
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MP-GFORMER: A 3D-GEOMETRY-AWARE DYNAMIC
GRAPH TRANSFORMER APPROACH FOR MACHINING
PROCESS PLANNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Machining process planning (MP) is inherently complex due to structural and ge-
ometrical dependencies among part features and machining operations. A key
challenge lies in capturing dynamic interdependencies that evolve with distinct
part geometries as operations are performed. Machine learning has been applied
to address challenges in MP, such as operation selection and machining sequence
prediction. Dynamic graph learning (DGL) has been widely used to model dy-
namic systems, thanks to its ability to integrate spatio-temporal relationships.
However, in MP, while existing DGL approaches can capture these dependencies,
they fail to incorporate three-dimensional (3D) geometric information of parts
and thus lack domain awareness in predicting machining operation sequences. To
address this limitation, we propose MP-GFormer, a 3D-geometry-aware dynamic
graph transformer that integrates evolving 3D geometric representations into DGL
through an attention mechanism to predict machining operation sequences. Our
approach leverages StereoLithography surface meshes representing the 3D geom-
etry of a part after each machining operation, with the boundary representation
method used for the initial 3D designs. We evaluate MP-GFormer on a synthe-
sized dataset and demonstrate that the method achieves improvements of 24% and
36% in accuracy for main and sub-operation predictions, respectively, compared
to state-of-the-art approaches.

1 INTRODUCTION

Machining process planning (MP) is a systematic activity that converts raw materials into a finished
part through a sequence of machining operations (e.g., milling, turning, and drilling) Afif & Sarhan
(2025). MP determines the order of operations, defining tool paths, choosing cutting tools, and set-
ting parameters Afif & Sarhan (2025). It serves as a bridge between computer-aided design (CAD)
and computer-aided manufacturing (CAM), enabling CAD-based complex product geometries to be
translated into CAM-based machining steps Wang et al. (2024), ensuring production efficiency, pro-
ductivity, and final part quality Marzia et al. (2023). Traditional MP heavily relies on expert knowl-
edge, which constrains efficient decision-making due to limited automation Besharati-Foumani et al.
(2019). Machine learning (ML) techniques have now emerged as enablers of MP automation, learn-
ing process patterns from data and reducing the need for manual decision-making. In particular,
recent ML studies in MP have leveraged advanced methods such as graph neural networks (GNNs)
and large language models to model complex machining processes and generate process knowledge
Wang et al. (2024); Xu et al. (2025), making a shift toward automated planning.

Dynamic graph learning (DGL) has been widely used for modeling dynamic systems thanks to its
ability to integrate spatio-temporal relationships in various applications, including social network
prediction, recommender systems, and traffic forecasting Yang et al. (2024). Dynamic graphs repre-
sent entities as nodes and represent their interactions as edges over time Yu et al. (2023). Motivated
by their ability to learn long-range and complex dependencies, transformers Vaswani et al. (2017)
have increasingly been adopted in DGL, capturing evolving structural and temporal relationships
Peng et al. (2025). Recent studies have begun to explore the application of graph transformer ar-
chitectures in manufacturing, showing the capabilities of attention mechanisms in capturing part-
geometric relationships Dai et al. (2025) and learning process sequences Ma et al. (2022).
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MP remains highly complex due to the evolving dependencies between part geometries and succes-
sive machining operation stages, where each operation in sequence introduces new dynamic inter-
dependencies Xia et al. (2018); Zhang (1994). In MP, 3D geometric information of parts serves as
the essential domain knowledge, as the shape and features of a part directly influence the selection,
sequencing, and feasibility of machining operations. Dynamic graph modeling shows high potential
for capturing the evolving dependencies between part geometries and machining operations within
machining processes, while transformer architectures are well-suited to learn the sequential relation-
ships—together enabling a spatio-temporal representation of MP that integrates part geometries and
sequential machining operations. However, transformer-based DGL approaches in the area remain
limited. Current methods are not domain-aware, as they do not explicitly incorporate 3D geomet-
ric domain information of parts into their frameworks Yu et al. (2023). This lack of domain-aware
graph Transformer methods limits their ability to capture the manufacturing-specific constraints that
arise from part geometry.

These challenges necessitate the development of a transformer-based DGL approach that can: (1)
incorporate geometric information to guide process planning and decision-making and (2) capture
evolving dependencies between part 3D geometries and sequential machining operations. Motivated
by these, in this work, we propose a transformer-based DGL framework for machining operations
prediction and sequence planning, termed MP-GFormer, for capturing 3D geometric and spatio-
temporal dependecies of machined parts. The proposed method utilized a graph attention network
(GAT) to explicitly model the dependencies between nodes and edges, enhancing relational reason-
ing across parts’ 3D geometric entities. Second, an attention mechanism captures geometry-aware
dependecies allowing the model to leverage geometric knowledge. Finally, a transformer decoder
is employed to capture dependencies between the part’s geometry and machining operations for
predicting operation sequences.

2 RELATED WORKS

In this section, we review state-of-the-art research in transformer-based DGL and then discuss its
emerging applications in MP.

Transformer-Based Dynamic Graph Learning: Recently, transformer-based dynamic graph rep-
resentation learning has been widely studied in various fields. Sankar et al. (2018) proposed DySAT,
a dynamic self-attention network to learn node representation by capturing structural and tempo-
ral properties. Xu et al. (2020) proposed TGAT, a temporal graph attention framework to learn
temporal-topological features in a graph using a self-attention mechanism. Yu et al. (2023) proposed
DyGFormer, a unified Transformer architecture designed for sequential dynamic graph learning, in
which neighborhood co-occurrence features are incorporated to effectively model evolving interac-
tions. Karmim et al. (2024) proposed SLATE, a fully connected transformer architecture to capture
spatio-temporal dependencies utilizing a supra-Laplacian encoding approach. Wang et al. (2025)
proposed CorDGT, a dynamic graph transformer with correlated spatio-temporal positional encod-
ing for node representation learning. Peng et al. Peng et al. (2025) proposed TIDFormer, a dynamic
graph transformer architecture that captures temporal and interactive dynamics.

Graph Learning and Transformers in Machining Process Planning: In MP, ML has been widely
used to address different challenges, including operation selection, toolpath optimization, machin-
ing sequence prediction, and control. In particular, recent studies have increasingly explored graph
modeling to address the complexity of MP to capture and preserve topological and geometrical rela-
tionships. For instance, Zhang et al. (2025) developed a graph encoder-decoder framework to predict
the sequence of operations. Wang et al. (2024) proposed a graph convolutional neural network for
feature machining operations prediction. Hussong et al. (2025) proposed MaProNet, a GAT-based
architecture to capture topological and geometrical information and to predict manufacturing pro-
cesses. Thanks to their long-range sequential dependency learning through the attention mechanism,
transformers are applied in MP to predict machining process sequences. Dai et al. (2025) proposed
BRepFormer, a transformer-based architecture to capture complex geometrical features from BRep
for machining feature recognition. Maqueda et al. (2025) proposed DeepMS, a transformer-based
method for automated prediction of machining operations and their sequences utilizing final part
geometries.
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However, the current DGL still remains limited in MP, for the current approaches do not explicitly
incorporate 3D geometry-rich domain information of parts into their framework, and they primarily
focus on learning sequential graph structures Yu et al. (2023). The lack of domain-aware graph
transformer approaches limits their ability to capture the complexity of MP that arises from a part’s
geometry. A machined part typically contains multiple interacting features, such as slots, holes, and
pockets Verma & Rajotia (2010), where a sequence of operations is performed, thereby transform-
ing the part’s geometry. The transformed geometry influences the next allowable operations and
determines the possibility of the next operation in sequence. A key challenge lies in capturing those
dynamic interdependencies that evolve with distinct part geometries as operations are performed.
Additionally, current DGL and transformer approaches in MP have not fully utilized the capabilities
of both methods. To address these challenges, we frame MP as a transformer-based DGL problem to
capture spatio-temporal and geometrical dependencies of parts, which will be elaborated in Section
three.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

To address the limitations, we propose MP-GFormer, a 3D-geometry-aware dynamic graph trans-
former that integrates evolving 3D geometric representations into DGL through an attention mech-
anism to predict machining operation sequences, as shown in Figure 1.

Cross-
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Figure 1: The proposed
framework integrates a GAT,
an attention mechanism, and
a transformer to capture and
learn the spatio-temporal and
geometry-aware dependen-
cies in MP.

We define each transition of the geometry in the machining process
after an operation is performed as a Process Graph in Equation 1:

Gt = (V t, Et, Ht) (1)

where V t and Et denote the nodes and edges at timestep t, and
Ht ∈ RNt×d is the graph feature matrix, indicating geometry and
spatio-temporal attributes of V t and Et, where N and d are the
number of nodes and features, respectively. The machining process
is thus represented as a sequence of Process Graphs as written in
Equation 2:

S = {G1, G2, . . . , GT } (2)
where T is the total number of machining operations performed on
a machined part. We also define the initial 3D geometry design
of the part as a static Design Graph as shown in Equation 3:

GD = (V D, ED, HD) (3)

where V D and ED denote the nodes and edges of the part’s design,
and HD ∈ RND×c is the graph feature matrix, indicating design
geometry attributes of V D and ED, where N and c are the number
of nodes and features, respectively.
We employ a transformer architecture to capture geometry and
spatio-temporal dependencies between graphs in sequence to learn
the function f as written in Equation 4:

f :
(
S, GD) 7→ SL = {GL1 , GL1 , . . . , GLT } (4)

where GLt = (V Lt , ELt , HLt) contains learned geometry and spatio-temporal dependencies be-
tween graphs in sequence in a machining process. The learned dependencies are later used for
predicting machining operation sequences through the proposed MP-GFormer. Figure 2 indicates
the details of the architecture. MP-GFormer contains three main stages: a) Encoder, b) Transformer,
and c) Classifier.

3.2 ENCODER ARCHITECTURE

The encoder is designed to capture geometry and spatio-temporal features from both Process Graphs
and the Design graph It consists of graph attention encoding, temporal encoding, cross-attention fu-
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Figure 2: The MP-GFormer architecture. Sequential machining process graphs and the initial design
graph are used as inputs. The architecture consists of three main stages: (a) an encoder, where node
and edge are mapped into a latent space using a GAT encoder, and a cross-attention mechanism cap-
tures interdependencies between process and design graphs; (b) a Transformer decoder that learns
dependencies across sequential graphs, machining operations, and their interactions through three
attention mechanisms; and (c) a classifier that predicts machining operations.

sion, feature embedding, attention pooling, positional encoding, and label embedding. First, we ap-
ply a GAT Veličković et al. (2017) to capture and learn node and edge features of each process graph
Gt and the design graph GD at timestep t. Node Ht = {ht

1, . . . ,h
t
Nt

} and HD = {hD
1 , . . . ,hD

ND
}

and edge Rt = {rtij | (i, j) ∈ Et} and RD = {rDkl | (k, l) ∈ ED} embeddings are projected into a
latent space as written in Equation 5 for Process Graphs and Design Graph:

zti = Wnh
t
i, zDj = Wnh

D
j , etij = Wer

t
ij , eDkl = Wer

D
kl, W ∈ Rd′×d (5)

Later, attention scores are computed between neighboring nodes and their edges in both graphs as
seen in Equation 6 and normalized across neighbors as written in Equation 7:

stij = a
(
zti, z

t
j , e

t
ij

)
, sDkl = a

(
zDk , zDl , eDkl

)
(6)

αt
ij =

exp(stij)∑
k∈N (i) exp(s

t
ik)

, αD
kl =

exp(sDkl)∑
m∈N (k) exp(s

D
km)

(7)

We updated the embeddings via attention-weighted aggregation utilizing multi-head attention as
written in Equations 8, 9, and 10:

ht′

i = σ

 ∑
j∈N (i)

αt
ij z

t
j

 , hD′

k = σ

 ∑
l∈N (k)

αD
kl z

D
l

 (8)

ht′

i = σ

 1

M

∑
m = 1M

∑
j∈N (i)

αt,(m)ij
(
W (m)

n ht
j +W (m)

e rtij
) (9)

hD′

k = σ

 1

M

∑
m = 1M

∑
l∈N (k)

αD,(m)kl
(
W (m)

n hD
l +W (m)

e rDkl
) (10)

where M is the number of heads. The outputs are the learned node and edge features Ht′ for each
Process Graph Gt and HD′

for the Design Graph GD. As each sequence S may contain a different
number of timesteps, we employ a linear encoder to project the time features into the same latent
space dimension as the graph features, as written in Equation 11:

ht
time = Wt · onehot(t), Wt ∈ Rd′×T (11)
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To capture the interdependency between the geometry of the Process Graphs Gt and the initial
design geometry GD, we employ a cross-attention mechanism Vaswani et al. (2017), where Gt acts
as query and GD serves as key and value as shown in Equations 12 and 13:

Q = Ht′WQ, K = HD′
WK , V = HD′

WV (12)

H̃t = softmax

(
QK⊤
√
dk

)
V (13)

where H̃t are geometry-aware fused feature embeddings.

Later, we combined all encoded features into a unified representation, as written in Equation 14:

F t = ϕ
(
H̃t, Ht′ ,ht

time

)
(14)

where ϕ(·) is a feedforward projection. Later, we aggregate node-level embeddings into a graph-
level representation of each process graph using attention pooling Li et al. (2015), as defined in
Equation 15:

G′t =

Nt∑
i=1

βt
i F

t
i , (15)

where βt
i is the attention weight assigned to node i at timestep t. The output of this step is a sequence

of graph embeddings for each sequence S, as written in Equation 16:

S ′ = {G′1, G′2, . . . , G′T } (16)

3.3 TRANSFORMER ARCHITECTURE

The Transformer learns sequential graph embeddings to capture the geometric and spatio-temporal
dependencies across different machining processes. To this end, we employ a transformer decoder
architecture with three attention mechanisms to capture: (i) dependencies between Process Graphs
in the sequence, (ii) dependencies between operations in the sequence, and (iii) cross-dependencies
between graphs and operations. We applied positional encoding to preserve the order of the graphs
in sequence (Equation 17).

Ĝt = G′t + PE(t) (17)

Additionally, each machining operation, as the label of interest, is mapped to a learnable vector
embedding (Equation 18).

Lyt = Em[yt] ∈ Rd′
(18)

where Lyt
denotes the learned operation embedding at timestep t.

We also define the set of past operation embeddings up to step t− 1 as in Equation 19:

LY = [Ly1
, Ly2

, . . . , Lyt−1
]⊤ ∈ R(t−1)×d′

(19)

We first apply a masked self-attention mechanism over LY , as defined in Equation 20, 21, and 22 :

QLY
= LY W

(LY )
Q , KLY

= LY W
(LY )
K , VLY

= LY W
(LY )
V (20)

ALY
= Softmax(

QLY
K⊤

LY√
d

+ CM) (21)

L′
Y = ALY

VLY
(22)

where CM is a causal mask.

Second, a temporal self-attention mechanism is applied to the sequence of Process Graph embed-
dings, defined as Ŝ1:t = [Ĝ1, Ĝ2, . . . , Ĝt], as written in Equations 23, 24, and 25: Self-attention is
then computed over the sequence Ŝt, with all projections defined as

QŜ1:t
= Ŝ1:tW

(Ŝ1:t)
Q , KŜ1:t

= Ŝ1:tW
(Ŝ1:t)
K , VŜ1:t

= Ŝ1:tW
(Ŝ1:t)
V (23)
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AŜ1:t
= Softmax

(
QŜt

K⊤
Ŝ1:t√
d

)
(24)

Ŝ′
1:t = AŜ1:t

VŜ1:t
(25)

Finally, the label representation L′ t
Y attends to the graph sequence Ŝ′

1:t via cross-attention, as written
in Equations 26, 27, and 28:

Qt = W
(c)
Q L′ t

Y , Kc = Ŝ′
tW

(c)
K , Vc = Ŝ′

tW
(c)
V (26)

Across = Softmax
(
QtK

⊤
c√
d

)
(27)

GLt = AcrossVc (28)
where GLt denotes the learned graph embeddings at timestep t, which contains the geometry and
spatio-temporal dependencies between process and design graphs for a machined part.

3.4 CLASSIFIER ARCHITECTURE

At each timestep t, the classifier predicts the machining operation from the learned graph embedding
GLt . The logits are computed as in Equation 29:

yt = WoG
Lt + bo (29)

where Wo and bo are weight and bias parameters for the operation classifier. Later, the machining
operation is predicted as shown in Equation 30:

ŷt = argmax (Softmax(yt)) (30)

The model is trained using cross-entropy loss as written in Equation 31:

Lt = − log p(yt | GLt) (31)

The overall training objective is the average cross-entropy across all timesteps as shown in Equation
32:

L =
1

T

T∑
t=1

Lt (32)

4 DATA SET

The data contains three types of files in this work: (1) the Stereolithography files (STL), representing
geometry as a faceted triangle mesh, (2) the Boundary representation (BRep) files, which provide a
comprehensive description of the topology and geometry of the part design, and (3) the textual files
indicating the operations and process information.

4.1 DATA COLLECTION

Synthetic data was generated based on real-world example images for machining, which can be or-
ganized into two classes: (1) simple and (2) complex geomtry, shown in Figure 3. Each geometry
was parameterized for a) the length, width, and height of the part design and b) the pocket/hole lo-
cation and sizes. By running a script through the range of values of each parameter and updating the
process plan, we generated 2991 valid data sets. Figure 8 indicates samples of generated synthesized
data. Please refer to Appendix A.1 for more details.

4.2 GRAPH GENERATION

We constructed two types of graphs: (1) sequential geometry graphs derived from STL files corre-
sponding to each manufacturing main and sub-operation, and (2) initial design graphs derived from
BRep models of the manufactured part.

6
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Figure 3: Samples of parts geometries used for synthesized data generation: (1) simple geometry
(bottom row) and (2) complex geometry (top row).

STL-based Graphs. Each STL file represents the geometry of a machined part at a spe-
cific timestep. We treat each triangle face as a node vi ∈ V t, with node features
hSTL
i = [centroid(vi), normal(vi), area(vi), perimeter(vi), edge length(vi), angles(vi),

angle types(vi), compactness(vi)] ∈ R8. Edges eij ∈ Et are created between two
triangle faces that share a common edge. Each edge vector contains geometric dis-
tances and curvature features as xSTL

ij = [centroid distance(vi, vj), normal distance(vi, vj),
shared-edge length(eij), edge midpoint(eij), dihedral angle(eij)] ∈ R5.

BRep-based Graphs. We constructed graphs directly from BRep models, indicating the design
geometry of machined parts. Each face of the B-Rep model is treated as a node, with features defined
as hBRep

i = [surface type(fi), area(fi), UV-parameters(fi), 3D centroid(fi)] ∈ RdBRep . Each edge
corresponds to adjacencies between faces in the B-Rep model. For each edge, we extract shape-
aware features as xBRep

ij = [shared-edge length(eij), dihedral angle(eij), edge curve type(eij)] ∈
R3.

The final graph data, therefore, consists of a sequence of STL graphs S = {G1
STL, G

2
STL, . . . , G

T
STL}

and a design-based BRep graph GBRep that together provide geometry-based spatio-temporal in-
formation of a sequence of machining operations. Figure 9 indicates sample data inputs for the
graph generation step. Later, the generated graphs are used as the input for the proposed methodol-
ogy, MP-GFormer, for the main and sub-operation sequence classification task. Figure 4 indicates
the machining operation prediction utilizing STL and BRep graphs as the inputs for MP-GFormer,
which captures the dependency between sequential STL graphs as well as the relationship between
BRep and each STL graph to predict a sequence of operations.

5 EXPERIMENTS

Hyperparameter Selection: The data set contains 2991 graph sequences with main and sub-
operations as labels of interest. Figure 10 indicates the number of unique labels in the dataset.
We utilized 80% and 20% for training and testing, respectively. Tables 1 and 2 indicate the results of
training and testing for different hyperparameter values. Figure 5 shows the training and testing loss
curves for main and sub-operation predictions using the best hyperparameter settings. As a more
detailed qualitative analysis, we calculated t-SNE values for the learned graph embeddings during
training over different epochs with the best hyperparameter values, as shown in Figure 6. Each
data point corresponds to one graph, and each different color corresponds to an operation class.
The results indicate that graphs within the same operation classes are well-separated and clustered
for both operations, reflecting the transformer’s capability to capture the structural and sequential
dependencies of graphs in MP.

Ablation study: We considered two different variants of the method for the ablation study. Table
3 indicates the ablation study results. First, we replaced the GAT encoder with a neural network
(NN) encoder for nodes and edges feature encoding of the first layer of the architecture. The results

7
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Figure 4: Machining operation prediction via MP-GFormer. The case study utilizes STL geometry
data and the BRep model as inputs, which are converted into graph representations. These graph-
based inputs are then processed by MP-GFormer to predict sequential machining operations.

Table 1: Results under Different Hyperparameter Settings for Training (Accuracy, F1, Precision,
Recall)

Hyperparameters
Main Operation Sub Operation Joint Operations

Acc F1 Prec Rec Acc F1 Prec Rec Acc F1 Prec Rec

Batch=8, LR=0.01, Epochs=5 0.69 0.64 0.63 0.69 0.74 0.69 0.71 0.74 0.62 0.55 0.48 0.62
Batch=16, LR=0.01, Epochs=5 0.74 0.73 0.77 0.74 0.74 0.69 0.71 0.74 0.68 0.62 0.59 0.68
Batch=128, LR=0.01, Epochs=5 0.71 0.70 0.72 0.71 0.74 0.69 0.71 0.74 0.64 0.59 0.57 0.64
Batch=16, LR=0.001, Epochs=5 0.72 0.72 0.75 0.72 0.74 0.70 0.71 0.74 0.65 0.60 0.59 0.65
Batch=128, LR=0.001, Epochs=20 0.74 0.72 0.78 0.74 0.70 0.66 0.68 0.70 0.63 0.60 0.60 0.63
Batch=256, LR=0.001, Epochs=20 0.71 0.70 0.73 0.71 0.67 0.63 0.66 0.67 0.59 0.55 0.55 0.59

Table 2: Results under Different Hyperparameter Settings for Test (Accuracy, F1, Precision, Recall)

Hyperparameters
Main Operation Sub Operation Joint Operations

Acc F1 Prec Rec Acc F1 Prec Rec Acc F1 Prec Rec

Batch=8, LR=0.01, Epochs=5 0.77 0.77 0.79 0.77 0.33 0.18 0.12 0.33 0.33 0.20 0.15 0.33
Batch=16, LR=0.01, Epochs=5 0.77 0.77 0.79 0.77 0.27 0.15 0.10 0.27 0.27 0.16 0.11 0.27
Batch=128, LR=0.01, Epochs=5 0.76 0.76 0.78 0.76 0.25 0.13 0.09 0.25 0.25 0.15 0.10 0.25
Batch=16, LR=0.001, Epochs=5 0.76 0.76 0.78 0.76 0.25 0.13 0.09 0.25 0.25 0.15 0.10 0.25
Batch=128, LR=0.001, Epochs=20 0.78 0.75 0.77 0.75 0.70 0.63 0.60 0.61 0.61 0.60 0.61 0.62
Batch=256, LR=0.001, Epochs=20 0.72 0.73 0.75 0.72 0.60 0.63 0.60 0.61 0.59 0.34 0.35 0.25

(a) Training loss over 20 epochs for Main
and Sub Operations

(b) Test loss over 20 epochs for Main and
Sub Operations

Figure 5: Loss curves.
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Figure 6: t-SNE visualization of learned graph embeddings across training epochs. Each color cor-
responds to an operation class, and each point represents one graph sample. As training progresses,
samples of each class become more separable and form clusters.

indicated a decline in accuracy for both training and testing. The NN encoder ignores the interactions
between a node and its neighboring nodes, thereby losing important structural information from the
graph. Secondly, we employed a transformer encoder for sequential graph learning instead of a
decoder layer, which resulted in a significant improvement in performance. This can be explained by
the encoder’s parallel graph processing ability, thereby having access to the future graph structures
and labels when predicting the current label. This may cause the model to benefit from data leakage
during both training and testing, as it leverages information from future steps that should not be
available for predicting the current label.

Table 3: Ablation Study Results (Train and Test: Accuracy, F1, Precision, Recall)

Method
Main Operation Sub Operation Joint Operations

Train Test Train Test Train Test

Acc F1 Prec Rec Acc F1 Prec Rec Acc F1 Prec Rec Acc F1 Prec Rec Acc F1 Prec Rec Acc F1 Prec Rec

NN-Based 0.64 0.51 0.54 0.50 0.66 0.49 0.53 0.50 0.47 0.20 0.22 0.21 0.50 0.21 0.23 0.24 0.42 0.11 0.13 0.11 0.44 0.15 0.16 0.15
Encoder-based 0.94 0.93 0.94 0.93 0.98 0.97 0.98 0.97 0.90 0.86 0.87 0.85 0.97 0.93 0.93 0.94 0.88 0.58 0.60 0.57 0.96 0.86 0.86 0.86
MP-GFormer 0.78 0.75 0.77 0.75 0.78 0.75 0.77 0.75 0.70 0.66 0.68 0.70 0.70 0.63 0.60 0.61 0.63 0.60 0.60 0.63 0.61 0.60 0.61 0.0.62

Benchmark Study: We compared the proposed method with two DGL approaches from the litera-
ture. First, with DyGFormer Yu et al. (2023), as the study was motivated by the method. Second, we
compared the method with DiffPool Ying et al. (2018), a hierarchical graph representation learning
approach. We trained both models with the same dataset used for the case study. Table 4 indicates
the comparative study results. MP-GFormer achieves improvements of 24% and 36% in accuracy
for main and sub-operation predictions, respectively, as compared to DyGFormer, and 24% and 20%
as compared to DiffPool.

Table 4: Benchmark Study Results (Accuracy, F1, Precision, Recall) for Training and Testing

DyGFormer DiffPool MP-GFormer

Train Test Train Test Train Test

Acc F1 Prec Rec Acc F1 Prec Rec Acc F1 Prec Rec Acc F1 Prec Rec Acc F1 Prec Rec Acc F1 Prec Rec

Main Operation 0.52 0.36 0.35 0.37 0.54 0.36 0.40 0.40 0.52 0.39 0.34 0.52 0.54 0.39 0.31 0.54 0.78 0.75 0.77 0.75 0.78 0.75 0.77 0.75
Sub Operation 0.36 0.10 0.12 0.12 0.34 0.11 0.12 0.14 0.48 0.34 0.28 0.48 0.50 0.35 0.27 0.50 0.70 0.66 0.68 0.70 0.70 0.63 0.60 0.61

6 CONCLUSION

In this research, we introduced MP-GFormer, for predicting machining operation sequences, which
utilized sequential machining process geometry graphs derived from STL, and the initial design ge-
ometry graph from the BRep model to capture spatio-temporal dependencies and geometry-aware
relationships. The proposed method outperformed the baseline DGL approaches in predicting ma-
chining operation sequences. For future work, we aim to integrate diffusion models into DGL to
enable the prediction of the 3D geometry of parts with operation sequences.
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A APPENDIX

A.1 DATA STRUCTURE

As has been stated, MP is inherently complex, with many different types of operations, tools, and
parameter selections for a specific type of machining. In order to avoid exploding the solution space,
we focus this study on planar CNC machining (2.5-axis machining). Within planar machining, we
limit the operation type to the following 2-level hierarchy: Mill Planar (floor wall, wall floor profil-
ing, wall profiling, face mill zigzag, planar profiling, planar deburring), Hole Making (drilling, spot
drilling, hole milling, countersinking), and Mill Contour (cavity milling, curve drive). Furthermore,
part design geometries are created in a Computer-Aided Design software and then processed via a
Computer-Aided Machining software. All designs are assumed to be of the same material. Each
data set consists of the following a) Input stock/blank geometry as stl, b) N-numbered In-process
workpiece (IPW) as stl (N varies for different data set), c) N-numbered two tiered lables for each
data set, d) Output Geometry as feature rich BRep.

A.2 EXPERIMENTS

Figure 10 indicates the number of main and sub-operations in the synthesized dataset. There exist
three main and twelve sub-operations as the labels of interest for the machining operation sequences
classification task.

A.3 LLM USAGE

LLMs were used for grammar checking, polishing of the manuscript text, and for identifying com-
parative methods in the benchmark study.
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Figure 7: Raw Data Structure.

Figure 8: Samples of generated synthesized STL data for two different parts.

(a) STL Graph generation from triangles. (b) BRep Graph generation from faces.

Figure 9: Graph Generation.

Figure 10: The labels distribution
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