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ABSTRACT

The inverse design of crystals with multiple objectives represents a significant
challenge in materials science. The interplay among various desired properties
often results in unbalanced crystal structure generation. In schemes based on
generative language models, this issue primarily stems from the models’ lim-
ited capability to learn continuous property values, compounded by the scarcity
of high-quality material data for training. To address these challenges, a property
prompt-based scheme has been proposed to achieve multi-scale data augmentation
for crystal representation. This scheme constructs learnable prompt templates for
the single property and extends them to multiple properties. The property prompt
introduces learnable templates that map continuous property values to discrete
prompt spaces, enhancing the learning ability of generative language models for
discrete property values. Multi-scale data augmentation disentangles the inter-
actions between various material properties and transforms them into mutual pro-
motion through end-to-end pre-training, thereby alleviating the problem of insuffi-
cient high-quality material data. The scheme has been validated for key properties
that affect the crystal structure composition, including the formation energy and
the band gap, as well as their various combinations. Experimental results demon-
strate that the proposed model achieves significant performance improvements
across multiple target property combinations, showcasing its robust representa-
tion and generalization capabilities in the inverse design of crystals with multiple
objectives.

1 INTRODUCTION

Crystalline materials are fundamental to a wide range of applications, from semiconductors to cat-
alysts. The ability to predict and design these structures with precision is critical to optimizing
their propertiesFang et al.| (2022); [Lee et al.[(2024). Traditional approaches to material discovery,
often reliant on trial-and-error experimentation or computationally expensive quantum mechanical
simulations, are increasingly being augmented by artificial intelligence (AI) techniquesZeni et al.
(2025)). These models, trained on vast datasets of material properties and structures, can generate
novel crystal structures, predict material properties, and even suggest synthesis pathwaysMerchant
et al.|(2023). The Al-based material structure prediction relies on graph neural networks, which has
shortcoming in computationOck et al.[(2023). These limitations make it difficult to capture details,
such as the subtle differences in the geometry and length of the interatomic bonds in the crystal and
the resulting electronic and optical properties.

The LLM-based approach provides a fresh perspective on the design material problemSuvarna et al.
(2023); Zheng et al.| (2024); |Lu et al.| (2024); |Cho1 & Lee| (2024). LLM-Prop has been proposed
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to address this challenge by shifting the focus from graphics to the text domainRubungo et al.
(2023). This model, based on the TS architecture and trained on a textual benchmark containing
over 140,000 crystal descriptions, demonstrates the ability to represent crystal structures from text
descriptions. Text-based methods hold significant potential in materials science. An example of this
is DARWIN, a specialized LLM based on the LLaMA architecture, meticulously designed for appli-
cations in materials scienceXie et al|(2023)). Its training involved a variety of instructions to ensure
the factual accuracy of outputs and explored the interconnections between different scientific tasks
through multi-task training strategies. The LLM-based approach has great advantages in automat-
ing the extraction of material knowledge from scientific literatureJia et al.[(2024); Liu et al.|(2024al);
Polak & Morgan|(2024). By training on large corpora of research articles, these models can identify
trends, correlations, and potential material candidates that might otherwise remain undiscovered.
One of the most significant breakthroughs in this field is the application of LLMs to encode and de-
code material representations. For instance, models like GPT-4 and its variants have been adapted to
process and generate material descriptors, enabling the prediction of crystal structures from chemi-
cal formulas or vice versaPatel & Wong|(2023));|Zheng et al.|(2023)). Recent generative models have
demonstrated significant potential; however, their adoption has been hindered by inefficiencies, ar-
chitectural constraints, and limited open-source availability. The representation of crystal structures
using the Simplified Line-Input Crystal-Encoding System (SLICES) notation as a string of charac-
ters enables the use of state-of-the-art natural language processing models for crystal designXiao
et al.|(2023)); /Wang et al.| (2024)). Inspired by the GPT models and the SLICES notation, MatterGPT
is proposed, demonstrating powerful on-demand crystal generation capabilities and excelling in pro-
ducing structures with specific attributesChen et al | (2024).

Despite these advancements, challenges remain in fully leveraging LLMs for material discovery.
Issues such as data scarcity and the need for validation frameworks must be addressed to ensure the
reliability and scalability of these approachesKang et al.|(2025)). The study employs the SLICES as
a grammatical foundation to design an extensible prompt learning that aims to enhance the crystal
representation capabilities of generative language models. The approach simultaneously considers
various crystal structure properties in language modeling, achieving multi-scale data augmentation
during pre-training. Independent modeling of single and multiple properties represents the optimal
performance of LLM-based schemes under specific conditions and forms the experimental baseline.
Experiments demonstrate that extensible property prompt learning can approach the optimal perfor-
mance of independent modeling through a single pre-training session. The proposed model’s ability
to generate material structures under multi-properties even surpasses the baseline.

2 RELATED WORK

2.1 SLICES

The Simplified Line-Input Crystal-Encoding System (SLICES) is the first invertible and invari-
ant crystal representation tool, supporting encoding and decoding crystal structures, reconstruct-

ing them, and generating new materials with desired properties using generative LLMsXiao et al.
(2023).

2.2 GENERATIVE LANGUAGE MODEL

Drawing inspiration from the success of GPT models in generating coherent text, the MatterGPT
was proposed and trained on the next-token prediction task to generate solid-state materials with
targeted propertiesChen et al.| (2024). MatterGPT’s capability was demonstrated to generate de
novo crystal structures with targeted single properties, including both lattice-insensitive (formation
energy) and lattice-sensitive (band gap) properties.

2.3 PROMPT LEARNING

Prompt learning is a machine learning technique that leverages prompts to guide the model’s out-
putsLi & Liang|(2021)); [Liu et al.|(2023;2024b). In the context of material discovery, prompt learn-
ing involves using specifically designed prompts to direct a model’s focus on generating or analyzing
material properties and structuresLee et al.| (2024). By integrating domain-specific knowledge into
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the prompts, the model can be fine-tuned to predict material characteristics, discover new materials,

and optimize existing onesLiu et al.| (2024a} 2025).

3 METHODOLOGY

3.1 PROPERTY PROMPTS

Prompt is the technique of making better use of the knowledge from the pre-trained model by adding
additional texts to the input. As shown in Fig. [I] (a), each material property was classified with a
specific prompt token. The language model simultaneously attend to multiple properties of the
crystal structure samples through soft prompt learning in the training. In tasks aimed at generating
different target properties, the prompt token for the target property activated specific knowledge
within the language model, facilitating the generation of crystal samples with specific property. For
instance, in this work, the language model focused on the formation energy and band gap of crystal
structures during training. The target attribute values and their corresponding prompt tokens were
input into the trained model, enabling the generation of crystal samples with formation energy, band
gap, and their combination using the same set of model parameters.

3.2 SAMPLE EXPANSION

Given that language models can recognize different material properties through prompt tokens, the
scale of the training dataset is expanded by rearranging the input order of these properties. This
helps alleviate the limitation of insufficient high-quality data. Assuming n material properties are
considered simultaneously, different permutations of these properties with the same crystal structure
can form new samples. Ideally, the training sample size could be expanded by a factorial of n.
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Figure 1: Data augmentation workflow based on properties prompts.

4 EXPERIMENTS

4.1 EXPERTMENT SETUP

4.1.1 DATA

The filtered Alex-20 dataset, utilized in this study, originates from the Alexandria databaseSchmidt]
(2021} [2023). The filtering process in MatterGPT excludes crystals with atomic numbers
exceeding 86Spicher & Grimme| (2020); |Xiao et al.| (2023), structures with dimensions lower than
(2011), and all structures classified as metallic based on their electronic propertiesJung et al.|
(2024)); [Talapatra et al| (2023). The resulting filtered Alex-20 dataset comprises 280,033 unique
crystal structures, ensuring high data quality and processability.
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4.1.2 MODEL

The proposed approach was implemented in MatterGPT (Chen et al.| (2024)) in which the necessary
dependencies was provided by the SLICES package Xiao et al.| (2023).

All baseline models are trained for 50 epochs using the Adam optimization algorithm, with an initial
learning rate set at 0.0001. The training is conducted with a batch size of 60, an embedding size
of 768, a total of 12 Transformer-decoder layers, and 12 attention heads per layer, resulting in
approximately 80 million trainable hyperparameters.

All the hyperparameters, including learning rate, batch size, and number of layers, are meticulously
tuned through a grid search to ensure optimal performance under different experimental conditions.

4.1.3 EXPERIMENTAL DESIGN

Experimental and Control Groups. Control Groups consist of independently trained models
under different conditions of Independent Variables. Experimental Groups utilize pre-trained models
based on the proposed scheme applied to the dataset. This means that Experimental Groups contain
only one set of model parameters.

Independent Variables. In single-objective experiments, various formation energies and band
gaps are used as independent variables, while in multi-objective experiments, sampled combinations
of these attributes serve as independent variables.

Dependent Variable. This study builds upon the experimental setup of MatterGPT, using validity
as the dependent variable for both experimental and control groups. Validity is defined as the propor-
tion of valid samples among the generated samples. A generated string is considered a valid sample
if it can be reconstructed into the original crystal structure. Higher validity indicates a model’s
improved capability to generate crystal structures conforming to SLICES syntax.

Control Variables. Control variables include a series of expected numbers of generated samples.
Ten expected values ranging from 1000 to 10000 are set to observe changes in the model’s generation
capability with increasing sample size.

4.2 EXPERIMENT RESULTS
4.2.1 SAMPLE GENERATION UNDER SINGLE TARGET PROPERTY

To verify the model’s ability to characterize single target property in crystals, different numbers of
samples were generated for formation energy and bandgap. The statistical analysis of the filtered
Alex dataset revealed that the formation energy of the training samples was concentrated in the [-1,
-4] interval, and the bandgap of the training samples was concentrated in the [1, 4] interval.

Consequently, the target values for formation energy were set to [-1, -2, -3, -4] and for bandgap to
[1, 2, 3, 4] to maximize the model’s generation capability. Ten points were evenly selected from the
[1000, 10000] interval as the target number of generated samples.

The experimental results for formation energy are shown in Fig. 2] The generation ability curve
indicates that the model’s performance under the formation energy condition is slightly weaker than
that of the original model, with a performance decrease of less than 2%.

The experimental results for bandgap are shown in Fig. 3] The generation ability curve indicates
that the model’s performance under the bandgap condition is slightly better than that of the original
model, with a performance increase of less than 1%.

These experimental results demonstrate that property-based prompt learning enables the same set of
model parameters to approach or even surpass the performance of independently modeled parame-
ters for different property.
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(c) Performance comparison of models in sample generation under specific formation energy

Figure 2: Sample generation under specific formation energy. Figures (a) and (b) display the validity
of crystal structures produced by the original model and property-prompted model, respectively,
under given formation energy conditions. Figure (c) compares the average validity between both
models.
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(c) Performance comparison of models in sample generation under specific band gap

Figure 3: Sample generation under specific band gap. Figures (a) and (b) display the validity of
crystal structures produced by the original model and property-prompted model, respectively, under
given band gap conditions. Figure (c) compares the average validity between both models.
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4.2.2 SAMPLE GENERATION UNDER MULTIPLE TARGET PROPERTIES

To validate the model’s generation ability under multi-objective properties, different combinations of
formation energy and bandgap were set. The target values for formation energy were set to [1, 0, -1,
-2, -3, -4], and the target values for bandgap were setto [1, 2, 3, 4, 5, 6], to achieve a comprehensive
evaluation of the model’s crystal representation ability. According to the property distribution of
the training dataset, the model’s crystal representation ability is strongest for formation energies in
the [-1, -4] interval and bandgaps in the [1, 4] interval. In other regions, due to insufficient training
data, the model did not receive sufficient learning. The heatmap in Figure 4(a) of the original model
substantiates this analysis. The effectiveness of sample generation in the formation energy [0, 1]
region and the bandgap [5, 6] region is significantly weaker in the original model compared to
regions with sufficient training samples. In contrast, the heatmap in Figure 4(b) of the property-
prompted model demonstrates well-balanced and robust generation capabilities across all tested
regions.
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Figure 4: Sample generation under multiple target properties. The figure’s horizontal axis shows
the bandgap, while the vertical axis represents the formation energy. The grid values indicate the
validity of the generated crystal structures under these dual conditions.

5 CONCLUSION

In this study, a property-prompted multi-scale data augmentation approach is proposed for the in-
verse design of material, which enhances the crystal representation capabilities of generative lan-
guage models under specific properties. Multi-scale data augmentation is achieved during training
of the generative language model based on different material properties. The proposed approach is
implemented on the GPT architecture and validated under various property combinations, demon-
strating the model’s performance. The experimental results indicate that model parameters based on
property prompts can approach or even surpass the performance of independently modeled param-
eters in single target property generation with just one training process, while also achieving more
balanced performance in multi-objective property generation.
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