Under review as a conference paper at ICLR 2025

GRAPH REGULARIZED ENCODER TRAINING FOR
EXTREME CLASSIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep extreme classification (XC) aims to train an encoder and label classifiers
to tag a data point with the most relevant subset of labels from a very large
universe of labels. XC applications in ranking, recommendation and tagging
routinely encounter tail labels, for which the amount of training data is exceedingly
small. One way to tackle the tail label problem is to use additional data - often
structured as a graph associated with documents and labels - graph metadata.
Graph Convolutional Networks (GCNs) present a convenient but computationally
expensive way to leverage this graph metadata and enhance model accuracies in
these settings. However, GCNs struggle to make predictions for a novel test point
when it has no edge in the graph. The paper notices that in these settings, it is much
more effective to use graph data to regularize encoder training than to implement a
GCN. Based on these insights, an alternative paradigm RAMEN is presented to
utilize graph metadata in XC settings that offers a significant performance boost
with zero increase in inference computational costs. RAMEN scales to datasets with
millions of labels and offers prediction accuracy up to 15% higher on benchmark
datasets than state of the art methods, including those that use graph metadata to
train GCNs. RAMEN also offers 10% higher accuracy over the best baseline on a
proprietary recommendation dataset sourced from click logs of a popular search
engine. Code for RAMEN will be released publicly upon acceptance.

1 INTRODUCTION

Extreme classification (XC) refers to a supervised machine learning paradigm where multi-label
learning must be performed on extremely large label spaces. Thus, a data point must be annotated with
a subset of labels most relevant to it. The ability of XC to handle enormous label sets with millions of
labels makes it an attractive choice for applications such as product recommendation (Medini et al.,
2019; Dahiya et al., 2021bj Mittal et al., 2022; Kharbanda et al.,|2022), document tagging (Babbar
& Scholkopf], 2017; [You et al., 2019; (Chang et al.| [2020), search & advertisement (Prabhu et al.,
2018b; |Dahiya et al.,|2021b; Jain et al.,|2016), and query recommendation (Jain et al.,[2019} |Chang
et al.,|2020). The key appeal of XC comes from the prospect of accurately tagging rare/tail labels
relevant to a data point. Recommendations for rare but relevant objects can meaningfully improve
user experience and the ability to associate rare tags with objects such as web documents can offer
fine-grained object descriptions. A label is called tail if very few training data points are tagged
with that label. XC applications can exhibit extreme label skew and more than 75% of the labels
could appear in fewer than 10 training points (Jain et al., 2016; Dean, 2020). The tail problem is
further aggravated due to missing labels since tail labels are also at higher risk of going missing (Jain
et al.} 2016). In solving the tail-data problem, XC approaches rely on metadata. Beyond textual label
descriptions (Mittal et al., 2021aj|Dahiya et al.,2021a};|2023), the auxiliary metadata can augment
the meagre supervision available for tail labels and is typically available in the form of multi-modal
descriptions such as images (Mittal et al.,[2022), or graphs (Mittal et al., |2021b; Saini et al., |2021]).
In this paper, we focus on graph data which can be inferred in several applications, e.g., hyperlink
graphs for document tagging and queries co-occurring in the same search session for ad placement.

Graph metadata in XC: Graph metadata has been used in XC to (a) enhance item representations,
and (b) handle missing labels. Examples of the former include OAK (Mohan et al.,|2015)), Graph-
Former (Yang et al., 2021)), and PINA (Chien et al.,|2023)) which use textual descriptions of an item
along with graph metadata to learn item embeddings via graph convolutional networks (GCN). These

Under review as a conference paper at ICLR 2025

METADATA GRAPH

[@
DOCUMENTS
& s . o
I—lw, ENCODER &4 I
&

(a) RAMEN (b) (c) GCN

\\ GCN
|_, ENCODER ENCODER —»é
) ‘ €y

TEST SET TEST SET

DOCUMENTS DOCUMENTS)
TEST-TIME

GRAPH TRAVERSAL

SHUODS AL

Figure 1: RAMEN uses graph metadata to regularize encoder during training and unlike GCN
RAMEN requires no additional inference cost. (a) RAMEN training uses graph metadata to regularize
the encoder &. (b) RAMEN’s encoder requires no additional information to compute an accurate
representation of the test point. (c) In GCNs, inference is a computationally expensive two stage
pipeline, where the test point is first embedded in the graph and then the linked nodes are used to
compute the final representation. RAMEN can be 2 faster, and 3-4% more accurate, than GCNs.

algorithms rely on a two stage retrieval pipeline wherein, for a novel test point, graph metadata nodes
are first retrieved and a GCN combines them with the test point. The new representation is then
used in second stage to retrieve the relevant labels. Graphs traversal can also help discover missing
labels associated with documents. For example, consider LF-WikiSeeAlsoTitles-320K where the
task is to predict related Wikipedia documents. A hyperlink graph is available which connects two
Wikipedia articles with an edge if one of them contains a hyperlink to the other. A snapshot of the
dataset in Figure [2| shows how a missing label “Crown group” can be recovered for the Wikipedia
article “Cladistics” by traversing the graph.

Limitations of GCN Methods: Graphs can also be misleading in terms of linkages, and GCN’s im-
plementation posses limited applicability for real-world application. As an example of noisy linkages
in graphs, consider the LF-WikiSeeAlsoTitles-320K hyperlink graph. Traversal over the graph can
also lead to irrelevant labels such as “Vestigial organs” and extracting meaningful information from
such noisy graphs is a challenge. Although the use of textual and graph metadata can offer enhanced
model accuracy in XC and recommendation settings (Mittal et al.,[2021b;|Saini et al.,2021; Yang
et al.| 20215 Chien et al.;2023)), the use of GCN architectures makes both training and inference more
expensive (table[3). XC training is made challenging by the sheer size of training sets often containing
millions of data points and labels, necessitating some form of negative sampling (Mikolov et al.|
2013 |Guo et al., 2019; Rawat et al., 2021; [Reddi et al., 2018 Xiong et al.,|2021). On the other hand,
most XC applications demand real-time inference i.e., the set of labels relevant to a test data point
must be identified within milliseconds. GCNSs require the (bulky) graph to be preserved at inference
time to embed a test data point which increases inference time and makes deployment challenging.
This paper addresses the limitations of using graph metadata in XC. Our primary research question
is: How do we leverage graph metadata to perform accurate prediction for rare labels with zero
increase in inference time?

1.1 OUR CONTRIBUTIONS

To address the above question, we propose gRaph regulArized encoder training for extreME classifi-
catioN (RAMEN). RAMEN is a method to effectively utilize graph metadata at scale with minimal
overheads in training cost and zero overhead in model size or inference time (Table [3). RAMEN
can be incorporated into existing XC systems in a modular manner with few alterations (Table [J).
The key insights leading to RAMEN include a formal proof (cf. Theorm[I) that (a) in several use
cases, GCN layers can be approximated by (much cheaper) non-GCN architectures and, (b) it is more
effective to use graph data to regularize encoder training than it is to implement a GCN. RAMEN can
handle multiple graphs — graphs over data points, graphs over labels, or both — and offers increased
prediction accuracy, even when presented with noisy graphs (Sectiond). While the RAMEN encoder
is trained using the metadata graph, during inference, unlike baseline GCNs, RAMEN does not
require graph traversal, significantly improving latency (cf. Figure[T). RAMEN scales to datasets
with up to 360M labels and can offer up to 15% higher prediction accuracies over state-of-the-art
methods including those that use graph metadata to train GCN. Code for RAMEN will be released
publicly.

Under review as a conference paper at ICLR 2025

Cladistics Vestigial organs

. . D Wiki Article Missing related article
Evolutionary biology

= Hyper link Related article

Common descent Crown group

Figure 2: A snapshot from LF-WikiSeeAlsoTitles-320K dataset for the article on “Cladistics.” The
related article “Common descent” is tagged but the ground truth is missing the label “Crown group”.
Traversal on the hyperlink edges can help discover missing labels but can also lead to irrelevant labels
such as “Vestigial organs”.

2 RELATED WORK

Extreme classification (XC) is a key paradigm in several areas such as ranking and recommendation.

The literature on XC methods is vast (Medini et al., 2019 [Dahiya et al., 2021} [Babbar & Scholkop
017[; [You et al., 2019}, [Prabhu et al., 2018b; Jain et al., 2016;[2019; |Guo et al., 2019} Mittal et al.

Saini et al.| 2021; [Wydmuch et al., 2018; ZEan et al.l 2018 [Liu et al} 2017; Jiang et al.

2021|; Chalkidis et al.,[2019;|Ye et al.,[2020; [Zhang et al.L[2021; [Mineiro & Karampatziakis|, 2015}
Jasinska et al., 2016; Khandagale et al., 2020; Tagami, 2017} |Yen et al.| [2017; |Wei et al,, 2019
Siblini et al.| 2018}, Barezi et al., [2019; |Gupta et al.,[2019; 2023). Early XC methods used ﬁxed

(bag-of-words) (Babbar & Scho kopﬂ, 17; [Prabhu et all, 2018b; Jain et al., 2016; Mineiro &
Karampatziakis| 2015} Jasinska et al.l [2016; [Khandagale et al.l 2020; Tagami, 2017;

2017; Wei et all, [2019; [Siblini et al., m arezi et al., [2019) or pre-trained (Jain et al., 2019)
features and focused on learning only a classifier architecture. Recent advances have demonstrated
significant gains by using task-specific features obtained from a variety of deep encoders such as
bag-of-embeddings (Dahiya et al.} 2021b} [2023]), CNNs (Liu et al.}[2017), LSTMs (You et al.}, 2019),
and transformers (Jiang et al. 2021}, |Chalkidis et al] 2019; |Ye et al., 2020} [Zhang et al [2021).
Training is scaled to millions of labels and training points (Dahiya et al., 2021b) by performing
encoder pre-training followed by classifier training. A data point is trained only on its relevant labels
(that are usually few in number) and a select few irrelevant labels deemed most informative using
negative mining (Mikolov et al.},[2013}; [Guo et al.| 2019} [Xiong et al| 2021} Dahiya et al.|, 2021a;
2023} [Faghri et al., | 2018} |Chen et al., 2020; He et al., 2020a; |Karpukhin et al., 2020; Lee et al.| [2019
Luan et al., 2020; Hofstitter et al.,[2021};|Qu et al., [2021]).

Label Metadata in XC: Most XC methods use textual representation as label metadata since they
allow scalable training and inference and allow leveraging good-quality pre-trained deep encoders

such as RoBERTa (Liu et all, [2019b), DistilBERT base [2019), etc. Examples in-
clude encoder-only models such as DEXML (Gupta et al., 2024), TwinBERT 2020) and
ANCE (Xiong et al.,[2021) and encoder+classifier architectures such as DECAF [2021a),
SiameseXML (Dahiya et al., 20215]) X-Transformer (Chang et al., 2019), XR-Transformer (Chang
et al,[2020), LightXML (Jiang et al., 2021)), ELIAS (Zhang et al L@D and others (Ye et al.| 2020;
Liu et al., 20194} [You et al., 2019} [Chalkidis et al., 2019). There is far less literature on the use of
other forms of label metadata. For instance, ECLARE (Mittal et al., 2021b) and GalaxC (Saini et al.
use graph convolutional networks whereas MUFIN (Mlttal et aI.I, [2022)) explores multi—modal
label metadata in the form of textual and visual descriptors for labels.

Graph Neural Networks in Related Areas: A sizeable body of work exists on using graph neural
networks such as graph convolutional networks (GCN) for recommendation (Yang et al.,[2021;[Mohan

et al, 2015} [Hamilton et al.| 2018} [Chen et al., 2018} [Zou et al.,[2019; [Huang et al., 2018} [Chiang
et al.L[2019; [Zeng et al.l 2020; Zhu et al.| 2021; He et al.,[2020b; |Yang et al.l 2022). Certain methods

e.g., FastGCN (Chen et al.| 2018), KGCL (Yang et al., 2022), LightGCN (He et al.} 2020b) learn
item embeddings as (functions of) free vectors. This makes them unsuitable for making prediction
for a novel test point. Other GCN-based methods such as OAK (Mohan et al.,[2015)), PINA (Chien
2023), GraphSAGE (Hamilton et al.| 2018) and GraphFormers (Yang et al., 2021) learn node
representations as functions of node metadata e.g. textual descriptions. This allows the methods
to work in zero-shot settings but they still incur the high storage and computational cost of GCNs.
Moreover, diminishing returns are observed with increasing number of layers of the GCN

et all 20216} [Chiang et all, 2019) with at least one model, namely LightGCN (He et al., [2020b)

Under review as a conference paper at ICLR 2025

foregoing all non-linearities in its network, effectively opting for a single-layer GCN. It must be
noted that GCN’s can be highly accurate if one can have an oracle to predict relevant nodes(table [2)).
However, such oracle is never available online and the slightest error in first stage retrieval leads to
poor retrieval quality. (sec. [).

We now develop the RAMEN method that offers a far more scalable alternative to GCNs and other
popular graph-based architectures in XC settings, significantly reducing the overheads of graph-based
learning, yet offering sustained and significant performance boosts in prediction accuracies.

3 RAMEN: GRAPH REGULARIZED ENCODER TRAINING FOR EXTREME
CLASSIFICATION

Notation: Let L be the total number of labels in the application. Note that the label set remains
same across training and testing. Let x;, z; be the textual descriptions of the data point ¢ and label [
respectively. For each data point i € [N], its ground truth label vector is y; € {—1,+1}¥, where
y;1 = +1 if label [is relevant to the data point ¢ and otherwise y;; = —1. The training set is comprised

of N labeled data points and L labels as D := {{x;,y;}¥,, {z}2,}. Let ¥ % {x,})V, denote

the set of training data points and Z def {zl}lL:1 denote the set of labels. The meta-data graph over
the auxiliary sets A (hyper-links, co-bidded queries) is denoted by Gx 4 and Gz 4 for data point
(document) and label respectively.

Metadata Graphs: RAMEN obtains metadata graphs over Anchor Sets. Let A = {a;, as,...,a}
denote an anchor set of M elements e.g. hyperlink and category for LF-WikiSeeAlsoTitles-320K
dataset. We abuse notation to let a,,, denote the textual representation of anchor item m € [M] as
well. Two distinct types of metadata graphs are possible over an anchor set:

1. Datapoint-anchor set: This is denoted as Gx 4 = (Vxa, Exa) with Vx4 “xuAa i.e., the

union of training data points and anchor points. The matrix Ex 4 = {es,} € {0, 1}NX M encodes
whether data point x; has an edge to to anchor item a,, or not.

2. Label-anchor set: This is denoted as Gz4 = (Vza, Ez4) with V4 4f 2 Ai.e. the union of

labels and anchor points. The matrix Ez4 = {e;m} € {0, I}LXM encodes whether label z; has
an edge to anchor item a,,, or not.

We refer the reader to Section] for details of how the metadata graphs are constructed using random
walks. RAMEN can work with multiple anchor sets as well. For instance, given two anchor sets
Al ={af,a},...,a}, } and A* = {a} a},... a3, },atotal of 4 meta data graphs are possible.

Intuition behind RAMEN: A popular way to incorporate graph information into XC and rec-
ommendation tasks is to take initial embeddings of a data point from an encoder and use a
graph convolution step to obtain augmented embeddings for the data point. For example, let
X € RV*P = [x;,...,xy]" be the initial embeddings of the N data points over which a graph
with adjacency matrix A € [0, 1]V*¥ is present. A typical layer in a GCN performs an operation
of the form p(AXW) € RV*D where W € RP*P is a transformation matrix and ¢ : R — R is
some activation function applied coordinate-wise. Not only is this step expensive (Zeng et al.,2020;
Hamilton et al.,2018]), but also offers diminishing returns with increasing number of layers (Chiang
et al.,[2019; Mittal et al., [2021D). Theoremﬂ] indicates that in cases where the adjacency matrix can
be well-predicted using a non-GCN network (say feedforward or transformer) over the initial features,
the convolutional layer can be well approximated by a non-GCN network as well. Note that edge
prediction is often possible with high accuracy since the metadata graph available is closely linked to
the prediction task at hand and Table[6|confirms this for the tasks considered in this paper. RAMEN
uses this result to infer that it may be less useful to perform graph convolutions on top of a reasonably
powerful encoder such as a transformer. Instead, utilizing the graph for regularization is cheaper yet
effective. Theorem I]is specified and proved in Appendix [E] Extensions of Theorem [I]to networks
with multiple GCN layers are also discussed.

Theorem 1 (Informal). Let there exist a non-GCN (e.g. feedforward, transformer etc) network F :
X — ST~V where ST=1 is the the unit sphere in R, that effectively predicts edges in the metadata
graph foranyi,j € [N],a;; ~ (1+F(x;) " F(x;))/2 where A = [a;;] is the adjacency matrix of the
graph, then there exists another non-GCN network H. such that (AXW) = [H(x1), ..., H(xn)] .

Under review as a conference paper at ICLR 2025

Regularization Framework: RAMEN’s training (Figure 1)) consists of two main components: (a)
Any XC or dense retrieval method (M), comprising an encoder block (£p), and (b) The metadata
graph (A.). The encoder & : X — SP~! with trainable parameters @ is used to embed data points
and labels using their textual descriptions. S”~1 denotes the D-dimensional unit sphere, i.e., the
encoder provides unit-norm embeddings (unless stated otherwise). For the sake of brevity, we use £(+)
to denote the encoder. RAMEN uses a DistilBERT (Sanh et al.,[2019) encoder as £ and regularizes
using the proposed training approach to learn robust and accuracy embedding representation.

Metadata Graph Regularizers: Given an anchor set A and graphs G x 4, Gz 4, we define the
following two regularization functions over the encoder parameters:

Ro@) =5 % [Eo(x) Eolan) — Eolx)Eala) + 14)

i=1 p:e;p=1
n:e;n=>0

RO)= S 5 [a(m) Eolan) — Eolm) Enlay) + s @

Here, p is the positive anchor and n are in-batch negatives anchors (explained in later section). Note
that these two regularizers encourage the encoder to keep data points and labels closely embedded
to their related anchor points and far away from unrelated anchor points. If we have more than one
anchor set, say A', A%, we can define corresponding regularizers RY (6), R%(6),t=1, 2.

RAMEN Training: RAMEN performs regularization of the encoder for any M. The encoder
is trained using document-label loss (£(6)) regularized using two components: a) Anchor set on
document side (R, (0)), and b) Anchor sent on label side (R.(f)), as discussed in the previous
section. The £(@) function takes the following formulation:

N
LO) =D > [Eolzr) Eo(xi) — Ep(z) " Ea(xi) + 5,

i=1 Lysj—=+1
kiyip=—1

Note that this loss function encourages the encoder to embed a data point close to its relevant labels
and far from irrelevant ones. The encoder is trained by minimizing the following regularized objective

min { X+ £(8) + > (AL - RL(B) + AL - RL())}
t=1

where \;, \{) \! are regularization constants that are estimated using a bandit optimization strategy
described below. This step can accommodate multiple anchor sets as well as regularizers. Once the
regularized encoder training is complete for M, the trained encoder can subsequently be used to train
subsequent modules in M, if present. For instance, XC approaches further train a per-label classifier.

Bandit Learning for Regularization Constants: The gradient descent without a gradient ap-
proach (Flaxman et al., 2005) was adopted to tune the regularization constants A\;, A; », A » in an
online manner. \; was initialized to 1 and A\, ,;, A » to 0.1. Below we describe the process for a single
constant A and the same is independently replicated for all the constants.

After every 30 iterations, the value of lambda is perturbed as A=) + 2,2 ~ N(0,0.01), where
N(0,0.01) denotes a unidimensional Gaussian with zero mean and variance 0.01. Subsequently, A is
used as the regularization constant in the loss expression for the next 30 iterations. The mini-batch
objective values (\; - £+ 35, ,(AL - RE + AL - RL)) incurred in these 30 iterations are calculated
as P, and X is updated by using the estimated gradient as follows

P

A=A— n: = ’

A=A
where 7 is a learning rate. This is justified by a simple but surprising application of Stokes the-
orem (Flaxman et al., [2005)), which states that for any function f : R — R (which can itself

df(x) _ 1

be non-convex or even non-differentiable), we have =7~ = 5 - . E , [f(z 4 du)u] where
u~{—1,4+1
f : R — R is a smoothed version of f defined as f(z) %ef [IE | [f(x 4 6v)]. Note f is always
- o~[—1,1

differentiable even if f is not. In order to compute the mini-batch objectives, P, RAMEN mines hard
negatives. The negative mining technique is explained below.

Under review as a conference paper at ICLR 2025

Negative Mining: The loss function and regularizers contain O (N Llog L + (N + L)M log M)
terms where M = max {M;, M, } is the maximum number of anchors in any of the anchor sets. This
is because the number of relevant labels per data point is usually limited by |I : y; = +1| < O (log L)
in XC applications (Jain et al.; 2016) and we can construct the metadata graphs to have at most log M
relevant anchors per data point or label. Performing optimization with respect to all these terms is
expensive which is why RAMEN utilizes in-batch negative mining (Guo et al.,|2019; Dahiya et al.,
2021a; 2023}, |[Faghri et al.l 2018} |Chen et al., |2020; He et al.,|2020a). Specifically, a set of data
points is identified and for each data point, and a random relevant label and random related anchor
are chosen (from each anchor set if there are multiple anchor sets). For each of the chosen labels, a
random related anchor is chosen from each anchor set. Then, hard negative labels for a data point are
chosen only amongst those labels selected for that particular mini-batch. Similarly, hard negative
anchors for a data point or label are chosen from only those anchors selected for that mini-batch.

Inference with RAMEN: RAMEN’s training framework is applied to the encoder in the base model
(M). Once training is complete, inference remains unchanged from the base model’s proposed
approach. Here, RAMEN incurs no additional inference time over the base method and improves
accuracy by 2-3% in P@1.

4 EXPERIMENTS

The XML Repository (Bhatia et al.,[2016) provides various public XC datasets which are thoroughly
studied and benchmarked by plethora of papers. These datasets are curated from Wiki dumps link
and Amazon dump (Ni et al.|[2019) but graph metadata, which was readily available, was ignored.
For RAMEN, we crawl these dumps and curate metadata for all public datasets as follows:

LF-WikiSeeAlsoTitles-320K: The dataset was curated from Wiki dump link| The scenario involved
recommending related articles. Articles under the “See Also” section were used as ground truth
labels. Internal hyperlinks and category links were used to create two sets of metadata graphs, one
using hyperlinked Wikipedia articles as anchors and the other using Wikipedia categories as anchors.

LF-WikiTitles-500K: The dataset was also curated from Wiki dump link. The scenario involved
recommending relevant “categories” for an article. Internal hyperlinks and category-to-category links
were used to create two sets of metadata graphs as described above.

LF-AmazonTitles-1.3M: The dataset was curated from Amazon dump (N1 et al.,[2019). The scenario
involved recommending relevant “products” for a product. The “similar_items” links given in the
data dump were used to create the metadata graph.

Dataset: Please refer to Tab. [15]of the appendix for dataset statistics. For all datasets, test data points
were removed from the graph if present as nodes to prevent train-test leaks.

Implementation details: We initialize the encoder with a pre-trained DistilBERT and fine-tune it.
The metadata graphs are pruned using the fine-tuned encoder. Table[I6]in the appendix summarizes all
hyper-parameters for each dataset. It is notable that even though RAMEN uses a graph at training time,
inference does not require any such information, making it highly suitable for long-tail queries. We
compare three variants of RAMEN against baseline XC and dense retrieval approaches. In particular,
we consider RAMEN (ANCE), RAMEN (NGAME) and RAMEN (DEXML). All RAMEN variants
and most baseline variants use the PyTorch (Paszke et al.| 2017) framework and were trained on 4
Nvidia V100 GPUs. DEXML (Gupta et al.,|2023) was trained on 16 Nvidia A100 GPUs. Refer to
Appendix [B] for additional details.

Results on benchmark datasets: Table|l|compares RAMEN variants with graph and XC methods.
RAMEN is 5% more accurate over the best baseline numbers. In particular RAMEN is 2-3% more
accurate than traditional graph-based methods. Additionally, the RAMEN variants are 3-4% more
accurate over OAK (Mohan et al.,[2015) & PINA (Chien et al.,|2023), which use both XC and graph
metadata. RAMEN’s primary focus is short-text documents but for results on full text datasets refer
to Table [T4]in appendix.

Analysis of gains: Note that, Theorem([l|states that RAMEN and GCNs are equivalent. However, as
discussed in Limitation of GCN Methods in the introduction, GCN’s two stage retrieval pipeline can
be noisy. Table[2] demonstrates that if we replace the first stage with the oracle linker (first statge with
zero error), the performance of these graph-based methods starts to outperform RAMEN variants.

https://dumps.wikimedia.org/enwiki/20220520/
https://dumps.wikimedia.org/enwiki/20220520/
https://dumps.wikimedia.org/enwiki/20220520/

Under review as a conference paper at ICLR 2025

Table 1: Results on short-text benchmark datasets. RAMEN variants is up to 15% more accurate as
compared to both text-based and graph-based baselines. For details on evaluation metrics, please
refer to section P] in appendix.

\PSP@I PSP@3 PSP@5 PSN@3 PSN@5 P@1 P@3 P@5 N@3 N@5
LF-AmazonTitles-1.3M

RAMEN (ANCE) 37.0 40.0 41.2 39.3 40.5 487 429 384 473 463
RAMEN (NGAME) | 34.3 37.4 39.0 36.9 384 556 497 449 543 533
RAMEN (DEXML) | 31.2 34.7 36.7 34.2 36.1 588 511 458 561 54.6

GraphSage 24.5 24.2 23.7 24.7 24.9 28.1 214 176 248 232
GraphFormer 22.5 22.4 22.5 22.6 23.1 242 174 143 21.6 2038
DEXML - - 36.6 - - 58.6 509 456 559 544
NGAME 29.2 33.0 354 32.1 339 56.7 492 441 538 524
DEXA 29.1 32.7 349 32.0 339 56.6 49.0 439 538 524
ANCE 33.1 35.6 36.8 - - 458 399 355 - -

CascadeXML 17.2 21.7 24.8 19.9 21.5 478 420 383 450 438
XR-Transformer 20.1 24.8 27.8 23.4 25.4 50.1 44.1 40.0 477 46.6
PINA - - - - - 55.8 487 439 - -

AttentionXML 16.0 19.9 22.5 18.2 19.6 450 397 362 424 412
SiameseXML 27.1 304 32.5 29.4 30.9 49.0 427 385 464 451
ECLARE 23.4 27.9 30.6 26.7 28.6 50.1 44.1 400 477 46.7

LF-WikiTitles-500K

RAMEN (ANCE) 30.5 26.9 25.7 30.0 314 461 254 174 354 338
RAMEN (NGAME) | 30.1 274 26.4 30.2 317 482 274 19.0 37.6 359

OAK 25.7 25.8 25.0 27.8 294 448 259 179 354 338
GraphSage 223 19.3 19.1 22.1 23.8 272 157 113 226 228
GraphFormer 22.0 19.2 19.5 21.3 22.8 245 149 113 202 203
NGAME 23.1 23.3 23.0 253 272 390 231 16.1 31.8 307
ANCE 232 22.1 21.2 24.5 26.1 297 181 125 254 251
CascadeXML 19.2 19.5 19.7 20.8 223 473 268 190 362 344
AttentionXML 14.8 14.0 13.9 15.2 162 409 215 150 294 274
ECLARE 21.6 20.4 19.8 22.4 23.6 444 243 169 333 315

LF-WikiSeeAlsoTitles-320K

RAMEN (ANCE) 29.0 31.8 34.5 31.7 336 352 240 184 352 365
RAMEN (NGAME) | 28.6 31.6 34.4 315 335 355 243 186 356 36.8

OAK 25.8 28.5 30.8 28.6 30.3 337 227 171 334 344
GraphSage 21.6 21.8 23.5 22.9 246 273 172 13.0 27.1 284
GraphFormer 19.2 20.6 22.7 21.0 22.7 219 151 11.8 22.6 240
NGAME 24.4 27.4 29.9 27.4 292 326 220 166 323 332
DEXA 244 26.5 28.6 27.0 286 317 210 158 313 323
DEXML 22.8 23.9 25.7 25.1 26.7 299 197 148 297 307
ANCE 25.1 26.8 28.7 27.3 28.9 308 203 154 305 315
ELIAS 13.5 15.9 17.7 15.6 16.8 234 156 11.8 229 236
CascadeXML 12.7 15.4 17.6 14.6 160 234 157 121 226 234
XR-Transformer 10.6 11.8 12.7 11.7 12.4 194 122 9.0 183 185
AttentionXML 9.4 10.6 11.7 10.4 11.2 176 113 85 16.6 17.1
SiameseXML 26.8 28.4 30.4 28.7 30.3 320 214 162 316 326
ECLARE 22.0 242 26.3 24.5 260 293 198 150 292 302

Table 2: Results using Oracle Linker for GCN Table 3: RAMEN (ANCE)’s computational
Vs RAMEN (ANCE) on LE-WikiSeeAlsoTitles- relative to baselines on LF-WikiSeeAlsoTitles-

320K. 320K.
Method ‘ P@1 P@5 N@5 PSP@1 PSP@5 Method \ Train Time Pred Time Modelsize P@1
RAMEN (ANCE) | 352 184 352 290 345 CANEN(ANCEY | 1x 1 AT
0AK 337 171 344 258 30.8 NCE von . > 08
OAK + Oracle 389 194 404 297 34.8 DEXML 0 1 - 309

Under review as a conference paper at ICLR 2025

0.0
complete

Table 4: Quantile wise-comparison of RAMEN
and other methods. RAMEN (NGAME) gives
consistent gains in each bin (see Appendix [D|for
binning details). The left-most bin contains the
most rare/tail labels whereas the rightmost bin

LF-WikiTitles-500K

5 4 3
(#501K) (#375K) (#84K) (#30K)

(4.58) (20.28) (55.89) (187.30§1425.79)

Quantiles

2
(#9K) (

(Increasing Freq.)

contains the most popular/head labels.

Table 6: RAMEN (ANCE)’s encoder £ can pre-

RAMEN
OAK
NGAME

1
#1K)

Table 5: Ablations were done using ANCE
as base algorithm (RAMEN (ANCE)) on LF-
WikiSeeAlsoTitles-320K to understand the im-
pact of design choices on the quality of encoder
training. RAMEN (ANCE)’s design choices are
seen to be optimal and offer 2.5-13% improve-
ment in the P@1 metric over alternate design

choices.

RAMEN |P@1 P@3 P@5 N@3 N@5
RAMEN (ANCE)| 352 24.1 183 353 365
— No Bandits 209 12.8 9.5 21.5 225
— No Pruning 31.3 189 12.8 31.43 315
— No Doc. Graph|29.7 17.5 12.5 30.7 30.8
— No Lbl. Graph |34.1 22.7 14.6 32.0 34.1
AugGT 156 89 6.5 157 163
graph-init=0.1 352 24.1 184 353 365
graph-init=0.5 345 244 193 352 364
graph-init=1.0 34.8 248 17.7 36.2 35.6

Table 7: RAMEN (ANCE)’s performance on P
and PSP decreases as the volume of metadata

dict links in the meta-data graph with hlgh recall decreases for LF-WikiSeeAlsoTitles-320K

(R@100).
RAMEN (ANCE)|PSP@1 PSP@5 P@1 P@5
Link type | LF-WikiSeeAlsoTitles-320K | LF-WikiTitles-500K
- 100% | 29.0 345 352 184
hyper_link 99.88 94.20
category 99.88 99.96 50% 26.4 31.1 338 17.7
20% 25.8 30.1 33.1 17.1

Table 8: Comparing the difference in false negative rates between RAMEN (ANCE) and OAK on
LF-WikiSeeAlsoTitles-320K. Results are presented quantile wise. The #5K label quantile contains
the most popular/head labels whereas the #729K quantile contains the most rare/tail labels. See
Appendix |D| for definitions of metrics and quantiles. RAMEN (ANCE)’s false negative rate is always
superior to that of OAK but the gap widens significantly when compared on tail labels.

Quantile DIFF@5 DIFF@10 DIFF@20 DIFF@50 DIFF@100

(#L) Avg. Doc.
(#1K) 200.78 20.019 -0.026 0.027 0.021 0.010
(#9K) 30.98 0.013 0.050 0.107 0.123 -0.049
#31K) 9.14 0.036 0.124 0272 10.443 10423
(#74K) 3.94 -0.455 20.757 -1.091 -1.551 -1.854
(#195K) 1.49 2.246 2722 3529 -4.763 6.075
complete | -2.671 -3.679 -5.025 -6.901 -8.411

Table 9: Results of RAMEN as a regularizer in Table 10: Impact of different graph metata on
baseline algorithms on LF-WikiSeeAlsoTitles- RAMEN (ANCE)’s performance

320K. RAMEN’s regularization algorithm im-
proves the respective performance by 2-3%.

Method | P@1 P@5 N@5 PSP@1 PSP@5 PSN@5
RAMEN (ANCE) | 352 184 365 29.0 345 33.6
Only category 337 174 344 27.6 32.7 31.7
Only hyperlink 342 176 350 27.8 327 32.0

|P@1 P@3 P@5 N@3 N@5

ANCE 30.8 20.3 154 305 315
RAMEN (ANCE) 352 24.1 183 353 36.5
NGAME 32,6 22.0 16.6 32.3 33.2
RAMEN (NGAME) 355 243 18.6 35.6 36.8
SiameseXML 319 21.4 162 31.6 32.6
RAMEN (SiameseXML)|32.0 21.9 17.6 31.7 329
ECLARE 29.4 19.8 15.1 292 30.2
RAMEN (ECLARE) 30.5 20.1 164 323 328

Table 11: Results on the proprietary dataset (G-

EPM-1M). RAMEN (Method-1) is ~10% more
accurate than the leading method in production.

| PSP@1 PSP@3 P@1 P@5 R@10
RAMEN (Method-1) 25.1 47.2 252 98 55.9
Method-1 16.2 315 15.1 6.3 37.2

Under review as a conference paper at ICLR 2025

Table 12: RAMEN (ANCE)’s performance in zero shot scenario

Method \P@l P@3 P@5 N@3 N@5
LF-WikiSeeAlsoTitles-320K

RAMEN (ANCE) | 148 102 7.3 198 214
ANCE 12.1 8.5 6.06 163 17.6

LF-WikiTitles-500K

RAMEN (ANCE) | 114 53 3.5 121 125
ANCE 109 5.1 35 114 119

Table 13: A subjective comparison of predictions made by RAMEN, the leading text-based method
NGAME, and the leading graph-based method GraphFormers on LF-WikiSeeAlsoTitles-320K. Labels
that are a part of the ground truth are formatted in black color. Labels not a part of the ground truth
are formatted in light gray color. Relevant labels that are missing from the ground truth are marked
in bold black. RAMEN (ANCE) could make predict highly relevant labels such as “Crown group”,
which were missing from the ground truth as well as omitted by other methods.

Method | Prediction

Document: Clade

RAMEN (ANCE) | Cladistics, Phylogenetics, Crown group, Paraphyly, Polyphyly

ANCE ‘ Cladistics, , Polyphyly, ,
OAK Phylogenetic nomenclature, s s
Cladistics,

However, this oracle linker is never available for a novel test point, and RAMEN variants achieved
a similar performance in a fraction of the cost of training and prediction time as shown in Table 3]
Additionally RAMEN variants can predict meta-data graph links with high accuracy (Table[6) which
validates the proposed Theorem[I] Furthermore, Figure 4] shows that RAMEN variants outperform
baseline methods in each quantile, showing its overall superior embedding quality. To demonstrate
the zero-shot performance of RAMEN, we consider RAMEN (ANCE), since it is a dense retrieval
approach. RAMEN (ANCE) achieves state of the art performance in the zero-shot scenario (cf.
Table indicating that RAMEN (ANCE)’s embeddings are robust to unseen labels. While RAMEN
variants outperform baseline methods on all datasets, the low gains in LF-AmazonTitles-1.3M can
be attributed to the low volume of metadata (“similar_items” graph edges) available for training
(cd. Table|15]in the appendix). To validate this, experiments on the LF-WikiSeeAlsoTitles-320K
dataset were conducted where it was observed that reducing metadata to 50% and 20% resulted in
performance drops of 1-2.5% in PSP and 3—4% in P, respectively. This emphasizes the importance of
metadata for performance (Table[7).

Table[I3]shows that RAMEN (ANCE) could make predictions such as “Crown group” which were
missing labels in the training data, by exploiting metadata graph links. Apart from standard metrics,
the error rate plays a crucial role in deployment. Tab. [§|compares the difference in RAMEN (ANCE)’s

false negative rate (FNQ@Fk) with the best-performing baseline (OAK) when each method was allowed

to make k predictions i.e., Diff@k % FN@k(RAMEN) - FN@k(OAK). It is notable that RAMEN

(ANCE) consistently outperforms OAK over all label quantiles (i.e. over head/popular as well as
tail/rare labels) and performs even better at higher values of & such as & = 50.

Case-study for Sponsored Search: Matching user queries with relevant advertiser keywords is a
critical component of sponsored search. One type of matching is Extended Phrase Match (EPM),
which aims to match a user query with advertiser keywords that have a subset of the query’s intent.
This means that only keywords with similar intent to the query are considered. For example, for
the query "cheap nike shoes", a valid EPM keyword is "nike sneakers" but "adidas shoes" or "nike
shorts" are not.

We study the effectiveness of RAMEN (Method-1) in this application by comparing it against the
state-of-the-art encoder in production (anonymised as Method-1) and also conducting A/B test on live

Under review as a conference paper at ICLR 2025

search-engine traffic. For offline comparison, the G-EPM-1M dataset was curated by analyzing the
ad click logs. Further, the click logs were mined to gather graph metadata for RAMEN (Method-1),
including two types of signals:

1. Co-session queries: Queries that were asked in the same search session by multiple users.
2. Co-clicked queries: Queries that resulted in clicks on the same webpage.

RAMEN (Method-1) was found to be 3% better on the P@5 than Method-1. RAMEN (Method-1)
was further found to be 15% better than Method-1 on the propensity scored PSP@35, indicating that
RAMEN (Method-1) could match tail keywords more accurately. Please refer to Table The
quality of the two models was further measured using an in-production, large cross-encoder oracle
quality model that was trained on an extensive set of manually labeled data. The oracle quality model
found predictions made by RAMEN (Method-1) to be 43% more accurate than those by Method-1.

RAMEN (Method-1) was trained on a dataset containing 540M training documents and 360M labels
mined as described above but over a longer period to conduct an A/B test on the search engine.
RAMEN (Method-1) was found to increase the Impression-Yield(relevant ad impressions per user
query) by 2.8% and the Click-Yield(clicks per user query) by 2.5% when compared against a control
containing state-of-the-art embedding-based, generative, GCN, and XC algorithms.

Ablations on the Design: Experiments were conducted to understand the impact of the design
choices made by RAMEN (ANCE) as well as the impact of metadata on the performance of RAMEN
(ANCE). Table [5] complies these experiments. In particular, experiment “No-Bandits” explored
the effects of different choices of giving weights to different sources of metadata on RAMEN’s
performance. A key finding was that when uniform weights were assigned to all graphs, there was a
substantial 18% drop in P@1. In addition to that, similarly accuracy of RAMEN (ANCE) for different
initialization of graph weights proved robustness of bandit learning. This highlights the importance
of bandit learning, where each graph’s contribution is determined dynamically. RAMEN (ANCE)’s
robust training strategy extends benefits beyond its own performance. NGAME, SiameseXML and
ECLARE, baseline methods, experienced improvements of 3% and 5% in P@ 1, respectively, when
leveraging RAMEN (ANCE)’s metadata regularizer. (Table[J).

Ablations on the Graph: To understand the impact of noisy edges in metadata, experiment "No
Pruning" disabled the trimming of noisy edges using cosine similarity filtering. A 4% loss in P@1
was observed which underscores the necessity of pruning unhelpful edges during training. RAMEN
(ANCE) uses multiple meta-data graphs for both document and label. To ascertain the contributions
of the anchor-doc and anchor-label metadata graphs, the ablations "No Doc. Graph" and "No Lbl.
Graph" were conducted. These experiments reveal that information from these graphs plays a
significant role, as disabling either leads to a 1.5-2% reduction in P@1. The information from these
graphs can be incorporated in baseline methods like ANCE. To understand its impact, experiment
“AugGT’ trains ANCE with augmented ground truth. The ground truth was expanded by using label
propagation wherein a label and a training point are linked by an edge if the label shares a neighbor
in the metadata graph of the said training point. RAMEN (ANCE) outperformed the “AugGT"” setup
by 15%. This suggests that while leveraging graph information for ground truth enhancement is
convenient, it may not be as effective due to noisy edges. RAMEN (ANCE) uses multiple sources of
graph metadata, Table [I0]in appendix shows the RAMEN (ANCE) benefits when all graph metadata
is used but remains state of the art even if it uses only hyperlink metadata, similar to OAK. For more
experimental details refer to Appendix

5 CONCLUSION

This paper presented RAMEN, a novel approach for leveraging metadata to enhance the accuracy of
recommendation systems w.r.t. tail labels. A key takeaway from the study is that opting for graph-
based regularization instead of the more prevalent GCN architectures, can yield gains of up to 15% in
PSP@1/P@1 and up to 6% when compared with XC techniques tailored for recommendation systems.
The bandit-style regularization technique adopted by RAMEN was found to offer performance boosts
to baseline methods. Notably, RAMEN offers state-of-the-art performance without incurring any
computational overhead during inference.

10

Under review as a conference paper at ICLR 2025

REFERENCES

R. Babbar and B. Scholkopf. DiSMEC: Distributed Sparse Machines for Extreme Multi-label
Classification. In WSDM, 2017.

R. Babbar and B. Scholkopf. Data scarcity, robustness and extreme multi-label classification. ML,
2019.

E. J. Barezi, I. D. W,, P. Fung, and H. R. Rabiee. A Submodular Feature-Aware Framework for Label
Subset Selection in Extreme Classification Problems. In NAACL, 2019.

K. Bhatia, K. Dahiya, H. Jain, A. Mittal, Y. Prabhu, and M. Varma. The Extreme Classification
Repository: Multi-label Datasets & Code, 2016. URL http://manikvarma.org/downloads/XC/
XMLRepository.html.

I. Chalkidis, M. Fergadiotis, P. Malakasiotis, N. Aletras, and I. Androutsopoulos. Extreme Multi-
Label Legal Text Classification: A case study in EU Legislation. In ACL, 2019.

C..W. Chang, H. F. Yu, K. Zhong, Y. Yang, and I. S. Dhillon. A Modular Deep Learning Approach
for Extreme Multi-label Text Classification. CoRR, 2019.

W.-C. Chang, Yu H.-F,, K. Zhong, Y. Yang, and I.-S. Dhillon. Taming Pretrained Transformers for
Extreme Multi-label Text Classification. In KDD, 2020.

J. Chen, T. Ma, and C. Xiao. FastGCN: Fast Learning with Graph Convolutional Networks via
Importance Sampling. In ICLR, 2018.

T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learning of
visual representations. In ICML, 2020.

W. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C. Hsieh. Cluster-GCN: An Efficient Algorithm for
Training Deep and Large Graph Convolutional Networks. In KDD, 2019.

E. Chien, J. Zhang, C. Hsieh, J. Jiang, W. Chang, O. Milenkovic, and H. Yu. PINA: Leveraging side
information in eXtreme multi-label classification via predicted instance neighborhood aggregation.
In ICML, 2023.

K. Dahiya, A. Agarwal, D. Saini, K. Gururaj, J. Jiao, A. Singh, S. Agarwal, P. Kar, and M. Varma.
SiameseXML: Siamese Networks meet Extreme Classifiers with 100M Labels. In ICML, 2021a.

K. Dahiya, D. Saini, A. Mittal, A. Shaw, K. Dave, A. Soni, H. Jain, S. Agarwal, and M. Varma.
DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents.
In WSDM, 2021b.

K. Dahiya, N. Gupta, D. Saini, A. Soni, Y. Wang, K. Dave, J. Jiao, K. Gururaj, P. Dey, A. Singh,
D. Hada, V. Jain, B. Paliwal, A. Mittal, S. Mehta, R. Ramjee, S. Agarwal, P. Kar, and M. Varma.
Ngame: Negative mining-aware mini-batching for extreme classification. In WSDM, March 2023.

B. Dean. We analyzed 306m keywords; here’s what we learned about Google searches. Online article,
2020. URL https://backlinko.com/google-keyword-study.

F. Faghri, D.-J. Fleet, J.-R. Kiros, and S. Fidler. VSE++: Improving Visual-Semantic Embeddings
with Hard Negatives. In BMVC, 2018.

A. D. Flaxman, A. T. Kalai, and H. B. McMahan. Online convex optimization in the bandit setting:
Gradient descent without a gradient. In SIAM, 2005.

C. Guo, A. Mousavi, X. Wu, D.-N. Holtmann-Rice, S. Kale, S. Reddi, and S. Kumar. Breaking the
Glass Ceiling for Embedding-Based Classifiers for Large Output Spaces. In NeurIPS, 2019.

N. Gupta, D. Khatri, A. S Rawat, S. Bhojanapalli, P. Jain, and I. S Dhillon. Efficacy of dual-encoders
for extreme multi-label classification. In ICLR, 2023.

N. Gupta, F. Devvrit, A. S. Rawat, S. Bhojanapalli, P. Jain, and I. S. Dhillon. Dual-encoders for
extreme multi-label classification. In ICLR, 2024.

11

http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
https://backlinko.com/google-keyword-study

Under review as a conference paper at ICLR 2025

V. Gupta, R. Wadbude, N. Natarajan, H. Karnick, P. Jain, and P. Rai. Distributional Semantics Meets
Multi-Label Learning. In AAAI 2019.

W. L. Hamilton, R. Ying, and J. Leskovec. Inductive Representation Learning on Large Graphs,
2018.

K. He, Haoqi Fan, Yuxin W., S. Xie, and R. Girshick. Momentum contrast for unsupervised visual
representation learning. In CVPR, 2020a.

X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang. Lightgen: Simplifying and powering graph
convolution network for recommendation. In SIGIR, pp. 639-648, 2020b.

S. Hofstitter, S.-C. Lin, J.-H. Yang, J. Lin, and A. Hanbury. Efficiently Teaching an Effective Dense
Retriever with Balanced Topic Aware Sampling. In SIGIR, 2021.

W. Huang, T. Zhang, Y. Rong, and J. Huang. Adaptive Sampling Towards Fast Graph Representation
Learning, 2018.

H. Jain, Y. Prabhu, and M. Varma. Extreme Multi-label Loss Functions for Recommendation,
Tagging, Ranking and Other Missing Label Applications. In KDD, August 2016.

H. Jain, V. Balasubramanian, B. Chunduri, and M. Varma. Slice: Scalable Linear Extreme Classifiers
trained on 100 Million Labels for Related Searches. In WSDM, 2019.

K. Jasinska, K. Dembczynski, R. Busa-Fekete, K. Pfannschmidt, T. Klerx, and E. Hullermeier.
Extreme F-measure Maximization using Sparse Probability Estimates. In ICML, 2016.

T. Jiang, D. Wang, L. Sun, H. Yang, Z. Zhao, and F. Zhuang. LightXML: Transformer with Dynamic
Negative Sampling for High-Performance Extreme Multi-label Text Classification. In AAAI, 2021.

V. Karpukhin, B. Oguz, S. Min, P. Lewis, L. Wu, S. Edunov, D. Chen, and W.-t. Yih. Dense passage
retrieval for open-domain question answering. In EMNLP, 2020.

S. Khandagale, H. Xiao, and R. Babbar. Bonsai: diverse and shallow trees for extreme multi-label
classification. ML, 2020.

S. Kharbanda, A. Banerjee, E. Schultheis, and R. Babbar. Cascadexml: Rethinking transformers for
end-to-end multi-resolution training in extreme multi-label classification. In NeurIPS, 2022.

K. Lee, M.-W. Chang, and K. Toutanova. Latent retrieval for weakly supervised open domain question
answering. In ACL, 2019.

J. Liu, W. Chang, Y. Wu, and Y. Yang. Deep Learning for Extreme Multi-label Text Classification. In
SIGIR, 2017.

X. Liu, P. He, W. Chen, and J. Gao. Multi-Task Deep Neural Networks for Natural Language
Understanding. In ACL, 2019a.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoy-
anov. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692,
2019b.

W. Lu, J. Jiao, and R. Zhang. TwinBERT: Distilling Knowledge to Twin-Structured Compressed
BERT Models for Large-Scale Retrieval. In CIKM, 2020.

Y. Luan, J. Eisenstein, K. Toutanova, and M. Collins. Sparse, Dense, and Attentional Representations
for Text Retrieval. In TACL, 2020.

T. K. R. Medini, Q. Huang, Y. Wang, V. Mohan, and A. Shrivastava. Extreme Classification in
Log Memory using Count-Min Sketch: A Case Study of Amazon Search with 50M Products. In
NeurIPS, 2019.

T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed Representations of Words
and Phrases and Their Compositionality. In NIPS, 2013.

12

Under review as a conference paper at ICLR 2025

P. Mineiro and N. Karampatziakis. Fast Label Embeddings via Randomized Linear Algebra. In
ECML/PKDD, 2015.

A. Mittal, K. Dahiya, S. Agrawal, D. Saini, S. Agarwal, P. Kar, and M. Varma. DECAF: Deep
Extreme Classification with Label Features. In WSDM, 2021a.

A. Mittal, N. Sachdeva, S. Agrawal, S. Agarwal, P. Kar, and M. Varma. ECLARE: Extreme
Classification with Label Graph Correlations. In WWW, 2021b.

A. Mittal, K. Dahiya, S. Malani, J. Ramaswamy, S. Kuruvilla, J. Ajmera, K. Chang, S. Agrawal,
P. Kar, and M. Varma. Multimodal extreme classification. In CVPR, June 2022.

S. Mohan, D. Saini, A. Mittal, S. R. Chowdhury, B. Paliwal, J. Jiao, M. Gupta, and M. Varma.
Enriching Document Representations using Auxiliary Knowledge for Extreme Classification. In
ICML, 2015.

J. Ni, J. Li, and J. McAuley. Justifying recommendations using distantly-labeled reviews and
fine-grained aspects. In EMNLP-IJCNLP, 2019.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga,
and A. Lerer. Automatic differentiation in PyTorch. In NIPS-W, 2017.

Y. Prabhu, A. Kag, S. Gopinath, K. Dahiya, S. Harsola, R. Agrawal, and M. Varma. Extreme
multi-label learning with label features for warm-start tagging, ranking and recommendation. In
WSDM, 2018a.

Y. Prabhu, A. Kag, S. Harsola, R. Agrawal, and M. Varma. Parabel: Partitioned label trees for
extreme classification with application to dynamic search advertising. In WWW, 2018b.

Y. Qu, Y. Ding, J. Liu, K. Liu, R. Ren, W. X. Zhao, D. Dong, H. Wu, and H. Wang. Rocketqa: An
optimized training approach to dense passage retrieval for open-domain question answering, 2021.

A. S. Rawat, A. K. Menon, W. Jitkrittum, S. Jayasumana, F. X. Yu, S. Reddi, and S. Kumar.
Disentangling Sampling and Labeling Bias for Learning in Large-Output Spaces. In ICML, 2021.

S.J. Reddi, S. Kale, EX. Yu, D. N. H. Rice, J. Chen, and S. Kumar. Stochastic Negative Mining for
Learning with Large Output Spaces. CoRR, 2018.

D. Saini, A.K. Jain, K. Dave, J. Jiao, A. Singh, R. Zhang, and M. Varma. GalaXC: Graph Neural
Networks with Labelwise Attention for Extreme Classification. In WWW, 2021.

V. Sanh, L. Debut, J. Chaumond, and T. Wolf. DistilBERT, a distilled version of BERT: smaller,
faster, cheaper and lighter. ArXiv, 2019.

W. Siblini, P. Kuntz, and F. Meyer. CRAFTML, an Efficient Clustering-based Random Forest for
Extreme Multi-label Learning. In ICML, 2018.

Y. Tagami. AnnexML: Approximate Nearest Neighbor Search for Extreme Multi-label Classification.
In KDD, 2017.

T. Wei, W. W. Tu, and Y. F. Li. Learning for Tail Label Data: A Label-Specific Feature Approach. In
1IJCAL 2019.

M. Wydmuch, K. Jasinska, M. Kuznetsov, R. Busa-Fekete, and K. Dembczynski. A no-regret
generalization of hierarchical softmax to extreme multi-label classification. In NIPS, 2018.

L. Xiong, C. Xiong, Y. Li, K.-F. Tang, J. Liu, P. Bennett, J. Ahmed, and A. Overwijk. Approximate
nearest neighbor negative contrastive learning for dense text retrieval. In ICLR, 2021.

J. Yang, Z. Liu, S. Xiao, C. Li, D. Lian, S. Agrawal, A. Singh, G. Sun, and X. Xie. Graphformers:
Gnn-nested transformers for representation learning on textual graph. NeurIPS, 34:28798-28810,
2021.

13

Under review as a conference paper at ICLR 2025

Y. Yang, C. Huang, L. Xia, and C. Li. Knowledge graph contrastive learning for recommen-
dation. In SIGIR Conference, pp. 1434-1443, 2022. URL https://github.com/yuh-yang/
KGCL-SIGIR22.

H. Ye, Z. Chen, D.-H. Wang, and B. .D. Davison. Pretrained Generalized Autoregressive Model with
Adaptive Probabilistic Label Clusters for Extreme Multi-label Text Classification. In ICML, 2020.

E.H. I. Yen, X. Huang, W. Dai, P. Ravikumar, I. Dhillon, and E. Xing. PPDSparse: A Parallel
Primal-Dual Sparse Method for Extreme Classification. In KDD, 2017.

R. You, S. Dai, Z. Zhang, H. Mamitsuka, and S. Zhu. AttentionXML: Extreme Multi-Label Text
Classification with Multi-Label Attention Based Recurrent Neural Networks. In NeurIPS, 2019.

H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna. GraphSAINT: Graph Sampling Based
Inductive Learning Method. In ICLR, 2020.

J. Zhang, W.-c. Chang, H.-f. Yu, and I. Dhillon. Fast multi-resolution transformer fine-tuning for
extreme multi-label text classification. In NeurIPS, 2021.

W. Zhang, L. Wang, J. Yan, X. Wang, and H. Zha. Deep Extreme Multi-label Learning. ICMR, 2018.

J. Zhu, Y. Cui, Y. Liu, H. Sun, X. Li, M. Pelger, T. Yang, L. Zhang, R. Zhang, and H. Zhao.
Textgnn: Improving text encoder via graph neural network in sponsored search. In theWebConf,
pp. 2848-2857, 2021.

D. Zou, Z. Hu, Y. Wang, S. Jiang, Y. Sun, and Q. Gu. Layer-Dependent Importance Sampling for
Training Deep and Large Graph Convolutional Networks, 2019.

14

https://github.com/yuh-yang/KGCL-SIGIR22
https://github.com/yuh-yang/KGCL-SIGIR22

Under review as a conference paper at ICLR 2025

Graph Regularized Encoder Training for

Extreme Classification
(Appendix)

A ADDITIONAL RESULTS

Table 14: Results on full-text benchmark datasets. RAMEN is up to 15% more accurate as compared
to both text-based and graph-based baselines.

|PSP@1 PSP@5 PSN@5 P@1 P@5 N@5
LF-WikiSeeAlso-320K

RAMEN (ANCE) 379 45.6 455 505 252 524
RAMEN (NGAME) | 36.9 45.5 452 504 253 524

OAK 33.9 40.4 403 486 233 492
GraphSage 20.6 23.1 266 241 9.1 253
GraphFormer 16.9 20.9 204 181 8.8 20.8
NGAME 33.8 41.0 41.0 477 23.77 48.99
DEXA 31.8 38.9 - 47.1 227 47.6
ANCE 29.6 32.8 342 457 17.32 454
CascadeXML 22.3 31.1 289 404 20.2 40.6
XR-Transformer 25.2 33.8 326 42,6 213 434
PINA - - - 445 229 -

AttentionXML 227 29.8 284 40.5 199 403
LightXML 17.9 24.2 228 345 16.8 34.2
SiameseXML 29.0 36.0 352 422 2139 434
ECLARE 26.1 33.1 323 40.6 202 412
DECAF 25.7 34.9 337 414 214 433
Parabel 17.1 23.5 219 335 16.6 333
Bonsai 18.2 25.7 23.8 349 17.7 353

LF-Wikipedia-500K

RAMEN (ANCE) 50.9 61.9 61.8 81.1 50.1 753
RAMEN (NGAME) | 43.6 61.8 60.2 859 52.6 79.2

OAK 45.3 60.8 599 852 508 773
GraphSage 35.2 37.8 40.8 43.1 283 353
GraphFormer 25.2 21.8 248 31.1 14 2487
LEVER 42.5 60.2 - 85.1 52.1 -

DEXML - 58.9 - 85.8 505 77.1
NGAME 41.3 57.1 56.1 84.1 49.9 759
DEXA 42.6 58.3 574 849 50.5 76.8
ANCE 50.9 57.3 - 779 40.9 -

ELIAS 35.1 51.1 - 81.3 488 73.1
CascadeXML 31.9 449 439 80.7 463 705
XR-Transformer 33.6 47.8 46,6 81.6 479 724
PINA - - - 82.8 50.1 -

AttentionXML 34 50.2 477 827 504 747
LightXML 31.9 46.5 452 816 476 722
SiameseXML 33.9 37.1 389 673 337 543
ECLARE 31.1 38.3 345 68.1 357 564
Parabel 26.9 353 346 68.7 386 586
Bonsai - - - 69.2 38.8 -

Results on benchmark datasets: Table [[|compares RAMEN with graph and XC methods. RAMEN
is 5% more accurate over the best baseline numbers. In particular RAMEN is 2-3% more accurate than
traditional graph-based methods. Additionally, RAMEN is 3-4% more accurate over OAK (Mohan

15

Under review as a conference paper at ICLR 2025

et alL[2015) & PINA (Chien et al.||2023])), which uses both XC and graph metadata. Table@]compares
RAMEN against than best production method (Method-1) on the G-EPM-1M dataset. RAMEN was
found to be 3% better on the P@5. RAMEN was further found to be 15% better than Method-1 on
the propensity scored PSP@35, indicating that RAMEN could match tail keywords more accurately.
The quality of the two models was further measured using an in-production, large cross-encoder
oracle quality model that was trained on an extensive set of manually labeled data. The oracle quality
model found predictions made by RAMEN to be 43% more accurate than those made by Method-1.
Note that, RAMEN’s primary focus is short-text documents but for results on full text counterparts of
the dataset refer to Table[I4]in the appendix.

Analysis of gains: Note that, Theorem([l|states that RAMEN and GCNs are equivalent. However, as
discussed in limitation of GCN in the introduction, GCN’s two stage retrieval pipeline can be noisy.
Table [2] demonstrates that if we replace the first stage with the oracle linker (first statge with zero
error), the performance of these graph-based methods starts to outperform RAMEN. However, this
oracle linker is never available for a novel test point, and RAMEN achieved a similar performance in
a fraction of the cost of training and prediction time as shown in Table[3] Additionally RAMEN can
predict meta-data graph links with high accuracy (Table [6)) which validates the proposed Theorem [I]

Ablations on the Design: Experiments were conducted to understand the impact of the design
choices made by RAMEN as well as the impact of metadata on the performance of RAMEN. Table 3]
complies these experiments. In particular, experiment “No-Bandits” explored the effects of different
choices of giving weights to different sources of metadata on RAMEN’s performance. A key finding
was that when uniform weights were assigned to all graphs, there was a substantial 18% drop in P@1.
In addition to that, similary accuracy of RAMEN for different initialization of graph weights proved
robustness of bandit learning. This highlights the importance of bandit learning, where each graph’s
contribution is determined dynamically. RAMEN’s robust training strategy extends benefits beyond
its own performance. SiameseXML and ECLARE, baseline methods, experienced improvements of
3% and 5% in P@1, respectively, when leveraging RAMEN’s metadata regularizer (Table[9).

Ablations on the Graph: To understand the impact of noisy edges in metadata, experiment "No
Pruning" disabled the trimming of noisy edges using cosine similarity filtering. A 4% loss in P@1
was observed which underscores the necessity of pruning unhelpful edges during training. RAMEN
uses multiple meta-data graphs for both document and label. To ascertain the contributions of the
anchor-doc and anchor-label metadata graphs, the ablations "No Doc. Graph" and "No Lbl. Graph"
were conducted. These experiments reveal that information from these graphs plays a significant role,
as disabling either leads to a 1.5-2% reduction in P@1. The information from these graphs can be
incorporated in baseline methods like ANCE. To understand its impact, experiment “AugGT’ trains
ANCE with augmented ground truth. The ground truth was expanded by using label propagation
wherein a label and a training point are linked by an edge if the label shares a neighbor in the metadata
graph of the said training point. RAMEN outperformed the “AugGT” setup by 15%. This suggests
that while leveraging graph information for ground truth enhancement is convenient, it may not be as
effective due to noisy edges. RAMEN uses multiple sources of graph metadata, table[T0]in appendix
shows the alg benefits when all graph metadata is used but remains state of the art even if it uses only
hyperlink metadata, similar to OAK.

These experiments collectively shed light on the intricate interplay between design choices and
metadata utilization, underscoring the effectiveness and nuances of RAMEN’s approach.

16

Under review as a conference paper at ICLR 2025

B IMPLEMENTATION DETAILS

Links obtained on the metadata graph from raw data suffer from missing links in much the same
way there are missing labels in the ground truth. To deal with this, RAMEN performs a random
walk with restart on each anchor node. The random walk was performed for 400 hops with a restart
probability of 0.8, thus ensuring that the walk did not wander too far from the starting node. This
random walk could also introduce noisy edges, leading to poor model performance. To deal with
such edges, in-batch pruning was performed and edges to only those anchors were retained which
had a cosine similarity of > 0 based on the embeddings given the encoder. To get the encoder,
RAMEN initialize the encoder with a pre-trained DistilBERT and fine-tuned it for 10 epochs(warmup
phase) using unpruned metadata graphs. Then the metadata graphs were pruned using the fine-tuned
encoder. Encoder fine-tuning was then was continued for 5 epochs using the pruned graphs after
which the graphs were re-pruned. These alternations of 5 epochs of encoder fine-tuning followed by
re-pruning were repeated till convergence. The learning rate for each bandit was set to 0.01. Table[I6]
in supplementary material summarizes all hyper-parameters for each dataset. It is notable that even
though RAMEN uses a graph at training time, inference does not require any such information,
making it highly suitable for long-tail queries.

17

Under review as a conference paper at ICLR 2025

C DATA STATS

Table 15: Dataset statistics summary for benchmark datasets used by RAMEN. Entries marked with
1 were not disclosed because the dataset is proprietary.

. Avg. node Avg. node

Train Pts # Labels # Test/ Pts Avg. docs. Avg. labels Graph Types # Graph Nodes neighbors neighbors
N L N per label per doc. G

per doc. per label

LF-WikiSeeAlsoTitles-320K / LF-WikiSeeAlso-320K

Hyperlink 2,458,399 38.87 771
693,082 312,330 177,515 4.67 211 Chtegory 456,086 e 18
LF-WikiTitles-500K / LF-Wikipedia-500K

Hyperlink 2,148,579 16.46 8.53
1,813,391 501,070 783,743 17.15 474 Chtegory 266,920 535 o1
LF-AmazonTitles-1.3M
related_items 916269 1.98 3.95
2,248,619 1305265 970,237 38.24 22.20 category 17081 335 583,04
G-EPM-IM
10,746,967 999,987 4,607,267 i i Co-session queries I i i

Co-click queries

Table 16: Hyper-parameter values for RAMEN on all datasets to enable reproducibility. RAMEN
code will be released publicly. Most hyperparameters were set to their default values across all
datasets. LR is learning rate. Multiple clusters were chosen to form a batch hence B > C'. Clusters
were refreshed after 5 epochs. Cluster size C' was doubled after every 25 epochs. Margin v = 0.3
was used for contrastive loss. For training M2 number of positive samples and negative samples were
kept at 2 and 12 respectively. A cell containing the symbol 1 indicates that that cell contains the same
hyperparameter value present in the cell directly above it.

Dataset Batch Encoder Encoder LR BERT seq.
Size S epochs LR, len L, ..
LF-WikiSeeAlsoTitles-330K | 1024 300 0.0002 32
LF-WikiTitles-500K T T T T
LF-AmazonTitles-1.3M T T T T
LF-WikiSeeAlso-320K T T T 128
LF-Wikipedia-500K T T T T

18

Under review as a conference paper at ICLR 2025

D EVALUATION METRICS

Performance has been evaluated using propensity scored precision@k and nDCG@FE, which are
unbiased and more suitable metric in the extreme multi-labels setting (Jain et al.,|2016; Babbar &
Scholkopf, 2019; [Prabhu et al., [2018aib)). The propensity model and values available on The Extreme
Classification Repository (Bhatia et al., 2016) were used. Performance has also been evaluated using
vanilla precision@k and nDCG@Fk (with k£ = 1, 3 and 5) for extreme classification.

Let y € R” denote the predicted score vector and y € {0, 1} denote the ground truth vector (with
{0, 1} entries this time instead of 1 entries, for sake of convenience). The notation ranks(y) C [L]
denotes the set of k labels with highest scores in the prediction score vector y and ||y||; denotes the
number of relevant labels in the ground truth vector. Then we have:

P@k:% Y ow

leranky (y)
1 Yi
PSPQk = — =
k, Z Nz
eranky (y)
1 Yi
DCGQk=— Y ———
klErcmkk(y) 10g(l + 1)
1 Yi
PSDCGQk = — —_—
le'r‘ank;C (y)pl log(l + 1)
nDCGQk = - DeGak
me(k:\lyHO) 1
=1 log(i+1)
PSD
psapCGas _ PSDCGHE
=1 logi+1
FNQE =1 — Zlerankk(y)yl
Iylly

Here, p; is propensity score of the label [calculated as described in Jain et al.| (2016)).

D.1 LABEL QUANTILE CREATION

For Figure E] and Table 8] labels were divided into 5 equi-voluminous quantiles. To each label [€ [L],
a popularity score V; = |i : y;; = +2| was assigned by counting number of training datapoints tagged

with that label. The total volume of all labels was computed as Vi def > le[L] V;. Labels were
arranged in decreasing order of their popularity score V. 5 label quantiles were then created so that
the volume of labels in each bin is roughly = Vi/5. Thus, labels were collected in the first bin in
decreasing order of popularity till the total volume of labels in that bin exceeded Vo /5 at which point
the first bin was complete and the second bin was created by selecting remaining labels in decreasing
order or popularity till the total volume of labels in the second bin exceeded V{,/5 and so on. For
example, for the LF-WikiTitles-500K dataset, the five bins were found to contain approximately
1K,9K,30K,84K, 375K labels respectively. Note that the first bin contains very few ~ 1K labels
since these are head labels and a small number of them quickly racked up a total volume of = V;o /5
whereas the last quantile contains more than 100 more labels at around 375K labels since these are
tail labels and so a lot more of them are needed to add up to a total volume of &= Vi /5.

19

Under review as a conference paper at ICLR 2025

E THEORETICAL ANALYSIS

We first recall the notation, then specify Theorem [I]formally, prove the result, and finally extend the
result to show that even multiple GCN layers can be approximated using non-GCN networks.

Let X € RV*P = [xy,...,xy]" be the initial embeddings of the N data points over which a
graph with adjacency matrix A € [0, 1]V % is present. A typical convolution layer in a GCN can be
represented as p(AXW) € RV*P where W € RP*P is a transformation matrix and ¢ : R — R is
some activation function applied coordinate-wise.

)

Theorem 2. lem:approx[Formal Restatement] Suppose the activation function used in the GCN
layer ¢ is B-Lipschitz, i.e., |p(u) — ¢(v)| < B - |u — v| for all u,v € R. Also suppose there exists a
non-GCN (e.g. feedforward, transformer etc.) network F : X — ST~ where ST~ is the the unit
sphere in say, P dimensions, that effectively predicts edges in the metadata graph. Specifically, let
A = [a;] € [0, JN*N with a,, o (1+ F(x;) " F(x;))/2 be the approximated adjacency matrix.
Then for any transformation matrix W utilized by the GCN, there exists exists a non-GCN network
H : X — RP that well-approximates the embeddings of the GCN layer as well. Specifically, if we

abuse notation to let H(X) def [H(x1),...,H(xn)]" € RV*P, then we have
1 N
— < . . —
T [6(AXW) = M)l < BR-[WI, - 4= 4]

where R = max; |y ||Xil|, and |W||, denotes the spectral norm of the matrix W.

Theorem |1| effectively assures us that as A — A, we have H(X) — ¢(AXW) as well, i.e., the
augmented embeddings obtained using the GCN layer can be well-approximated by those offered by
the non-GCN network H if there exists a way to predict the adjacency matrix accurately.

E.1 PROOF FOR A SINGLE-LAYER GCN

Proof of Theorem[l] Consider the network
H: x> (TF(x)+c) € RP,
where T € RP*P ¢ € RP defined as
def 1
T 25 WY % F(x)" | e RPXP
Je[N]

el Y x| er?
JE[N]
Note that H is a non-GCN network since it merely places a fully connected layer 7" and a bias term c
on top of a non-GCN network F. Recall that 7 : X — S~ and W € RP*P so the dimensionality
of T', ¢ do make sense. Note that the values of the fully connected layer 71" and the bias term ¢ depend
on the transformation matrix W used by the GCN which implies that for every choice of W made by
the GCN layer, there exists a choice of T, ¢ for the non-GCN network as well.

To prove the result, note that the i row of ¢(AX W) can be written as
(b WT Z ainj
JEIN]
whereas the i row of 7(X) can be written as

1 1
¢ (TF(x;) +c)=06 5.WT > xF(x,)" }'(xi)+§.WT X;
JEIN] JEIN]
1+ F(x; T.F X; R
=W > “2) (xi) x; | = WT<Zaijxj
J€] JEIN]

20

Under review as a conference paper at ICLR 2025

This gives us
2

lp(AXW) = HX) 7= D |l [W D aix; | | = (W [D aux;
i€[N] JE[N] JE[N] 2
2

S ﬁQ . Z WT Z AijX4 - VVT Z flijx]'
i€[N] JE[N] JE[N] 5
~ 2 112
=5 a-dxw| <pxwi-|la- 4|
where the second step follows since ¢ is applied coordinate-wise and is an L-Lipschitz function and

the last step follows from standard linear algebraic inequalities. We finish the proof by noticing that
the spectral norm is submultiplicative and || X ||, < RvV/N. O

E.2 EXTENSION TO GCNS WITH MULTIPLE LAYERS

We note that this result can be extended to multiple layers. For example, suppose we wish to utilize
two graph convolution layers i.e.

) H(AGAXW)),
where W € RP*P s the transformation matrix for the second GCN layer. The proof technique
presented above can be extended to show that the following non-GCN network would approximate
the above two-layer GCN.

K:xm ¢(TF(x)+¢) € RP

where
= defl =
T éi.WT > H(x)F(x;)" | e RPXF
JE[N]
_defl =
¢ éi.WT > H(x)) | €RP

J€[N]
where H is the non-GCN network explicated in the proof of Theorem [I| This technique can be
extended to cases with more than 2 GCN layers as well.

F ETHICAL CONSIDERATIONS

Our usage of data and terms of providing service to people around the world has been approved
by our legal and ethical boards. In terms of social relevance, our research is helping millions of
people find the goods and services that they are looking for online with increased efficiency and a
significantly improved user experience. This facilitates purchase and delivery without any physical
contact which is important given today’s social constraints. Furthermore, our research is increasing
the revenue of many small and medium businesses including mom and pop stores while also helping
them grow their market and reduce the cost of reaching new customers.

21

	Introduction
	Our Contributions

	Related work
	RAMEN: gRaph regulArized encoder training for extreME classificatioN
	Experiments
	Conclusion
	Additional Results
	Implementation details
	Data stats
	Evaluation metrics
	Label Quantile Creation

	Theoretical Analysis
	Proof for a Single-layer GCN
	Extension to GCNs with Multiple Layers

	Ethical Considerations

