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ABSTRACT

In recent years, reinforcement learning (RL) has been increasingly applied to sys-
tems that interact with individuals in various domains, such as healthcare, education,
and e-commerce. When an RL agent interacts with individuals, individual-specific
factors, ranging from personal preferences to physiological nuances, may causally
influence state transitions, such as health conditions, learning progress, or user
selections. Consequently, different individuals may exhibit different state transi-
tion processes. Understanding these individualized state-transition processes is
crucial for making individualized policies. In practice, however, identifying these
state-transition processes is challenging, especially since individual-specific factors
often remain latent. In this paper, we present a practical method that effectively
learns these processes from observed state-action trajectories, backed by theoretical
guarantees. To our knowledge, this is the first work to provide a theoretical guaran-
tee for identifying the state-transition processes involving latent individual-specific
factors. Our experiments on synthetic and real-world datasets demonstrate that our
method can effectively identify the latent state-transition processes and help learn
individualized RL policies. The code is available at CODE.

1 INTRODUCTION

Reinforcement Learning (RL) (Konda & Tsitsiklis, 1999) involves training agents to make decisions
through interactions with an environment. In this framework, an agent observes its current state, takes
an action based on a policy, and receives a reward, which then leads to a new state. This sequence of
moving from one state to another is known as the state transition process.

In recent years, RL has been increasingly applied in systems that directly interact with individuals,
spanning sectors such as healthcare (Yom-Tov et al., 2017; Liao et al., 2020; Ghosh et al., 2023),
education (Shawky & Badawi, 2019; Bassen et al., 2020; Fahad Mon et al., 2023), and e-commerce
(Lei & Li, 2019; Yin & Han, 2021; Afsar et al., 2022). When RL systems engage with individuals,
they can encounter many individual-specific factors (Lu et al., 2018). These can range from individual
preferences and past experiences to physiological differences, all of which can causally influence
the transitions between states. For example, in the realm of education, two students with the
same background knowledge might progress at different learning rates after watching the same
tutorial video, due to their different learning styles. Similarly, in healthcare, two patients diagnosed
with hypertension might experience different health outcomes after receiving the same treatment,
influenced by factors like genetic predispositions or lifestyle habits.

Understanding individualized state-transition processes is essential for designing better RL systems
that can provide more individualized and effective decisions (Kaiser et al., 2019; Hafner et al., 2020;
Bennett et al., 2021; Pace et al., 2023). Continuing from the aforementioned example, if an RL system
understands a student’s learning style, it can recommend resources that better suit their learning
styles, such as animated content for visual learners or hands-on exercises for those who learn by
doing. In a healthcare context, if an RL system recognizes a patient’s genetic makeup, it can suggest
treatment plans that align with their specific needs, leading to better health outcomes. This highlights
the importance of understanding and identifying individualized state-transition processes.

However, a challenge arises when considering that many of these individual-specific factors are
latent and not directly observable. The question of how to learn the latent state transition process
which includes these latent individual-specific factors from observed states and actions, remains a
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challenging problem. To our knowledge, only a few studies have attempted to uncover the latent
state transition process, and none have conclusively determined whether it is possible to identify this
process using observable data (Lu et al., 2018; Pace et al., 2023).

In this paper, we propose a novel method that effectively learns these processes from observed
state-action trajectories. Our contributions are summarized as follows:

• We propose the Individualized Markov Decision Processes (iMDPs) framework, a novel approach
that integrates individual-specific factors into decision-making processes. We model these factors
as latent confounders. We allow them to influence each state in the decision process and to vary
across different individuals. This framework has many real-world applications.

• Our framework has theoretical guarantees. We show that when individual-specific factors are
finite, our method ensures the identifiability of whole latent state-transition processes, even when
the transition processes are nonlinear. This establishes novel theoretical insights for learning
state-transition processes with latent individual-specific factors. Additionally, for scenarios with
non-finite individual-specific factors, we show that categorizing them into finite groups has little
impact on the empirical results. To the best of our knowledge, this is the first work to provide a
theoretical guarantee for the identification of latent individual-specific factors from observed data.

• We propose a practical generative-based method that can effectively infer latent individual-specific
factors. Empirical results on both synthetic and real-world datasets demonstrate the method’s
effectiveness not only in inferring these factors but also in learning individualized policies.

2 RELATED WORK

Individualized Machine-Learning Applications Machine learning in the modern era creates
highly individualized solutions across various domains. In health, it customizes interventions for
physical activity, weight loss, and diabetes management (Yom-Tov et al., 2017; Liao et al., 2020;
Forman et al., 2019; 2023). It assists the elderly with technology and care (Hoey et al., 2014), aids
the financial sector in precise stock predictions (Li et al., 2019), and enhances education through
personalized ICT systems (Fok et al., 2005; Ji et al., 2017). In transportation, it develops tailored
car-following strategies (Song et al., 2023), while in multimedia, platforms like YouTube and TikTok
use it for custom video recommendations (Cai et al., 2022; Hoiles et al., 2020). These instances
highlight machine learning’s broad applicability in today’s world.

Reinforcement Learning for Latent State-Transition Processes RL has made significant progress,
especially with latent variable models for understanding environment dynamics. The main aim is
learning low-dimensional, latent Markovian representations from data (Lesort et al., 2018; Krishnan
et al., 2015; Karl et al., 2016; Ha & Schmidhuber, 2018; Watter et al., 2015; Zhang et al., 2018;
Kulkarni et al., 2016; Mahadevan & Maggioni, 2007; Gelada et al., 2019; Gregor et al., 2018; Ghosh
et al., 2019; Zhang et al., 2021). Strategies include reconstructing observations, learning forward or
inverse models, and using prior knowledge like temporal continuity (Wiskott & Sejnowski, 2002).
Various studies (Watter et al., 2015; Ebert et al., 2017; Ha & Schmidhuber, 2018; Hafner et al., 2018;
Zhang et al., 2019; Gelada et al., 2019; Kaiser et al., 2019; Hafner et al., 2020) propose methods for
estimating state-transitions from high-dimensional sequences, aiding model-based RL or planning.
Recent research (Lu et al., 2018; Li et al., 2020; Vo et al., 2021; Wang et al., 2021; Bennett et al.,
2021; Pace et al., 2023) focuses on estimating state-transitions with latent confounders. Some works
(Lu et al., 2018; Pace et al., 2023) address similar scenarios with individual-specific factors, but a
systemic approach for clear identifiability in such settings is still lacking.

3 PRELIMINARIES

To model the individualized property given population samples, we propose Individualized Markov
Decision Processes (iMDPs), which is an extension of the standard MDP with latent confounders.
We assume that the latent confounders have a long-term and constant influence on the entire decision-
making process, while the factors differ from individual to individual.

Definition 3.1. An Individualized Markov Decision Process (iMDP) is a tuple ⟨S,A,Pl,R, γ⟩,
where S, A, and R are the state, action, reward spaces, respectively, and γ is the discount factor.
s⃗t = (s0t, . . . , snt)

⊤ ∈ Rn and a⃗t = (a0t, . . . , amt)
⊤ ∈ Rm represent the state and action vectors

at time t, respectively. rt = R(s⃗t−1, a⃗t−1, s⃗t) ∈ R denotes the immediate reward. l ∈ L are the
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specific latent individual-specific factors where L is the latent individualized space. We define the
corresponding individualized state transition distribution Pl as

Pl(s⃗t|s⃗t−1, a⃗t−1) = P(s⃗t|s⃗t−1, a⃗t−1, l), (1)

which indicates that the dynamic transition from the history (s⃗t−1, a⃗t−1) to the current state s⃗t is
influenced by the latent individual-specific factors l.

In this context, the population samples can be viewed as a family of iMDPs {⟨S,A,Pl,R, γ⟩|l ∈ L}.
Different from the majority of latent MDP research which focuses on the time-varying latent (Feng
et al., 2022; Zhang et al., 2020; Guo et al., 2020), in our work, the latent confounders are assumed to
influence each state in the decision process. It remains constant for each individual, representing the
unique characteristics, and varies between different individuals, highlighting the individual differences
among them. A graphical representation of the data generation process is shown in Figure. 1(a).

Figure 1: (a) Data generation processes. (b) Hypertension diagnosis.

This formulation is intuitive in
many real-world applications.
For example, in the context of
hypertension diagnosis as shown
in Figure. 1(b). The patient’s
health status at each time can be
represented as the state s⃗t, the
individualized treatment can be
viewed as the action a⃗t, and the
blood pressure level is the reward
rt. The latent confounder l rep-
resents the unobserved genetic
predispositions that are unique
to each patient and have a signifi-

cant impact on their long-term health, such as gene variations. In this case, the health status s⃗t at time
t is determined by the previous status s⃗t−1, previous treatment a⃗t−1, together with the intrinsic gene
variations. Such implicit associations are indicated by the red dashed lines. If we could observe these
predispositions, it would greatly help physicians to predict how patients will respond to specific treat-
ments, enabling personalized care. In most cases, however, these individualized factors remain latent
and difficult to diagnose. Therefore, the theoretical identification of such traits and the development
of an estimation framework to extract them from observed data is of great practical value.

Data Generation Process Consider a population with K unique individuals that can be divided into
q groups, where the exact group membership is unknown. A trajectory for individual k (k = 1, . . . ,K)
is a sequence of state-action tuples experienced by an agent during its interaction with the environment,
and is denoted as τk = {(s⃗k0 , a⃗k0), (s⃗k1 , a⃗k1), . . . , (s⃗kT , a⃗kT )} with T being the total length of the
trajectory. It is important to note that these samples are assumed to be generated from a stationary
process for each individual, but show heterogeneity across different groups.

Here we introduce the individualized transition processes. Suppose that the observed states of the
k-th individual s⃗kt = (sk0t, . . . , s

k
nt)

⊤ satisfy the following generation process

skit = fi(s⃗
k
t−1, a⃗

k
t−1, l

k, ϵkit), (2)

for i = 1, . . . , n. Here ϵkit is the noise term, and lk ∈ L is the latent individual-specific factor. From
the population perspective, L = {l1, l2, . . . , lq} is the collection of all latent confounders with q being
the cardinality of L. Furthermore, L characterizes the unique properties of the transition function f
across different individuals, which is consistent with Equation 1.

Problem Setting In this work, we focus on developing individualized policies within RL. We
aim to (1) identify the latent individual-specific factors L from the observed sequential trajectories,
and (2) develop individualized policy learning as well as policy adaptation for new individuals.
Consider the hypertension diagnosis example in Figure. 1(b). The same treatment applied to different
individuals would yield different results because the state transitions dynamics are influenced by
the latent confounders. Therefore, recovering L from the population data is important for accurate
dynamic prediction, which is consistent with our first goal. After identifying L, we can then divide
the population into different subgroups and make individualized treatment for each patient to achieve
the expected outcomes, aligning with our second goal.
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4 IDENTIFIABILITY ANALYSIS

Following prior work, we define identifiability in representation function space.

Definition 4.1 (Identifiability). Let s⃗t be a sequence of observed variables generated by the true
individualized transition processes specified by (fi, l, pϵi) given in the preliminary. A learned gener-
ative model (f̂i, l̂, p̂ϵi) is observationally equivalent to (fi, l, pϵi) if the joint distribution pf̂ ,l̂,p̂ϵ

(s⃗t)

matches pf,l,pϵ(s⃗t) everywhere. We say the latent individualized-specific factors are identifiable if
observational equivalence can always lead to identifiability of the latent variables:

pf̂ ,l̂,p̂ϵ
(s⃗t) = pf,l,pϵ

(s⃗t)⇒ l̂ = l. (3)

Theorem 1 shows the identifiability of the latent individual-specific factors in the individualized
transition model. A more detailed explanation of the assumptions and the full proof can be found
in Appendix A. Suppose the sampled individuals are from different unobserved groups, and the
transition dynamics are different across groups but identical within each group.

Theorem 1. Assume the individualized transition processes in Eq. 2, where the nonlinear state
transition functions fi are stationary within each individual but exhibit variability across different
individuals. The different values of lk ∈ L describe different transition processes determined by fk

i
for each individual. Here we assume:

• (Group Determinacy): The individual-specific factors lk ∈ L delineates distinct groups within the
finite mixture model, each of which defines and dictates the individualized transition dynamics fk

i .

• (Sample Sufficiency): The length of the sequence for each individual ls is greater than 2q − 1,
where q is the number of groups.

• (Sequential Dependency): At any time t, s⃗t is determined only by the given conditions
(s⃗t−1, a⃗t−1, L) within each group, and there are no instantaneous relations between s⃗t.

Then the identifiability property of the latent individual-specific factors L is ensured.

Intuitive Explanation on Assumptions Group determinacy indicates that for a given task, the
individual-specific factors are finite. This is a realistic assumption in numerous practical situations.
For instance in hypertension diagnosed, even if they receive the same treatment they might experience
different health outcomes. These differences can be attributed to latent factors like their medical
history, which are essentially finite records of past medical events and treatments. In this case, we
can group patients based on their history. Each group would demonstrate unique health outcomes and
patterns, driven by their respective individual-specific factors lk.

The sample sufficiency assumption provides a minimum number of observed samples for reliable
identifiability. Such a threshold guarantees enough data diversity to distinguish group characteristics.
The sequential dependency assumption further ensures Markov behavior in the dynamic evolution,
where only the previous information, such as state and action, influences the current state.

Note that even the required assumptions sometimes may not be held in practice, our method can still
encourage the identifiability in different cases, that is: (1) multiple independent latent confounders
with cardinalities c1, . . . , cm, (2) multiple independent continuous latent confounders, and (3) insuffi-
cient samples. In the first case, we can treat multiple latents as one discrete latent with cardinality∏m

i=1 ci. Then each combination of the original multiple latents can be uniquely represented as one
level in the combined latent variable. In the second case, the empirical results in Section 6 show
that our proposed framework can also encourage the identifiability of the continuous latents. This is
because we can divide the continuous latent confounder L into small segments and represent each
with a discrete value lk. This discretization approach improves computational simplicity and stability.
In the third case, even when the sample sufficiency assumption is weakly violated, our framework
still encourage the identification of the latent confounder, as verified in the experiment in Section 6.

Proof Sketch According to the group determinacy assumption, each unique instance of lk represents
a distinct group within the mixture model. Therefore, each component of the mixture model is
associated with a unique transition function fi. Since there are no instantaneous relations within s⃗t,
the observed s⃗t generated with lk are considered to be drawn from the same group of the mixture
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model. Thus for each group represented by lk, we have a unique process generating the observations,
and the total observations are the mixture of the observations from each group. Lemma 1 in the
Appendix states that the identifiability of mixture models from grouped samples would be ensured if
the observations are sufficient. According to the sample sufficiency assumption, since we have at
least 2q − 1 sequential observation tuples in each individual, we can uniquely identify any mixture of
q probability measures. To summarize, in the individualized transition processes, since the groups
are indicated by distinct lk, if the number of samples is sufficient, then the latent confounder L
representing the unique group from which the observed samples are drawn can be identified.

5 ESTIMATION AND POLICY LEARNING FRAMEWORK

In this section, we propose Individualized Policy learning through Latent Factors estimation (IPLF), a
two-stage learning method for optimizing individualized policies. IPLF uses a collection of individual
trajectories stored in a buffer, which are meticulously analyzed to 1) construct an estimation framework
to recover the individual-specific factors, and 2) establish the individualized policy learning framework
to realize policy adaptation for new individuals. The visualization of the learning process is shown in
Figure. 2, which aligns with the identifiability theorem of L provided in Section 4. The pseudocode
of the entire framework is available in Appendix C.

Figure 2: For each individual k, (a) Individual-specific Factors Estimation runs the sequence s⃗k0:T through
a quantized encoder to estimate the latent confounder l̂k. Then the noise ν̂k is estimated to compensate for
the determinacy of the quantization operation. Finally, the conditional decoder is designed to mimic the
individualized transition processes with (s⃗kt−1, a⃗

k
t−1), l̂k and ν̂k as inputs, ˆ⃗skt as output. (b) Individualized

Policy Learning augment the original buffer with the corresponding latent factors. Then the augmented dataset
is processed in a model-based RL fashion to optimize individualized policies and efficiently adapt to new
individuals.

Overview Our proposed framework is carefully customized to meet the requirements of the identi-
fiability theorem. According to the identifiability definition, the latent confounders are identifiable if
observational equivalence can always lead to identifiability of the latent variables. This motivates our
work to use a generative model and to realize confounder estimation by fitting the learned distribution
to the true observed distribution. The traditional VAE (Kingma & Welling, 2013) encodes the input
data into a continuous latent space using probabilistic encoders and then reconstructs the input from
this space using decoders, which is not aligned with our problem setting. Specifically, given the offline
trajectory of the population, we customize the VAE framework and develop an individual-specific
factor estimation framework to recover the latent individual-specific factors.

First, in order to obtain latent representations in a reduced dimensional space, an encoder is used
with the entire sequence s⃗k0:T of each individual k as input and the latent continuous representation
zk as output. Considering the group determinacy assumption, the estimated latent confounder should
be discrete. We then embed a quantization layer to discretize the continuous latent representation
zk to the latent confounder l̂k. Intuitively, the better l̂k is recovered, the better the data generation
process could be learned. To reconstruct individualized transition processes, we design a conditional
decoder that takes the conditions (s⃗kt−1, a⃗

k
t−1), the estimated confounder l̂k, and the noise term ν̂k

as inputs, with ˆ⃗skt as the output. By introducing noise, we model the stochasticity in our defined
transition process. After that, the optimized quantized encoder is used to augment the original buffer
and facilitate the downstream individualized policy learning.

5.1 INDIVIDUAL-SPECIFIC FACTOR ESTIMATION FRAMEWORK

Inferring Individual-Specific Factors via a Quantized Encoder The group determinacy assump-
tion implies the existence of the latent individual-specific factor L. Since L denotes the time-invariant
latent individual-specific factors that influence each state in the transition process, we initially use an
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encoder to capture the continuous representation zk from s⃗k0:T , and employ a quantization layer to
delineate unique and distinct groups as l̂k.

To capture the long-term temporal dependence between the observations, sequential neural networks
are used to extract the low-dimensional representation zk = g(s⃗k0 , . . . , s⃗

k
T ) from raw sequences with g

being the encoder function. Specifically, we use Conv1D (LeCun et al., 1989) for the synthetic dataset
and LSTM (Hochreiter & Schmidhuber, 1997) for the corpus dataset. In the Conv1D, a series of 1d
convolutional layers process each subsequence s⃗kt:t+H and traverse the entire sequence to capture
local temporal patterns. In the LSTM, each s⃗kt is processed sequentially, incrementally accumulating
information in the hidden states ht at each time step. The corresponding update functions are

okt = Conv1D(s⃗kt:t+H), hk
t , c

k
t = LSTM(hk

t−1, c
k
t−1, s⃗

k
t ; θ), (4)

where okt , hk
t and ckt are the feature map, hidden state and cell state at time t, and θ denotes all the

parameters of the LSTM. After the sequential process over the entire trajectory, the final hidden
state of the LSTM as well as the final output of the convolutional layer serve as the low-dimensional
continuous representation zk. Please refer to Appendix F for more details.

Since the derived zk yields continuous latent representations, a vector quantization (VQ) layer (Van
Den Oord et al., 2017) is then employed to delineate distinct groups. This layer maps each continuous
representation to the nearest vector in a predefined embedding dictionary E and translates the
continuous representations into discrete latent space. Specifically, the embedding dictionary consists
of a set of vectors E = {e1, e2, . . . , eq}, each of which symbolizes a distinct group in the discrete
embedding space. The assignment of a dictionary vector ei to zk can be realized by finding the
nearest neighbor in the dictionary: l̂k = argminei∥zk − ei∥2, where l̂k represents the quantized
vector that is the closest embedding ei to the continuous representation zk. This component better
aligns the representation learning process with our assumptions about the group nature of the latent,
making it a reasonable choice for our purposes.

Estimating Noise for Accommodating Stochasticity of State-Transition Processes To account
for the stochastic nature of the individualized transition processes, a noise estimator is introduced
with l̂k as input and ν̂k as output. Empirically, this noise is modeled using an MLP (Multilayer
Perceptron) layer. Then, the output of the noise layer is used as the input of the conditional decoder.

The motivations for introducing a noise layer are 1) to mimic the probabilistic property of the
individualized state transition in Equation 1, and 2) to compensate for the loss of stochasticity due
to the deterministic nature of the quantization operation. While standard VAEs use the sampling
process in the latent space to introduce variability, the categorical and deterministic nature of our
posterior reduces this stochastic element. In contrast to standard VAEs, which optimize a variational
lower bound on the log-likelihood with the KL divergence penalizing deviation from a given prior

distribution, our posterior q(l̂k = κ|s⃗k0:T ) =

{
1 for κ = argminj∥zk − ej∥2
0 otherwise

is a categorical

distribution and becomes deterministic after the quantization operation. By adding noise to the
decoder, we introduce variability that 1) satisfies our individualized transition processes, and 2)
allows the model to better vary the data. The empirical results of the ablation study validate the
model’s enhanced ability to improve generalization.

Learning State-Transition Processes via Action-State Reconstruction To reconstruct individual-
ized transition processes, a conditional decoder is built, which aligns with the sequential dependency
assumption. It uses the previous state and action tuples (s⃗kt−1, a⃗

k
t−1) as conditions to guide the

reconstruction on ˆ⃗skt . These conditions, together with the estimated latent individual-specific factors
l̂k and the noise term ν̂k, serve as the inputs to the decoder. The accuracy of this reconstructed state is
quantitatively evaluated by its reconstruction likelihood pRecon(s⃗

k
t |s⃗kt−1, a⃗

k
t−1, l̂k, ν̂k), where pRecon

is the decoder distribution, offering a probabilistic measure of how accurately ˆ⃗skt reconstructs s⃗kt , and
providing a quantitative evaluation of the model’s reconstruction accuracy.
Training Objectives During the training process, the parameters are optimized according to the
extended ELBO objective LELBO.

LELBO = LRecon + βLQuant + αLCommit (5)
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where α and β are weights for the corresponding loss components. Specifically, (1) the reconstruction
loss LRecon =

∑
t ∥s⃗kt − De(En(s⃗k0:T ), s⃗

k
t−1, a⃗

k
t−1, ν̂k)∥2 measures the discrepancy between the

reconstructed state ˆ⃗skt and the original state s⃗kt . Here En and De denote the encoder and decoder,
respectively. (2) The quantization loss updates the embedding space by evaluating the difference be-
tween the encoder output zk and the discretized representation on ek obtained by vector quantization,
defined as LQuant =

∑
i ∥sg[zki ]− eki ∥2, where sg is the stop-gradient operator. (3) Commitment loss

ensures that the encoder’s outputs are consistent with the embedding space, thereby decrease variations
in the encoder’s output (e.g., switching from one embedding vector to another). This regularization
term is computed as the L2 error between zk and ek, represented as LCommit =

∑
i ∥eki − sg[zki ]∥2.

5.2 INDIVIDUALIZED POLICY LEARNING FRAMEWORK

Leveraging Individual-Specific Factors For Individualized Policy The estimated individual-
specific factors l̂k, along with the trajectories stored in the buffer, are used to adjust the individualized
policy π∗

k. Our framework is general enough to be integrated with many RL algorithms. In general,
the conventional policy input is extended to include latent factors specific to each individual, and
the training objective is adjusted accordingly to prioritize the optimization of policies tailored to
the individual. Here we use Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2015)
as an example. Traditional DDPG learns an optimal policy by maximizing the expected return
for continuous action spaces. In our individualized approach, the input includes the latent factors,
and the policy is updated as µπ(s⃗t; θ

µ) → µK
π (s⃗kt , l̂k; θ

µ), where θµ denotes the parameters of
the policy network. Incorporating latent factors into a DDPG allows the model to better tailor
policy to the unique characteristics of different individuals. The training objective is then updated
as J(θµ) = E

[∑∞
t=0 γ

tQ
(
s⃗t, µ

K
π (s⃗kt , l̂k; θ

µ); θQ
)]

, where γ is the discount factor and Q is the
Q value. The individualized DDPG develops customized policies for each individual, increasing
adaptability in changing environments.

Policy Adaptation for New Individual After optimizing the individualized policy, the agent uses
π∗
k as a warm start, which is an initial starting point that helps speed up training, and continues training

on the new individual. To achieve zero-shot transfer, we simultaneously optimize the individualized
policy while interacting with the environment. Thus, adaptation involves a dual process: it fine-tunes
the policy based on interactions with the new individual, and it actively collects data from these
interactions. This data collection is critical for estimating the latent individual-specific factor of the
new individual. During this phase, the policy is continuously adjusted and improved, making it better
suited to each new individual.

6 EXPERIMENT

We comparatively evaluate the proposed method on a number of temporal datasets to verify the
performance of (1) individual-specific factor estimation and (2) individualized policy learning.

Evaluation Metrics To measure the identifiability of the latent individual-specific factors, we use
(1) Pearson Correlation Coefficient (PCC) for singular latent case and (2) Canonical Correlation
Analysis (CCA) for multiple latents case, implementing these on the test dataset to quantify the
correlation between the estimated and actual latent variables. A value nearing 1 denotes a strong
correlation between the variables, whereas a value approaching 0 indicates a weak correlation. To
evaluate the control performance, we consider (3) jumpstart and (4) accumulative reward. Jumpstart
refers to the improvement in the initial performance when a learning agent leverages knowledge
transferred from a source task. Accumulative reward indicates the learning quality and transfer
success, typically measured by the rewards earned as the model adapts to a new environment, offering
valuable insight into the learning quality.

Baselines (1) Disentangled Sequential Autoencoder (DSA) (Yingzhen & Mandt, 2018), which
separates the latent representations into static and dynamic parts instead of considering the global in-
fluence of L. (2) Population-Level Component (PLC), which learns the population-level embeddings
instead of focusing on individualized factors. (3) VQ-VAE (Van Den Oord et al., 2017) serves as the
base model for ablation. Model variants are built upon it to disentangle the contributions of different
modules. (4) Adaptation to continuous latent variables, which allows us to evaluate the flexibility of
our method and to assess if the continuous latent assumption distorts identifiability.
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6.1 EVALUATION ON ESTIMATION FRAMEWORK

Synthetic Experiments We manually created time series data based on the post-nonlinear
model (Zhang & Hyvarinen, 2012) and customize different types of latents with the required assump-
tions satisfied or violated. The data generation process is modeled as s⃗t = f2(f1(s⃗t−1, a⃗t−1, L), ϵt),
where f1 represents the nonlinear effect, and f2 denotes the invertible post-nonlinear distortion on
s⃗t. The state s⃗t ∈ R3 and actions a⃗t ∈ R2 are initially generated randomly following a uniform
distribution, and the noise is modeled as a Gaussian distribution. Three types of L are generated
to satisfied or violate our assumptions. Case 1: L is a discrete latent scalar follows the categorical
distribution Cat(0.1, 0.2, 0.3, 0.4). Case 2: L are multiple discrete latent variables follow the categor-
ical distributions Cat(0.1, 0.9), Cat(0.2, 0.3, 0.5), Cat(0.1, 0.2, 0.3, 0.4) respectively. Case 3: L are
multiple continuous latent variables follow the Gaussian distribution N (0, 1), uniform distribution
Uniform(0, 1), and exponential distribution Exp(1). During the data collection period, we generate
100 individuals, with the maximum total length of each trajectory being 300.

Fig. 3(a) and Fig. 3(b) present results with Case 1. The comparison result in Fig. 3(a) shows that our
method outperforms the baselines. Specifically, DSA reconstructs the entire time series but overlooks
individualized transition processes, resulting in compromised identifiability and deteriorating recovery
performance over time. PCL lacks the individual-specific factor to delineate distinct groups thus
cannot achieve identifiability. Fig. 3(b) shows the relationship between sequence length and the
identifiability performance. It shows that satisfying sample sufficiency assumption is necessary to
recover the latent variable, while usually, the longer the length, the better the performance. Fig. 3(c)
and Fig. 3(d) illustrate the identifiability results in Case 2 and Case 3. The high CCA values indicate
the successful recovery of latent variables, even when our assumptions are violated. This suggests
the potential applicability of our model in guiding the learning of multiple latent individual-specific
variables, reinforcing its versatility and practical relevance.

(a) (b) (c) (d)

Figure 3: Synthetic experiment results. (a) PCC trajectory comparisons with baselines. (b) Identifibility
performance responses of individual sequential length. Values are means±SD, n = 5. (c) Scatterplot of
canonical variables in Case 2. (d) Scatterplot of canonical variables in Case 3.

Table 1: Contribution of each module.

Module PCC Bias

VQ-VAE 0.646 ± 3.1e-04 0.099 ± 2.3e-04
+ Conditional Decoder 0.382 ± 3.8e-02 0.081 ± 2.8e-06
+ Conv1d Encoder 0.910 ± 1.3e-04 0.077 ± 5.7e-06
+ Noise Estimator 0.942 ± 4.0e-05 0.072 ± 3.0e-07

Ablation Study We show the contributions of dif-
ferent components in the Individual-specific Factor
Estimation in Table 1. The conditional decoder
primarily contributes to a reduction in model bias,
illustrating its usefulness in refining the accuracy
of the model. The addition of a sequential encoder,
using Conv1D as an example, can significantly im-
prove the identifiability of the model, highlighting its importance for accurate latent variable recovery.
Finally, the use of a noise estimator further optimizes the model, reducing bias while improving
identifiability. The result implies that the noise estimator is instrumental in fine-tuning the overall
performance of the model, allowing for more accurate and reliable extraction of latent confounder.

Persuasion For Good Corpus We further evaluate the effectiveness of the estimation framework
on a real-world, open-source dataset, the Persuasion For Good Corpus (Zhang et al., 2017; Wang
et al., 2019). It is a collection of dialogues focused on charitable donations, and each dialog
involves a persuader trying to convince a persuadee to donate to a charity, where all participants have
undergone personality assessments and have corresponding individualized personalities. The state is
the persuadee’s response, the action is the persuader’s utterance, and the reward is the final donation
in each dialog. The goal is to make an individualized policy for each persuader to successfully
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persuade the persuadee to make a charitable donation. To achieve this, we first need to identify the
latent personality of each individual from the offline dataset.

We initially employ a pre-trained BERT model (Devlin et al., 2018) to convert natural language
(dialogues) into vectors, then use an LSTM encoder to extract latent personalities. Fig. 4(a) shows the
curve of the first canonical correlation relative to the latent dimension, demonstrating that by carefully
selecting the latent dimensions in real data, our method can achieve commendable performance.

(a) (b) (c) (d)

Figure 4: In corpus dataset: (a) The first canonical correlation relative to the latent dimension. In Pendulum
dataset: (b) Frequency comparisons of the true latent with the estimated latent. (c) Scatterplot of the true latent
with the estimated latent. (d) Training reward curve compared with baselines.

6.2 EVALUATION ON POLICY LEARNING FRAMEWORK

The pendulum environment from OpenAI Gym is a classic control task for RL studies. It presents a
continuous control task, where the agent aims to control a frictionless pendulum, swing and stabilize
it in its inverted position with minimal effort. For a pendulum of length l, mass m, gravity g, and
a continuous control input u, the dynamics is ml2θ̈ +mgl sin(θ) = u, where θ is the angle of the
pendulum and θ̈ is the angular acceleration. We choose DDPG as the RL algorithm and manually
create 20 individualized environments, each changing the gravity as {5.0, 10.0, 15.0, 20.0, 25.0} and
g follows a categorical distribution g ∼ Cat(0.1, 0.2, 0.1, 0.4, 0.2). A buffer is populated with 100
time steps for each individual, and the new individual is assumed to have gravity g = 10.0.

Fig. 4(b) and Fig. 4(c) show the successful recovery of the latent individual-specific factor, validated
by high-frequency similarity and a remarkable PCC value, confirming the ability of our method
to skillfully recover latent variables in practical RL tasks. For the individualized policy learning,
we compare our method with (1) standard DDPG with no prior training, (2) a pre-trained policy
network using data collected from the new individual—termed SameIndividual Transfer, and (3) a
pre-trained policy network using data collected from different unknown grouped individuals - termed
MultiIndividual Transfer. The comparative results are shown in Fig. 4(d). The performance trends of
all transferred policies illustrate that incorporating a pretrained policy model accelerates the learning
process, a benefit attributed to jumpstart and accumulative reward. However, in the absence of
individual-specific information, as in the case of MultiIndividual Transfer, the mixed policy training
yields inferior initial performance compared to the individualized policies derived from IPLF , as
evidenced by a jumpstart comparison of -600 versus -1000. Interestingly, the use of individualized
training not only introduces robustness but also allows IPLF to converge faster than SameIndividual
Transfer, reflecting the advantage of precise and individual-centric learning policies in promoting
accelerated model convergence.

7 CONCLUSION AND FUTURE WORK

Our paper presents a method to learn latent state transitions from the observed state-action trajectories,
ensuring the identifiability in the presence of latent individual-specific factors. Empirically, the effec-
tiveness of our method is validated in inferring the latent confounder and in learning individualized
policies. The main limitations of this work lie in our two main assumptions: (1) there is no instanta-
neous causal influence within s⃗t, and (2) the latent confounder is discrete. Instantaneous relationships,
if present, may distort the identifiability of the latent state-transition process, although their impact can
be moderated by adjusting the temporal resolution of the data. Although our theoretical framework
does not extend to scenarios with evolving continuous latents, our empirical results suggest potential
for adapting our approach to a broader range of scenarios. Extending our identifiability theories and
framework to account for such properties is our future direction.
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Munos, and Mohammad Gheshlaghi Azar. Bootstrap latent-predictive representations for multitask
reinforcement learning. In International Conference on Machine Learning, pp. 3875–3886. PMLR,
2020.

D. Ha and J. Schmidhuber. World models. In Advances in Neural Information Processing Systems,
2018.

D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learning latent
dynamics for planning from pixels. arXiv preprint arXiv:1811.04551, 2018.

D. Hafner, T. Lillicrap, M. Norouzi, and J. Ba. Mastering atari with discrete world models. arXiv
preprint arXiv:2010.02193, 2020.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Jesse Hoey, Pascal Poupart, Craig Boutilier, and Alex Mihailidis. Pomdp models for assistive
technology. In Assistive Technologies: Concepts, Methodologies, Tools, and Applications, pp.
120–140. IGI Global, 2014.

William Hoiles, Vikram Krishnamurthy, and Kunal Pattanayak. Rationally inattentive inverse
reinforcement learning explains youtube commenting behavior. The Journal of Machine Learning
Research, 21(1):6879–6917, 2020.

Harold Hotelling. Relations between two sets of variates. In Breakthroughs in statistics: methodology
and distribution, pp. 162–190. Springer, 1992.

Biwei Huang, Kun Zhang, Pengtao Xie, Mingming Gong, Eric P Xing, and Clark Glymour. Spe-
cific and shared causal relation modeling and mechanism-based clustering. Advances in Neural
Information Processing Systems, 32, 2019.

Aapo Hyvarinen, Hiroaki Sasaki, and Richard Turner. Nonlinear ica using auxiliary variables and
generalized contrastive learning. In The 22nd International Conference on Artificial Intelligence
and Statistics, pp. 859–868. PMLR, 2019.

Xiaoyuan Ji, Hu Ye, Jianxin Zhou, Yajun Yin, and Xu Shen. An improved teaching-learning-based
optimization algorithm and its application to a combinatorial optimization problem in foundry
industry. Applied Soft Computing, 57:504–516, 2017.

L. Kaiser, M. Babaeizadeh, P. Milos, B. Osinski, R. H. Campbell, K. Czechowski, · · · , and
H. Michalewski. Model-based reinforcement learning for Atari. arXiv preprint arXiv:1903.00374,
2019.

M. Karl, M. Soelch, J. Bayer, and P. van der Smagt. Deep variational bayes filters: Unsupervised
learning of state space models from raw data. arXiv preprint arXiv:1605.06432, 2016.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information processing
systems, 12, 1999.

Lingjing Kong, Shaoan Xie, Weiran Yao, Yujia Zheng, Guangyi Chen, Petar Stojanov, Victor
Akinwande, and Kun Zhang. Partial identifiability for domain adaptation. arXiv preprint
arXiv:2306.06510, 2023.

R.G. Krishnan, U. Shalit, and D. Sontag. Deep kalman filters. arXiv preprint arXiv:1511.05121,
2015.

T. D. Kulkarni, A. Saeedi, S. Gautam, and S. J. Gershman. Deep successor reinforcement learning.
arXiv preprint arXiv:1606.02396, 2016.

11



Under review as a conference paper at ICLR 2024

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne
Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition.
Neural computation, 1(4):541–551, 1989.

Yu Lei and Wenjie Li. Interactive recommendation with user-specific deep reinforcement learning.
ACM Transactions on Knowledge Discovery from Data (TKDD), 13(6):1–15, 2019.

T. Lesort, N. Dı́az-Rodrı́guez, J. F. Goudou, and D. Filliat. State representation learning for control:
An overview. Neural Networks, 108:379–392, 2018.

Minne Li, Mengyue Yang, Furui Liu, Xu Chen, Zhitang Chen, and Jun Wang. Causal world models
by unsupervised deconfounding of physical dynamics. arXiv preprint arXiv:2012.14228, 2020.

Zhige Li, Derek Yang, Li Zhao, Jiang Bian, Tao Qin, and Tie-Yan Liu. Individualized indicator for
all: Stock-wise technical indicator optimization with stock embedding. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 894–902,
2019.

Peng Liao, Kristjan Greenewald, Predrag Klasnja, and Susan Murphy. Personalized heartsteps: A
reinforcement learning algorithm for optimizing physical activity. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies, 4(1):1–22, 2020.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.
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