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ABSTRACT

Machining process planning (MP) is inherently complex due to structural and ge-
ometrical dependencies among part features and machining operations. A key
challenge lies in capturing dynamic interdependencies that evolve with distinct
part geometries as operations are performed. Machine learning has been applied
to address challenges in MP, such as operation selection and machining sequence
prediction. Dynamic graph learning (DGL) has been widely used to model dy-
namic systems, thanks to its ability to integrate spatio-temporal relationships.
However, in MP, while existing DGL approaches can capture these dependencies,
they fail to incorporate three-dimensional (3D) geometric information of parts
and thus lack domain awareness in predicting machining operation sequences. To
address this limitation, we propose MP-GFormer, a 3D-geometry-aware dynamic
graph transformer that integrates evolving 3D geometric representations into DGL
through an attention mechanism to predict machining operation sequences. Our
approach leverages StereoLithography surface meshes representing the 3D geom-
etry of a part after each machining operation, with the boundary representation
method used for the initial 3D designs. We evaluate MP-GFormer on a synthe-
sized dataset and demonstrate that the method achieves improvements of 24% and
36% in accuracy for main and sub-operation predictions, respectively, compared
to state-of-the-art approaches.

1 INTRODUCTION

Machining process planning (MP) is a systematic activity that converts raw materials into a finished
part through a sequence of machining operations (e.g., milling, turning, and drilling) |Afif & Sarhan
(2025). MP determines the order of operations, defining tool paths, choosing cutting tools, and set-
ting parameters Afif & Sarhan| (2025). It serves as a bridge between computer-aided design (CAD)
and computer-aided manufacturing (CAM), enabling CAD-based complex product geometries to be
translated into CAM-based machining steps Wang et al.|(2024), ensuring production efficiency, pro-
ductivity, and final part quality Marzia et al.[(2023). Traditional MP heavily relies on expert knowl-
edge, which constrains efficient decision-making due to limited automation Besharati-Foumani et al.
(2019). Machine learning (ML) techniques have now emerged as enablers of MP automation, learn-
ing process patterns from data and reducing the need for manual decision-making. In particular,
recent ML studies in MP have leveraged advanced methods such as graph neural networks (GNN5s)
and large language models to model complex machining processes and generate process knowledge
Wang et al.[(2024); [Xu et al.|(2025), making a shift toward automated planning.

Dynamic graph learning (DGL) has been widely used for modeling dynamic systems thanks to its
ability to integrate spatio-temporal relationships in various applications, including social network
prediction, recommender systems, and traffic forecasting|Yang et al.|(2024). Dynamic graphs repre-
sent entities as nodes and represent their interactions as edges over time Yu et al.| (2023)). Motivated
by their ability to learn long-range and complex dependencies, transformers [Vaswani et al.| (2017)
have increasingly been adopted in DGL, capturing evolving structural and temporal relationships
Peng et al.| (2025). Recent studies have begun to explore the application of graph transformer ar-
chitectures in manufacturing, showing the capabilities of attention mechanisms in capturing part-
geometric relationships|Dai et al.| (2025) and learning process sequences |Ma et al.[(2022).
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MP remains highly complex due to the evolving dependencies between part geometries and succes-
sive machining operation stages, where each operation in sequence introduces new dynamic inter-
dependencies [Xia et al.|(2018); [Zhang| (1994). In MP, 3D geometric information of parts serves as
the essential domain knowledge, as the shape and features of a part directly influence the selection,
sequencing, and feasibility of machining operations. Dynamic graph modeling shows high potential
for capturing the evolving dependencies between part geometries and machining operations within
machining processes, while transformer architectures are well-suited to learn the sequential relation-
ships—together enabling a spatio-temporal representation of MP that integrates part geometries and
sequential machining operations. However, transformer-based DGL approaches in the area remain
limited. Current methods are not domain-aware, as they do not explicitly incorporate 3D geomet-
ric domain information of parts into their frameworks |Yu et al.| (2023). This lack of domain-aware
graph Transformer methods limits their ability to capture the manufacturing-specific constraints that
arise from part geometry.

These challenges necessitate the development of a transformer-based DGL approach that can: (1)
incorporate geometric information to guide process planning and decision-making and (2) capture
evolving dependencies between part 3D geometries and sequential machining operations. Motivated
by these, in this work, we propose a transformer-based DGL framework for machining operations
prediction and sequence planning, termed MP-GFormer, for capturing 3D geometric and spatio-
temporal dependecies of machined parts. The proposed method utilized a graph attention network
(GAT) to explicitly model the dependencies between nodes and edges, enhancing relational reason-
ing across parts’ 3D geometric entities. Second, an attention mechanism captures geometry-aware
dependecies allowing the model to leverage geometric knowledge. Finally, a transformer decoder
is employed to capture dependencies between the part’s geometry and machining operations for
predicting operation sequences.

2 RELATED WORKS

In this section, we review state-of-the-art research in transformer-based DGL and then discuss its
emerging applications in MP.

Transformer-Based Dynamic Graph Learning: Recently, transformer-based dynamic graph rep-
resentation learning has been widely studied in various fields. Sankar et al.|(2018)) proposed DySAT,
a dynamic self-attention network to learn node representation by capturing structural and tempo-
ral properties. [Xu et al.| (2020) proposed TGAT, a temporal graph attention framework to learn
temporal-topological features in a graph using a self-attention mechanism. [Yu et al.[(2023) proposed
DyGFormer, a unified Transformer architecture designed for sequential dynamic graph learning, in
which neighborhood co-occurrence features are incorporated to effectively model evolving interac-
tions. Karmim et al.| (2024) proposed SLATE, a fully connected transformer architecture to capture
spatio-temporal dependencies utilizing a supra-Laplacian encoding approach. |Wang et al.| (2025)
proposed CorDGT, a dynamic graph transformer with correlated spatio-temporal positional encod-
ing for node representation learning. Peng et al. |Peng et al.| (2025) proposed TIDFormer, a dynamic
graph transformer architecture that captures temporal and interactive dynamics.

Graph Learning and Transformers in Machining Process Planning: In MP, ML has been widely
used to address different challenges, including operation selection, toolpath optimization, machin-
ing sequence prediction, and control. In particular, recent studies have increasingly explored graph
modeling to address the complexity of MP to capture and preserve topological and geometrical rela-
tionships. For instance, Zhang et al.|(2025) developed a graph encoder-decoder framework to predict
the sequence of operations. Wang et al.| (2024) proposed a graph convolutional neural network for
feature machining operations prediction. |Hussong et al.| (2025) proposed MaProNet, a GAT-based
architecture to capture topological and geometrical information and to predict manufacturing pro-
cesses. Thanks to their long-range sequential dependency learning through the attention mechanism,
transformers are applied in MP to predict machining process sequences. Dai et al.[(2025) proposed
BRepFormer, a transformer-based architecture to capture complex geometrical features from BRep
for machining feature recognition. Maqueda et al.| (2025)) proposed DeepMS, a transformer-based
method for automated prediction of machining operations and their sequences utilizing final part
geometries.
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However, the current DGL still remains limited in MP, for the current approaches do not explicitly
incorporate 3D geometry-rich domain information of parts into their framework, and they primarily
focus on learning sequential graph structures |Yu et al.|(2023). The lack of domain-aware graph
transformer approaches limits their ability to capture the complexity of MP that arises from a part’s
geometry. A machined part typically contains multiple interacting features, such as slots, holes, and
pockets [Verma & Rajotial (2010), where a sequence of operations is performed, thereby transform-
ing the part’s geometry. The transformed geometry influences the next allowable operations and
determines the possibility of the next operation in sequence. A key challenge lies in capturing those
dynamic interdependencies that evolve with distinct part geometries as operations are performed.
Additionally, current DGL and transformer approaches in MP have not fully utilized the capabilities
of both methods. To address these challenges, we frame MP as a transformer-based DGL problem to
capture spatio-temporal and geometrical dependencies of parts, which will be elaborated in Section
three.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

To address the limitations, we propose MP-GFormer, a 3D-geometry-aware dynamic graph trans-
former that integrates evolving 3D geometric representations into DGL through an attention mech-
anism to predict machining operation sequences, as shown in Figure

We define each transition of the geometry in the machining process
after an operation is performed as a Process Graph in Equation [T}

G'=(V',E' H") e
where V! and E? denote the nodes and edges at timestep ¢, and Graph
H' € RNt*d 5 the graph feature matrix, indicating geometry and Attention —> Cross-
spatio-temporal attributes of V* and E?, where N and d are the Network Attention
number of nodes and features, respectively. The machining process
is thus represented as a sequence of Process Graphs as written in Spatio-temporal | Geometry-
Equation@ -aware features :’:’L‘:es
&= {Gl’ G27 7 GT} @ Transformer

where 7' is the total number of machining operations performed on
a machined part. We also define the initial 3D geometry design Learned
of the part as a static Design Graph as shown in Equation [3} Zzz:ir;::lcriz:ph

GP = (VP,EP H) 3)

Gy ) G50, G5}

where VP and EP denote the nodes and edges of the part’s design,
and HP € RNp*¢ is the graph feature matrix, indicating design
geometry attributes of V¥ and E”, where N and c are the number
of nodes and features, respectively.

We employ a transformer architecture to capture geometry and
spatio-temporal dependencies between graphs in sequence to learn
the function f as written in Equation [4}

Figure 1: The proposed
framework integrates a GAT,
an attention mechanism, and
a transformer to capture and
learn the spatio-temporal and
geometry-aware  dependen-
cies in MP.

f:(8,G°) —» St ={G",G",... .G} 4)

where G+ = (VI BTt HIt) contains learned geometry and spatio-temporal dependencies be-
tween graphs in sequence in a machining process. The learned dependencies are later used for
predicting machining operation sequences through the proposed MP-GFormer. Figure 2] indicates
the details of the architecture. MP-GFormer contains three main stages: a) Encoder, b) Transformer,
and c) Classifier.

3.2 ENCODER ARCHITECTURE

The encoder is designed to capture geometry and spatio-temporal features from both Process Graphs
and the Design graph It consists of graph attention encoding, temporal encoding, cross-attention fu-
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Figure 2: The MP-GFormer architecture. Sequential machining process graphs and the initial design
graph are used as inputs. The architecture consists of three main stages: (a) an encoder, where node
and edge are mapped into a latent space using a GAT encoder, and a cross-attention mechanism cap-
tures interdependencies between process and design graphs; (b) a Transformer decoder that learns
dependencies across sequential graphs, machining operations, and their interactions through three
attention mechanisms; and (c) a classifier that predicts machining operations.

sion, feature embedding, attention pooling, positional encoding, and label embedding. First, we ap-
ply a GAT |Velickovic€ et al.[(2017) to capture and learn node and edge features of each process graph
G" and the design graph G at timestep ¢. Node H* = {h{,... h’, } and H® = {hP,... hY }
and edge R" = {r}; | (z j) € &'} and RP = {rD | (k1) € EP} embeddings are projected into a
latent space as ertten in Equat10n|§] for Process Graphs and Design Graph:

2l =W,h!, zP =w,hP el =W.rl,, el =W.l, WeR'* (5)

Later, attention scores are computed between neighboring nodes and their edges in both graphs as
seen in Equation [6]and normalized across neighbors as written in Equation[7}

D D _D _D
353 a (Zz’ ZJ’ezJ) S = 2a (Zk ) 2 7ekl) 6)
exp(st; D
Oé,tLj _ p( z]) —, Oéle _ exp(skl) - (7)
D ken(i) eXP(siy) D omen (k) EXP(Sim)

We updated the embeddings via attention-weighted aggregation utilizing multi-head attention as
written in Equations 8] [9] and [T0}

hf:U Z agjzz- , hklzo Z ap 2z ®)
JEN (i) LEN (k)
’ 1
B = == > m=1" 37 ot (Wimhl W) ©)
JEN()
B =0 S m =1 Z oDl (WmBP + WmxPki) (10)
leN (k

where M is the number of heads. The outputs are the learned node and edge features H ¥ for each
Process Graph G* and HP " for the Design Graph GP . As each sequence S may contain a different
number of timesteps, we employ a linear encoder to project the time features into the same latent
space dimension as the graph features, as written in Equation [TT}

hltlme - Wt ' OnehOt(t)7 Wt S Rd,XT (11)
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To capture the interdependency between the geometry of the Process Graphs G' and the initial
design geometry G, we employ a cross-attention mechanism [Vaswani et al.[(2017), where G? acts
as query and G serves as key and value as shown in Equations and

Q=H'"Wy, K=H"Wg, V=H" Wy (12)
_ T

H' = softmax(ci/];; ) \%4 (13)
k

where H* are geometry-aware fused feature embeddings.

Later, we combined all encoded features into a unified representation, as written in Equation [E

W:%Wﬂ“ﬁ) (14)

time

where ¢(-) is a feedforward projection. Later, we aggregate node-level embeddings into a graph-
level representation of each process graph using attention pooling [Li et al.| (2015), as defined in

Equation N,
G'=> Bl F, (15)
i=1

where f3! is the attention weight assigned to node 7 at timestep ¢. The output of this step is a sequence
of graph embeddings for each sequence S, as written in Equation [I6}

S ={G",G"?...,G"} (16)

3.3 TRANSFORMER ARCHITECTURE

The Transformer learns sequential graph embeddings to capture the geometric and spatio-temporal
dependencies across different machining processes. To this end, we employ a transformer decoder
architecture with three attention mechanisms to capture: (i) dependencies between Process Graphs
in the sequence, (ii) dependencies between operations in the sequence, and (iii) cross-dependencies
between graphs and operations. We applied positional encoding to preserve the order of the graphs
in sequence (Equation [17)).
G' = G" + PE(t) (17)
Additionally, each machining operation, as the label of interest, is mapped to a learnable vector
embedding (Equation [I8).
L,, = Em[y,] € R? (18)
where L,, denotes the learned operation embedding at timestep ?.

We also define the set of past operation embeddings up to step ¢ — 1 as in Equation [T9
Ly = Ly, Ly, .. Ly, || e REDxT (19)
We first apply a masked self-attention mechanism over Ly, as defined in Equation [20] and[22]:

Quy = LyWy™), Kp, =Lyw{, v, = Lyw{”) (20)
Qry K|

Ap, = Softmax(# +CM) (21)

Lg/ =Ar, VL, (22)

where C'M is a causal mask.

Second, a temporal self-attention mechanism is applied to the sequence of Process Graph embed-
dings, defined as S1.; = [G1,G?, ..., G, as written in Equations and Self-attention is
then computed over the sequence S;, with all projections defined as

Qs = SuaWS™, Ky =SWE, vy = 5w (23)
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R T
A, = Soft Qs s 24
., = Softmax T 24)
Si.=A4g Vi (25)

Finally, the label representation L4} attends to the graph sequence S”izt via cross-attention, as written

in Equations and

Q=WSLY, K.=8W¢, V.=5wy (26)
KT

Across = Softmax(Qi/gC ) 27

GLt = Across‘/c (28)

where Gt denotes the learned graph embeddings at timestep ¢, which contains the geometry and
spatio-temporal dependencies between process and design graphs for a machined part.

3.4 CLASSIFIER ARCHITECTURE

At each timestep ¢, the classifier predicts the machining operation from the learned graph embedding
G, The logits are computed as in Equation

Yt = WOGLt + b, 29)

where W, and b, are weight and bias parameters for the operation classifier. Later, the machining
operation is predicted as shown in Equation 30}

§; = arg max (Softmax(y;)) (30)

The model is trained using cross-entropy loss as written in Equation 31}
Ly =—logp(y | G") (31)

The overall training objective is the average cross-entropy across all timesteps as shown in Equation

B2t L I
ﬁzft;ct (32)

4 DATA SET

The data contains three types of files in this work: (1) the Stereolithography files (STL), representing
geometry as a faceted triangle mesh, (2) the Boundary representation (BRep) files, which provide a
comprehensive description of the topology and geometry of the part design, and (3) the textual files
indicating the operations and process information.

4.1 DATA COLLECTION

Synthetic data was generated based on real-world example images for machining, which can be or-
ganized into two classes: (1) simple and (2) complex geomtry, shown in Figure [3] Each geometry
was parameterized for a) the length, width, and height of the part design and b) the pocket/hole lo-
cation and sizes. By running a script through the range of values of each parameter and updating the
process plan, we generated 2991 valid data sets. Figure[8]indicates samples of generated synthesized
data. Please refer to Appendix for more details.

4.2 GRAPH GENERATION

We constructed two types of graphs: (1) sequential geometry graphs derived from STL files corre-
sponding to each manufacturing main and sub-operation, and (2) initial design graphs derived from
BRep models of the manufactured part.



Under review as a conference paper at ICLR 2026

Figure 3: Samples of parts geometries used for synthesized data generation: (1) simple geometry
(bottom row) and (2) complex geometry (top row).

STL-based Graphs. Each STL file represents the geometry of a machined part at a spe-
cific timestep. ~We treat each triangle face as a node v; € V?! with node features
h3™ = [centroid(v;), normal(v;), area(v;), perimeter(v;), edge length(v;), angles(v;),
angle types(v;), compactness(v;)] € R®.  Edges e;; € FE!' are created between two
triangle faces that share a common edge. Each edge vector contains geometric dis-
tances and curvature features as xlsjTL = [centroid distance(v;, v;), normal distance(v;, v;),

shared-edge length(e;;), edge midpoint(e;;), dihedral angle(e;;)] € R®.

BRep-based Graphs. We constructed graphs directly from BRep models, indicating the design
geometry of machined parts. Each face of the B-Rep model is treated as a node, with features defined
as hP*? = [surface type(f;), area(f;), UV-parameters(f;), 3D centroid(f;)] € R%r. Each edge
corresponds to adjacencies between faces in the B-Rep model. For each edge, we extract shape-
aware features as x?fep = [shared-edge length(e;;), dihedral angle(e;;), edge curve type(e;;)] €
R3.

The final graph data, therefore, consists of a sequence of STL graphs S = {Gir, Gérp, ..., Gy}
and a design-based BRep graph GBR®P that together provide geometry-based spatio-temporal in-
formation of a sequence of machining operations. Figure ] indicates sample data inputs for the
graph generation step. Later, the generated graphs are used as the input for the proposed methodol-
ogy, MP-GFormer, for the main and sub-operation sequence classification task. Figure [ indicates
the machining operation prediction utilizing STL and BRep graphs as the inputs for MP-GFormer,
which captures the dependency between sequential STL graphs as well as the relationship between
BRep and each STL graph to predict a sequence of operations.

5 EXPERIMENTS

Hyperparameter Selection: The data set contains 2991 graph sequences with main and sub-
operations as labels of interest. Figure [10] indicates the number of unique labels in the dataset.
We utilized 80% and 20% for training and testing, respectively. Tables[T]and 2]indicate the results of
training and testing for different hyperparameter values. Figure[5]shows the training and testing loss
curves for main and sub-operation predictions using the best hyperparameter settings. As a more
detailed qualitative analysis, we calculated t-SNE values for the learned graph embeddings during
training over different epochs with the best hyperparameter values, as shown in Figure [f] Each
data point corresponds to one graph, and each different color corresponds to an operation class.
The results indicate that graphs within the same operation classes are well-separated and clustered
for both operations, reflecting the transformer’s capability to capture the structural and sequential
dependencies of graphs in MP.

Ablation study: We considered two different variants of the method for the ablation study. Table
E] indicates the ablation study results. First, we replaced the GAT encoder with a neural network
(NN) encoder for nodes and edges feature encoding of the first layer of the architecture. The results
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Figure 4: Machining operation prediction via MP-GFormer. The case study utilizes STL geometry
data and the BRep model as inputs, which are converted into graph representations. These graph-

based inputs are then processed by MP-GFormer to predict sequential machining operations.

Table 1: Results under Different Hyperparameter Settings for Training (Accuracy, F1, Precision,

Recall)
Main Operation Sub Operation Joint Operations

Hyperparameters

Acc F1 Prec Rec Acc F1 Prec Rec Acc F1 Prec Rec
Batch=8, LR=0.01, Epochs=5 069 064 063 069 074 069 071 074 062 055 048 0.62
Batch=16, LR=0.01, Epochs=5 074 073 077 074 074 069 0.71 074 0.68 062 059 0.68
Batch=128, LR=0.01, Epochs=5 0.71 070 072 071 074 0.69 0.71 074 0.64 059 057 0.64
Batch=16, LR=0.001, Epochs=5 072 072 075 072 074 070 071 074 065 060 059 0.65
Batch=128, LR=0.001, Epochs=20  0.74 0.72 078 0.74 0.70 066 0.68 0.70 063 0.60 0.60 0.63
Batch=256, LR=0.001, Epochs=20 071 070 073 071 067 063 066 067 059 055 055 0.59

Table 2: Results under Different Hyperparameter Settings for Test (Accuracy, F1, Precision, Recall)

Main Operation

Sub Operation

Joint Operations

Hyperparameters

Acc F1 Prec Rec Acc F1 Prec Rec Acc F1 Prec Rec
Batch=8, LR=0.01, Epochs=5 077 077 079 077 033 018 0.12 033 033 020 0.15 0.33
Batch=16, LR=0.01, Epochs=5 077 077 079 077 027 0.15 0.10 027 027 016 0.11 0.27
Batch=128, LR=0.01, Epochs=5 076 076 078 076 025 0.13 009 025 025 015 010 025
Batch=16, LR=0.001, Epochs=5 076 076 078 0.76 025 0.13 009 025 025 015 010 025
Batch=128, LR=0.001, Epochs=20  0.78 0.75 077 0.75 0.70 063 0.60 0.61 061 0.60 0.61 0.62
Batch=256, LR=0.001, Epochs=20 072 073 075 072 060 0.63 0.60 0.61 059 034 035 0.25

Training Loss for Main and Sub Operations

- vain Operaton Loss
= siwope

epocns

(a) Training loss over 20 epochs for Main

and Sub Operations

st Loss for Main and Sub Operations

epocns

(b) Test loss over 20 epochs for Main and
Sub Operations

Figure 5: Loss curves.



Under review as a conference paper at ICLR 2026

+SNE - Label 1 (Epoch 1) +-SNE - Label 1 (Epoch 5) +SNE - Label 1 (Epoch 10) SNE - Label 1 (Epoch 15)

L] o C
M 3
FRN
P ° oo !
. :
o P B R T =1y
© hole_making (n=4230) . * 4 - L LIPS
mill_contour (n=537) - ® / ® of ¥ e
s s . ees” % |5 e 8 .| e,
U O R R
o] as . -
. o . / .
A S D S - i
B
-
CSNE - Labal 2 (Epoch 1) SNE - Labal 2 Epoch 10)
® cavity_mill (n=511) ] .
countersinking (n=98)
© curve_drive (n=26) - \\ /
driling (n=2022)
o face_mil zigzag (n=294) o -
floor_wall (n=2722) [
A %
© hole_milling (n=725) - T
planar_deburring (n=293) ( ;\\
® planar_profiling (n=293) N
spot_drilling (n=1385) s /
© wall_fioor_profiling (n=261) \
wall_profiling (n=294) i =

Figure 6: t-SNE visualization of learned graph embeddings across training epochs. Each color cor-
responds to an operation class, and each point represents one graph sample. As training progresses,
samples of each class become more separable and form clusters.

indicated a decline in accuracy for both training and testing. The NN encoder ignores the interactions
between a node and its neighboring nodes, thereby losing important structural information from the
graph. Secondly, we employed a transformer encoder for sequential graph learning instead of a
decoder layer, which resulted in a significant improvement in performance. This can be explained by
the encoder’s parallel graph processing ability, thereby having access to the future graph structures
and labels when predicting the current label. This may cause the model to benefit from data leakage
during both training and testing, as it leverages information from future steps that should not be
available for predicting the current label.

Table 3: Ablation Study Results (Train and Test: Accuracy, F1, Precision, Recall)

Main Operation Sub Operation Joint Operations
Method Train Test Train Test Train Test
Acc  F1  Prec Rec Acc Fl Prec Rec Acc Fl  Prec Rec Acc Fl  Prec Rec Acc Fl  Prec Rec Acc Fl  Prec Rec
NN-Based 064 051 054 050 066 049 053 050 047 020 022 021 050 021 023 024 042 011 013 011 044 015 016 0.5

Encoder-based  0.94 093 094 093 098 097 098 097 090 086 087 085 097 093 093 094 088 058 0.60 057 096 086 0.86 0.86
MP-GFormer  0.78 0.75 077 075 0.78 075 077 075 070 0.66 0.68 070 0.70 0.63 0.60 0.61 063 0.60 0.60 063 0.61 060 0.61 0.0.62

Benchmark Study: We compared the proposed method with two DGL approaches from the litera-
ture. First, with DyGFormer Yu et al.|(2023)), as the study was motivated by the method. Second, we
compared the method with DiffPool [Ying et al.|(2018)), a hierarchical graph representation learning
approach. We trained both models with the same dataset used for the case study. Table [ indicates
the comparative study results. MP-GFormer achieves improvements of 24% and 36% in accuracy
for main and sub-operation predictions, respectively, as compared to DyGFormer, and 24% and 20%
as compared to DiffPool.

Table 4: Benchmark Study Results (Accuracy, F1, Precision, Recall) for Training and Testing

DyGFormer DiffPool MP-GFormer

Train Test Train Test Train Test

Acc FlI  Prec Rec Acc Fl  Prec Rec Acc FlI  Prec Rec Acc Fl  Prec Rec Acc Fl  Prec Rec Acc FI  Prec Rec

Main Operation  0.52  0.36 035 037 054 036 040 040 052 039 034 052 054 039 031 054 078 075 077 075 078 075 077 0.75
Sub Operation 036 0.0 0.2 0.2 034 011 012 0.14 048 034 028 048 050 035 027 050 070 066 068 070 070 063 0.60 0.61

6 CONCLUSION

In this research, we introduced MP-GFormer, for predicting machining operation sequences, which
utilized sequential machining process geometry graphs derived from STL, and the initial design ge-
ometry graph from the BRep model to capture spatio-temporal dependencies and geometry-aware
relationships. The proposed method outperformed the baseline DGL approaches in predicting ma-
chining operation sequences. For future work, we aim to integrate diffusion models into DGL to
enable the prediction of the 3D geometry of parts with operation sequences.
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A APPENDIX

A.1 DATA STRUCTURE

As has been stated, MP is inherently complex, with many different types of operations, tools, and
parameter selections for a specific type of machining. In order to avoid exploding the solution space,
we focus this study on planar CNC machining (2.5-axis machining). Within planar machining, we
limit the operation type to the following 2-level hierarchy: Mill Planar (floor wall, wall floor profil-
ing, wall profiling, face mill zigzag, planar profiling, planar deburring), Hole Making (drilling, spot
drilling, hole milling, countersinking), and Mill Contour (cavity milling, curve drive). Furthermore,
part design geometries are created in a Computer-Aided Design software and then processed via a
Computer-Aided Machining software. All designs are assumed to be of the same material. Each
data set consists of the following a) Input stock/blank geometry as stl, b) N-numbered In-process
workpiece (IPW) as stl (N varies for different data set), ¢) N-numbered two tiered lables for each
data set, d) Output Geometry as feature rich BRep.

A.2 EXPERIMENTS
Figure [I0]indicates the number of main and sub-operations in the synthesized dataset. There exist

three main and twelve sub-operations as the labels of interest for the machining operation sequences
classification task.

A.3 LLM USAGE

LLMs were used for grammar checking, polishing of the manuscript text, and for identifying com-
parative methods in the benchmark study.
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IPW;

Operation type Operation type

Operation subtype Operation subtype

Tool (type, diameter, length, material) Tool (type, diameter, length, material)
Feed Rate Feed Rate

Spindle Speed Spindle Speed

Toolpath Toolpath

Figure 7: Raw Data Structure.
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Figure 8: Samples of generated synthesized STL data for two different parts.

(a) STL Graph generation from triangles. (b) BRep Graph generation from faces.

Figure 9: Graph Generation.
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Figure 10: The labels distribution
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