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ABSTRACT

Complex reasoning with Large Language Models (LLMs) demands a careful bal-
ance between accuracy and computational cost. Verification, crucial for reliability,
exacerbates this challenge. Existing methods often force a stark trade-off: robust
process-based verifiers incur prohibitive costs due to iterative recomputation, while
fast, efficient verifiers suffer from low precision. We introduce FlexiVe , a unified
generative verifier designed to navigate this trade-off. FlexiVe dynamically allo-
cates compute between rapid ”fast thinking” and deliberative ”slow thinking.” A
key innovation is our training strategy: we use Reinforcement Learning (GRPO)
to specifically enhance the reliability of the fast mode. Remarkably, this targeted
training generalizes, elevating the slow mode to state-of-the-art open-source perfor-
mance. To optimally deploy FlexiVe , we propose the Solve-Detect-Verify (SDV)
pipeline. SDV moves beyond static Best-of-N ranking, employing an efficient
iterative refinement process that detects solution completion to curtail “overthink-
ing” and uses FlexiVe ’s feedback for targeted correction. Our results demonstrate
significant improvements in both accuracy and efficiency. FlexiVe establishes a
new open-source1 state-of-the-art on ProcessBench, outperforming the much larger
GenPRM-32B while requiring ∼2.3x fewer TFLOPS with 15x less training data.
On the challenging AIME 2024 benchmark, the full SDV pipeline achieves 83.3%
accuracy, surpassing strong baselines.

Figure 1: We introduce the Solve-Detect-Verify (SDV) pipeline, powered by our novel adaptive verifier,
FlexiVe , to optimize the accuracy-efficiency trade-off in LLM reasoning. Left: On AIME 2024, our
pipeline achieves higher accuracy (66.7% vs. 63.3%) while using nearly 6x fewer verification tokens
than a standard process-based approach (GenPRM). Right: This efficiency is driven by FlexiVe’s
design. Unlike Process-Based verifiers (e.g., GenPRM) that incur accumulating overhead at each
step, FlexiVe analyzes the trace holistically. It employs a dynamic strategy: multiple low-cost ”Fast
Thinking” checks (∼0.1k tokens) are run first, escalating to high-cost ”Slow Thinking” (∼4k tokens)
only when consensus is lacking.

1Our code is available at https://anonymous.4open.science/r/flexive-7D5D.
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1 INTRODUCTION

Recent advances in Large Language Models (LLMs) have enhanced their capabilities in complex
reasoning tasks, primarily through the generation of step-by-step reasoning traces (Wei et al., 2022;
Kojima et al., 2022). This shift towards deeper, “System 2” processes (Kahneman, 2011; Li et al.,
2025; Shao et al., 2024a), while crucial for accuracy, introduces a fundamental trade-off with
computational efficiency.

This challenge is exacerbated by two factors. First, models often exhibit “overthinking” (Chen et al.,
2024), generating redundant self-correction steps, begins with hesitation words or phrases (e.g.,
“hmm”, “let me double check”) and redundant internal verification steps even after a correct interme-
diate solution might have been implicitly reached (Chen et al., 2024). Second, ensuring the reliability
of these traces requires verification (Chen et al., 2025), which adds further complexity. Sophisticated
Generative Reward Models.(GenRMs) (Liu et al., 2025; Zhang et al., 2025) can be computationally
prohibitive (Singhi et al., 2025), while highly efficient mechanisms like “NoThinking” (Ma et al.,
2025) in Figure 3, when adapted for verification, suffer severe drops in precision (see Figure 2).

This complex interplay reveals a clear methodological gap: the need for a flexible verifier that can
adapt its computational effort, and an intelligent inference-time pipeline to deploy it strategically
while streamlining the reasoning process. To address these compounded challenges, we introduce
FlexiVe, a unified generative verifier, and the Solve-Detect-Verify (SDV) pipeline. Our contributions
are summarized as follows:

• FlexiVe : A Flexible, RL-Trained Generative Verifier We introduce a single, unified
model operating across the cost-performance spectrum: (1) a rapid “fast thinking” mode; (2)
a deliberative “slow thinking” mode; and (3) a dynamic “flexible” mode, which utilizes a
consensus strategy that first uses efficient, parallelizable “fast thinking” assessments of the
entire reasoning trace to gauge verification difficulty. It escalates to deeper, “slow thinking”
analysis only when initial consensus is low. A key innovation is our training strategy: we use
Group Relative Policy Optimization (GRPO) (Shao et al., 2024a;b) to specifically enhance
the reliability of the “fast thinking” mode. We find this targeted RL training not only fixes
the low precision of fast verifiers but generalizes remarkably, elevating the “slow thinking”
mode to state-of-the-art performance.

• Solve-Detect-Verify (SDV) We propose an inference-time pipeline that intelligently inte-
grates the solver and verifier, moving beyond standard Best-of-N (BoN) ranking paradigms.
SDV employs an iterative refinement process, featuring a lightweight “Detect” module that
leverages likelihood-based probing (Kadavath et al., 2022; Lin et al., 2022; Yang et al.,
2024) to identify solution completion points and curtail “overthinking.” Since FlexiVe ’s
feedback can be naturally used as an effective means for context engineering, the pipeline
triggers FlexiVe to provide targeted, generative feedback that guides the solver to refine
the response into a more accurate final solution. The entire detect-verify-refine cycle can
be scaled; iterating the process yields accuracy gains. We demonstrate that this intelligent
integration is significantly more effective than static ranking.

• State-of-the-Art Efficiency and Accuracy FlexiVe sets a new open-source SOTA on
ProcessBench, outperforming larger models like GenPRM-32B while requiring∼2.3x fewer
TFLOPS and, crucially, using 15x less training data. On challenging benchmarks like
AIME 2024, the full SDV pipeline achieves 83.3% accuracy. Notably, our pipeline achieves
higher accuracy than a comparable GenPRM BoN setup while using only 1/6th of the
computational tokens.

Our work demonstrates that the path to efficient and reliable LLM reasoning lies not only in developing
flexible components but, critically, in designing intelligent pipelines that integrate them effectively.

2 RELATED WORK

Inference-Time Scaling Strategies Inference-time scaling strategies increase test-time compute
to improve reasoning accuracy (Welleck et al., 2024; Wang et al., 2025), using methods from self-
consistency (Wang et al., 2023), verifier ranked Best-of-N (BoN) (Ichihara et al., 2025), to tree-based
searches (Yao et al., 2023). While effective, these strategies are computationally intensive, spurring
work on optimized decoding (Sun et al., 2024) and compute trade-offs (Wu et al., 2025a). As scaling
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Figure 2: Empirical motivation for efficient verification and generation strategies. (Left) Comparison
of error precision and token usage between NoThinking and Thinking verification on GSM8K and
Math (ProcessBench). While NoThinking significantly reduces tokens, its error precision is substan-
tially lower, sugguesting high false positive rate. (Right) Accuracy and token usage comparison
between generating a full solution (Full Thinking) and halting generation early upon detecting a
complete intermediate solution (First Solution) on AIME 2024 and AIME 2025. Early detection
offers significant token reduction with comparable accuracy.
generations alone is insufficient (Chen et al., 2025) and verifier-guided search has known flaws (Wu
et al., 2025b; Zhao et al., 2025a), intelligent frameworks like Solve-Detect-Verify (SDV) are needed.
While building on established iterative refinement concepts (Madaan et al., 2023; Xie et al., 2023;
Akyurek et al., 2023), SDV uniquely prioritizes efficiency through active detection and adaptive
verification to avoid the computational redundancy (”overthinking”) typical of brute-force methods
(Chen et al., 2024).

Verification Paradigms Verification, while crucial, adds computational cost. Generative and process-
based verifiers like GenRMs and PRMs (Lightman et al., 2023; Liu et al., 2025; Zhang et al., 2025)
offer detailed feedback but can be demanding (Singhi et al., 2025). Recent work reduces annotation
reliance via bootstrapping (Zelikman et al., 2022) or label-free methods like Math-Shepherd (Wang
et al., 2024a). Hybrid models like GenPRM (Zhao et al., 2025b) integrate code execution within a
process-based framework, motivating its use as a key baseline. Alternative paradigms like code-based
self-verification (Zhou et al., 2024a; Wang et al., 2024b) and autoformalization (Zhou et al., 2024b)
use code for precision but may lack general applicability. In contrast, FlexiVe performs efficient,
holistic trace analysis with dynamic budget allocation, targeting broader use cases.

NoThinking

User Query / Problem
↓

<beginning of thinking>
↓

“Okay, I think I have finished thinking.”
↓

</end of thinking>
↓

Final Answer Generation

Figure 3: The NoThinking mechanism
bypasses explicit thought generation, us-
ing a template to fill the thinking phase.

Adaptive Computation and Our Novelty Inspired by
dual-process theory (Kahneman, 2011; Li et al., 2025),
adaptive computation balances reasoning and efficiency
(Graves, 2016). However, extreme efficiency methods like
”NoThinking” (Ma et al., 2025) in Figure 3, when applied
to verification, can yield low precision (Figure 2). The
most related work, DyVe (Zhong et al., 2025), also uses
”fast” and ”slow” verification modes. However, its per-step
approach incurs accumulating overhead. FlexiVe differs
critically by (1) performing holistic, consensus-based ver-
ification on the entire reasoning trace to avoid iterative
costs, and (2) optimizing its ”fast” mode for reliable di-
agnosis via Reinforcement Learning (GRPO) (Shao et al.,
2024a) for a more robust efficiency-accuracy balance.

3 METHOD

3.1 PROBLEM FORMULATION

System Components Our inference-time scaling frame-
work uses two primary Large Language Model (LLM) components: a solver LLM and FlexiVe ,
our specialized generative verifier. Both are reasoning-capable models. The solver, an off-the-shelf
LLM, generates initial candidate solutions. FlexiVe is specifically trained for verification, detailed in
Section 3.2.

3
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Reasoning Trace Segmentation A reasoning trace Strace is parsed into an ordered sequence of
Ns steps, Strace = (step1, . . . , stepNs

). Each stepi is a contiguous text segment delineated by
predefined ”hesitation keywords” (e.g., ”Wait, double-check”, ”Alternatively”, ”Hmm”, ”Let me
check” listed in Appendix A.1.3 Figure 8). This segmented trace forms the input for verification.

Verifier Architectures and Operation The task of the verifier is to assess the correctness of Strace.
Architectures approach this differently, with significant implications for efficiency (Figure 1).

Process-Based Verifiers (e.g., GenPRM) conduct sequential, step-by-step verification. At each step
t, the model must re-process the context of previous steps (1 . . . t− 1). This growing context leads to
significant computational overhead, especially for long traces.

Holistic Verifiers (e.g., standard GenRM and FlexiVe ) evaluate the entire trace in a single pass. This
is inherently more efficient as the context size is fixed. While standard GenRMs often use a fixed,
high computational budget, FlexiVe employs a dynamic strategy (Section 3.2) to modulate its effort.

In our framework, Strace is formatted using a critic template Zheng et al. (2024a) as input for FlexiVe
. It outputs Vout = (F, idxpred), where F is a textual error analysis and idxpred is the predicted
index of the first error (idxpred = −1 signifies no errors). We employ a generative approach where
the model articulates reasoning (F ) rather than just outputting a scalar probability. This is crucial for
two reasons: (1) Generative verification generally yields better performance by forcing the model
to articulate dependencies, providing richer supervision than scalar discriminators (Liu et al., 2025;
Zhang et al., 2025); and (2) in the context of our Solve-Detect-Verify pipeline, the textual feedback
(F ) serves as actionable diagnostic information to guide the solver during the refinement stage, which
a simple scalar score cannot provide.

3.2 FlexiVe : A UNIFIED GENERATIVE VERIFIER

FlexiVe is a unified generative verifier designed to operate across the entire spectrum of cost-
performance trade-offs by leveraging a single model with three distinct inference-time modes. At one
extreme, its Fast Thinking (NoThinking) mode, inspired by the “NoThinking” mechanism (Ma et al.,
2025), this mode prioritizes extreme efficiency. It utilizes a specific template (see Figure 3) to bypass
explicit thought generation, filling the thinking phase with a placeholder before directly outputting
the verification result. This approach results in responses that are approximately 40× shorter than
the “Slow Thinking” mode (see Figure 2), enabling high-throughput, parallel sampling with minimal
latency. At the other, the Slow Thinking (Think) mode generates a full, detailed reasoning trace to
maximize verification accuracy. Our novel Flexible Allocation (Flex) mode dynamically bridges
these approaches, adaptively switching between Fast and Slow Thinking based on perceived task
difficulty to optimally balance accuracy and cost.

Reinforcement Training for Reliable Fast Thinking A critical challenge for efficient verifiers is
their low precision (Figure 2) under NoThinking mode (Figure 3). We address this through a targeted
Reinforcement Learning strategy using Group Relative Policy Optimization (GRPO) (Shao et al.,
2024a;b). Our goal is to maximize the reliability of the ”fast thinking” mode while maintaining its
efficiency.

To achieve this, we train FlexiVe specifically in the ”fast thinking” configuration (activating the
NoThinking template during training). The model predicts the index of the first error (idxgt) or −1 if
correct. GRPO optimizes the policy by maximizing a composite reward Ri = Rcorrect +Rlength.

The correctness reward Rcorrect is defined by:

Rcorrect(idxpred, idxgt) =

{
1.0 if idxpred = idxgt

0.0 otherwise
. (1)

To prevent the model from ”reward hacking” with verbose outputs and ensure efficiency within the
”fast thinking” constraint, we apply a length-based regularization term, Rlength, proportional to the
length L of the generated response:

Rlength(L) = −λ · L. (2)
The hyperparameter λ (empirically set to 0.1) is crucial to ensure the ”fast thinking” mode remains
token-efficient, preventing the RL policy from converging to verbose outputs that violate the efficiency
goal. Training involves sampling G outputs per prompt and calculating advantages relative to the
group’s average (Shao et al., 2024a). A key finding, explored in Section 4.3, is that this targeted RL

4
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training not only substantially improves ”fast thinking” precision but also generalizes remarkably,
enhancing the accuracy of the ”slow thinking” mode.

Flexible Allocation of Verification Budget (Flex@k) The dynamic ”Flexible” mode utilizes a
two-stage verification process to tailor computational effort to the difficulty of the trace.

At inference time, the process begins with an efficient, parallelizable probing stage. FlexiVe performs
k independent ”Fast Thinking” runs ,utilizing the token-efficient ‘NoThinking’ template, on the entire
reasoning trace. The decision to escalate is determined dynamically by the consensus among these
runs. Each run produces an outcome consisting of the predicted error index (or -1 if correct). We
measure consensus by the agreement ratio:

Ragreement =
maxi ai

k
, (3)

where ai is the count of the most frequent outcome.

If the consensus is high (Ragreement ≥ τ ), it signals a straightforward case, and the ”Fast Thinking”
result, Vfast, is accepted efficiently. If consensus is low, it indicates ambiguity, and the framework
escalates to the second stage: performing max(1, ⌈k/8⌉) resource-intensive ”Slow Thinking” runs to
produce a robust final outcome, Vslow. Methodologically, ’Slow Thinking’ re-processes the problem
and solver responses without appending the template shown in Figure 3.

The overall verification result V is:

V =

{
Vfast, if Ragreement ≥ τ,

Vslow, otherwise.
(4)

The consensus threshold τ and sample count k are critical hyperparameters. We selected these based
on a detailed sensitivity analysis (Appendix A.3.1) and Pareto frontier analysis (Section 4.3). We
identify τ = 0.8 and k = 8 (for Flex@8) as the optimal trade-off point (the ”knee” of the performance
curve), maximizing accuracy gains while minimizing computational overhead.

3.3 Solve-Detect-Verify

Solve-Detect-Verify is a framework designed to enhance LLM reasoning accuracy and efficiency
through iterative refinement, moving beyond static Best-of-N ranking. It integrates three modules:
Solve, Detect, and Verify/Refine. The full pipeline is summarized in Algorithm 2 in the Appendix.

Algorithm 1 Solve-Detect Stage of Solve-Detect-Verify
Input: Problem P , Solver Msolve

Output: Candidate Solution S1

1: procedure SOLVEDETECT(P,Msolve)
2: S1 ← ∅
3: stop flag ← false
4: for k = 1 to Lmax do ▷ Lmax is max length
5: tk ∼Msolve(·|P, S

(k−1)
1 )

6: S
(k)
1 ← S

(k−1)
1 ⊕ tk

7: if tk = EOS then
8: stop flag ← true
9: if S(k)

1 ends with kw ∈ Khesitation then
10: logpYes ← log pMsolve (Yes|Promptcomplete(S

(k)
1 ))

11: logpNo ← log pMsolve (No|Promptcomplete(S
(k)
1 ))

12: if logpYes > logpNo then ▷ Compare log-probs
13: stop flag ← true ▷ Solution complete
14: if stop flag then
15: break
16: S1 ← S

(k)
1

17: return S1

Solve The ‘Solve’ stage initiates the pro-
cess, wherein the solver LLM is tasked
with generating an initial, step-by-step can-
didate solution (S1) to a given problem.
This stage forms the foundational attempt
at problem-solving, producing a complete
reasoning trace and a final answer for sub-
sequent evaluation.

Detect The ‘Detect’ module, as illustrated
in 1 continuously monitors the output for
hesitation keywords (Appendix Figure 8).
Upon detection, generation pauses, and
the LLM assesses solution completeness
via a log-probability check (log p(Yes) vs.
log p(No)). This check efficiently reuses
over 90% of the generation prefix (KV
cache), minimizing overhead. If deemed
complete, the pipeline advances; otherwise,
generation resumes. This curtails ”over-
thinking” and enables early verification.

Verify and Refine The candidate solution S1 is assessed by FlexiVe . If correct, it is accepted.
Otherwise, diagnostic feedback (F1) guides the solver to generate a new solution, S2. This feedback
loop acts as an efficient context engineering strategy to refine the model’s reasoning path.

Iterative Refinement and Scalability The ‘Verify and Refine’ stages can be iterated to progressively
improve the solution. The number of iterations, T , is a tunable parameter that creates a trade-off

5
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between computational cost and final accuracy. As shown in Figure 5 (top-right), each iteration yields
monotonic accuracy gains, allowing the framework’s computational depth to be scaled according to
specific performance and budget requirements.

4 EXPERIMENTS

Our experiments address four primary questions: (1) How accurate and sample-efficient is FlexiVe
compared to state-of-the-art (SOTA) verifiers? (2) Does FlexiVe offer a superior accuracy-efficiency
trade-off (Pareto frontier) when measured in TFLOPS? (3) Does the Solve-Detect-Verify outperform
standard inference-time scaling strategies like Best-of-N (BoN) ranking? (4) Are all components of
the pipeline necessary and robust?

4.1 EXPERIMENTAL SETUP

For detailed experimental configurations, including hyperparameter settings and full dataset statistics,
please refer to Appendix A.1.1.

Evaluation Tasks and Datasets We assess FlexiVe ’s step-level verification capability (F1 score)
on the comprehensive ProcessBench benchmark (Zheng et al., 2024a) (GSM8K, MATH, Olympiad-
Bench, OmniMATH). For the full Solve-Detect-Verify , we evaluate end-to-end task accuracy and
efficiency on challenging mathematical datasets: AIME (2024, 2025) (Aim, 2024; 2025), AMC,
CNMO (Liu et al., 2024), and OlympiadBench. Efficiency is measured using total generated tokens
and, crucially, estimated TFLOPS2 to account for architectural differences across baselines.

Baselines On ProcessBench, FlexiVe is compared against established Process Reward Models
(PRMs) (Zheng et al., 2024a), including GenPRM (7B and 32B) (Zhao et al., 2025b). For evaluating
the Solve-Detect-Verify , DeepSeek-R1 14B (DS14B) and 32B models (Shao et al., 2024a) serve
as the base ”worker” LLMs. Performance is benchmarked against direct output, Self-Consistency
(Majority Voting) (Wang et al., 2023), and BoN ranking using external verifiers.

FlexiVe Training FlexiVe (14B) is initialized from DeepSeek-R1-Distill-Qwen-14B and trained
using GRPO on the BIG-Bench Mistake dataset (Tyen et al., 2024). Notably, training utilized
only 1,526 samples. The training focused specifically on the ‘fast mode’ (NoThinking mechanism
activated) to optimize rapid, reliable error detection.

Table 1: ProcessBench results reported with F1 scores. Results for FlexiVe are highlighted . bold
indicates the best in the sub category. All FlexiVe variants are trained on only 1526 samples.

Model # Samples GSM8K MATH Olympiad
Bench

Omni-
MATH Avg.

Proprietary Models

GPT-4o-0806 unk 79.2 63.6 51.4 53.5 61.9
o1-mini unk 93.2 88.9 87.2 82.4 87.9

Open Source Models (7-8B)

Qwen2.5-Math-PRM-7B ∼344K 82.4 77.6 67.5 66.3 73.5
RetrievalPRM-7B 404K 74.6 71.1 60.2 57.3 65.8
Universal-PRM-7B unk 85.8 77.7 67.6 66.4 74.3
Direct Generative PRM-7B 23K 63.9 65.8 54.5 55.9 60.0
GenPRM-7B w/ Code Exec (Pass@1) 23K 78.7 80.3 72.2 69.8 75.2
GenPRM-7B w/ Code Exec (Maj@8) 23K 81.0 85.7 78.4 76.8 80.5

Open Source Models (14-32B) w/ Moderate Compute
Dyve-14B 117K 68.5 58.3 49.0 47.2 55.8
GenPRM-32B w/o Code Exec (Maj@8) 23K 78.8 85.1 78.7 74.9 79.3
FlexiVe (Flex@32) 1526 82.8 83.3 79.2 73.4 79.7
FlexiVe (Flex@128) 1526 83.0 85.0 80.0 75.2 80.8

Open Source Models (14-32B) w/ High Compute
GenPRM-32B (Pass@1) w/ Code Exec 23K 83.1 81.7 72.8 72.8 77.6
GenPRM-32B (Maj@8) w/ Code Exec 23K 85.1 86.3 78.9 80.1 82.6
FlexiVe (Think@64) 1526 88.1 90.1 86.7 80.4 86.3

2Calculated as (input + output tokens) × model parameters, normalized.
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FlexiVe Configurations We evaluate FlexiVe in three distinct configurations, where k denotes
the number of verification samples: (1) Think@k: Fixed ”slow” budget. Performs k independent
”slow thinking” (deliberative) runs with a majority vote. (2) NoThinking@k: Fixed ”fast” budget.
Performs k independent, token-efficient ”fast thinking” runs with a majority vote. (3) Flex@k:
Adaptive budget. Begins with k ”fast thinking” runs and escalates to ”slow thinking” only if initial
consensus is below threshold τ . Provides a dynamic trade-off.

4.2 FLEXIVE: A UNIFIED, STATE-OF-THE-ART VERIFIER

We first evaluate the verification capabilities of the FlexiVe model on the ProcessBench benchmark
and analyze the effectiveness of its novel RL training strategy.

State-of-the-Art Open-Source Verification Accuracy Table 1 details the F1 scores across various
mathematical reasoning datasets. In the ”High Compute” setting, FlexiVe (Think@64) establishes a
new state-of-the-art for open-source models, achieving an average F1 score of 86.3%. This notably
outperforms the compute-intensive GenPRM-32B (Maj@8) augmented with code execution (82.6%
Avg F1). In the ”Moderate Compute” setting, the adaptive FlexiVe (Flex@128) achieves a strong
average F1 score of 80.8%, surpassing GenPRM-32B (Maj@8) without code execution (79.3% Avg
F1).

4.2.1 SAMPLE EFFICIENCY AND TRAINING STRATEGY ABLATION

A key advantage of FlexiVe is its sample efficiency and the robustness of its RL-based training
objective. To isolate the contributions of our method from the underlying base model and data size,
we conducted a rigorous ablation study wirh ProcessBench (Table 2).

RL vs. SFT on Identical Data: We trained baselines using the exact same dataset (BIG-Bench-
Mistake, 1,526 samples) and base model (DeepSeek-R1-14B). As shown in the middle section of
Table 2, standard Discriminative PRM training failed to generalize (12.9% Avg F1). Supervised
Fine-Tuning (SFT) on the same data reached only 49.0% Avg F1. Notably, our RL strategy not only
outperformed these baselines but also surpassed an SFT model trained on 6.5× more synthetic data.
This confirms that the performance gains stem from the novel GRPO training strategy rather than
data scale.

Base Model Selection We further validated our choice of base model. As shown in the top section
of Table 2, while DeepSeek-R1-14B is a strong starting point (70.8% Avg F1), other open weights
models like Llama-3-8B-Instruct and QwQ-32B-Preview lack the inherent reasoning capabilities
required for effective verification. Crucially, FlexiVe significantly elevates the performance of the
DeepSeek base model (from 70.8% to 75.6%), demonstrating that the gains are not merely inherited
from the foundation model but are a result of our targeted alignment.
Table 2: Ablation Study on Base Models and Training Strategies. Top: Comparison of base
models (Think@1). Middle: Comparison of training methods on identical data (1.5K samples).
Bottom: Comparison of RL impact across different inference modes. The base model fails to adapt
to the efficient ”NoThink” and ”Flex” protocols, whereas our RL training yields massive gains (e.g.,
+21.5% in NoThink mode).

Model / Configuration Training Method # Samples GSM8K MATH Olym. Omni. Avg.
Base Model Selection (Think@1)
Meta-Llama-3-8B-Instruct None (Base) - 26.8 13.2 12.3 13.2 16.4
QwQ-32B-Preview None (Base) - 75.5 59.2 35.7 35.3 51.4
DeepSeek-R1-14B None (Base) - 77.6 76.2 65.6 64.0 70.8
FlexiVe (Think@1) RL (Ours) 1.5K 82.6 80.3 73.1 66.3 75.6
Training Strategy Ablation (Base: DeepSeek-R1-14B)
Discriminative PRM Math-Shepherd 1.5K 15.8 15.9 8.3 11.9 12.9
Discriminative PRM SFT 1.5K 66.3 56.0 36.1 37.7 49.0
Generative Verifier SFT 10K 71.9 69.0 59.7 47.9 62.1
FlexiVe (NoThink) RL (Ours) 1.5K 82.6 80.3 73.1 66.3 75.6
RL Impact Across Inference Modes (Base: DeepSeek-R1-14B)
Base Model (Flex@4) None - 57.9 62.8 59.6 59.5 60.0
FlexiVe (Flex@4) RL (Ours) 1.5K 78.4 77.7 72.4 67.3 74.0
Base Model (NoThink@4) None - 39.5 36.0 33.9 39.0 37.1
FlexiVe (NoThink@4) RL (Ours) 1.5K 66.8 61.3 53.8 52.5 58.6
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Generalization of RL Training Across Inference Modes A crucial finding is that our RL training
instills robust verification capabilities across all computational budgets, not just the standard ”Think”
mode. We extended our ablation study (Table 2, bottom) to evaluate the base model (DeepSeek-
R1-14B) acting as a verifier under our ”Flex” and ”NoThink” protocols. It struggles significantly
with the token-efficient ”NoThink” template, achieving only 37.1% Avg F1. This confirms that
standard reasoning models do not inherently possess the ability to verify efficiently without dedicated
alignment. In contrast, FlexiVe (NoThink) achieves 58.6% Avg F1, a relative improvement of ∼58%.
This ”fast-thinking” reliability is what powers the adaptive ”Flex” mode, where FlexiVe outperforms
the base model by 14 percentage points (74.0% vs 60.0%). Thus, our RL strategy does not merely
improve reasoning for verification. It unlocks a new, efficient inference mode that the base model
lacks.

4.3 PARETO FRONTIER ANALYSIS: ACCURACY AND EFFICIENCY

We analyze the accuracy-efficiency trade-off of FlexiVe against GenPRM, evaluating its Pareto
frontier dominance in both theoretical TFLOPS and empirical wall-clock time. The performance
gap stems from key architectural differences: FlexiVe is a holistic verifier that processes traces in a
single pass, while GenPRM is a process-based verifier that re-evaluates an expanding context at
each step, leading to non-linear cost scaling.
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Figure 4: Pareto frontier analysis on ProcessBench MATH split. (Left) F1 Score versus Relative
TFLOPS. FlexiVe (Think@k) establishes the state-of-the-art frontier, achieving higher F1 scores at
a lower computational cost relative to GenPRM-7B and GenPRM-32B. (Right) A comparison of
wall-clock time. FlexiVe demonstrates substantially lower latency; its Flex mode is comparable to
the NoThink baseline, while its Think mode is approximately 2.8x faster than GenPRM. The FlexiVe
(Flex@8) configuration is identified as an optimal trade-off point.

TFLOPS and Wall-Time Efficiency Figure 4 (left) shows that FlexiVe is more efficient. The
FlexiVe (Think@k) configurations define a new state-of-the-art Pareto frontier. For instance, FlexiVe
(Think@4) attains a higher F1 score (∼87) than the best GenPRM-32B model (∼84) while using less
than half the computation (∼12 vs. ∼29 TFLOPS).

Crucially, considering wall-clock time reveals the distinct advantage of the Flex mode over the
Think mode. While FlexiVe (Think@2) offers competitive TFLOPS efficiency, it requires executing
high-latency ”Slow Thinking” traces sequentially. In contrast, FlexiVe (Flex@8) executes eight
low-latency ”Fast Thinking” runs in parallel, escalating to slow thinking only when necessary. As
shown in Figure 4 (right), this results in drastically different latencies: Flex mode achieves a median
wall time of ∼2s (matching the ‘NoThink‘ baseline), whereas Think mode requires ∼18s. Thus,
while TFLOPS are comparable, Flex provides a superior accuracy-latency trade-off essential for
real-world deployment.

Optimal Trade-off Analysis and Hyperparameter Selection The FlexiVe (Flex@8) configuration,
highlighted in the figure, offers an optimal trade-off between cost and performance. It achieves a
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substantial F1 score of 78 with a modest computational cost of 7 relative TFLOPS. This analysis
provides a basis for hyperparameter selection, as this point represents the ”knee” of the performance
curve—securing most of the accuracy gains without the high expense of premium ‘Think‘ modes.
Given this ideal balance for resource-constrained applications, we adopt the Flex@8 setting for
FlexiVe in the subsequent experiments involving the full Solve-Detect-Verify pipeline.

4.4 SOLVE-DETECT-VERIFY: AN EFFICIENT ALTERNATIVE TO BON RANKING

Figure 5: Performance and efficiency analysis of the Solve-Detect-Verify (SDV) pipeline on AIME
2024. (Top-left) SDV consistently outperforms standard Best-of-N (BoN) ranking methods in
test-time accuracy scaling. (Top-right) The iterative nature of SDV yields monotonic accuracy
improvements with each refinement step. (Bottom) A token breakdown for a single execution of the
pipeline (Solve→ Detect→ Verify) reveals the pipeline’s efficiency: the ’Detect’ stage reduces token
usage, while the ’Verify’ stage adds targeted computation to significantly boost accuracy, resulting in
a net efficiency gain over the baseline solver.

We evaluate our Solve-Detect-Verify framework, demonstrating that its iterative refinement process is
a more effective and efficient inference-time strategy than standard Best-of-N (BoN) ranking. The
analysis is grounded in performance on the AIME 2024 benchmark.

Limitations of Standard BoN Ranking A common scaling strategy, BoN ranking, relies on an
external verifier to select the best among N candidate solutions. However, our findings indicate
this approach has significant limitations. As shown in Figure 5 (top-left), prominent verifiers like
GenPRM-32B struggle to outperform even a simple majority vote baseline. We attribute this to
ranking miscalibration, a known issue when verifiers evaluate the lengthy and complex reasoning
traces typical of “thinking” models (Wu et al., 2025b). Unlike BoN, which depends on precise
scalar scoring for ranking, our Solve-Detect-Verify (SDV) pipeline consistently achieves the highest
accuracy across all sample sizes (N ). At N = 16, SDV reaches 83.3% accuracy, surpassing the
strong majority vote baseline (80.0%) and substantially outperforming GenPRM-32B BoN (66.7%).
This suggests that active iterative self-correction is a more robust scaling mechanism than passive
one-shot external ranking.

The Advantage of Iterative Refinement The superior performance of SDV is attributable to its
iterative refinement mechanism. Unlike BoN, which passively ranks static solutions, SDV actively
improves upon them. Figure 5 (top-right) quantifies this benefit, showing a clear, monotonic increase
in accuracy with each successive iteration on both the AIME 2024 and 2025 datasets. (Note: Unlike
the parallel sampling (N ) in the left panel, this analysis tracks sequential refinement steps (T ) on a
single solution trajectory.) For AIME 2024, accuracy improves from 60.0% after two iterations to
over 70.0% after four, confirming that the refinement process is consistently productive.

Component-wise Token Efficiency The SDV pipeline is architected for efficiency, achieving superior
accuracy without a corresponding increase in computational cost. The token breakdown in Figure 5
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(bottom) provides a detailed analysis. The baseline ’Solver LLM only’ approach uses an average
of 12,788 tokens. Detect stage first prunes unnecessary generation paths, significantly reducing the
average token count by over 35% to 8,204. Verify stage then applies targeted, corrective feedback,
increasing the token count to 10,532 but yielding a substantial accuracy gain from 53.3% to 66.7%.
Notably, we observe that the solver generates significantly fewer tokens during refinement compared
to the initial phase. We hypothesize that while the base RL training encourages extensive exploration
initially, the targeted feedback in the second pass constrains the search space, resulting in more concise
corrections. The full SDV pipeline delivers a higher accuracy while consuming approximately 18%
fewer tokens than the solver-only baseline, demonstrating a clear net gain in overall efficiency.

4.5 DISCUSSIONS

Generalizability of Hesitation Detection We acknowledge that our hesitation keywords were derived
empirically. To assess their generalizability, we evaluated the ‘Detect’ module on models with distinct
training paradigms (Table 19). The results indicate that the mechanism’s effectiveness is tied to
the training method. On RL-distilled models (e.g., Qwen3-8B), the detection behaves predictably,
significantly reducing token usage (e.g., -3,576 tokens on AIME 2025) by pruning unproductive
paths. Conversely, on SFT-trained models (e.g., S1-14B), the behavior is erratic, often increasing
token usage (+2,374 tokens). This suggests that RL training instills a robust link between “verbalized
hesitation” and model uncertainty, making our detection strategy a principled approach for the
increasingly common class of RL-reasoning models.

Table 3: Sensitivity of Hesitation Keyword Detection Across Training Paradigms. RL-distilled
models show consistent token reduction, whereas SFT models exhibit erratic behavior.

Model (Training Paradigm) Dataset Baseline Acc. (%) Solve+Detect Acc. (%) Acc. ∆(pp) Token ∆

Qwen3-8B (RL-distilled) AIME 2024 83.3 60.9 -22.4 -1,144
AIME 2025 73.3 66.7 -6.6 -3,576

S1 14B (SFT-trained) AIME 2024 30.0 26.7 -3.3 +2,206
AIME 2025 13.3 33.3 +20.0 +2,374

Component Robustness and Qualitative Analysis Our extended analyses in the appendix validate
the key design choices and robustness of our pipeline. The Flex@k verifier’s dynamic escalation is
governed by a consensus threshold (τ = 0.8) that optimally balances accuracy gains with a nearly
8x reduction in token usage compared to its full ”slow thinking” mode (Appendix A.3.1, Table 18).
Finally, the iterative refinement loop demonstrates practical utility by successfully correcting 25% of
incorrect initial solutions on AIME 2024 (Appendix A.3.3). However, qualitative analysis shows that
while feedback effectively restructures algebraic problems, its ability to guide corrections in complex
geometric reasoning remains a limitation, pointing to clear avenues for future work (Appendix A.3.4).

5 CONCLUSION AND FUTURE WORK

Conclusion We introduce FlexiVe , a dynamic verifier balancing computational cost and accuracy,
integrated into the Solve-Detect-Verify pipeline for efficient LLM reasoning enhancement. Experi-
ments confirm that our pipeline, leveraging FlexiVe , achieves significant gains in both accuracy and
token efficiency over baselines, highlighting flexible verification and intelligent pipeline design as a
scalable path toward more reliable and efficient complex reasoning in LLMs.

Limitation and Future Work FlexiVe and Solve-Detect-Verify opens several exciting avenues
for future research. Our empirical validation focuses on the challenging domain of mathematical
reasoning, a standard practice for rigorously evaluating complex reasoning frameworks (Zhong et al.,
2025; Zhao et al., 2025b; Zheng et al., 2024a; Wang et al., 2024a). A natural and promising next step
is to extend the demonstrated benefits of FlexiVe to broader domains. This presents a straightforward
opportunity to adapt the current “hesitation keywords”, an effective heuristic for mathematical traces,
to new linguistic patterns. From a systems perspective, the pipeline’s computational profile reflects
a deliberate trade-off for enhanced verification accuracy. We see a clear path to optimizing this by
integrating state-of-the-art inference engines like vLLM (Kwon et al., 2023) or SGLang (Zheng et al.,
2024b). These future steps represent a clear roadmap toward evolving our framework into a more
general-purpose, highly efficient, and robust system for verified reasoning.
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ETHICS STATEMENT

We have adhered to the ICLR Code of Ethics in the development and evaluation of this research.
Our work focuses on improving the reasoning capabilities and inference efficiency of large language
models on publicly available mathematical benchmark datasets (gsm8k, math, olympiadbench,
and omnimath). We acknowledge the dual-use nature of advanced AI problem-solvers; while they
can serve as valuable tools for education and research, they could also be misused for academic
dishonesty. The goal of our research is to contribute to the scientific understanding of AI reasoning
and create more reliable and efficient systems, not to facilitate misuse. Our method, FlexiVe,
uses pre-trained models without further fine-tuning, and we have made no effort to remove existing
safety guards. We believe our work contributes to the transparent and responsible development of AI
systems.

REPRODUCIBILITY STATEMENT

We are committed to the reproducibility of our research. All experiments were conducted us-
ing publicly available large language models and standard academic benchmarks, the specifics of
which are detailed in the experimental setup section. To facilitate full reproduction of our results,
we will make our source code publicly available upon publication. This release will include the
implementation of the FlexiVe framework, scripts for running the evaluations, and the exact
prompts used for generation and feedback (as shown in Figures 6, 7, etc.). Key hyperparameters
and experimental settings, such as the number of voting samples (N ) for each configuration, are
described in our results tables (Tables 15-17) and throughout the appendix. Our code is available at
https://anonymous.4open.science/r/flexive-7D5D.
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A APPENDIX

THE USE OF LARGE LANGUAGE MODELS

We use Large Language Models (LLMs), including ChatGPT and Gemini, solely for the purpose of
editing and polishing the writing in this paper.

BROADER IMPACT

The development of FlexiVe and the Solve-Detect-Verify pipeline represents a significant
step toward making advanced AI reasoning systems more practical, reliable, and efficient. By
designing a verifier that dynamically allocates computational resources—switching between rapid
”fast thinking” and meticulous ”slow thinking”—our framework directly confronts the critical trade-
off between accuracy and efficiency that currently limits the deployment of large models. This
approach promotes a more sustainable and scalable paradigm for AI reasoning, reducing the reliance
on computationally expensive, brute-force methods like Best-of-N sampling with process-based
verifiers. Our work has the potential to enhance trust and safety in AI systems. By not only
identifying but also pinpointing the exact location of errors and providing targeted feedback for
correction, our pipeline improves the interpretability and debuggability of the reasoning process.
This iterative refinement is crucial for high-stakes domains where reliability is paramount, such as
automated scientific discovery, medical diagnostics, and educational tools. By making state-of-the-art
reasoning more computationally accessible, our work also helps democratize advanced AI, enabling
powerful capabilities to run in more resource-constrained environments. This research paves the way
for future investigations into more sophisticated self-correcting systems and adaptive computation,
pushing the frontier of efficient and trustworthy artificial intelligence.

A.1 IMPLEMENTATION DETAILS AND EXPERIMENTAL SETUP

This section provides comprehensive details regarding the training of FlexiVe, the implementation
of the Solve-Detect-Verify pipeline, evaluation benchmarks, and specific implementation
clarifications.

A.1.1 FLEXIVE TRAINING

Training Protocol and Rationale We train FlexiVe using Group Relative Policy Optimization
(GRPO) (Shao et al., 2024a) initialized from the DeepSeek-R1-Distill-Qwen-14B model (Shao et al.,
2024a). We utilize the BIG-Bench Mistake dataset (Tyen et al., 2024), using 1,526 samples for
training and 170 for testing, derived from a 90%/10% split. The objective is to predict the first
error index (idxgt) or -1 if correct, optimized using the composite reward (Section 3.2, main paper).
Training initially focused on optimizing the ”Fast Thinking” mode (NoThinking activated) to instill
efficient, accurate error detection with minimal verbosity. This strategy established a strong, low-cost
baseline and promoted data efficiency, providing a robust foundation that generalized well to the
”Slow Thinking” mode. Statistics for the training data are provided in Table 4.

Table 4: Details of the model and dataset used for training.

Items Values
Model FlexiVe-14B
Benchmark BIG-Bench Mistake
Train Set Size 1,526
Test Set Size 170

RL vs. SFT Generalization As discussed in the main paper (Section 4.2), our RL approach
demonstrated superior generalization compared to Supervised Fine-Tuning (SFT). An SFT baseline
trained on 10,000 complex reasoning paths showed poor generalization when evaluated on the
diverse, often simpler traces in ProcessBench. In contrast, FlexiVe, RL-trained on only 1,526
samples, generalized effectively. This highlights RL’s advantage in fostering robust verifiers capable
of handling diverse reasoning styles and complexities, even with significantly less data.

Hyperparameters and Optimization We employed LoRA (Hu et al., 2022) targeting attention
projection layers and used the AdamW (Loshchilov and Hutter, 2019) optimizer with gradient
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checkpointing. Training utilized the transformers (Wolf et al., 2020) and trl (von Werra et al.,
2020-2024) libraries, tracked via Weights & Biases (Biewald, 2020). The key hyperparameters and
optimization settings are summarized in Table 5.

Table 5: Training details.

Parameter Value Description
Base Model DeepSeek-R1-Distill-Qwen-14B Base model for initialization
Learning Rate 5× 10−6 Initial learning rate
Batch Size 1 Per-device batch size
Num Train Epochs 3 Number of training epochs
Gradient Accum. Steps 8 Gradient accumulation steps
PEFT / LoRA True (r=16, α=32) Adapter fine-tuning (LoRA)
LR Scheduler Type Linear Learning Rate Scheduler Type
Optimizer AdamW Optimization algorithm
Warmup Steps 100 Number of warmup steps
GRPO Group Size 14 Number of generations per prompt
KL Coefficient 0.04 KL penalty coefficient for GRPO

A.1.2 EVALUATION BENCHMARKS

We assessed our framework on a suite of challenging mathematical reasoning benchmarks. For
evaluating step-level verification performance, we used the four standard splits of the ProcessBench
benchmark: GSM8K, MATH, Olympiad-Bench, and OmniMATH. For evaluating the end-to-end
performance of the full Solve-Detect-Verify pipeline, we used problems from the AIME
2024 and AIME 2025 competitions. The number of problems in the test set for each benchmark is
detailed in Table 6.

Table 6: Details of datasets used for model evaluation.

Benchmark Test Set Size
ProcessBench Splits

GSM8K 400
MATH 1,000
Olympiad-Bench 1,000
OmniMATH 1,000

End-to-End Evaluation

AIME 2024 30
AIME 2025 30

A.1.3 SOLVE-DETECT-VERIFY PIPELINE

The Solve-Detect-Verify pipeline employs an adaptive, iterative strategy. Algorithm 2
outlines the implemented flow, focusing on the iterative refinement process generalized for T attempts.
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Algorithm 2 Solve-Detect-Verify Pipeline Implementation Flow

Require: Problem P , Verification Parameters ΘV = (kfast, τagree, kslow), Max Attempts T
1: Scurrent ← NIL
2: Fprev ← NIL
3: for t = 1 to T do
4: ▷ — Solve and Detect (Algorithm 1, main paper) —
5: Promptt ← FormatPrompt(P, Scurrent, Fprev)
6: St ← GenerateSolutionWithDetection(LLM,Promptt)
7: Scurrent ← St

8: if t < T then ▷ Verify if not the last attempt
9: ▷ — Verify (FlexiVe) —

10: (is validt, error stept, Ft)← AdaptiveVerify(P, St,ΘV )
11: if is validt = True then
12: break ▷ Solution verified, terminate early
13: else
14: Fprev ← Ft ▷ Prepare feedback for refinement
15: return Scurrent

Solve Module and Prompts We employ DeepSeek-R1-14B/32B as the solver LLM. The initial
prompt (Figure 6) guides the model to generate a structured solution. If refinement is required (t > 1),
a retry prompt (Figure 7) incorporates feedback from FlexiVe (Fprev).

LLM Initial Solver Prompt

The following is a math problem:
[Math Problem]
{question}
Solve it step by step. For each step, you
should use \n\n in the end.
Please put your final answer (i.e., the
index) in \\boxed{{}}.

Figure 6: LLM Initial Solver Prompt.

LLM Retry Prompt with Feedback

The following is a math problem:
[Math Problem] {question}

You previously attempted to solve this:
[Previous Solution]
{previous_solution}

The feedback is:
[Verification Feedback]
{verifier_feedback}

Please correct your solution.
Provide a complete, new solution.
Put your final answer in \\boxed{{}}.

Figure 7: LLM Retry Prompt with Feedback.

Detect Module The GenerateSolutionWithDetection function implements a streaming
detection framework to identify and curtail ”overthinking.”
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• Hesitation Keywords: Generation is monitored for hesitation cues (Figure 8). These
keywords were derived empirically by observing common phrases signaling a pause or
self-correction in LLM outputs.

• Completeness Check: Upon detecting a keyword, the proposer is suspended. A Detector
LLM (the same base model) evaluates the context using the prompt in Figure 9. We compare
the log-probabilities of ”Yes” and ”No” to determine completeness.

• Efficiency (KV Cache Reuse): The ’Detect’ module achieves high efficiency by leveraging
vLLM (Kwon et al., 2023) with prefix caching. Since the detection prompt is a continuation
of the existing generation context, vLLM automatically reuses the KV cache from preceding
steps, leading to minimal overhead (more than 90% reuse).

• ”Continue-after-detected” Logic: If completeness is detected, the generation might be
briefly continued to ensure the current thought segment is fully articulated before truncation,
facilitating better context for potential sequential revision.

Hesitation Keywords

Wait, double-check, Alternatively, Hmm,
Let me check, Alright, make sure,
Another way, Let me verify, to confirm,
Looking back, But wait

Figure 8: Hesitation keywords monitored for detection.

LLM Detection Prompt

You are a solution completeness checker.
Given current solution to a math problem,
determine if it is a complete solution
(i.e., contains a final answer).
Respond with exactly one word: ‘Yes‘ if
complete, ‘No‘ otherwise.

Figure 9: LLM Detection Prompt.

Verify Module (AdaptiveVerify) This function implements the Flexible Allocation of Verifi-
cation Budget (Section 3.2). It conducts kfast ”Fast Thinking” runs. If the agreement ratio meets
τagree, the consensus is returned. Otherwise, it escalates to kslow ”Slow Thinking” runs. Across all
experiments, kslow is consistently set to ⌈kfast/8⌉, balancing cost reduction with sufficient analysis
to resolve ambiguities.

A.1.4 EVALUATION BENCHMARKS AND BASELINES

FlexiVe Evaluation We assess step-level verification capabilities (F1 score) using ProcessBench
(Zheng et al., 2024a) (GSM8K, MATH, OlympiadBench, OmniMATH). We compare against SOTA
Process Reward Models (PRMs), including GenPRM (Zhao et al., 2025b) and Dyve (Zhong et al.,
2025).

Pipeline Evaluation We evaluate the end-to-end effectiveness of the Solve-Detect-Verify
pipeline on challenging mathematical datasets: AIME (2024, 2025) (Aim, 2024; 2025), AMC, CNMO
(Liu et al., 2024) (China’s National Mathematical Olympiad), and OlympiadBench. We measure
accuracy and efficiency (tokens, TFLOPS). We use DeepSeek-R1 14B/32B (Shao et al., 2024a) as the
base worker LLMs, comparing against direct generation and Self-Consistency (Wang et al., 2023).

Compute Categories In Table 10, models are categorized by computational effort:
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• Moderate Compute: Involves a reasonable number of samples without code execution
(e.g., GenPRM Maj@8 w/o code, FlexiVe Flex@k). The adaptive nature of Flex@k
keeps the average compute moderate.

• High Compute: Prioritizes maximal accuracy using extensive verification or intensive
techniques (e.g., GenPRM Maj@8 w/ Code Exec, FlexiVe Think@64).

A.2 DETAILED EXPERIMENTAL RESULTS

A.2.1 FLEXIVE PERFORMANCE SCALING

Tables 7 (Think@k), 8 (NoThinking@k), and 9 (Flex@k) provide detailed F1 scores and total token
consumption (in Millions, M) for FlexiVe across ProcessBench subsets.

Table 7: Performance of FlexiVe ”With Thinking” (Think@k) on ProcessBench subsets. Tokens
are total generated (Millions) across the respective test set.

GSM8K MATH OlympiadBench OmniMATH

k F1 (%) Tokens (M) F1 (%) Tokens (M) F1 (%) Tokens (M) F1 (%) Tokens (M)

2 82.3 2.4 81.9 5.2 78.0 8.4 71.3 7.1
4 86.7 4.8 86.4 10.4 84.3 16.8 76.9 14.3
8 86.4 9.5 88.9 20.9 85.4 33.4 78.9 28.6
16 87.6 19.2 89.7 41.8 86.5 66.9 80.1 57.1
32 87.7 38.1 89.7 83.8 86.7 133.6 80.6 114.2
64 87.8 76.3 90.1 167.5 86.7 267.3 80.4 228.4
128 88.1 152.7 90.0 335.4 86.7 534.1 80.5 456.4

Table 8: Performance of FlexiVe ”Without Thinking” (NoThinking@k) on ProcessBench subsets.

GSM8K MATH OlympiadBench OmniMATH

k F1 (%) Tokens (M) F1 (%) Tokens (M) F1 (%) Tokens (M) F1 (%) Tokens (M)

2 61.5 0.4 57.2 1.5 49.0 1.9 50.5 1.6
4 66.8 0.7 61.3 3.0 53.8 3.7 52.5 3.3
8 66.7 1.5 62.8 6.1 55.2 7.5 53.6 6.6
16 66.8 3.0 64.3 12.1 55.9 15.0 54.2 13.3
32 66.5 5.9 64.4 24.2 55.9 29.9 54.7 26.5
64 66.8 11.8 64.2 48.5 56.1 59.8 54.0 52.9
128 66.7 23.7 65.0 96.8 56.3 119.8 54.1 105.9

Table 9: Performance of FlexiVe with Flexible Allocation (Flex@k) on ProcessBench subsets.

k
GSM8K MATH OlympiadBench OmniMATH

F1 (%) Tokens (M) F1 (%) Tokens (M) F1 (%) Tokens (M) F1 (%) Tokens (M)

2 72.97 0.2 72.92 1.0 67.43 1.3 61.41 1.3
4 78.43 0.3 77.67 1.5 72.41 2.1 67.34 2.1
8 75.75 0.5 78.86 3.1 70.06 4.3 66.57 4.2
16 76.88 0.9 78.20 6.1 73.07 8.2 68.94 7.9
32 82.84 2.1 83.30 13.9 79.23 19.5 73.40 18.8
64 82.00 4.3 83.63 28.7 79.26 39.6 74.67 38.6
128 83.02 8.9 84.96 59.1 79.98 80.8 75.23 78.5

Analysis of Trade-offs and Efficiency The data demonstrates the distinct trade-offs. Think@k
establishes the accuracy upper bound at the highest cost. NoThinking@k is the most efficient but has
the lowest accuracy ceiling. Flex@k effectively balances these extremes. On MATH@128, Flex@k
(84.96% F1, 59.1M tokens) achieves an 82.4% token reduction compared to Think@128 (90.0% F1,
335.4M tokens).
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At k = 128, Flex@k uses approximately 86.1% fewer tokens on average than Think@k. Notably, at
higher k values, Flex@k can be both more accurate and more token-efficient than NoThinking@k
(e.g., on GSM8K and MATH).

Visualizing F1 Scaling Figure 10 visualizes the F1 score scaling corresponding to the data above.
Flex@k consistently outperforms NoThinking@k and generally matches or exceeds the DS14B
baseline, confirming the effectiveness of the adaptive approach.

2 4 8 16 32 64 128
Voting Budget (k)

60

70

80

F1
 S

co
re

GSM8K

2 4 8 16 32 64 128
Voting Budget (k)

Math

F1 Score Scaling with Voting Budget (k)

FlexiVe DS14B FlexiVe (NoThinking)

Figure 10: F1 score scaling with voting budget k on GSM8K (left) and MATH (right). FlexiVe
(Flex@k, green circles) improves with larger k, performing comparably or better than DS14B (blue
triangles, baseline verifier), while both surpass the FlexiVe (NoThinking variant, red squares).

A.2.2 COMPREHENSIVE PROCESSBENCH RESULTS

Table 10 provides a comprehensive comparison of FlexiVe on ProcessBench. FlexiVe demon-
strates strong performance and remarkable sample efficiency, achieving SOTA results despite being
trained on only 1,526 samples, compared to 23K-404K samples for other models. In the Moderate
Compute category, Flex@128 achieves the best average F1 (80.8%). In the High Compute category,
Think@64 establishes a new SOTA for open-source models (86.3% Avg F1).

A.2.3 STATISTICAL SIGNIFICANCE AND STABILITY

To validate robustness, we simulated the voting process 10 times from a pool of 512 cached com-
pletions to generate 95% confidence intervals for FlexiVe’s performance (Tables 15, 16, and 17,
showing selected k values for brevity).

The analysis finds: (1) Think@k shows high stability (tight intervals ≤1%). (2) NoThink@k
exhibits higher variance (wider intervals 2-5%). (3) Flex@k achieves a balanced trade-off (moderate
intervals 1-4%), validating the reliability of the adaptive approach.

A.2.4 PARETO FRONTIER ANALYSIS DATA (FIGURE 4)

Table 11 provides the detailed data points corresponding to the Pareto frontier analysis presented in
Figure 4 (main paper), comparing F1 scores and Relative TFLOPS on the MATH split of Process-
bench (Zheng et al., 2024a).

A.2.5 SOLVE-DETECT-VERIFY PIPELINE PERFORMANCE DATA (FIGURE 5)

This section provides the underlying data supporting the analysis presented in Section 4.4 and Figure 5
(main paper), focusing on the AIME 2024 benchmark.

Scaling Performance (BoN vs. SDV) Table 12 details the accuracy scaling as the number of samples
(N ) increases. The SDV pipeline consistently outperforms both simple majority voting and BoN
ranking using external verifiers.

Iterative Gains Table 13 demonstrates the monotonic accuracy improvements achieved through the
iterative refinement process of the SDV pipeline.
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Table 10: ProcessBench results reported with F1 scores. Results for FlexiVe are highlighted . bold
indicates the best in the sub category. All FlexiVe variants are trained on only 1526 samples.

Model # Samples GSM8K MATH Olympiad
Bench

Omni-
MATH Avg.

Proprietary Models

GPT-4o-0806 unk 79.2 63.6 51.4 53.5 61.9
o1-mini unk 93.2 88.9 87.2 82.4 87.9

Open Source Models (1.5B)

Skywork-PRM-1.5B unk 59.0 48.0 19.3 19.2 36.4
GenPRM-1.5B (Pass@1) w/ Code Exec 23K 52.8 66.6 55.1 54.5 57.3

Open Source Models (7-8B)

Math-Shepherd-PRM-7B 445K 47.9 29.5 24.8 23.8 31.5
RLHFlow-PRM-Mistral-8B 273K 50.4 33.4 13.8 15.8 28.4
EurusPRM-Stage2 30K 47.3 35.7 21.2 20.9 31.3
Qwen2.5-Math-PRM-7B ∼344K 82.4 77.6 67.5 66.3 73.5
RetrievalPRM-7B 404K 74.6 71.1 60.2 57.3 65.8
Universal-PRM-7B unk 85.8 77.7 67.6 66.4 74.3
Direct Generative PRM-7B 23K 63.9 65.8 54.5 55.9 60.0
GenPRM-7B w/ Code Exec (Pass@1) 23K 78.7 80.3 72.2 69.8 75.2
GenPRM-7B w/ Code Exec (Maj@8) 23K 81.0 85.7 78.4 76.8 80.5

Open Source Models (14-32B) w/ Moderate Compute
Dyve-14B 117K 68.5 58.3 49.0 47.2 55.8
GenPRM-32B w/o Code Exec (Maj@8) 23K 78.8 85.1 78.7 74.9 79.3
FlexiVe (Flex@32) 1526 82.8 83.3 79.2 73.4 79.7
FlexiVe (Flex@128) 1526 83.0 85.0 80.0 75.2 80.8

Open Source Models (14-32B) w/ High Compute
GenPRM-32B (Pass@1) w/ Code Exec 23K 83.1 81.7 72.8 72.8 77.6
GenPRM-32B (Maj@8) w/ Code Exec 23K 85.1 86.3 78.9 80.1 82.6
FlexiVe (Think@64) 1526 88.1 90.1 86.7 80.4 86.3

Table 11: Detailed Data for Pareto Frontier Analysis on MATH Dataset (Figure 4).

Model Config (@k) F1 Score (%) Relative TFLOPS

FlexiVe (Flex)

@2 72.9 1.9
@4 75.8 3.8
@8 (Best Trade-off) 78.9 7.5
@16 78.2 13.2
@32 83.3 27.2

FlexiVe (Think)

@1 81.9 6.1
@2 82.3 10.2
@4 86.4 12.3
@8 88.9 22.8

GenPRM-7B (Maj) @1 80.3 15.1
@8 83.1 28.1

GenPRM-32B (Maj) @1 80.0 13.4
@8 83.5 29.4

Token Efficiency Breakdown Table 14 details the average token usage and accuracy at each stage of
the pipeline, illustrating the efficiency gains from the ’Detect’ stage and the accuracy boost from the
’Verify’ stage.

A.2.6 SCALING PROPERTIES

We explore scaling Solve-Detect-Verify along two dimensions: the verifier budget (Flex@N) and the
solver budget (Number of Solutions).
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Table 12: Test-time Accuracy Scaling on AIME 2024 (Data supporting Figure 5, Top-Left).

Method N=2 N=4 N=8 N=16
Solver Only (Maj Vote) 53.3 70.0 73.3 80.0
GenPRM-32B (BoN) 63.3 66.7 70.0 66.7
FlexiVe (BoN) 43.3 53.3 70.0 70.0

Solve-Detect-Verify 66.7 73.3 76.7 83.3

Table 13: Iterative Refinement Gains (Data supporting Figure 5, Top-Right).

Iterations AIME 2024 Accuracy (%) AIME 2025 Accuracy (%)
2 60.0 46.7
3 66.7 46.7
4 73.3 53.3

Table 14: Token Efficiency Breakdown on AIME 2024 (Data supporting Figure 5, Bottom).

Configuration Average Tokens Accuracy (%)
Solver LLM only 12,788 60.0
Solve + Detect 8,204 53.3
Solve-Detect-Verify 10,532 66.7

Scaling Verifier Budget (Flex@N): We analyze scaling FlexiVe ’s budget within a single pipeline run
(Figure 11). The ‘w/o Flex’ setup significantly cuts token usage (e.g., 0.67 ratio on AIME2024) but
reduces accuracy. Integrating ‘Flex@8‘ substantially boosts accuracy over the baseline (e.g., 73.3%
vs. 56.6% on AIME2024) while still using fewer tokens (0.96 ratio).
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Figure 11: Impact of scaling FlexiVe ’s verification budget (Flex@N) within a single Solve-Detect-
Verify execution on Pass@1 Accuracy vs. Token Usage Ratio relative to DeepSeek R1 14B.

Scaling Solver Budget: To achieve higher peak accuracies, we scale compute by generating multiple
solutions from the solver. On AIME2024 (Figure 5, top left panel), this strategy yields significant
improvements, climbing from 67.5% (1 solution) to over 83% (16 solutions), requiring approximately
4x fewer solutions than the baseline to reach similar accuracy levels.
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A.2.7 FLEXIVE PERFORMANCE SCALING DETAILS

This section provides a more detailed breakdown of the performance scaling for the different config-
urations of our FlexiVe method. We present the 95% confidence intervals for accuracy on four
benchmark datasets as the number of voting samples (N ) increases.

The results are detailed for the ”With Thinking” configuration (Think@k) in Table 15, the ”Without
Thinking” configuration (NoThink@k) in Table 16, and our primary FlexiVe method (Flex@k)
in Table 17.

A consistent trend is evident across all tables: performance generally improves as the number of
voting samples (N ) increases from 2 to 128. For example, for the main Flex@k method on the
math dataset, accuracy climbs from 72.9% to 85.0%. Concurrently, the confidence intervals tend to
narrow with a larger N , indicating more stable and reliable results. These tables also quantitatively
show that the Think@k method consistently achieves the highest performance, while NoThink@k
establishes a performance baseline.

Table 15: 95% Confidence Intervals for FlexiVe ”With Thinking” (Think@k).

Voting N gsm8k math olympiadbench omnimath

2 82.3 ± 0.89 81.9 ± 0.67 78.0 ± 0.38 71.3 ± 0.56
8 86.4 ± 0.50 88.9 ± 0.21 85.4 ± 0.40 78.9 ± 0.19
32 87.7 ± 0.44 89.7 ± 0.24 86.7 ± 0.33 80.6 ± 0.21
128 88.1 ± 0.32 90.0 ± 0.15 86.7 ± 0.15 80.5 ± 0.09

Table 16: 95% Confidence Intervals for FlexiVe ”Without Thinking” (NoThink@k).

Voting N gsm8k math olympiadbench omnimath

2 61.5 ± 2.36 57.2 ± 4.28 49.0 ± 2.56 50.5 ± 3.55
8 66.7 ± 2.63 62.8 ± 4.91 55.2 ± 3.32 53.6 ± 4.05
32 66.5 ± 2.35 64.4 ± 4.96 55.9 ± 2.98 54.7 ± 3.93
128 66.7 ± 2.46 65.0 ± 5.09 56.3 ± 3.23 54.1 ± 4.08

Table 17: 95% Confidence Intervals for FlexiVe (Flex@k).

Voting N gsm8k math olympiadbench omnimath

2 73.0 ± 2.74 72.9 ± 4.08 67.4 ± 2.62 61.4 ± 3.34
8 75.8 ± 2.48 78.9 ± 2.85 70.1 ± 2.05 66.6 ± 2.57
32 82.8 ± 1.17 83.3 ± 2.38 79.2 ± 1.41 73.4 ± 2.39
128 83.0 ± 1.32 85.0 ± 1.48 80.0 ± 1.51 75.2 ± 2.47

A.3 EXTENDED DISCUSSIONS AND ANALYSIS

A.3.1 SENSITIVITY ANALYSIS OF CONSENSUS THRESHOLD τ

The consensus threshold τ governs the escalation from ”Fast Thinking” to ”Slow Thinking” in the
Flex@k strategy. We performed a sensitivity analysis (Table 18) to validate our choice of τ = 0.8.

Table 18: Sensitivity analysis for the consensus threshold τ in Flex@8, averaged across ProcessBench
datasets. As τ varies, performance shifts between the ‘NoThink@8‘ and ‘Think@8‘ baselines.

Consensus Threshold (τ ) Slow Thinking Escalation (%) Avg. F1 Score (%) Avg. Total Tokens (M)
NoThink@8 Baseline 0% 59.6 5.4
0.5 5% 61.0 5.2
0.7 18% 69.5 4.1
0.8 (Chosen) 28% 72.9 3.0
0.95 80% 83.5 19.5
Think@8 Baseline 100% 84.9 23.1

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

At a low threshold (τ = 0.5), escalation is minimal (5%), and performance approaches the ‘No-
Think@8‘ baseline. At a strict threshold (τ = 0.95), the system escalates 80% of cases, approaching
the ‘Think@8‘ baseline but at a massive computational cost. Our chosen value, τ = 0.8, represents
the optimal balance, significantly raising the F1 score (72.9%) while maintaining high efficiency
(3.0M tokens, nearly 8x lower than Think@8).

A.3.2 ROBUSTNESS OF THE DETECTION MECHANISM

As discussed in Section 4.5 (main paper), the robustness of the hesitation keyword detector depends on
the model’s training paradigm (Table 19). On RL-distilled models (e.g., Qwen3-8B), the mechanism
behaves predictably. However, on SFT-trained models (e.g., S1 14B), its behavior is erratic, sometimes
increasing token usage and causing unpredictable accuracy shifts. This suggests RL instills a more
reliable link between hesitation keywords and model uncertainty.

Table 19: Sensitivity of Hesitation Keyword Detection Across Training Paradigms. (Table 2 in main
paper).

Model (Training Paradigm) Dataset Baseline Acc. (%) Solve+Detect Acc. (%) Acc. ∆(pp) Token ∆

Qwen3-8B (RL-distilled) AIME 2024 83.3 60.9 -22.4 -1,144
AIME 2025 73.3 66.7 -6.6 -3,576

S1 14B (SFT-trained) AIME 2024 30.0 26.7 -3.3 +2,206
AIME 2025 13.3 33.3 +20.0 +2,374

A.3.3 EFFECTIVENESS OF THE REFINEMENT LOOP

We analyzed the refinement success rate on the AIME 2024 dataset. Out of 16 initial solutions that
were incorrect (S1), our pipeline successfully corrected 4 of them (S2), yielding a 25% success
rate. This demonstrates the practical utility of the refinement mechanism, particularly noteworthy as
FlexiVe was not fine-tuned on the solver’s specific traces, indicating good generalization.

A.3.4 QUALITATIVE ANALYSIS OF THE FEEDBACK MECHANISM

We analyzed successful and failed feedback attempts to provide deeper insight into the correction
process.

Successful S1→ S2 Correction

Problem: Every morning Aya goes for a 9-kilometer-long walk... When she walks at a
constant speed of s... the walk takes her 4 hours, including t min...
S1 Error at Step: 2
FlexiVe Feedback (Excerpt): ...Understanding the problem: Aya walks 9 km at two different
speeds... We need to find the total time when she walks at (s+ 1

2 ) km/h.
Setting up equations:

• First scenario: 4 = 9
s + t

60

• Second scenario: 2.4 = 9
s+2 + t

60

Subtracting equations: ...
Result: S2 was correct
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Ineffective Feedback (Failed Correction)

Problem: Let B be the set of rectangular boxes with surface area 54 and volume 23. Let r be
the radius of the smallest sphere that can contain...
Error Location by FlexiVe: Step 13
FlexiVe Feedback (Excerpt): The solution starts by understanding that the radius... is
half the space diagonal... r2 = a2+b2+c2

4 . The goal is to maximize a2 + b2 + c2 given the
constraints...
Outcome: Correction failed
Analysis: For complex geometry problems, FlexiVe may fail to produce a corrective path-
way, highlighting a limitation in advanced spatial and geometric problem-solving capabilities.
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