
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

Solve-Detect-Verify : INFERENCE-TIME SCALING WITH
FLEXIBLE GENERATIVE VERIFIER

Anonymous authors
Paper under double-blind review

ABSTRACT

Complex reasoning with Large Language Models (LLMs) demands a careful bal-
ance between accuracy and computational cost. Verification, crucial for reliability,
exacerbates this challenge. Existing methods often force a stark trade-off: robust
process-based verifiers incur prohibitive costs due to iterative recomputation, while
fast, efficient verifiers suffer from low precision. We introduce FlexiVe , a unified
generative verifier designed to navigate this trade-off. FlexiVe dynamically allo-
cates compute between rapid ”fast thinking” and deliberative ”slow thinking.” A
key innovation is our training strategy: we use Reinforcement Learning (GRPO)
to specifically enhance the reliability of the fast mode. Remarkably, this targeted
training generalizes, elevating the slow mode to state-of-the-art open-source perfor-
mance. To optimally deploy FlexiVe , we propose the Solve-Detect-Verify (SDV)
pipeline. SDV moves beyond static Best-of-N ranking, employing an efficient
iterative refinement process that detects solution completion to curtail “overthink-
ing” and uses FlexiVe ’s feedback for targeted correction. Our results demonstrate
significant improvements in both accuracy and efficiency. FlexiVe establishes a
new open-source1 state-of-the-art on ProcessBench, outperforming the much larger
GenPRM-32B while requiring ∼2.3x fewer TFLOPS with 15x less training data.
On the challenging AIME 2024 benchmark, the full SDV pipeline achieves 83.3%
accuracy, surpassing strong baselines.

Figure 1: We introduce the Solve-Detect-Verify (SDV) pipeline, powered by our novel adaptive verifier,
FlexiVe , to optimize the accuracy-efficiency trade-off in LLM reasoning. Left: On AIME 2024, our
pipeline achieves higher accuracy (66.7% vs. 63.3%) while using nearly 6x fewer verification tokens
than a standard process-based approach (GenPRM). Right: This efficiency is driven by FlexiVe’s
design. Unlike Process-Based verifiers (e.g., GenPRM) that incur accumulating overhead at each
step, FlexiVe analyzes the trace holistically. It employs a dynamic strategy: multiple low-cost ”Fast
Thinking” checks (∼0.1k tokens) are run first, escalating to high-cost ”Slow Thinking” (∼4k tokens)
only when consensus is lacking.

1Our code is available at https://anonymous.4open.science/r/flexive-7D5D.

1

https://anonymous.4open.science/r/flexive-7D5D

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 INTRODUCTION

Recent advances in Large Language Models (LLMs) have enhanced their capabilities in complex
reasoning tasks, primarily through the generation of step-by-step reasoning traces (Wei et al., 2022;
Kojima et al., 2022). This shift towards deeper, “System 2” processes (Kahneman, 2011; Li et al.,
2025; Shao et al., 2024a), while crucial for accuracy, introduces a fundamental trade-off with
computational efficiency.

This challenge is exacerbated by two factors. First, models often exhibit “overthinking” (Chen et al.,
2024), generating redundant self-correction steps, begins with hesitation words or phrases (e.g.,
“hmm”, “let me double check”) and redundant internal verification steps even after a correct interme-
diate solution might have been implicitly reached (Chen et al., 2024). Second, ensuring the reliability
of these traces requires verification (Chen et al., 2025), which adds further complexity. Sophisticated
Generative Reward Models.(GenRMs) (Liu et al., 2025; Zhang et al., 2025) can be computationally
prohibitive (Singhi et al., 2025), while highly efficient mechanisms like “NoThinking” (Ma et al.,
2025) in Figure 3, when adapted for verification, suffer severe drops in precision (see Figure 2).

This complex interplay reveals a clear methodological gap: the need for a flexible verifier that can
adapt its computational effort, and an intelligent inference-time pipeline to deploy it strategically
while streamlining the reasoning process. To address these compounded challenges, we introduce
FlexiVe, a unified generative verifier, and the Solve-Detect-Verify (SDV) pipeline. Our contributions
are summarized as follows:

• FlexiVe : A Flexible, RL-Trained Generative Verifier We introduce a single, unified
model operating across the cost-performance spectrum: (1) a rapid “fast thinking” mode; (2)
a deliberative “slow thinking” mode; and (3) a dynamic “flexible” mode, which utilizes a
consensus strategy that first uses efficient, parallelizable “fast thinking” assessments of the
entire reasoning trace to gauge verification difficulty. It escalates to deeper, “slow thinking”
analysis only when initial consensus is low. A key innovation is our training strategy: we use
Group Relative Policy Optimization (GRPO) (Shao et al., 2024a;b) to specifically enhance
the reliability of the “fast thinking” mode. We find this targeted RL training not only fixes
the low precision of fast verifiers but generalizes remarkably, elevating the “slow thinking”
mode to state-of-the-art performance.

• Solve-Detect-Verify (SDV) We propose an inference-time pipeline that intelligently inte-
grates the solver and verifier, moving beyond standard Best-of-N (BoN) ranking paradigms.
SDV employs an iterative refinement process, featuring a lightweight “Detect” module that
leverages likelihood-based probing (Kadavath et al., 2022; Lin et al., 2022; Yang et al.,
2024) to identify solution completion points and curtail “overthinking.” Since FlexiVe ’s
feedback can be naturally used as an effective means for context engineering, the pipeline
triggers FlexiVe to provide targeted, generative feedback that guides the solver to refine
the response into a more accurate final solution. The entire detect-verify-refine cycle can
be scaled; iterating the process yields accuracy gains. We demonstrate that this intelligent
integration is significantly more effective than static ranking.

• State-of-the-Art Efficiency and Accuracy FlexiVe sets a new open-source SOTA on
ProcessBench, outperforming larger models like GenPRM-32B while requiring∼2.3x fewer
TFLOPS and, crucially, using 15x less training data. On challenging benchmarks like
AIME 2024, the full SDV pipeline achieves 83.3% accuracy. Notably, our pipeline achieves
higher accuracy than a comparable GenPRM BoN setup while using only 1/6th of the
computational tokens.

Our work demonstrates that the path to efficient and reliable LLM reasoning lies not only in developing
flexible components but, critically, in designing intelligent pipelines that integrate them effectively.

2 RELATED WORK

Inference-Time Scaling Strategies Inference-time scaling strategies increase test-time compute
to improve reasoning accuracy (Welleck et al., 2024; Wang et al., 2025), using methods from self-
consistency (Wang et al., 2023), verifier ranked Best-of-N (BoN) (Ichihara et al., 2025), to tree-based
searches (Yao et al., 2023). While effective, these strategies are computationally intensive, spurring
work on optimized decoding (Sun et al., 2024) and compute trade-offs (Wu et al., 2025a). As scaling

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

gsm8k math
0

20

40

60

80

100

Er
ro

r
Pr

ec
is

io
n

(%
)

39.1%

91.8%

19.2K
tokens

531.4K
tokens

55.9%

97.1%

99.8K
tokens

4.0M
tokens

Error Precision vs. Rationale Length

27.7x 40.2x

AIME 2024 AIME 2025
0

10

20

30

40

50

60

70

Ac
cu

ra
cy

 (
%

)

56.6%
53.3%

391.0K
tokens 284.0K

tokens

43.3%
40%

307.0K
tokens 255.0K

tokens

Accuracy vs. Token Usage

1.4x
1.2x

0

10

20

30

40

To
ke

n
Re

du
ct

io
n

Ra
ti

o

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

To
ke

n
Re

du
ct

io
n

Ra
ti

o

NoThinking Precision Thinking Precision Token Reduction Ratio Full Thinking First Solution

Figure 2: Empirical motivation for efficient verification and generation strategies. (Left) Comparison
of error precision and token usage between NoThinking and Thinking verification on GSM8K and
Math (ProcessBench). While NoThinking significantly reduces tokens, its error precision is substan-
tially lower, sugguesting high false positive rate. (Right) Accuracy and token usage comparison
between generating a full solution (Full Thinking) and halting generation early upon detecting a
complete intermediate solution (First Solution) on AIME 2024 and AIME 2025. Early detection
offers significant token reduction with comparable accuracy.
generations alone is insufficient (Chen et al., 2025) and verifier-guided search has known flaws (Wu
et al., 2025b; Zhao et al., 2025a), intelligent frameworks like Solve-Detect-Verify (SDV) are needed.
While building on established iterative refinement concepts (Madaan et al., 2023; Xie et al., 2023;
Akyurek et al., 2023), SDV uniquely prioritizes efficiency through active detection and adaptive
verification to avoid the computational redundancy (”overthinking”) typical of brute-force methods
(Chen et al., 2024).

Verification Paradigms Verification, while crucial, adds computational cost. Generative and process-
based verifiers like GenRMs and PRMs (Lightman et al., 2023; Liu et al., 2025; Zhang et al., 2025)
offer detailed feedback but can be demanding (Singhi et al., 2025). Recent work reduces annotation
reliance via bootstrapping (Zelikman et al., 2022) or label-free methods like Math-Shepherd (Wang
et al., 2024a). Hybrid models like GenPRM (Zhao et al., 2025b) integrate code execution within a
process-based framework, motivating its use as a key baseline. Alternative paradigms like code-based
self-verification (Zhou et al., 2024a; Wang et al., 2024b) and autoformalization (Zhou et al., 2024b)
use code for precision but may lack general applicability. In contrast, FlexiVe performs efficient,
holistic trace analysis with dynamic budget allocation, targeting broader use cases.

NoThinking

User Query / Problem
↓

<beginning of thinking>
↓

“Okay, I think I have finished thinking.”
↓

</end of thinking>
↓

Final Answer Generation

Figure 3: The NoThinking mechanism
bypasses explicit thought generation, us-
ing a template to fill the thinking phase.

Adaptive Computation and Our Novelty Inspired by
dual-process theory (Kahneman, 2011; Li et al., 2025),
adaptive computation balances reasoning and efficiency
(Graves, 2016). However, extreme efficiency methods like
”NoThinking” (Ma et al., 2025) in Figure 3, when applied
to verification, can yield low precision (Figure 2). The
most related work, DyVe (Zhong et al., 2025), also uses
”fast” and ”slow” verification modes. However, its per-step
approach incurs accumulating overhead. FlexiVe differs
critically by (1) performing holistic, consensus-based ver-
ification on the entire reasoning trace to avoid iterative
costs, and (2) optimizing its ”fast” mode for reliable di-
agnosis via Reinforcement Learning (GRPO) (Shao et al.,
2024a) for a more robust efficiency-accuracy balance.

3 METHOD

3.1 PROBLEM FORMULATION

System Components Our inference-time scaling frame-
work uses two primary Large Language Model (LLM) components: a solver LLM and FlexiVe ,
our specialized generative verifier. Both are reasoning-capable models. The solver, an off-the-shelf
LLM, generates initial candidate solutions. FlexiVe is specifically trained for verification, detailed in
Section 3.2.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Reasoning Trace Segmentation A reasoning trace Strace is parsed into an ordered sequence of
Ns steps, Strace = (step1, . . . , stepNs

). Each stepi is a contiguous text segment delineated by
predefined ”hesitation keywords” (e.g., ”Wait, double-check”, ”Alternatively”, ”Hmm”, ”Let me
check” listed in Appendix A.1.3 Figure 8). This segmented trace forms the input for verification.

Verifier Architectures and Operation The task of the verifier is to assess the correctness of Strace.
Architectures approach this differently, with significant implications for efficiency (Figure 1).

Process-Based Verifiers (e.g., GenPRM) conduct sequential, step-by-step verification. At each step
t, the model must re-process the context of previous steps (1 . . . t− 1). This growing context leads to
significant computational overhead, especially for long traces.

Holistic Verifiers (e.g., standard GenRM and FlexiVe) evaluate the entire trace in a single pass. This
is inherently more efficient as the context size is fixed. While standard GenRMs often use a fixed,
high computational budget, FlexiVe employs a dynamic strategy (Section 3.2) to modulate its effort.

In our framework, Strace is formatted using a critic template Zheng et al. (2024a) as input for FlexiVe
. It outputs Vout = (F, idxpred), where F is a textual error analysis and idxpred is the predicted
index of the first error (idxpred = −1 signifies no errors). We employ a generative approach where
the model articulates reasoning (F) rather than just outputting a scalar probability. This is crucial for
two reasons: (1) Generative verification generally yields better performance by forcing the model
to articulate dependencies, providing richer supervision than scalar discriminators (Liu et al., 2025;
Zhang et al., 2025); and (2) in the context of our Solve-Detect-Verify pipeline, the textual feedback
(F) serves as actionable diagnostic information to guide the solver during the refinement stage, which
a simple scalar score cannot provide.

3.2 FlexiVe : A UNIFIED GENERATIVE VERIFIER

FlexiVe is a unified generative verifier designed to operate across the entire spectrum of cost-
performance trade-offs by leveraging a single model with three distinct inference-time modes. At one
extreme, its Fast Thinking (NoThinking) mode, inspired by the “NoThinking” mechanism (Ma et al.,
2025), this mode prioritizes extreme efficiency. It utilizes a specific template (see Figure 3) to bypass
explicit thought generation, filling the thinking phase with a placeholder before directly outputting
the verification result. This approach results in responses that are approximately 40× shorter than
the “Slow Thinking” mode (see Figure 2), enabling high-throughput, parallel sampling with minimal
latency. At the other, the Slow Thinking (Think) mode generates a full, detailed reasoning trace to
maximize verification accuracy. Our novel Flexible Allocation (Flex) mode dynamically bridges
these approaches, adaptively switching between Fast and Slow Thinking based on perceived task
difficulty to optimally balance accuracy and cost.

Reinforcement Training for Reliable Fast Thinking A critical challenge for efficient verifiers is
their low precision (Figure 2) under NoThinking mode (Figure 3). We address this through a targeted
Reinforcement Learning strategy using Group Relative Policy Optimization (GRPO) (Shao et al.,
2024a;b). Our goal is to maximize the reliability of the ”fast thinking” mode while maintaining its
efficiency.

To achieve this, we train FlexiVe specifically in the ”fast thinking” configuration (activating the
NoThinking template during training). The model predicts the index of the first error (idxgt) or −1 if
correct. GRPO optimizes the policy by maximizing a composite reward Ri = Rcorrect +Rlength.

The correctness reward Rcorrect is defined by:

Rcorrect(idxpred, idxgt) =

{
1.0 if idxpred = idxgt

0.0 otherwise
. (1)

To prevent the model from ”reward hacking” with verbose outputs and ensure efficiency within the
”fast thinking” constraint, we apply a length-based regularization term, Rlength, proportional to the
length L of the generated response:

Rlength(L) = −λ · L. (2)
The hyperparameter λ (empirically set to 0.1) is crucial to ensure the ”fast thinking” mode remains
token-efficient, preventing the RL policy from converging to verbose outputs that violate the efficiency
goal. Training involves sampling G outputs per prompt and calculating advantages relative to the
group’s average (Shao et al., 2024a). A key finding, explored in Section 4.3, is that this targeted RL

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

training not only substantially improves ”fast thinking” precision but also generalizes remarkably,
enhancing the accuracy of the ”slow thinking” mode.

Flexible Allocation of Verification Budget (Flex@k) The dynamic ”Flexible” mode utilizes a
two-stage verification process to tailor computational effort to the difficulty of the trace.

At inference time, the process begins with an efficient, parallelizable probing stage. FlexiVe performs
k independent ”Fast Thinking” runs ,utilizing the token-efficient ‘NoThinking’ template, on the entire
reasoning trace. The decision to escalate is determined dynamically by the consensus among these
runs. Each run produces an outcome consisting of the predicted error index (or -1 if correct). We
measure consensus by the agreement ratio:

Ragreement =
maxi ai

k
, (3)

where ai is the count of the most frequent outcome.

If the consensus is high (Ragreement ≥ τ), it signals a straightforward case, and the ”Fast Thinking”
result, Vfast, is accepted efficiently. If consensus is low, it indicates ambiguity, and the framework
escalates to the second stage: performing max(1, ⌈k/8⌉) resource-intensive ”Slow Thinking” runs to
produce a robust final outcome, Vslow. Methodologically, ’Slow Thinking’ re-processes the problem
and solver responses without appending the template shown in Figure 3.

The overall verification result V is:

V =

{
Vfast, if Ragreement ≥ τ,

Vslow, otherwise.
(4)

The consensus threshold τ and sample count k are critical hyperparameters. We selected these based
on a detailed sensitivity analysis (Appendix A.3.1) and Pareto frontier analysis (Section 4.3). We
identify τ = 0.8 and k = 8 (for Flex@8) as the optimal trade-off point (the ”knee” of the performance
curve), maximizing accuracy gains while minimizing computational overhead.

3.3 Solve-Detect-Verify

Solve-Detect-Verify is a framework designed to enhance LLM reasoning accuracy and efficiency
through iterative refinement, moving beyond static Best-of-N ranking. It integrates three modules:
Solve, Detect, and Verify/Refine. The full pipeline is summarized in Algorithm 2 in the Appendix.

Algorithm 1 Solve-Detect Stage of Solve-Detect-Verify
Input: Problem P , Solver Msolve

Output: Candidate Solution S1

1: procedure SOLVEDETECT(P,Msolve)
2: S1 ← ∅
3: stop flag ← false
4: for k = 1 to Lmax do ▷ Lmax is max length
5: tk ∼Msolve(·|P, S

(k−1)
1)

6: S
(k)
1 ← S

(k−1)
1 ⊕ tk

7: if tk = EOS then
8: stop flag ← true
9: if S(k)

1 ends with kw ∈ Khesitation then
10: logpYes ← log pMsolve (Yes|Promptcomplete(S

(k)
1))

11: logpNo ← log pMsolve (No|Promptcomplete(S
(k)
1))

12: if logpYes > logpNo then ▷ Compare log-probs
13: stop flag ← true ▷ Solution complete
14: if stop flag then
15: break
16: S1 ← S

(k)
1

17: return S1

Solve The ‘Solve’ stage initiates the pro-
cess, wherein the solver LLM is tasked
with generating an initial, step-by-step can-
didate solution (S1) to a given problem.
This stage forms the foundational attempt
at problem-solving, producing a complete
reasoning trace and a final answer for sub-
sequent evaluation.

Detect The ‘Detect’ module, as illustrated
in 1 continuously monitors the output for
hesitation keywords (Appendix Figure 8).
Upon detection, generation pauses, and
the LLM assesses solution completeness
via a log-probability check (log p(Yes) vs.
log p(No)). This check efficiently reuses
over 90% of the generation prefix (KV
cache), minimizing overhead. If deemed
complete, the pipeline advances; otherwise,
generation resumes. This curtails ”over-
thinking” and enables early verification.

Verify and Refine The candidate solution S1 is assessed by FlexiVe . If correct, it is accepted.
Otherwise, diagnostic feedback (F1) guides the solver to generate a new solution, S2. This feedback
loop acts as an efficient context engineering strategy to refine the model’s reasoning path.

Iterative Refinement and Scalability The ‘Verify and Refine’ stages can be iterated to progressively
improve the solution. The number of iterations, T , is a tunable parameter that creates a trade-off

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

between computational cost and final accuracy. As shown in Figure 5 (top-right), each iteration yields
monotonic accuracy gains, allowing the framework’s computational depth to be scaled according to
specific performance and budget requirements.

4 EXPERIMENTS

Our experiments address four primary questions: (1) How accurate and sample-efficient is FlexiVe
compared to state-of-the-art (SOTA) verifiers? (2) Does FlexiVe offer a superior accuracy-efficiency
trade-off (Pareto frontier) when measured in TFLOPS? (3) Does the Solve-Detect-Verify outperform
standard inference-time scaling strategies like Best-of-N (BoN) ranking? (4) Are all components of
the pipeline necessary and robust?

4.1 EXPERIMENTAL SETUP

For detailed experimental configurations, including hyperparameter settings and full dataset statistics,
please refer to Appendix A.1.1.

Evaluation Tasks and Datasets We assess FlexiVe ’s step-level verification capability (F1 score)
on the comprehensive ProcessBench benchmark (Zheng et al., 2024a) (GSM8K, MATH, Olympiad-
Bench, OmniMATH). For the full Solve-Detect-Verify , we evaluate end-to-end task accuracy and
efficiency on challenging mathematical datasets: AIME (2024, 2025) (Aim, 2024; 2025), AMC,
CNMO (Liu et al., 2024), and OlympiadBench. Efficiency is measured using total generated tokens
and, crucially, estimated TFLOPS2 to account for architectural differences across baselines.

Baselines On ProcessBench, FlexiVe is compared against established Process Reward Models
(PRMs) (Zheng et al., 2024a), including GenPRM (7B and 32B) (Zhao et al., 2025b). For evaluating
the Solve-Detect-Verify , DeepSeek-R1 14B (DS14B) and 32B models (Shao et al., 2024a) serve
as the base ”worker” LLMs. Performance is benchmarked against direct output, Self-Consistency
(Majority Voting) (Wang et al., 2023), and BoN ranking using external verifiers.

FlexiVe Training FlexiVe (14B) is initialized from DeepSeek-R1-Distill-Qwen-14B and trained
using GRPO on the BIG-Bench Mistake dataset (Tyen et al., 2024). Notably, training utilized
only 1,526 samples. The training focused specifically on the ‘fast mode’ (NoThinking mechanism
activated) to optimize rapid, reliable error detection.

Table 1: ProcessBench results reported with F1 scores. Results for FlexiVe are highlighted . bold
indicates the best in the sub category. All FlexiVe variants are trained on only 1526 samples.

Model # Samples GSM8K MATH Olympiad
Bench

Omni-
MATH Avg.

Proprietary Models

GPT-4o-0806 unk 79.2 63.6 51.4 53.5 61.9
o1-mini unk 93.2 88.9 87.2 82.4 87.9

Open Source Models (7-8B)

Qwen2.5-Math-PRM-7B ∼344K 82.4 77.6 67.5 66.3 73.5
RetrievalPRM-7B 404K 74.6 71.1 60.2 57.3 65.8
Universal-PRM-7B unk 85.8 77.7 67.6 66.4 74.3
Direct Generative PRM-7B 23K 63.9 65.8 54.5 55.9 60.0
GenPRM-7B w/ Code Exec (Pass@1) 23K 78.7 80.3 72.2 69.8 75.2
GenPRM-7B w/ Code Exec (Maj@8) 23K 81.0 85.7 78.4 76.8 80.5

Open Source Models (14-32B) w/ Moderate Compute
Dyve-14B 117K 68.5 58.3 49.0 47.2 55.8
GenPRM-32B w/o Code Exec (Maj@8) 23K 78.8 85.1 78.7 74.9 79.3
FlexiVe (Flex@32) 1526 82.8 83.3 79.2 73.4 79.7
FlexiVe (Flex@128) 1526 83.0 85.0 80.0 75.2 80.8

Open Source Models (14-32B) w/ High Compute
GenPRM-32B (Pass@1) w/ Code Exec 23K 83.1 81.7 72.8 72.8 77.6
GenPRM-32B (Maj@8) w/ Code Exec 23K 85.1 86.3 78.9 80.1 82.6
FlexiVe (Think@64) 1526 88.1 90.1 86.7 80.4 86.3

2Calculated as (input + output tokens) × model parameters, normalized.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

FlexiVe Configurations We evaluate FlexiVe in three distinct configurations, where k denotes
the number of verification samples: (1) Think@k: Fixed ”slow” budget. Performs k independent
”slow thinking” (deliberative) runs with a majority vote. (2) NoThinking@k: Fixed ”fast” budget.
Performs k independent, token-efficient ”fast thinking” runs with a majority vote. (3) Flex@k:
Adaptive budget. Begins with k ”fast thinking” runs and escalates to ”slow thinking” only if initial
consensus is below threshold τ . Provides a dynamic trade-off.

4.2 FLEXIVE: A UNIFIED, STATE-OF-THE-ART VERIFIER

We first evaluate the verification capabilities of the FlexiVe model on the ProcessBench benchmark
and analyze the effectiveness of its novel RL training strategy.

State-of-the-Art Open-Source Verification Accuracy Table 1 details the F1 scores across various
mathematical reasoning datasets. In the ”High Compute” setting, FlexiVe (Think@64) establishes a
new state-of-the-art for open-source models, achieving an average F1 score of 86.3%. This notably
outperforms the compute-intensive GenPRM-32B (Maj@8) augmented with code execution (82.6%
Avg F1). In the ”Moderate Compute” setting, the adaptive FlexiVe (Flex@128) achieves a strong
average F1 score of 80.8%, surpassing GenPRM-32B (Maj@8) without code execution (79.3% Avg
F1).

4.2.1 SAMPLE EFFICIENCY AND TRAINING STRATEGY ABLATION

A key advantage of FlexiVe is its sample efficiency and the robustness of its RL-based training
objective. To isolate the contributions of our method from the underlying base model and data size,
we conducted a rigorous ablation study wirh ProcessBench (Table 2).

RL vs. SFT on Identical Data: We trained baselines using the exact same dataset (BIG-Bench-
Mistake, 1,526 samples) and base model (DeepSeek-R1-14B). As shown in the middle section of
Table 2, standard Discriminative PRM training failed to generalize (12.9% Avg F1). Supervised
Fine-Tuning (SFT) on the same data reached only 49.0% Avg F1. Notably, our RL strategy not only
outperformed these baselines but also surpassed an SFT model trained on 6.5× more synthetic data.
This confirms that the performance gains stem from the novel GRPO training strategy rather than
data scale.

Base Model Selection We further validated our choice of base model. As shown in the top section
of Table 2, while DeepSeek-R1-14B is a strong starting point (70.8% Avg F1), other open weights
models like Llama-3-8B-Instruct and QwQ-32B-Preview lack the inherent reasoning capabilities
required for effective verification. Crucially, FlexiVe significantly elevates the performance of the
DeepSeek base model (from 70.8% to 75.6%), demonstrating that the gains are not merely inherited
from the foundation model but are a result of our targeted alignment.
Table 2: Ablation Study on Base Models and Training Strategies. Top: Comparison of base
models (Think@1). Middle: Comparison of training methods on identical data (1.5K samples).
Bottom: Comparison of RL impact across different inference modes. The base model fails to adapt
to the efficient ”NoThink” and ”Flex” protocols, whereas our RL training yields massive gains (e.g.,
+21.5% in NoThink mode).

Model / Configuration Training Method # Samples GSM8K MATH Olym. Omni. Avg.
Base Model Selection (Think@1)
Meta-Llama-3-8B-Instruct None (Base) - 26.8 13.2 12.3 13.2 16.4
QwQ-32B-Preview None (Base) - 75.5 59.2 35.7 35.3 51.4
DeepSeek-R1-14B None (Base) - 77.6 76.2 65.6 64.0 70.8
FlexiVe (Think@1) RL (Ours) 1.5K 82.6 80.3 73.1 66.3 75.6
Training Strategy Ablation (Base: DeepSeek-R1-14B)
Discriminative PRM Math-Shepherd 1.5K 15.8 15.9 8.3 11.9 12.9
Discriminative PRM SFT 1.5K 66.3 56.0 36.1 37.7 49.0
Generative Verifier SFT 10K 71.9 69.0 59.7 47.9 62.1
FlexiVe (NoThink) RL (Ours) 1.5K 82.6 80.3 73.1 66.3 75.6
RL Impact Across Inference Modes (Base: DeepSeek-R1-14B)
Base Model (Flex@4) None - 57.9 62.8 59.6 59.5 60.0
FlexiVe (Flex@4) RL (Ours) 1.5K 78.4 77.7 72.4 67.3 74.0
Base Model (NoThink@4) None - 39.5 36.0 33.9 39.0 37.1
FlexiVe (NoThink@4) RL (Ours) 1.5K 66.8 61.3 53.8 52.5 58.6

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Generalization of RL Training Across Inference Modes A crucial finding is that our RL training
instills robust verification capabilities across all computational budgets, not just the standard ”Think”
mode. We extended our ablation study (Table 2, bottom) to evaluate the base model (DeepSeek-
R1-14B) acting as a verifier under our ”Flex” and ”NoThink” protocols. It struggles significantly
with the token-efficient ”NoThink” template, achieving only 37.1% Avg F1. This confirms that
standard reasoning models do not inherently possess the ability to verify efficiently without dedicated
alignment. In contrast, FlexiVe (NoThink) achieves 58.6% Avg F1, a relative improvement of ∼58%.
This ”fast-thinking” reliability is what powers the adaptive ”Flex” mode, where FlexiVe outperforms
the base model by 14 percentage points (74.0% vs 60.0%). Thus, our RL strategy does not merely
improve reasoning for verification. It unlocks a new, efficient inference mode that the base model
lacks.

4.3 PARETO FRONTIER ANALYSIS: ACCURACY AND EFFICIENCY

We analyze the accuracy-efficiency trade-off of FlexiVe against GenPRM, evaluating its Pareto
frontier dominance in both theoretical TFLOPS and empirical wall-clock time. The performance
gap stems from key architectural differences: FlexiVe is a holistic verifier that processes traces in a
single pass, while GenPRM is a process-based verifier that re-evaluates an expanding context at
each step, leading to non-linear cost scaling.

0 5 10 15 20 25 30
Relative TFLOPS (better)

70

75

80

85

90

F1
 (

)

@2

@4

@8 @16

@32
@2

@4

@8

@1

@2

@4

@1 @2
@8

Best trade-off

FlexiVe (Flex)
FlexiVe (Think)
GenPRM-32B (Maj)
GenPRM-7B (Maj)
Pareto frontier

NoThink Flex Think GenPRM

0.5

1.0

3.0

10.0

30.0

100.0

300.0

W
al

l t
im

e
(s

)

Figure 4: Pareto frontier analysis on ProcessBench MATH split. (Left) F1 Score versus Relative
TFLOPS. FlexiVe (Think@k) establishes the state-of-the-art frontier, achieving higher F1 scores at
a lower computational cost relative to GenPRM-7B and GenPRM-32B. (Right) A comparison of
wall-clock time. FlexiVe demonstrates substantially lower latency; its Flex mode is comparable to
the NoThink baseline, while its Think mode is approximately 2.8x faster than GenPRM. The FlexiVe
(Flex@8) configuration is identified as an optimal trade-off point.

TFLOPS and Wall-Time Efficiency Figure 4 (left) shows that FlexiVe is more efficient. The
FlexiVe (Think@k) configurations define a new state-of-the-art Pareto frontier. For instance, FlexiVe
(Think@4) attains a higher F1 score (∼87) than the best GenPRM-32B model (∼84) while using less
than half the computation (∼12 vs. ∼29 TFLOPS).

Crucially, considering wall-clock time reveals the distinct advantage of the Flex mode over the
Think mode. While FlexiVe (Think@2) offers competitive TFLOPS efficiency, it requires executing
high-latency ”Slow Thinking” traces sequentially. In contrast, FlexiVe (Flex@8) executes eight
low-latency ”Fast Thinking” runs in parallel, escalating to slow thinking only when necessary. As
shown in Figure 4 (right), this results in drastically different latencies: Flex mode achieves a median
wall time of ∼2s (matching the ‘NoThink‘ baseline), whereas Think mode requires ∼18s. Thus,
while TFLOPS are comparable, Flex provides a superior accuracy-latency trade-off essential for
real-world deployment.

Optimal Trade-off Analysis and Hyperparameter Selection The FlexiVe (Flex@8) configuration,
highlighted in the figure, offers an optimal trade-off between cost and performance. It achieves a

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

substantial F1 score of 78 with a modest computational cost of 7 relative TFLOPS. This analysis
provides a basis for hyperparameter selection, as this point represents the ”knee” of the performance
curve—securing most of the accuracy gains without the high expense of premium ‘Think‘ modes.
Given this ideal balance for resource-constrained applications, we adopt the Flex@8 setting for
FlexiVe in the subsequent experiments involving the full Solve-Detect-Verify pipeline.

4.4 SOLVE-DETECT-VERIFY: AN EFFICIENT ALTERNATIVE TO BON RANKING

Figure 5: Performance and efficiency analysis of the Solve-Detect-Verify (SDV) pipeline on AIME
2024. (Top-left) SDV consistently outperforms standard Best-of-N (BoN) ranking methods in
test-time accuracy scaling. (Top-right) The iterative nature of SDV yields monotonic accuracy
improvements with each refinement step. (Bottom) A token breakdown for a single execution of the
pipeline (Solve→ Detect→ Verify) reveals the pipeline’s efficiency: the ’Detect’ stage reduces token
usage, while the ’Verify’ stage adds targeted computation to significantly boost accuracy, resulting in
a net efficiency gain over the baseline solver.

We evaluate our Solve-Detect-Verify framework, demonstrating that its iterative refinement process is
a more effective and efficient inference-time strategy than standard Best-of-N (BoN) ranking. The
analysis is grounded in performance on the AIME 2024 benchmark.

Limitations of Standard BoN Ranking A common scaling strategy, BoN ranking, relies on an
external verifier to select the best among N candidate solutions. However, our findings indicate
this approach has significant limitations. As shown in Figure 5 (top-left), prominent verifiers like
GenPRM-32B struggle to outperform even a simple majority vote baseline. We attribute this to
ranking miscalibration, a known issue when verifiers evaluate the lengthy and complex reasoning
traces typical of “thinking” models (Wu et al., 2025b). Unlike BoN, which depends on precise
scalar scoring for ranking, our Solve-Detect-Verify (SDV) pipeline consistently achieves the highest
accuracy across all sample sizes (N). At N = 16, SDV reaches 83.3% accuracy, surpassing the
strong majority vote baseline (80.0%) and substantially outperforming GenPRM-32B BoN (66.7%).
This suggests that active iterative self-correction is a more robust scaling mechanism than passive
one-shot external ranking.

The Advantage of Iterative Refinement The superior performance of SDV is attributable to its
iterative refinement mechanism. Unlike BoN, which passively ranks static solutions, SDV actively
improves upon them. Figure 5 (top-right) quantifies this benefit, showing a clear, monotonic increase
in accuracy with each successive iteration on both the AIME 2024 and 2025 datasets. (Note: Unlike
the parallel sampling (N) in the left panel, this analysis tracks sequential refinement steps (T) on a
single solution trajectory.) For AIME 2024, accuracy improves from 60.0% after two iterations to
over 70.0% after four, confirming that the refinement process is consistently productive.

Component-wise Token Efficiency The SDV pipeline is architected for efficiency, achieving superior
accuracy without a corresponding increase in computational cost. The token breakdown in Figure 5

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

(bottom) provides a detailed analysis. The baseline ’Solver LLM only’ approach uses an average
of 12,788 tokens. Detect stage first prunes unnecessary generation paths, significantly reducing the
average token count by over 35% to 8,204. Verify stage then applies targeted, corrective feedback,
increasing the token count to 10,532 but yielding a substantial accuracy gain from 53.3% to 66.7%.
Notably, we observe that the solver generates significantly fewer tokens during refinement compared
to the initial phase. We hypothesize that while the base RL training encourages extensive exploration
initially, the targeted feedback in the second pass constrains the search space, resulting in more concise
corrections. The full SDV pipeline delivers a higher accuracy while consuming approximately 18%
fewer tokens than the solver-only baseline, demonstrating a clear net gain in overall efficiency.

4.5 DISCUSSIONS

Generalizability of Hesitation Detection We acknowledge that our hesitation keywords were derived
empirically. To assess their generalizability, we evaluated the ‘Detect’ module on models with distinct
training paradigms (Table 19). The results indicate that the mechanism’s effectiveness is tied to
the training method. On RL-distilled models (e.g., Qwen3-8B), the detection behaves predictably,
significantly reducing token usage (e.g., -3,576 tokens on AIME 2025) by pruning unproductive
paths. Conversely, on SFT-trained models (e.g., S1-14B), the behavior is erratic, often increasing
token usage (+2,374 tokens). This suggests that RL training instills a robust link between “verbalized
hesitation” and model uncertainty, making our detection strategy a principled approach for the
increasingly common class of RL-reasoning models.

Table 3: Sensitivity of Hesitation Keyword Detection Across Training Paradigms. RL-distilled
models show consistent token reduction, whereas SFT models exhibit erratic behavior.

Model (Training Paradigm) Dataset Baseline Acc. (%) Solve+Detect Acc. (%) Acc. ∆(pp) Token ∆

Qwen3-8B (RL-distilled) AIME 2024 83.3 60.9 -22.4 -1,144
AIME 2025 73.3 66.7 -6.6 -3,576

S1 14B (SFT-trained) AIME 2024 30.0 26.7 -3.3 +2,206
AIME 2025 13.3 33.3 +20.0 +2,374

Component Robustness and Qualitative Analysis Our extended analyses in the appendix validate
the key design choices and robustness of our pipeline. The Flex@k verifier’s dynamic escalation is
governed by a consensus threshold (τ = 0.8) that optimally balances accuracy gains with a nearly
8x reduction in token usage compared to its full ”slow thinking” mode (Appendix A.3.1, Table 18).
Finally, the iterative refinement loop demonstrates practical utility by successfully correcting 25% of
incorrect initial solutions on AIME 2024 (Appendix A.3.3). However, qualitative analysis shows that
while feedback effectively restructures algebraic problems, its ability to guide corrections in complex
geometric reasoning remains a limitation, pointing to clear avenues for future work (Appendix A.3.4).

5 CONCLUSION AND FUTURE WORK

Conclusion We introduce FlexiVe , a dynamic verifier balancing computational cost and accuracy,
integrated into the Solve-Detect-Verify pipeline for efficient LLM reasoning enhancement. Experi-
ments confirm that our pipeline, leveraging FlexiVe , achieves significant gains in both accuracy and
token efficiency over baselines, highlighting flexible verification and intelligent pipeline design as a
scalable path toward more reliable and efficient complex reasoning in LLMs.

Limitation and Future Work FlexiVe and Solve-Detect-Verify opens several exciting avenues
for future research. Our empirical validation focuses on the challenging domain of mathematical
reasoning, a standard practice for rigorously evaluating complex reasoning frameworks (Zhong et al.,
2025; Zhao et al., 2025b; Zheng et al., 2024a; Wang et al., 2024a). A natural and promising next step
is to extend the demonstrated benefits of FlexiVe to broader domains. This presents a straightforward
opportunity to adapt the current “hesitation keywords”, an effective heuristic for mathematical traces,
to new linguistic patterns. From a systems perspective, the pipeline’s computational profile reflects
a deliberate trade-off for enhanced verification accuracy. We see a clear path to optimizing this by
integrating state-of-the-art inference engines like vLLM (Kwon et al., 2023) or SGLang (Zheng et al.,
2024b). These future steps represent a clear roadmap toward evolving our framework into a more
general-purpose, highly efficient, and robust system for verified reasoning.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We have adhered to the ICLR Code of Ethics in the development and evaluation of this research.
Our work focuses on improving the reasoning capabilities and inference efficiency of large language
models on publicly available mathematical benchmark datasets (gsm8k, math, olympiadbench,
and omnimath). We acknowledge the dual-use nature of advanced AI problem-solvers; while they
can serve as valuable tools for education and research, they could also be misused for academic
dishonesty. The goal of our research is to contribute to the scientific understanding of AI reasoning
and create more reliable and efficient systems, not to facilitate misuse. Our method, FlexiVe,
uses pre-trained models without further fine-tuning, and we have made no effort to remove existing
safety guards. We believe our work contributes to the transparent and responsible development of AI
systems.

REPRODUCIBILITY STATEMENT

We are committed to the reproducibility of our research. All experiments were conducted us-
ing publicly available large language models and standard academic benchmarks, the specifics of
which are detailed in the experimental setup section. To facilitate full reproduction of our results,
we will make our source code publicly available upon publication. This release will include the
implementation of the FlexiVe framework, scripts for running the evaluations, and the exact
prompts used for generation and feedback (as shown in Figures 6, 7, etc.). Key hyperparameters
and experimental settings, such as the number of voting samples (N) for each configuration, are
described in our results tables (Tables 15-17) and throughout the appendix. Our code is available at
https://anonymous.4open.science/r/flexive-7D5D.

REFERENCES

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models.
In Advances in Neural Information Processing Systems, volume 35, pages 24824–24837. Curran
Associates, Inc., 2022.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. arXiv preprint arXiv:2205.11916, 2022.

Daniel Kahneman. Thinking, fast and slow. Farrar, Straus and Giroux, 2011.

Zhong-Zhi Li, Haotian Wang, Kaiyan Zhang, Yancheng He, Yujia Xie, Yuxiang Huang, Zhengliang
Shi, HongCheng Li, Wenxuan Wang, Zhiwei He, Dian Yu, Haitao Mi, Dong Yu, Jie Tang, and
AnBo Zhang. From system 1 to system 2: A survey of reasoning large language models. arXiv
preprint arXiv:2502.17419, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024a. URL https://arxiv.org/abs/
2402.03300.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu. Do not
think that much for 2+3=? on the overthinking of o1-like llms. arXiv preprint arXiv:2412.21187,
2024.

Jiefeng Chen, Jie Ren, Xinyun Chen, Chengrun Yang, Ruoxi Sun, and Sercan Ö. Arık. SETS:
Leveraging self-verification and self-correction for improved test-time scaling. arXiv preprint
arXiv:2501.19306, 2025.

Zijun Liu, Peiyi Wang, Runxin Xu, Shirong Ma, Chong Ruan, Peng Li, Yang Liu, and Yu Wu.
Inference-time scaling for generalist reward modeling, 2025. URL https://arxiv.org/
abs/2504.02495.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agarwal.
Generative verifiers: Reward modeling as next-token prediction, 2025. URL https://arxiv.
org/abs/2408.15240.

11

https://anonymous.4open.science/r/flexive-7D5D
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2504.02495
https://arxiv.org/abs/2504.02495
https://arxiv.org/abs/2408.15240
https://arxiv.org/abs/2408.15240

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Nishad Singhi, Hritik Bansal, Arian Hosseini, Aditya Grover, Kai-Wei Chang, Marcus Rohrbach, and
Anna Rohrbach. When to solve, when to verify: Compute-optimal problem solving and generative
verification for llm reasoning, 2025. URL https://arxiv.org/abs/2504.01005.

Wenjie Ma, Jingxuan He, Charlie Snell, Tyler Griggs, Sewon Min, and Matei Zaharia. Reasoning
models can be effective without thinking, 2025. URL https://arxiv.org/abs/2504.
09858.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y.K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024b. URL https://arxiv.org/abs/2402.
03300v3.

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez, Nicholas
Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, et al. Language models (mostly)
know what they know. arXiv preprint arXiv:2207.05221, 2022.

Stephanie C. Lin, Jacob Hilton, and Owain Evans. Teaching models to express their uncertainty
in words. Trans. Mach. Learn. Res., 2022, 2022. URL https://api.semanticscholar.
org/CorpusID:249191391.

Daniel Yang, Yao-Hung Tsai, and Makoto Yamada. On verbalized confidence scores for llms.
ArXiv, abs/2412.14737, 2024. URL https://api.semanticscholar.org/CorpusID:
274859541.

Sean Welleck, Amanda Bertsch, Matthew Finlayson, et al. From decoding to meta-generation:
Inference-time algorithms for large language models. 2024.

Jingxuan Wang, Yiming Ming, Zhengliang Shi, et al. Inference-time scaling for complex tasks:
Where we stand and what lies ahead. arXiv preprint arXiv:2504.00294, 2025.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
In International Conference on Learning Representations (ICLR), 2023.

Yuki Ichihara, Yuu Jinnai, Tetsuro Morimura, Kaito Ariu, Kenshi Abe, Mitsuki Sakamoto, and Eiji
Uchibe. Evaluation of best-of-n sampling strategies for language model alignment, 2025. URL
https://arxiv.org/abs/2502.12668.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Sha, Thomas L Chen, Boyuan Rius, Yuxuan Du, Yang Liu,
Zipeng Jiang, Tushar Han, et al. Tree of thoughts: Deliberate problem solving with large language
models. In Advances in Neural Information Processing Systems (NeurIPS), volume 36, 2023.

Hanshi Sun, Momin Haider, Ruiqi Zhang, et al. Fast best-of-n decoding via speculative rejection. In
Advances in Neural Information Processing Systems (NeurIPS), 2024.

Yiming Wu, Zihan Sun, Sida Li, et al. Inference scaling laws: An empirical analysis of compute-
optimal inference for llm problem-solving. In International Conference on Learning Representa-
tions (ICLR), 2025a.

Yiming Wu, Zihan Sun, Sida Li, et al. Scaling flaws of verifier-guided search in mathematical
reasoning. arXiv preprint arXiv:2502.00271, 2025b.

Eric Zhao, Pranjal Awasthi, and Sreenivas Gollapudi. Sample, scrutinize and scale: Effective
inference-time search by scaling verification. arXiv preprint arXiv:2502.00891, 2025a.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. In Advances in Neural Information Processing Systems (NeurIPS), volume 36,
2023.

Noah Xie, AI AUTOdidax, M Sarmad Parvez, Michael Song, Zhenqiao Zhang, Ziyu Chen, Shrimai
Joshi, Robert Gmyr, Yufan Li, Siyuan Li, et al. Reflexion: Language agents with verbal reinforce-
ment learning. In Advances in Neural Information Processing Systems (NeurIPS), volume 36,
2023.

12

https://arxiv.org/abs/2504.01005
https://arxiv.org/abs/2504.09858
https://arxiv.org/abs/2504.09858
https://arxiv.org/abs/2402.03300v3
https://arxiv.org/abs/2402.03300v3
https://api.semanticscholar.org/CorpusID:249191391
https://api.semanticscholar.org/CorpusID:249191391
https://api.semanticscholar.org/CorpusID:274859541
https://api.semanticscholar.org/CorpusID:274859541
https://arxiv.org/abs/2502.12668

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Afra Feyza Akyurek, Ekin Akyurek, Ashwin Kalyan, Peter Clark, Derry Tanti Wijaya, and Niket
Tandon. RL4F: Generating natural language feedback with reinforcement learning for repairing
model outputs. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, editors, Proceedings of
the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 7716–7733, Toronto, Canada, July 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.acl-long.427. URL https://aclanthology.org/2023.acl-long.
427/.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cognome. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D. Goodman. Star: Bootstrapping reasoning with
reasoning. In Advances in Neural Information Processing Systems (NeurIPS), 2022.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, et al. Math-Shepherd: Verify and reinforce LLMs
step-by-step without human annotations. In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (ACL), 2024a.

Jian Zhao, Runze Liu, Kaiyan Zhang, Zhimu Zhou, Junqi Gao, Dong Li, Jiafei Lyu, Zhouyi Qian,
Biqing Qi, Xiu Li, and Bowen Zhou. Genprm: Scaling test-time compute of process reward models
via generative reasoning, 2025b. URL https://arxiv.org/abs/2504.00891.

Aojun Zhou, Ke Wang, Zimu Lu, et al. Solving challenging math word problems using gpt-4
code interpreter with code-based self-verification. In International Conference on Learning
Representations (ICLR), 2024a.

Ke Wang, Houxing Ren, Aojun Zhou, et al. Mathcoder: Seamless code integration in llms for
enhanced mathematical reasoning. In International Conference on Learning Representations
(ICLR), 2024b.

Jin Peng Zhou, Charles Staats, Wenda Li, et al. Don’t trust: Verify-grounding llm quantitative
reasoning with autoformalization. arXiv preprint arXiv:2403.18120, 2024b.

Alex Graves. Adaptive computation time for recurrent neural networks. arXiv preprint
arXiv:1603.08983, 2016.

Jianyuan Zhong, Zeju Li, Zhijian Xu, Xiangyu Wen, and Qiang Xu. Dyve: Thinking fast and slow
for dynamic process verification, 2025. URL https://arxiv.org/abs/2502.11157.

Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji Lin, Keming Lu, Bowen Yu, Dayiheng Liu, Jin-
gren Zhou, and Junyang Lin. Processbench: Identifying process errors in mathematical reasoning,
2024a. URL https://arxiv.org/abs/2412.06559.

Aime 2024 dataset card. 2024. URL https://huggingface.co/datasets/
HuggingFaceH4/aime_2024.

Aime 2025 dataset card. 2025. URL https://huggingface.co/datasets/
opencompass/AIME2025.

Junnan Liu, Hongwei Liu, Linchen Xiao, Ziyi Wang, Kuikun Liu, Songyang Gao, Wenwei Zhang,
Songyang Zhang, and Kai Chen. Are your llms capable of stable reasoning? arXiv preprint
arXiv:2412.13147, 2024.

Gladys Tyen, Hassan Mansoor, Victor Carbune, Peter Chen, and Tony Mak. LLMs cannot find
reasoning errors, but can correct them given the error location. In Findings of the Association
for Computational Linguistics: ACL 2024, pages 13894–13908, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.826. URL
https://aclanthology.org/2024.findings-acl.826.

13

https://aclanthology.org/2023.acl-long.427/
https://aclanthology.org/2023.acl-long.427/
https://arxiv.org/abs/2504.00891
https://arxiv.org/abs/2502.11157
https://arxiv.org/abs/2412.06559
https://huggingface.co/datasets/HuggingFaceH4/aime_2024
https://huggingface.co/datasets/HuggingFaceH4/aime_2024
https://huggingface.co/datasets/opencompass/AIME2025
https://huggingface.co/datasets/opencompass/AIME2025
https://aclanthology.org/2024.findings-acl.826

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Lee, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles (SOSP ’23), page 1013–1029, New York, NY, USA, 2023. Association for
Computing Machinery. doi: 10.1145/3600006.3613165. URL https://doi.org/10.1145/
3600006.3613165.

Lianmin Zheng, Siyuan Zhuang, Zhuohan Li, Cody Hao Yu, Lequn Li, Haotian Chen, Joseph E.
Gonzalez, Ion Stoica, and Jonathan Ragan-Kelley. SGLang: Efficient and expressive struc-
tured generation for large language models. In Proceedings of the 18th Conference of the Eu-
ropean Chapter of the Association for Computational Linguistics (EACL 2024), pages 1053–
1071, St. Julian’s, Malta, 2024b. Association for Computational Linguistics. URL https:
//aclanthology.org/2024.eacl-long.63.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations (ICLR), 2022. URL https://openreview.net/
forum?id=nZeVKeeFYf9.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations (ICLR), 2019. URL https://openreview.net/forum?
id=Bkg6RiCqY7.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-Art natural
language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pages 38–45, Online, October 2020. Associa-
tion for Computational Linguistics. URL https://www.aclweb.org/anthology/2020.
emnlp-demos.6.

Leandro von Werra, Lewis Schmid, Thomas Wolf, and Lewis Tunstall. Trl: Transformer reinforcement
learning. https://github.com/huggingface/trl, 2020-2024.

Lukas Biewald. Experiment tracking with weights and biases. https://wandb.ai, 2020. URL
https://www.wandb.com/. Software available from wandb.com.

14

https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://aclanthology.org/2024.eacl-long.63
https://aclanthology.org/2024.eacl-long.63
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://github.com/huggingface/trl
https://wandb.ai
https://www.wandb.com/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A APPENDIX

THE USE OF LARGE LANGUAGE MODELS

We use Large Language Models (LLMs), including ChatGPT and Gemini, solely for the purpose of
editing and polishing the writing in this paper.

BROADER IMPACT

The development of FlexiVe and the Solve-Detect-Verify pipeline represents a significant
step toward making advanced AI reasoning systems more practical, reliable, and efficient. By
designing a verifier that dynamically allocates computational resources—switching between rapid
”fast thinking” and meticulous ”slow thinking”—our framework directly confronts the critical trade-
off between accuracy and efficiency that currently limits the deployment of large models. This
approach promotes a more sustainable and scalable paradigm for AI reasoning, reducing the reliance
on computationally expensive, brute-force methods like Best-of-N sampling with process-based
verifiers. Our work has the potential to enhance trust and safety in AI systems. By not only
identifying but also pinpointing the exact location of errors and providing targeted feedback for
correction, our pipeline improves the interpretability and debuggability of the reasoning process.
This iterative refinement is crucial for high-stakes domains where reliability is paramount, such as
automated scientific discovery, medical diagnostics, and educational tools. By making state-of-the-art
reasoning more computationally accessible, our work also helps democratize advanced AI, enabling
powerful capabilities to run in more resource-constrained environments. This research paves the way
for future investigations into more sophisticated self-correcting systems and adaptive computation,
pushing the frontier of efficient and trustworthy artificial intelligence.

A.1 IMPLEMENTATION DETAILS AND EXPERIMENTAL SETUP

This section provides comprehensive details regarding the training of FlexiVe, the implementation
of the Solve-Detect-Verify pipeline, evaluation benchmarks, and specific implementation
clarifications.

A.1.1 FLEXIVE TRAINING

Training Protocol and Rationale We train FlexiVe using Group Relative Policy Optimization
(GRPO) (Shao et al., 2024a) initialized from the DeepSeek-R1-Distill-Qwen-14B model (Shao et al.,
2024a). We utilize the BIG-Bench Mistake dataset (Tyen et al., 2024), using 1,526 samples for
training and 170 for testing, derived from a 90%/10% split. The objective is to predict the first
error index (idxgt) or -1 if correct, optimized using the composite reward (Section 3.2, main paper).
Training initially focused on optimizing the ”Fast Thinking” mode (NoThinking activated) to instill
efficient, accurate error detection with minimal verbosity. This strategy established a strong, low-cost
baseline and promoted data efficiency, providing a robust foundation that generalized well to the
”Slow Thinking” mode. Statistics for the training data are provided in Table 4.

Table 4: Details of the model and dataset used for training.

Items Values
Model FlexiVe-14B
Benchmark BIG-Bench Mistake
Train Set Size 1,526
Test Set Size 170

RL vs. SFT Generalization As discussed in the main paper (Section 4.2), our RL approach
demonstrated superior generalization compared to Supervised Fine-Tuning (SFT). An SFT baseline
trained on 10,000 complex reasoning paths showed poor generalization when evaluated on the
diverse, often simpler traces in ProcessBench. In contrast, FlexiVe, RL-trained on only 1,526
samples, generalized effectively. This highlights RL’s advantage in fostering robust verifiers capable
of handling diverse reasoning styles and complexities, even with significantly less data.

Hyperparameters and Optimization We employed LoRA (Hu et al., 2022) targeting attention
projection layers and used the AdamW (Loshchilov and Hutter, 2019) optimizer with gradient

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

checkpointing. Training utilized the transformers (Wolf et al., 2020) and trl (von Werra et al.,
2020-2024) libraries, tracked via Weights & Biases (Biewald, 2020). The key hyperparameters and
optimization settings are summarized in Table 5.

Table 5: Training details.

Parameter Value Description
Base Model DeepSeek-R1-Distill-Qwen-14B Base model for initialization
Learning Rate 5× 10−6 Initial learning rate
Batch Size 1 Per-device batch size
Num Train Epochs 3 Number of training epochs
Gradient Accum. Steps 8 Gradient accumulation steps
PEFT / LoRA True (r=16, α=32) Adapter fine-tuning (LoRA)
LR Scheduler Type Linear Learning Rate Scheduler Type
Optimizer AdamW Optimization algorithm
Warmup Steps 100 Number of warmup steps
GRPO Group Size 14 Number of generations per prompt
KL Coefficient 0.04 KL penalty coefficient for GRPO

A.1.2 EVALUATION BENCHMARKS

We assessed our framework on a suite of challenging mathematical reasoning benchmarks. For
evaluating step-level verification performance, we used the four standard splits of the ProcessBench
benchmark: GSM8K, MATH, Olympiad-Bench, and OmniMATH. For evaluating the end-to-end
performance of the full Solve-Detect-Verify pipeline, we used problems from the AIME
2024 and AIME 2025 competitions. The number of problems in the test set for each benchmark is
detailed in Table 6.

Table 6: Details of datasets used for model evaluation.

Benchmark Test Set Size
ProcessBench Splits

GSM8K 400
MATH 1,000
Olympiad-Bench 1,000
OmniMATH 1,000

End-to-End Evaluation

AIME 2024 30
AIME 2025 30

A.1.3 SOLVE-DETECT-VERIFY PIPELINE

The Solve-Detect-Verify pipeline employs an adaptive, iterative strategy. Algorithm 2
outlines the implemented flow, focusing on the iterative refinement process generalized for T attempts.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 2 Solve-Detect-Verify Pipeline Implementation Flow

Require: Problem P , Verification Parameters ΘV = (kfast, τagree, kslow), Max Attempts T
1: Scurrent ← NIL
2: Fprev ← NIL
3: for t = 1 to T do
4: ▷ — Solve and Detect (Algorithm 1, main paper) —
5: Promptt ← FormatPrompt(P, Scurrent, Fprev)
6: St ← GenerateSolutionWithDetection(LLM,Promptt)
7: Scurrent ← St

8: if t < T then ▷ Verify if not the last attempt
9: ▷ — Verify (FlexiVe) —

10: (is validt, error stept, Ft)← AdaptiveVerify(P, St,ΘV)
11: if is validt = True then
12: break ▷ Solution verified, terminate early
13: else
14: Fprev ← Ft ▷ Prepare feedback for refinement
15: return Scurrent

Solve Module and Prompts We employ DeepSeek-R1-14B/32B as the solver LLM. The initial
prompt (Figure 6) guides the model to generate a structured solution. If refinement is required (t > 1),
a retry prompt (Figure 7) incorporates feedback from FlexiVe (Fprev).

LLM Initial Solver Prompt

The following is a math problem:
[Math Problem]
{question}
Solve it step by step. For each step, you
should use \n\n in the end.
Please put your final answer (i.e., the
index) in \\boxed{{}}.

Figure 6: LLM Initial Solver Prompt.

LLM Retry Prompt with Feedback

The following is a math problem:
[Math Problem] {question}

You previously attempted to solve this:
[Previous Solution]
{previous_solution}

The feedback is:
[Verification Feedback]
{verifier_feedback}

Please correct your solution.
Provide a complete, new solution.
Put your final answer in \\boxed{{}}.

Figure 7: LLM Retry Prompt with Feedback.

Detect Module The GenerateSolutionWithDetection function implements a streaming
detection framework to identify and curtail ”overthinking.”

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

• Hesitation Keywords: Generation is monitored for hesitation cues (Figure 8). These
keywords were derived empirically by observing common phrases signaling a pause or
self-correction in LLM outputs.

• Completeness Check: Upon detecting a keyword, the proposer is suspended. A Detector
LLM (the same base model) evaluates the context using the prompt in Figure 9. We compare
the log-probabilities of ”Yes” and ”No” to determine completeness.

• Efficiency (KV Cache Reuse): The ’Detect’ module achieves high efficiency by leveraging
vLLM (Kwon et al., 2023) with prefix caching. Since the detection prompt is a continuation
of the existing generation context, vLLM automatically reuses the KV cache from preceding
steps, leading to minimal overhead (more than 90% reuse).

• ”Continue-after-detected” Logic: If completeness is detected, the generation might be
briefly continued to ensure the current thought segment is fully articulated before truncation,
facilitating better context for potential sequential revision.

Hesitation Keywords

Wait, double-check, Alternatively, Hmm,
Let me check, Alright, make sure,
Another way, Let me verify, to confirm,
Looking back, But wait

Figure 8: Hesitation keywords monitored for detection.

LLM Detection Prompt

You are a solution completeness checker.
Given current solution to a math problem,
determine if it is a complete solution
(i.e., contains a final answer).
Respond with exactly one word: ‘Yes‘ if
complete, ‘No‘ otherwise.

Figure 9: LLM Detection Prompt.

Verify Module (AdaptiveVerify) This function implements the Flexible Allocation of Verifi-
cation Budget (Section 3.2). It conducts kfast ”Fast Thinking” runs. If the agreement ratio meets
τagree, the consensus is returned. Otherwise, it escalates to kslow ”Slow Thinking” runs. Across all
experiments, kslow is consistently set to ⌈kfast/8⌉, balancing cost reduction with sufficient analysis
to resolve ambiguities.

A.1.4 EVALUATION BENCHMARKS AND BASELINES

FlexiVe Evaluation We assess step-level verification capabilities (F1 score) using ProcessBench
(Zheng et al., 2024a) (GSM8K, MATH, OlympiadBench, OmniMATH). We compare against SOTA
Process Reward Models (PRMs), including GenPRM (Zhao et al., 2025b) and Dyve (Zhong et al.,
2025).

Pipeline Evaluation We evaluate the end-to-end effectiveness of the Solve-Detect-Verify
pipeline on challenging mathematical datasets: AIME (2024, 2025) (Aim, 2024; 2025), AMC, CNMO
(Liu et al., 2024) (China’s National Mathematical Olympiad), and OlympiadBench. We measure
accuracy and efficiency (tokens, TFLOPS). We use DeepSeek-R1 14B/32B (Shao et al., 2024a) as the
base worker LLMs, comparing against direct generation and Self-Consistency (Wang et al., 2023).

Compute Categories In Table 10, models are categorized by computational effort:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

• Moderate Compute: Involves a reasonable number of samples without code execution
(e.g., GenPRM Maj@8 w/o code, FlexiVe Flex@k). The adaptive nature of Flex@k
keeps the average compute moderate.

• High Compute: Prioritizes maximal accuracy using extensive verification or intensive
techniques (e.g., GenPRM Maj@8 w/ Code Exec, FlexiVe Think@64).

A.2 DETAILED EXPERIMENTAL RESULTS

A.2.1 FLEXIVE PERFORMANCE SCALING

Tables 7 (Think@k), 8 (NoThinking@k), and 9 (Flex@k) provide detailed F1 scores and total token
consumption (in Millions, M) for FlexiVe across ProcessBench subsets.

Table 7: Performance of FlexiVe ”With Thinking” (Think@k) on ProcessBench subsets. Tokens
are total generated (Millions) across the respective test set.

GSM8K MATH OlympiadBench OmniMATH

k F1 (%) Tokens (M) F1 (%) Tokens (M) F1 (%) Tokens (M) F1 (%) Tokens (M)

2 82.3 2.4 81.9 5.2 78.0 8.4 71.3 7.1
4 86.7 4.8 86.4 10.4 84.3 16.8 76.9 14.3
8 86.4 9.5 88.9 20.9 85.4 33.4 78.9 28.6
16 87.6 19.2 89.7 41.8 86.5 66.9 80.1 57.1
32 87.7 38.1 89.7 83.8 86.7 133.6 80.6 114.2
64 87.8 76.3 90.1 167.5 86.7 267.3 80.4 228.4
128 88.1 152.7 90.0 335.4 86.7 534.1 80.5 456.4

Table 8: Performance of FlexiVe ”Without Thinking” (NoThinking@k) on ProcessBench subsets.

GSM8K MATH OlympiadBench OmniMATH

k F1 (%) Tokens (M) F1 (%) Tokens (M) F1 (%) Tokens (M) F1 (%) Tokens (M)

2 61.5 0.4 57.2 1.5 49.0 1.9 50.5 1.6
4 66.8 0.7 61.3 3.0 53.8 3.7 52.5 3.3
8 66.7 1.5 62.8 6.1 55.2 7.5 53.6 6.6
16 66.8 3.0 64.3 12.1 55.9 15.0 54.2 13.3
32 66.5 5.9 64.4 24.2 55.9 29.9 54.7 26.5
64 66.8 11.8 64.2 48.5 56.1 59.8 54.0 52.9
128 66.7 23.7 65.0 96.8 56.3 119.8 54.1 105.9

Table 9: Performance of FlexiVe with Flexible Allocation (Flex@k) on ProcessBench subsets.

k
GSM8K MATH OlympiadBench OmniMATH

F1 (%) Tokens (M) F1 (%) Tokens (M) F1 (%) Tokens (M) F1 (%) Tokens (M)

2 72.97 0.2 72.92 1.0 67.43 1.3 61.41 1.3
4 78.43 0.3 77.67 1.5 72.41 2.1 67.34 2.1
8 75.75 0.5 78.86 3.1 70.06 4.3 66.57 4.2
16 76.88 0.9 78.20 6.1 73.07 8.2 68.94 7.9
32 82.84 2.1 83.30 13.9 79.23 19.5 73.40 18.8
64 82.00 4.3 83.63 28.7 79.26 39.6 74.67 38.6
128 83.02 8.9 84.96 59.1 79.98 80.8 75.23 78.5

Analysis of Trade-offs and Efficiency The data demonstrates the distinct trade-offs. Think@k
establishes the accuracy upper bound at the highest cost. NoThinking@k is the most efficient but has
the lowest accuracy ceiling. Flex@k effectively balances these extremes. On MATH@128, Flex@k
(84.96% F1, 59.1M tokens) achieves an 82.4% token reduction compared to Think@128 (90.0% F1,
335.4M tokens).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

At k = 128, Flex@k uses approximately 86.1% fewer tokens on average than Think@k. Notably, at
higher k values, Flex@k can be both more accurate and more token-efficient than NoThinking@k
(e.g., on GSM8K and MATH).

Visualizing F1 Scaling Figure 10 visualizes the F1 score scaling corresponding to the data above.
Flex@k consistently outperforms NoThinking@k and generally matches or exceeds the DS14B
baseline, confirming the effectiveness of the adaptive approach.

2 4 8 16 32 64 128
Voting Budget (k)

60

70

80

F1
 S

co
re

GSM8K

2 4 8 16 32 64 128
Voting Budget (k)

Math

F1 Score Scaling with Voting Budget (k)

FlexiVe DS14B FlexiVe (NoThinking)

Figure 10: F1 score scaling with voting budget k on GSM8K (left) and MATH (right). FlexiVe
(Flex@k, green circles) improves with larger k, performing comparably or better than DS14B (blue
triangles, baseline verifier), while both surpass the FlexiVe (NoThinking variant, red squares).

A.2.2 COMPREHENSIVE PROCESSBENCH RESULTS

Table 10 provides a comprehensive comparison of FlexiVe on ProcessBench. FlexiVe demon-
strates strong performance and remarkable sample efficiency, achieving SOTA results despite being
trained on only 1,526 samples, compared to 23K-404K samples for other models. In the Moderate
Compute category, Flex@128 achieves the best average F1 (80.8%). In the High Compute category,
Think@64 establishes a new SOTA for open-source models (86.3% Avg F1).

A.2.3 STATISTICAL SIGNIFICANCE AND STABILITY

To validate robustness, we simulated the voting process 10 times from a pool of 512 cached com-
pletions to generate 95% confidence intervals for FlexiVe’s performance (Tables 15, 16, and 17,
showing selected k values for brevity).

The analysis finds: (1) Think@k shows high stability (tight intervals ≤1%). (2) NoThink@k
exhibits higher variance (wider intervals 2-5%). (3) Flex@k achieves a balanced trade-off (moderate
intervals 1-4%), validating the reliability of the adaptive approach.

A.2.4 PARETO FRONTIER ANALYSIS DATA (FIGURE 4)

Table 11 provides the detailed data points corresponding to the Pareto frontier analysis presented in
Figure 4 (main paper), comparing F1 scores and Relative TFLOPS on the MATH split of Process-
bench (Zheng et al., 2024a).

A.2.5 SOLVE-DETECT-VERIFY PIPELINE PERFORMANCE DATA (FIGURE 5)

This section provides the underlying data supporting the analysis presented in Section 4.4 and Figure 5
(main paper), focusing on the AIME 2024 benchmark.

Scaling Performance (BoN vs. SDV) Table 12 details the accuracy scaling as the number of samples
(N) increases. The SDV pipeline consistently outperforms both simple majority voting and BoN
ranking using external verifiers.

Iterative Gains Table 13 demonstrates the monotonic accuracy improvements achieved through the
iterative refinement process of the SDV pipeline.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 10: ProcessBench results reported with F1 scores. Results for FlexiVe are highlighted . bold
indicates the best in the sub category. All FlexiVe variants are trained on only 1526 samples.

Model # Samples GSM8K MATH Olympiad
Bench

Omni-
MATH Avg.

Proprietary Models

GPT-4o-0806 unk 79.2 63.6 51.4 53.5 61.9
o1-mini unk 93.2 88.9 87.2 82.4 87.9

Open Source Models (1.5B)

Skywork-PRM-1.5B unk 59.0 48.0 19.3 19.2 36.4
GenPRM-1.5B (Pass@1) w/ Code Exec 23K 52.8 66.6 55.1 54.5 57.3

Open Source Models (7-8B)

Math-Shepherd-PRM-7B 445K 47.9 29.5 24.8 23.8 31.5
RLHFlow-PRM-Mistral-8B 273K 50.4 33.4 13.8 15.8 28.4
EurusPRM-Stage2 30K 47.3 35.7 21.2 20.9 31.3
Qwen2.5-Math-PRM-7B ∼344K 82.4 77.6 67.5 66.3 73.5
RetrievalPRM-7B 404K 74.6 71.1 60.2 57.3 65.8
Universal-PRM-7B unk 85.8 77.7 67.6 66.4 74.3
Direct Generative PRM-7B 23K 63.9 65.8 54.5 55.9 60.0
GenPRM-7B w/ Code Exec (Pass@1) 23K 78.7 80.3 72.2 69.8 75.2
GenPRM-7B w/ Code Exec (Maj@8) 23K 81.0 85.7 78.4 76.8 80.5

Open Source Models (14-32B) w/ Moderate Compute
Dyve-14B 117K 68.5 58.3 49.0 47.2 55.8
GenPRM-32B w/o Code Exec (Maj@8) 23K 78.8 85.1 78.7 74.9 79.3
FlexiVe (Flex@32) 1526 82.8 83.3 79.2 73.4 79.7
FlexiVe (Flex@128) 1526 83.0 85.0 80.0 75.2 80.8

Open Source Models (14-32B) w/ High Compute
GenPRM-32B (Pass@1) w/ Code Exec 23K 83.1 81.7 72.8 72.8 77.6
GenPRM-32B (Maj@8) w/ Code Exec 23K 85.1 86.3 78.9 80.1 82.6
FlexiVe (Think@64) 1526 88.1 90.1 86.7 80.4 86.3

Table 11: Detailed Data for Pareto Frontier Analysis on MATH Dataset (Figure 4).

Model Config (@k) F1 Score (%) Relative TFLOPS

FlexiVe (Flex)

@2 72.9 1.9
@4 75.8 3.8
@8 (Best Trade-off) 78.9 7.5
@16 78.2 13.2
@32 83.3 27.2

FlexiVe (Think)

@1 81.9 6.1
@2 82.3 10.2
@4 86.4 12.3
@8 88.9 22.8

GenPRM-7B (Maj) @1 80.3 15.1
@8 83.1 28.1

GenPRM-32B (Maj) @1 80.0 13.4
@8 83.5 29.4

Token Efficiency Breakdown Table 14 details the average token usage and accuracy at each stage of
the pipeline, illustrating the efficiency gains from the ’Detect’ stage and the accuracy boost from the
’Verify’ stage.

A.2.6 SCALING PROPERTIES

We explore scaling Solve-Detect-Verify along two dimensions: the verifier budget (Flex@N) and the
solver budget (Number of Solutions).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 12: Test-time Accuracy Scaling on AIME 2024 (Data supporting Figure 5, Top-Left).

Method N=2 N=4 N=8 N=16
Solver Only (Maj Vote) 53.3 70.0 73.3 80.0
GenPRM-32B (BoN) 63.3 66.7 70.0 66.7
FlexiVe (BoN) 43.3 53.3 70.0 70.0

Solve-Detect-Verify 66.7 73.3 76.7 83.3

Table 13: Iterative Refinement Gains (Data supporting Figure 5, Top-Right).

Iterations AIME 2024 Accuracy (%) AIME 2025 Accuracy (%)
2 60.0 46.7
3 66.7 46.7
4 73.3 53.3

Table 14: Token Efficiency Breakdown on AIME 2024 (Data supporting Figure 5, Bottom).

Configuration Average Tokens Accuracy (%)
Solver LLM only 12,788 60.0
Solve + Detect 8,204 53.3
Solve-Detect-Verify 10,532 66.7

Scaling Verifier Budget (Flex@N): We analyze scaling FlexiVe ’s budget within a single pipeline run
(Figure 11). The ‘w/o Flex’ setup significantly cuts token usage (e.g., 0.67 ratio on AIME2024) but
reduces accuracy. Integrating ‘Flex@8‘ substantially boosts accuracy over the baseline (e.g., 73.3%
vs. 56.6% on AIME2024) while still using fewer tokens (0.96 ratio).

0.40 0.50 0.60 0.70 0.80 0.90 1.00
Token Usage Ratio

40

45

50

55

60

65

70

A
cc

ur
ac

y
(%

)

56.6

43.3

55.5

Accuracy vs. Token Usage Ratio

AIME2024
AIME2025
CNMO

Deepseek R1 14B w/o Flex Flex@4 Flex@8

Figure 11: Impact of scaling FlexiVe ’s verification budget (Flex@N) within a single Solve-Detect-
Verify execution on Pass@1 Accuracy vs. Token Usage Ratio relative to DeepSeek R1 14B.

Scaling Solver Budget: To achieve higher peak accuracies, we scale compute by generating multiple
solutions from the solver. On AIME2024 (Figure 5, top left panel), this strategy yields significant
improvements, climbing from 67.5% (1 solution) to over 83% (16 solutions), requiring approximately
4x fewer solutions than the baseline to reach similar accuracy levels.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

A.2.7 FLEXIVE PERFORMANCE SCALING DETAILS

This section provides a more detailed breakdown of the performance scaling for the different config-
urations of our FlexiVe method. We present the 95% confidence intervals for accuracy on four
benchmark datasets as the number of voting samples (N) increases.

The results are detailed for the ”With Thinking” configuration (Think@k) in Table 15, the ”Without
Thinking” configuration (NoThink@k) in Table 16, and our primary FlexiVe method (Flex@k)
in Table 17.

A consistent trend is evident across all tables: performance generally improves as the number of
voting samples (N) increases from 2 to 128. For example, for the main Flex@k method on the
math dataset, accuracy climbs from 72.9% to 85.0%. Concurrently, the confidence intervals tend to
narrow with a larger N , indicating more stable and reliable results. These tables also quantitatively
show that the Think@k method consistently achieves the highest performance, while NoThink@k
establishes a performance baseline.

Table 15: 95% Confidence Intervals for FlexiVe ”With Thinking” (Think@k).

Voting N gsm8k math olympiadbench omnimath

2 82.3 ± 0.89 81.9 ± 0.67 78.0 ± 0.38 71.3 ± 0.56
8 86.4 ± 0.50 88.9 ± 0.21 85.4 ± 0.40 78.9 ± 0.19
32 87.7 ± 0.44 89.7 ± 0.24 86.7 ± 0.33 80.6 ± 0.21
128 88.1 ± 0.32 90.0 ± 0.15 86.7 ± 0.15 80.5 ± 0.09

Table 16: 95% Confidence Intervals for FlexiVe ”Without Thinking” (NoThink@k).

Voting N gsm8k math olympiadbench omnimath

2 61.5 ± 2.36 57.2 ± 4.28 49.0 ± 2.56 50.5 ± 3.55
8 66.7 ± 2.63 62.8 ± 4.91 55.2 ± 3.32 53.6 ± 4.05
32 66.5 ± 2.35 64.4 ± 4.96 55.9 ± 2.98 54.7 ± 3.93
128 66.7 ± 2.46 65.0 ± 5.09 56.3 ± 3.23 54.1 ± 4.08

Table 17: 95% Confidence Intervals for FlexiVe (Flex@k).

Voting N gsm8k math olympiadbench omnimath

2 73.0 ± 2.74 72.9 ± 4.08 67.4 ± 2.62 61.4 ± 3.34
8 75.8 ± 2.48 78.9 ± 2.85 70.1 ± 2.05 66.6 ± 2.57
32 82.8 ± 1.17 83.3 ± 2.38 79.2 ± 1.41 73.4 ± 2.39
128 83.0 ± 1.32 85.0 ± 1.48 80.0 ± 1.51 75.2 ± 2.47

A.3 EXTENDED DISCUSSIONS AND ANALYSIS

A.3.1 SENSITIVITY ANALYSIS OF CONSENSUS THRESHOLD τ

The consensus threshold τ governs the escalation from ”Fast Thinking” to ”Slow Thinking” in the
Flex@k strategy. We performed a sensitivity analysis (Table 18) to validate our choice of τ = 0.8.

Table 18: Sensitivity analysis for the consensus threshold τ in Flex@8, averaged across ProcessBench
datasets. As τ varies, performance shifts between the ‘NoThink@8‘ and ‘Think@8‘ baselines.

Consensus Threshold (τ) Slow Thinking Escalation (%) Avg. F1 Score (%) Avg. Total Tokens (M)
NoThink@8 Baseline 0% 59.6 5.4
0.5 5% 61.0 5.2
0.7 18% 69.5 4.1
0.8 (Chosen) 28% 72.9 3.0
0.95 80% 83.5 19.5
Think@8 Baseline 100% 84.9 23.1

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

At a low threshold (τ = 0.5), escalation is minimal (5%), and performance approaches the ‘No-
Think@8‘ baseline. At a strict threshold (τ = 0.95), the system escalates 80% of cases, approaching
the ‘Think@8‘ baseline but at a massive computational cost. Our chosen value, τ = 0.8, represents
the optimal balance, significantly raising the F1 score (72.9%) while maintaining high efficiency
(3.0M tokens, nearly 8x lower than Think@8).

A.3.2 ROBUSTNESS OF THE DETECTION MECHANISM

As discussed in Section 4.5 (main paper), the robustness of the hesitation keyword detector depends on
the model’s training paradigm (Table 19). On RL-distilled models (e.g., Qwen3-8B), the mechanism
behaves predictably. However, on SFT-trained models (e.g., S1 14B), its behavior is erratic, sometimes
increasing token usage and causing unpredictable accuracy shifts. This suggests RL instills a more
reliable link between hesitation keywords and model uncertainty.

Table 19: Sensitivity of Hesitation Keyword Detection Across Training Paradigms. (Table 2 in main
paper).

Model (Training Paradigm) Dataset Baseline Acc. (%) Solve+Detect Acc. (%) Acc. ∆(pp) Token ∆

Qwen3-8B (RL-distilled) AIME 2024 83.3 60.9 -22.4 -1,144
AIME 2025 73.3 66.7 -6.6 -3,576

S1 14B (SFT-trained) AIME 2024 30.0 26.7 -3.3 +2,206
AIME 2025 13.3 33.3 +20.0 +2,374

A.3.3 EFFECTIVENESS OF THE REFINEMENT LOOP

We analyzed the refinement success rate on the AIME 2024 dataset. Out of 16 initial solutions that
were incorrect (S1), our pipeline successfully corrected 4 of them (S2), yielding a 25% success
rate. This demonstrates the practical utility of the refinement mechanism, particularly noteworthy as
FlexiVe was not fine-tuned on the solver’s specific traces, indicating good generalization.

A.3.4 QUALITATIVE ANALYSIS OF THE FEEDBACK MECHANISM

We analyzed successful and failed feedback attempts to provide deeper insight into the correction
process.

Successful S1→ S2 Correction

Problem: Every morning Aya goes for a 9-kilometer-long walk... When she walks at a
constant speed of s... the walk takes her 4 hours, including t min...
S1 Error at Step: 2
FlexiVe Feedback (Excerpt): ...Understanding the problem: Aya walks 9 km at two different
speeds... We need to find the total time when she walks at (s+ 1

2) km/h.
Setting up equations:

• First scenario: 4 = 9
s + t

60

• Second scenario: 2.4 = 9
s+2 + t

60

Subtracting equations: ...
Result: S2 was correct

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Ineffective Feedback (Failed Correction)

Problem: Let B be the set of rectangular boxes with surface area 54 and volume 23. Let r be
the radius of the smallest sphere that can contain...
Error Location by FlexiVe: Step 13
FlexiVe Feedback (Excerpt): The solution starts by understanding that the radius... is
half the space diagonal... r2 = a2+b2+c2

4 . The goal is to maximize a2 + b2 + c2 given the
constraints...
Outcome: Correction failed
Analysis: For complex geometry problems, FlexiVe may fail to produce a corrective path-
way, highlighting a limitation in advanced spatial and geometric problem-solving capabilities.

25

	Introduction
	Related Work
	Method
	Problem Formulation
	FlexiVe : A Unified Generative Verifier
	Solve-Detect-Verify

	Experiments
	Experimental Setup
	FlexiVe: A Unified, State-of-the-Art Verifier
	Sample Efficiency and Training Strategy Ablation

	Pareto Frontier Analysis: Accuracy and Efficiency
	Solve-Detect-Verify: An Efficient Alternative to BoN Ranking
	Discussions

	Conclusion and Future Work
	Appendix
	Implementation Details and Experimental Setup
	FlexiVe Training
	Evaluation Benchmarks
	Solve-Detect-Verify Pipeline
	Evaluation Benchmarks and Baselines

	Detailed Experimental Results
	FlexiVe Performance Scaling
	Comprehensive ProcessBench Results
	Statistical Significance and Stability
	Pareto Frontier Analysis Data (Figure 4)
	Solve-Detect-Verify Pipeline Performance Data (Figure 5)
	Scaling Properties
	FlexiVe Performance Scaling Details

	Extended Discussions and Analysis
	Sensitivity Analysis of Consensus Threshold
	Robustness of the Detection Mechanism
	Effectiveness of the Refinement Loop
	Qualitative Analysis of the Feedback Mechanism

