educational tools. By making state-of-the-art
777 reasoning more computationally accessible, our work also helps democratize advanced AI, enabling
778 powerful capabilities to run in more resource-constrained environments. This research paves the way
779 for future investigations into more sophisticated self-correcting systems and adaptive computation,
780 pushing the frontier of efficient and trustworthy artificial intelligence.
781782 **A.1 IMPLEMENTATION DETAILS AND EXPERIMENTAL SETUP**
783784 This section provides comprehensive details regarding the training of `FlexiVe`, the implementation
785 of the `Solve-Detect-Verify` pipeline, evaluation benchmarks, and specific implementation
786 clarifications.
787788 **A.1.1 FLEXIVE TRAINING**
789790 **Training Protocol and Rationale** We train `FlexiVe` using Group Relative Policy Optimization
791 (GRPO) (Shao et al., 2024a) initialized from the DeepSeek-R1-Distill-Qwen-14B model (Shao et al.,
792 2024a). We utilize the BIG-Bench Mistake dataset (Tyen et al., 2024), using 1,526 samples for
793 training and 170 for testing, derived from a 90%/10% split. The objective is to predict the first
794 error index (idx_{gt}) or -1 if correct, optimized using the composite reward (Section 3.2, main paper).
795 Training initially focused on optimizing the “Fast Thinking” mode (NoThinking activated) to instill
796 efficient, accurate error detection with minimal verbosity. This strategy established a strong, low-cost
797 baseline and promoted data efficiency, providing a robust foundation that generalized well to the
798 “Slow Thinking” mode. Statistics for the training data are provided in Table 4.
799800 Table 4: Details of the model and dataset used for training.
801

802 Items	803 Values
804 Model	805 <code>FlexiVe-14B</code>
806 Benchmark	807 BIG-Bench Mistake
808 Train Set Size	809 1,526
810 Test Set Size	811 170

812 **RL vs. SFT Generalization** As discussed in the main paper (Section 4.2), our RL approach
813 demonstrated superior generalization compared to Supervised Fine-Tuning (SFT). An SFT baseline
814 trained on 10,000 complex reasoning paths showed poor generalization when evaluated on the
815 diverse, often simpler traces in ProcessBench. In contrast, `FlexiVe`, RL-trained on only 1,526
816 samples, generalized effectively. This highlights RL’s advantage in fostering robust verifiers capable
817 of handling diverse reasoning styles and complexities, even with significantly less data.
818819 **Hyperparameters and Optimization** We employed LoRA (Hu et al., 2022) targeting attention
820 projection layers and used the AdamW (Loshchilov and Hutter, 2019) optimizer with gradient
821

810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 checkpointing. Training utilized the `transformers` (Wolf et al., 2020) and `trl` (von Werra et al., 2020-2024) libraries, tracked via `Weights & Biases` (Biewald, 2020). The key hyperparameters and optimization settings are summarized in Table 5.

Table 5: Training details.

Parameter	Value	Description
Base Model	DeepSeek-R1-Distill-Qwen-14B	Base model for initialization
Learning Rate	5×10^{-6}	Initial learning rate
Batch Size	1	Per-device batch size
Num Train Epochs	3	Number of training epochs
Gradient Accum. Steps	8	Gradient accumulation steps
PEFT / LoRA	True (r=16, $\alpha=32$)	Adapter fine-tuning (LoRA)
LR Scheduler Type	Linear	Learning Rate Scheduler Type
Optimizer	AdamW	Optimization algorithm
Warmup Steps	100	Number of warmup steps
GRPO Group Size	14	Number of generations per prompt
KL Coefficient	0.04	KL penalty coefficient for GRPO

A.1.2 EVALUATION BENCHMARKS

836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 We assessed our framework on a suite of challenging mathematical reasoning benchmarks. For evaluating step-level verification performance, we used the four standard splits of the **ProcessBench** benchmark: GSM8K, MATH, Olympiad-Bench, and OmniMATH. For evaluating the end-to-end performance of the full *Solve–Detect–Verify* pipeline, we used problems from the **AIME 2024** and **AIME 2025** competitions. The number of problems in the test set for each benchmark is detailed in Table 6.

Table 6: Details of datasets used for model evaluation.

Benchmark	Test Set Size
<i>ProcessBench Splits</i>	
GSM8K	400
MATH	1,000
Olympiad-Bench	1,000
OmniMATH	1,000
<i>End-to-End Evaluation</i>	
AIME 2024	30
AIME 2025	30

A.1.3 SOLVE–DETECT–VERIFY PIPELINE

864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 The *Solve–Detect–Verify* pipeline employs an adaptive, iterative strategy. Algorithm 2 outlines the implemented flow, focusing on the iterative refinement process generalized for T attempts.

Solve Module and Prompts We employ DeepSeek-R1-14B/32B as the solver LLM. The initial prompt (Figure 6) guides the model to generate a structured solution. If refinement is required ($t > 1$), a retry prompt (Figure 7) incorporates feedback from *FlexiVe* (F_{prev}).

LLM Initial Solver Prompt

The following is a math problem:
[Math Problem]
{question}
Solve it step by step. For each step, you
should use `\n\n` in the end.
Please put your final answer (i.e., the
index) in `\boxed{{}}`.

Figure 6: LLM Initial Solver Prompt.

LLM Retry Prompt with Feedback

The following is a math problem:
[Math Problem] {question}

You previously attempted to solve this:
[Previous Solution]
{previous_solution}

The feedback is:
[Verification Feedback]
{verifier_feedback}

Please correct your solution.
Provide a complete, new solution.
Put your final answer in \boxed{{}}.

Figure 7: LLM Retry Prompt with Feedback.

Detect Module The `GenerateSolutionWithDetection` function implements a streaming detection framework to identify and curtail "overthinking."

- **Hesitation Keywords:** Generation is monitored for hesitation cues (Figure 8). These keywords were derived empirically by observing common phrases signaling a pause or self-correction in LLM outputs.
- **Completeness Check:** Upon detecting a keyword, the proposer is suspended. A Detector LLM (the same base model) evaluates the context using the prompt in Figure 9. We compare the log-probabilities of "Yes" and "No" to determine completeness.
- **Efficiency (KV Cache Reuse):** The 'Detect' module achieves high efficiency by leveraging vLLM (Kwon et al., 2023) with prefix caching. Since the detection prompt is a continuation of the existing generation context, vLLM automatically reuses the KV cache from preceding steps, leading to minimal overhead (more than 90% reuse).
- **"Continue-after-detected" Logic:** If completeness is detected, the generation might be briefly continued to ensure the current thought segment is fully articulated before truncation, facilitating better context for potential sequential revision.

Hesitation Keywords

```
Wait, double-check, Alternatively, Hmm,
Let me check, Alright, make sure,
Another way, Let me verify, to confirm,
Looking back, But wait
```

Figure 8: Hesitation keywords monitored for detection.

LLM Detection Prompt

```
You are a solution completeness checker.
Given current solution to a math problem,
determine if it is a complete solution
(i.e., contains a final answer).
Respond with exactly one word: 'Yes' if
complete, 'No' otherwise.
```

Figure 9: LLM Detection Prompt.

Verify Module (AdaptiveVerify) This function implements the Flexible Allocation of Verification Budget (Section 3.2). It conducts k_{fast} "Fast Thinking" runs. If the agreement ratio meets τ_{agree} , the consensus is returned. Otherwise, it escalates to k_{slow} "Slow Thinking" runs. Across all experiments, k_{slow} is consistently set to $\lceil k_{fast}/8 \rceil$, balancing cost reduction with sufficient analysis to resolve ambiguities.

A.1.4 EVALUATION BENCHMARKS AND BASELINES

Flexible Evaluation We assess step-level verification capabilities (F1 score) using ProcessBench (Zheng et al., 2024a) (GSM8K, MATH, OlympiadBench, OmniMATH). We compare against SOTA Process Reward Models (PRMs), including GenPRM (Zhao et al., 2025b) and Dyve (Zhong et al., 2025).

Pipeline Evaluation We evaluate the end-to-end effectiveness of the Solve–Detect–Verify pipeline on challenging mathematical datasets: AIME (2024, 2025) (Aim, 2024; 2025), AMC, CNMO (Liu et al., 2024) (China's National Mathematical Olympiad), and OlympiadBench. We measure accuracy and efficiency (tokens, TFLOPS). We use DeepSeek-R1 14B/32B (Shao et al., 2024a) as the base worker LLMs, comparing against direct generation and Self-Consistency (Wang et al., 2023).

Compute Categories In Table 10, models are categorized by computational effort:

- **Moderate Compute:** Involves a reasonable number of samples without code execution (e.g., GenPRM Maj@8 w/o code, FlexiVe Flex@k). The adaptive nature of Flex@k keeps the average compute moderate.
- **High Compute:** Prioritizes maximal accuracy using extensive verification or intensive techniques (e.g., GenPRM Maj@8 w/ Code Exec, FlexiVe Think@64).

978 A.2 DETAILED EXPERIMENTAL RESULTS

979 A.2.1 FLEXIVE PERFORMANCE SCALING

981 Tables 7 (Think@k), 8 (NoThinking@k), and 9 (Flex@k) provide detailed F1 scores and total token
 982 consumption (in Millions, M) for FlexiVe across ProcessBench subsets.

984 Table 7: Performance of FlexiVe "With Thinking" (Think@k) on ProcessBench subsets. Tokens
 985 are total generated (Millions) across the respective test set.

988 k	987 GSM8K		989 MATH		990 OlympiadBench		991 OmniMATH	
	992 F1 (%)	993 Tokens (M)	994 F1 (%)	995 Tokens (M)	996 F1 (%)	997 Tokens (M)	998 F1 (%)	999 Tokens (M)
999 2	82.3	2.4	81.9	5.2	78.0	8.4	71.3	7.1
1000 4	86.7	4.8	86.4	10.4	84.3	16.8	76.9	14.3
1001 8	86.4	9.5	88.9	20.9	85.4	33.4	78.9	28.6
1002 16	87.6	19.2	89.7	41.8	86.5	66.9	80.1	57.1
1003 32	87.7	38.1	89.7	83.8	86.7	133.6	80.6	114.2
1004 64	87.8	76.3	90.1	167.5	86.7	267.3	80.4	228.4
1005 128	88.1	152.7	90.0	335.4	86.7	534.1	80.5	456.4

1006 Table 8: Performance of FlexiVe "Without Thinking" (NoThinking@k) on ProcessBench subsets.

1000 k	1001 GSM8K		1002 MATH		1003 OlympiadBench		1004 OmniMATH	
	1005 F1 (%)	1006 Tokens (M)	1007 F1 (%)	1008 Tokens (M)	1009 F1 (%)	1010 Tokens (M)	1011 F1 (%)	1012 Tokens (M)
1013 2	61.5	0.4	57.2	1.5	49.0	1.9	50.5	1.6
1014 4	66.8	0.7	61.3	3.0	53.8	3.7	52.5	3.3
1015 8	66.7	1.5	62.8	6.1	55.2	7.5	53.6	6.6
1016 16	66.8	3.0	64.3	12.1	55.9	15.0	54.2	13.3
1017 32	66.5	5.9	64.4	24.2	55.9	29.9	54.7	26.5
1018 64	66.8	11.8	64.2	48.5	56.1	59.8	54.0	52.9
1019 128	66.7	23.7	65.0	96.8	56.3	119.8	54.1	105.9

1020 Table 9: Performance of FlexiVe with Flexible Allocation (Flex@k) on ProcessBench subsets.

1021 k	1022 GSM8K		1023 MATH		1024 OlympiadBench		1025 OmniMATH	
	1026 F1 (%)	1027 Tokens (M)	1028 F1 (%)	1029 Tokens (M)	1030 F1 (%)	1031 Tokens (M)	1032 F1 (%)	1033 Tokens (M)
1034 2	72.97	0.2	72.92	1.0	67.43	1.3	61.41	1.3
1035 4	78.43	0.3	77.67	1.5	72.41	2.1	67.34	2.1
1036 8	75.75	0.5	78.86	3.1	70.06	4.3	66.57	4.2
1037 16	76.88	0.9	78.20	6.1	73.07	8.2	68.94	7.9
1038 32	82.84	2.1	83.30	13.9	79.23	19.5	73.40	18.8
1039 64	82.00	4.3	83.63	28.7	79.26	39.6	74.67	38.6
1040 128	83.02	8.9	84.96	59.1	79.98	80.8	75.23	78.5

1041 **Analysis of Trade-offs and Efficiency** The data demonstrates the distinct trade-offs. Think@k
 1042 establishes the accuracy upper bound at the highest cost. NoThinking@k is the most efficient but has
 1043 the lowest accuracy ceiling. Flex@k effectively balances these extremes. On MATH@128, Flex@k
 1044 (84.96% F1, 59.1M tokens) achieves an 82.4% token reduction compared to Think@128 (90.0% F1,
 1045 335.4M tokens).

At $k = 128$, Flex@k uses approximately 86.1% fewer tokens on average than Think@k. Notably, at higher k values, Flex@k can be both more accurate and more token-efficient than NoThinking@k (e.g., on GSM8K and MATH).

Visualizing F1 Scaling Figure 10 visualizes the F1 score scaling corresponding to the data above. Flex@k consistently outperforms NoThinking@k and generally matches or exceeds the DS14B baseline, confirming the effectiveness of the adaptive approach.

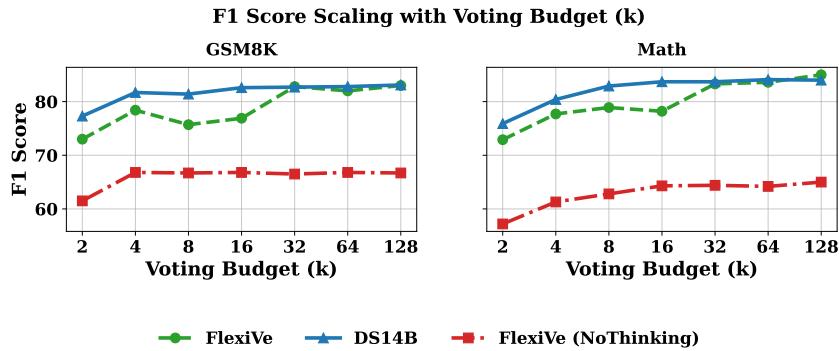


Figure 10: F1 score scaling with voting budget k on GSM8K (left) and MATH (right). FlexiVe (Flex@k, green circles) improves with larger k , performing comparably or better than DS14B (blue triangles, baseline verifier), while both surpass the FlexiVe (NoThinking variant, red squares).

A.2.2 COMPREHENSIVE PROCESSBENCH RESULTS

Table 10 provides a comprehensive comparison of FlexiVe on ProcessBench. FlexiVe demonstrates strong performance and remarkable sample efficiency, achieving SOTA results despite being trained on only 1,526 samples, compared to 23K-404K samples for other models. In the Moderate Compute category, Flex@128 achieves the best average F1 (80.8%). In the High Compute category, Think@64 establishes a new SOTA for open-source models (86.3% Avg F1).

A.2.3 STATISTICAL SIGNIFICANCE AND STABILITY

To validate robustness, we simulated the voting process 10 times from a pool of 512 cached completions to generate 95% confidence intervals for FlexiVe’s performance (Tables 15, 16, and 17, showing selected k values for brevity).

The analysis finds: (1) **Think@k** shows high stability (tight intervals $\leq 1\%$). (2) **NoThink@k** exhibits higher variance (wider intervals 2-5%). (3) **Flex@k** achieves a balanced trade-off (moderate intervals 1-4%), validating the reliability of the adaptive approach.

A.2.4 PARETO FRONTIER ANALYSIS DATA (FIGURE 4)

Table 11 provides the detailed data points corresponding to the Pareto frontier analysis presented in Figure 4 (main paper), comparing F1 scores and Relative TFLOPS on the MATH split of Processbench (Zheng et al., 2024a).

A.2.5 SOLVE-DETECT-VERIFY PIPELINE PERFORMANCE DATA (FIGURE 5)

This section provides the underlying data supporting the analysis presented in Section 4.4 and Figure 5 (main paper), focusing on the AIME 2024 benchmark.

Scaling Performance (BoN vs. SDV) Table 12 details the accuracy scaling as the number of samples (N) increases. The SDV pipeline consistently outperforms both simple majority voting and BoN ranking using external verifiers.

Iterative Gains Table 13 demonstrates the monotonic accuracy improvements achieved through the iterative refinement process of the SDV pipeline.

1080 Table 10: ProcessBench results reported with F1 scores. Results for *FlexiVe* are highlighted . **bold**
 1081 indicates the best in the sub category. All *FlexiVe* variants are trained on only 1526 samples.

Model	# Samples	GSM8K	MATH	Olympiad Bench	Omni-MATH	Avg.
<i>Proprietary Models</i>						
GPT-4o-0806	unk	79.2	63.6	51.4	53.5	61.9
o1-mini	unk	93.2	88.9	87.2	82.4	87.9
<i>Open Source Models (1.5B)</i>						
Skywork-PRM-1.5B	unk	59.0	48.0	19.3	19.2	36.4
GenPRM-1.5B (Pass@1) w/ Code Exec	23K	52.8	66.6	55.1	54.5	57.3
<i>Open Source Models (7-8B)</i>						
Math-Shepherd-PRM-7B	445K	47.9	29.5	24.8	23.8	31.5
RLHFlow-PRM-Mistral-8B	273K	50.4	33.4	13.8	15.8	28.4
EurusPRM-Stage2	30K	47.3	35.7	21.2	20.9	31.3
Qwen2.5-Math-PRM-7B	~344K	82.4	77.6	67.5	66.3	73.5
RetrievalPRM-7B	404K	74.6	71.1	60.2	57.3	65.8
Universal-PRM-7B	unk	85.8	77.7	67.6	66.4	74.3
Direct Generative PRM-7B	23K	63.9	65.8	54.5	55.9	60.0
GenPRM-7B w/ Code Exec (Pass@1)	23K	78.7	80.3	72.2	69.8	75.2
GenPRM-7B w/ Code Exec (Maj@8)	23K	81.0	85.7	78.4	76.8	80.5
<i>Open Source Models (14-32B) w/ Moderate Compute</i>						
Dyve-14B	117K	68.5	58.3	49.0	47.2	55.8
GenPRM-32B w/o Code Exec (Maj@8)	23K	78.8	85.1	78.7	74.9	79.3
<i>FlexiVe</i> (Flex@32)	1526	82.8	83.3	79.2	73.4	79.7
<i>FlexiVe</i> (Flex@128)	1526	83.0	85.0	80.0	75.2	80.8
<i>Open Source Models (14-32B) w/ High Compute</i>						
GenPRM-32B (Pass@1) w/ Code Exec	23K	83.1	81.7	72.8	72.8	77.6
GenPRM-32B (Maj@8) w/ Code Exec	23K	85.1	86.3	78.9	80.1	82.6
<i>FlexiVe</i> (Think@64)	1526	88.1	90.1	86.7	80.4	86.3

1110 Table 11: Detailed Data for Pareto Frontier Analysis on MATH Dataset (Figure 4).

Model	Config (@k)	F1 Score (%)	Relative TFLOPS
FlexiVe (Flex)	@2	72.9	1.9
	@4	75.8	3.8
	@8 (Best Trade-off)	78.9	7.5
	@16	78.2	13.2
	@32	83.3	27.2
FlexiVe (Think)	@1	81.9	6.1
	@2	82.3	10.2
	@4	86.4	12.3
	@8	88.9	22.8
GenPRM-7B (Maj)	@1	80.3	15.1
	@8	83.1	28.1
GenPRM-32B (Maj)	@1	80.0	13.4
	@8	83.5	29.4

1127 **Token Efficiency Breakdown** Table 14 details the average token usage and accuracy at each stage of
 1128 the pipeline, illustrating the efficiency gains from the 'Detect' stage and the accuracy boost from the
 1129 'Verify' stage.

1131 A.2.6 SCALING PROPERTIES

1132 We explore scaling *Solve-Detect-Verify* along two dimensions: the verifier budget (Flex@N) and the
 1133 solver budget (Number of Solutions).

1134 Table 12: Test-time Accuracy Scaling on AIME 2024 (Data supporting Figure 5, Top-Left).
1135

Method	N=2	N=4	N=8	N=16
Solver Only (Maj Vote)	53.3	70.0	73.3	80.0
GenPRM-32B (BoN)	63.3	66.7	70.0	66.7
FlexiVe (BoN)	43.3	53.3	70.0	70.0
Solve-Detect-Verify	66.7	73.3	76.7	83.3

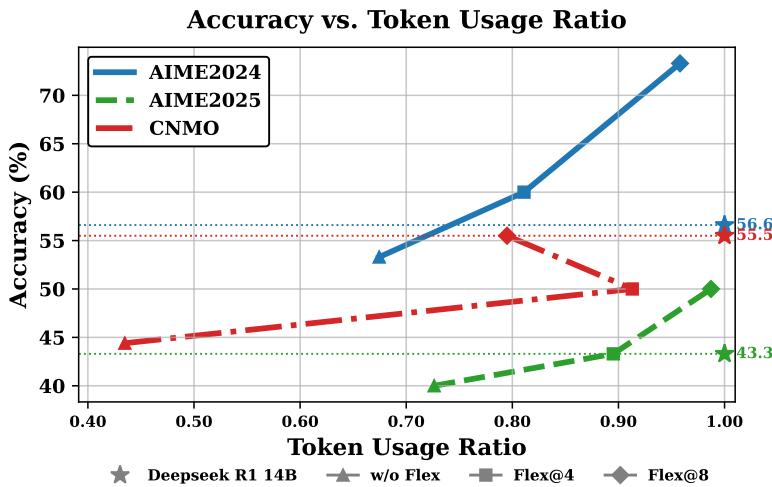
1143 Table 13: Iterative Refinement Gains (Data supporting Figure 5, Top-Right).
1144

Iterations	AIME 2024 Accuracy (%)	AIME 2025 Accuracy (%)
2	60.0	46.7
3	66.7	46.7
4	73.3	53.3

1151 Table 14: Token Efficiency Breakdown on AIME 2024 (Data supporting Figure 5, Bottom).
1152

Configuration	Average Tokens	Accuracy (%)
Solver LLM only	12,788	60.0
Solve + Detect	8,204	53.3
Solve-Detect-Verify	10,532	66.7

1160 *Scaling Verifier Budget (Flex@N):* We analyze scaling *FlexiVe*’s budget within a single pipeline run
1161 (Figure 11). The ‘w/o Flex’ setup significantly cuts token usage (e.g., 0.67 ratio on AIME2024) but
1162 reduces accuracy. Integrating ‘Flex@8’ substantially boosts accuracy over the baseline (e.g., 73.3%
1163 vs. 56.6% on AIME2024) while still using fewer tokens (0.96 ratio).

1182 Figure 11: Impact of scaling *FlexiVe*’s verification budget (Flex@N) within a single *Solve-Detect-Verify* execution on Pass@1 Accuracy vs. Token Usage Ratio relative to DeepSeek R1 14B.
1183

1184 *Scaling Solver Budget:* To achieve higher peak accuracies, we scale compute by generating multiple
1185 solutions from the solver. On AIME2024 (Figure 5, top left panel), this strategy yields significant
1186 improvements, climbing from 67.5% (1 solution) to over 83% (16 solutions), requiring approximately
1187 4x fewer solutions than the baseline to reach similar accuracy levels.

1188 A.2.7 FLEXIVE PERFORMANCE SCALING DETAILS
11891190 This section provides a more detailed breakdown of the performance scaling for the different config-
1191 urations of our Flexive method. We present the 95% confidence intervals for accuracy on four
1192 benchmark datasets as the number of voting samples (N) increases.1193 The results are detailed for the "With Thinking" configuration (Think@k) in Table 15, the "Without
1194 Thinking" configuration (NoThink@k) in Table 16, and our primary Flexive method (Flex@k)
1195 in Table 17.1196 A consistent trend is evident across all tables: performance generally improves as the number of
1197 voting samples (N) increases from 2 to 128. For example, for the main Flex@k method on the
1198 math dataset, accuracy climbs from 72.9% to 85.0%. Concurrently, the confidence intervals tend to
1199 narrow with a larger N , indicating more stable and reliable results. These tables also quantitatively
1200 show that the Think@k method consistently achieves the highest performance, while NoThink@k
1201 establishes a performance baseline.1202
1203 Table 15: 95% Confidence Intervals for Flexive "With Thinking" (Think@k).1204
1205

Voting N	gsm8k	math	olympiadbench	omnimat
2	82.3 ± 0.89	81.9 ± 0.67	78.0 ± 0.38	71.3 ± 0.56
8	86.4 ± 0.50	88.9 ± 0.21	85.4 ± 0.40	78.9 ± 0.19
32	87.7 ± 0.44	89.7 ± 0.24	86.7 ± 0.33	80.6 ± 0.21
128	88.1 ± 0.32	90.0 ± 0.15	86.7 ± 0.15	80.5 ± 0.09

1211 Table 16: 95% Confidence Intervals for Flexive "Without Thinking" (NoThink@k).

1212
1213

Voting N	gsm8k	math	olympiadbench	omnimat
2	61.5 ± 2.36	57.2 ± 4.28	49.0 ± 2.56	50.5 ± 3.55
8	66.7 ± 2.63	62.8 ± 4.91	55.2 ± 3.32	53.6 ± 4.05
32	66.5 ± 2.35	64.4 ± 4.96	55.9 ± 2.98	54.7 ± 3.93
128	66.7 ± 2.46	65.0 ± 5.09	56.3 ± 3.23	54.1 ± 4.08

1218
1219 Table 17: 95% Confidence Intervals for Flexive (Flex@k).1220
1221

Voting N	gsm8k	math	olympiadbench	omnimat
2	73.0 ± 2.74	72.9 ± 4.08	67.4 ± 2.62	61.4 ± 3.34
8	75.8 ± 2.48	78.9 ± 2.85	70.1 ± 2.05	66.6 ± 2.57
32	82.8 ± 1.17	83.3 ± 2.38	79.2 ± 1.41	73.4 ± 2.39
128	83.0 ± 1.32	85.0 ± 1.48	80.0 ± 1.51	75.2 ± 2.47

1227 A.3 EXTENDED DISCUSSIONS AND ANALYSIS

1228 A.3.1 SENSITIVITY ANALYSIS OF CONSENSUS THRESHOLD τ 1229 The consensus threshold τ governs the escalation from "Fast Thinking" to "Slow Thinking" in the
1230 Flex@k strategy. We performed a sensitivity analysis (Table 18) to validate our choice of $\tau = 0.8$.1231 Table 18: Sensitivity analysis for the consensus threshold τ in Flex@8, averaged across ProcessBench
1232 datasets. As τ varies, performance shifts between the 'NoThink@8' and 'Think@8' baselines.1233
1234

Consensus Threshold (τ)	Slow Thinking Escalation (%)	Avg. F1 Score (%)	Avg. Total Tokens (M)
NoThink@8 Baseline	0%	59.6	5.4
0.5	5%	61.0	5.2
0.7	18%	69.5	4.1
0.8 (Chosen)	28%	72.9	3.0
0.95	80%	83.5	19.5
Think@8 Baseline	100%	84.9	23.1

At a low threshold ($\tau = 0.5$), escalation is minimal (5%), and performance approaches the ‘No-Think@8’ baseline. At a strict threshold ($\tau = 0.95$), the system escalates 80% of cases, approaching the ‘Think@8’ baseline but at a massive computational cost. Our chosen value, $\tau = 0.8$, represents the optimal balance, significantly raising the F1 score (72.9%) while maintaining high efficiency (3.0M tokens, nearly 8x lower than Think@8).

A.3.2 ROBUSTNESS OF THE DETECTION MECHANISM

As discussed in Section 4.5 (main paper), the robustness of the hesitation keyword detector depends on the model’s training paradigm (Table 19). On RL-distilled models (e.g., Qwen3-8B), the mechanism behaves predictably. However, on SFT-trained models (e.g., S1 14B), its behavior is erratic, sometimes increasing token usage and causing unpredictable accuracy shifts. This suggests RL instills a more reliable link between hesitation keywords and model uncertainty.

Table 19: Sensitivity of Hesitation Keyword Detection Across Training Paradigms. (Table 2 in main paper).

Model (Training Paradigm)	Dataset	Baseline Acc. (%)	Solve+Detect Acc. (%)	Acc. $\Delta(pp)$	Token Δ
Qwen3-8B (RL-distilled)	AIME 2024	83.3	60.9	-22.4	-1,144
	AIME 2025	73.3	66.7	-6.6	-3,576
S1 14B (SFT-trained)	AIME 2024	30.0	26.7	-3.3	+2,206
	AIME 2025	13.3	33.3	+20.0	+2,374

A.3.3 EFFECTIVENESS OF THE REFINEMENT LOOP

We analyzed the refinement success rate on the AIME 2024 dataset. Out of 16 initial solutions that were incorrect (S1), our pipeline successfully corrected 4 of them (S2), yielding a **25% success rate**. This demonstrates the practical utility of the refinement mechanism, particularly noteworthy as FlexiVe was not fine-tuned on the solver’s specific traces, indicating good generalization.

A.3.4 QUALITATIVE ANALYSIS OF THE FEEDBACK MECHANISM

We analyzed successful and failed feedback attempts to provide deeper insight into the correction process.

Successful S1 → S2 Correction

Problem: Every morning Aya goes for a 9-kilometer-long walk... When she walks at a constant speed of s ... the walk takes her 4 hours, including t min...

S1 Error at Step: 2

FlexiVe Feedback (Excerpt): ...Understanding the problem: Aya walks 9 km at two different speeds... We need to find the total time when she walks at $(s + \frac{1}{2})$ km/h.

Setting up equations:

- First scenario: $4 = \frac{9}{s} + \frac{t}{60}$
- Second scenario: $2.4 = \frac{9}{s+2} + \frac{t}{60}$

Subtracting equations: ...

Result: S2 was correct

1296
1297**Ineffective Feedback (Failed Correction)**1298
1299**Problem:** Let B be the set of rectangular boxes with surface area 54 and volume 23. Let r be the radius of the smallest sphere that can contain...

1300

Error Location by FlexiVe: Step 13

1301

FlexiVe Feedback (Excerpt): The solution starts by understanding that the radius... is half the space diagonal... $r^2 = \frac{a^2+b^2+c^2}{4}$. The goal is to maximize $a^2 + b^2 + c^2$ given the constraints...

1302

Outcome: Correction failed

1303

Analysis: For complex geometry problems, FlexiVe may fail to produce a corrective pathway, highlighting a limitation in advanced spatial and geometric problem-solving capabilities.

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349