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Abstract
As online cloud services expand rapidly, layer-7 load balancing has
become indispensable for maintaining service availability and per-
formance. The emergence of programmable switches with both high
performance and a certain degree of flexibility has made it possible
to apply programmable switches to load balancing. Nevertheless,
the meager memory capacity and the relatively sluggish speed of
table entry insertion and deletion of programmable switches have
severely constrained their performance.

To this end, we introduce Miresga, a hybrid and high-
performance layer-7 load balancing system by co-designing hard-
ware and software. The core idea of Miresga is to maximize the
utilization of hardware and software resources by rationally parti-
tioning the layer-7 load balancing task, thereby improving perfor-
mance. To achieve this, Miresga offloads the elephant flows, which
account for the majority of traffic, to programmable switches that
excel at packet processing, and Miresga utilizes general-purpose
servers with stronger computational capabilities to parse applica-
tion layer protocols and apply load balancing rules. To alleviate
memory pressure on the programmable switch, Miresga employs
a back-end agent to handle memory-intensive tasks, working in
conjunction with the programmable switch to complete the of-
floaded tasks. This design leverages the performance advantages
of the programmable switch while avoiding bottlenecks caused by
its limited memory and table insertion speed. We implement the
Miresga prototype with a 3.2 Tbps Intel Tofino switch and general-
purpose servers. The evaluation results show that Miresga achieves
3.9× throughput and 0.4× latency compared to software load bal-
ancing solutions. Compared to state-of-the-art design employing
programmable switches, Miresga achieves almost the same through-
put and latency for delivering large objects and 5.0× throughput
and 0.2× latency when transmitting small objects.

1 Introduction
Modern online service providers have utilized load balancing in
cloud data centers to distribute traffic across large server clusters [5].
An online service usually receives traffic from outside the data
center through one or a few virtual IPs (VIPs), and each server in
the cluster is assigned an individual direct IP (DIP) address. The load
balancers (LBs) distribute the traffic destined for VIPs among the
servers and route it to the specified servers based on pre-configured
rules. However, packet-level header checking and port selection of
LBs introduce significant overhead in both throughput and latency.
Therefore, the performance of the LB has a substantial impact on
the quality of service.

As the complexity of online services continues to increase, layer-
4 (L4) load balancing only using the information of the IP/TCP
header no longer fully meets the requirements. Layer-7 (L7) load
balancing allows LBs to determine the destination servers based
on the fields in the application layer contents like domain names

or URI paths [5], offering more fine-grained and more secure load
balancing.

Traditional L7 load balancing solutions predominantly fall into
two categories: software-based LBs, which operate on commer-
cial servers, and hardware-based LBs, which run on fixed-function
application-specific integrated circuits (ASICs). Software-based LBs
[3, 6, 9] are limited by the packet processing speed of CPU ar-
chitecture and the bandwidth of network interface cards (NICs),
necessitating extensive server scaling to handle high traffic volumes
and many concurrent connections. Moreover, there is competition
for limited CPU resources among different flows. The presence
of elephant flows—where a small number of flows dominate the
traffic—can lead the load balancer to prioritize these, causing in-
creased latency for other flows [34]. In contrast, hardware-based
LBs [1, 4] deliver high performance on individual machines but are
expensive and challenging to scale. Most hardware solutions rely
on DNS-based load balancing, which can only distribute traffic by
domain name and lacks support for other protocols [4].

The emergence of programmable network hardware, e.g., the pro-
grammable switch, has enabled offloading some stateless operations
onto the hardware, thereby significantly reducing the load on server
CPUs. The programmable switch leverages its programmable ASIC
to achieve ∼Tbps line-rate packet processing and allows operators
to modify the header based on customized rules. So by substitut-
ing programmable switches for ToR switches, like Prism [35], we
can offload plenty of traffic from servers, reducing the number of
servers and saving cost. However, the extremely limited memory
of programmable switches and the disparity between the speed of
packet processing and the rate of table entry update have emerged
as bottlenecks, hindering the full exploitation of the performance
advantages offered by programmable switches.

To this end, we propose a hybrid and high-performance L7 load
balancing solution, Miresga, to accelerate L7 load balancing by co-
designing hardware and software. The reason for the co-design of
software and hardware is that programmable switches can achieve
high-speed forwarding and high throughput. Still, memory re-
sources and L7 protocol processing capabilities are limited. On
the contrary, general-purpose servers have rich memory resources
and strong L7 protocol processing capabilities but poor forwarding
performance. Therefore, the combination of the two is expected to
achieve better performance. The core idea of Miresga is to improve
the performance of L7 load balancing by strategically dividing the
task to maximize the use of software and hardware resources and
capabilities. Through careful observation, we divide L7 load balanc-
ing into three distinct tasks: 1) establishing connections with clients
and servers respectively, 2) passing application layer protocols and
applying load balancing rules, and 3) subsequent packet forwarding
through splicing connections. The L4 connection establishment
with the client does not involve the application layer protocol pars-
ing in task 1); thus, we can use programmable switches to handle it.
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In contrast, task 2) is more suitable for implementation on general-
purpose servers (referred to as front-end servers in our design).
Regarding task 3), while it can be managed by the programmable
switch alone, the potential bottleneck arises from the limited speed
at which the local control plane of the programmable switch can
push updates to its data plane. Therefore, Miresga adopts the par-
allel software and hardware strategy to process task 3) with two
paths. The fast path through the programmable switch is reserved
for handling elephant flows—large data transfers—while the remain-
ing mouse flows—small data transfers—are processed via the slow
path that involves the participation of general-purpose servers.

However, realizing this idea still faces three challenges. First, for
the flows offloaded to the programmable switch, the programmable
switch needs to store the information of these to perform connec-
tion splicing correctly. However, storing the complete information
for these flows becomes daunting due to the limited SRAMmemory
in the programmable switch. Second, since the L7 load balancer
must establish connections with both the client and the back-end
server, using a complex TCP kernel stack can severely impact per-
formance and consume a significant amount of resources. Third,
given that Miresga is a hybrid system and TCP is a stateful protocol,
it is crucial to synchronize the flow state between the hardware and
software components to guarantee the reliability of data transmis-
sion. To solve the challenges mentioned earlier, Miresga proposes
the following three designs:
• Efficient Connection Splicing (§4.1): Miresga employs two
approaches to alleviate memory pressure on programmable
switches while ensuring the correct connection splicing. Miresga
further decomposes task 3) into the modification of IP and port
and the synchronization of sequence numbers and acknowl-
edgment numbers. For the former, we save space by compress-
ing the table entries; as for the latter, since sequence number
and acknowledgment number synchronization require record-
ing the initial sequence number differences, which can not be
compressed, the programmable switch is no longer responsi-
ble for this part. Instead, we design a back-end agent to handle
this memory-intensive task. The back-end agent uses eBPF [25]
programs in front of the kernel protocol stack to modify the
sequence number or the acknowledgment number of the pack-
ets in advance, thus ensuring the Web server can process the
requests normally.

• Lightweight Protocol Stack (§4.2): To skip the kernel protocol
stack, we design a lightweight protocol stack that merges the
states of the connections the LB established with both the client
and the server into a single state of this flow, consuming far
fewer resources. At the same time, the front-end server does not
need to perform the congestion control, lightening the burden
to some extent.

• State Consistency Maintenance (§4.3): In Miresga, two types
of states require synchronization: 1) the initial sequence numbers
that the client, the programmable switch, and the Web server
choose, and 2) the information for splicing connections to the
offloaded flows. To synchronize the initial sequence number,
Miresga fuses the initial sequence numbers into the regular pack-
ets to avoid additional delivery. For the latter one, the extra
transmission is essential. Miresga does not require strict state

consistency between the passing parties but allows a short out-
of-sync period. Instead of blocking traffic, traffic is handled by
the front-end server temporarily.
We implement a prototype of the Miresga programmable switch

on a 3.2 Tbps Intel Tofino [7] switch and both the front-end
server and back-end agent on the general-purpose server (§5).
Our experimental results (§6) prove that Miresga can achieve
2.0 ∼ 3.9× throughput with a 40% latency compared to HAProxy [6]
with DPDK [36] accelerating. Compared to state-of-the-art pro-
grammable switch design Prism [35], Miresga achieves almost the
same throughput and latency for delivering large objects and 5.0×
throughput and 0.2× latency when transmitting small objects. Our
experiments also demonstrate that the presence of elephant flows
in the traffic does not affect the performance of our load balancing
due to offloading the elephant flows to the programmable switch
with high throughput. In contrast, the latency of software load bal-
ancing will increase significantly. Our prototype implementation is
available at https://github.com/Miresga-L7LB/Miresga.

2 Background and Related Work
In this section, we first offer a brief background of L7 load balancing.
Then, we briefly introduce the programmable switch and related
work.

2.1 Background
L7 load balancing uses application layer data for load balancing.
Currently, the majority of L7 load balancer designs follow a proxy-
like architecture. In this setup, the load balancer must first establish
a connection with the client and parse the application layer pro-
tocol to determine the appropriate back-end server to handle the
request. Unlike L4 load balancers, L7 load balancers must establish
distinct connections to both the client and the back-end server. This
process introduces additional complexity and can lead to a decrease
in performance. Moreover, because a persistent connection may
contain multiple requests, the same back-end server will not be
guaranteed to process each one. This necessitates the load balancer
to recognize new client requests, terminate the ongoing connection,
and establish a fresh connection with an alternative back-end server
as the situation demands.

2.2 Related Work

Programmable Switches. Similar to traditional switching devices,
programmable switches offer extremely high throughput (∼Tbps).
Whilemaintaining high performance, programmable switches allow
operators to customize packet processing logic through domain-
specific languages like P4 [17], including customized header parsing
and modification. The packet processing pipelines (i.e., the data
plane running on the ASIC) of programmable switches consist
of a sequence of reconfigurable match-action tables (RMTs) [18]
stored in the in-switch SRAM. Operators can manage table entries
through the built-in CPUs (i.e., the local control plane) on the pro-
grammable switches. Furthermore, the programmable switch can
send parts of a packet or the entire packet to the CPU via the digest
function or specific PCIe channels. Due to the combination of pro-
grammability and high performance, programmable switches have
been applied in many fields, such as congestion control [11, 20, 44],

2
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cloud gateways [57], security [38, 70, 72], and in-network comput-
ing [37, 42, 62, 68]. There is also some work focusing on the L4
load balancing [30, 52, 71], but programmable switches struggle to
parse variable-length headers of the application layer, necessitating
a redesign to address this issue.

Software L7 Load Balancers. HAProxy [6] and Nginx [9] use the
kernel stack, establishing connections with both the client and the
server. This design requires the LBs to maintain the state of both
connections simultaneously and use TCP splicing [49] to transfer
received data between the two connections. These LBs need to
perform congestion control, which consumes huge CPU resources.
Yoda [29] attempts to solve these problems by using tunneling oper-
ations to adjust the IP/TCP headers to splice the two connections so
that the congestion control will be performed by the server and the
client. However, tunneling operations and storing information on
other servers introduce additional latency. In addition, the receiving
side scaling (RSS) is widely used in commercial NIC. The NIC at-
tempts to distribute the flows evenly among the CPU cores, and one
CPU core handles the entire processing of the flow. However, this
per-flow allocation may lead to multiple elephant flows processed
on a CPU core, and the task of this CPU core is extra heavy, which
affects the transmission efficiency of other flows on this core [34].

L7 Load Balancers Accelerated with Programmable Hard-
ware. Prism [35] uses a set of front-end servers in combination with
a programmable switch to complete load balancing. The front-end
server passes the serialized TCP connection so that the back-end
server can easily reestablish the connection from it. The IP/port is
modified with the programmable switch, and the subsequent packet
delivery is directly sent through the programmable switch without
the front-end involvement. However, the design that needs to fre-
quently publish entries to the programmable switch is limited by
the limited modification speed of the programmable switch, which
introduces additional delay. AccelTCP [53] leverages the SmartNIC
to accelerate the TCP stack by offloading the connection setup and
teardown to the SmartNIC so that the CPU can concentrate on
the processing of subsequent packets. It also supports offloading
the TCP splicing to the SmartNIC, but the CPU will not be able to
detect any more packets for this flow. It is not suitable for L7 load
balancing because some flows may send multiple requests that need
to be processed by different servers, which asks the LB to close the
old connection and establish a new connection. Moreover, the cost
of equipping LBs with SmartNICs is huge.

3 Miresga Overview
Before delving into the design details of Miresga, we first provide
its high-level overview. This section begins with the architecture
of Miresga and then follows with an example demonstrating its
workflow.

3.1 Architecture
Given the current limitations of both software-based and hardware-
accelerated load balancing solutions, Miresga seeks to bridge the
gap by combining the flexibility of CPU-based header parsing and
state-of-the-art software optimization techniques with the high-
speed packet processing capabilities of programmable ASICs to
enhance L7 load balancing. Miresga divides the L7 load balancing

1).I Establish Client Connection
3).I Rewrite Offloaded Traffic Packets

Programmable
Switch

Front-end
Server

Back-end 
Agent

Back-end
Server
Web

Server

Client

1).II Establish Back-end Connection
2) Parse HTTP Content & Decide Server Based on Rules
3).I Rewrite Un-offloaded Traffic Packets

3).II  Rewrite the seq/ack number

inbound
outbound

Fast Path inbound
outbound

Slow Path Control Path

Miresga

Figure 1: Miresga architecture.
task into three main parts: 1) connection establishment, 2) applica-
tion layer protocol parsing, and 3) subsequent packet forwarding
through splicing two connections. Figure 1 shows the architecture
of Miresga, which mainly consists of three components: the pro-
grammable switch, the front-end server, and the back-end agent
running on the back-end server. We use these three components
together to complete three tasks:
1) Programmable Switch. The programmable switch not only
needs to fulfill its original forwarding function but also takes on
some simple stateless tasks. We assign it the task of establishing
connections with clients, i.e., returning a SYN-ACK packet when
receiving a SYN packet from the client. Considering that the design
of the programmable switch is better suited for handling elephant
flows, we also delegate one part of the task of connection splicing
on elephant flows after the two connections have been established.
The programmable switch retrieves elephant flow information from
its local table and then modifies the IP and port based on this
information.
2) Front-end Server.With the flexible CPU, the front-end server is
responsible for parsing the application layer protocol, determining
whether the flow qualifies as an elephant flow, and selecting the
back-end server based on the pre-configured rules. Then the front-
end server establishes the connection with the back-end server.
After the connection is established, the front-end server will send
the information of the flow to the programmable switch if the flow
is an elephant flow. Otherwise, the front-end server will perform
the task like the programmable switch, modifying the IP and port.
3) Back-end Agent. Due to the limited resources of the pro-
grammable switch, we delegate the resource-intensive task of se-
quence number and acknowledgment number synchronization to
the back-end agent, which has more abundant memory. The back-
end agent modifies the sequence or acknowledgment numbers to
ensure that the sequence and acknowledgment numbers received
by the client and Web server match those stored on each side.

3.2 Workflow by Example
In this subsection, we demonstrate an example of Miresga process-
ing an HTTP 1.1 GET request to show its workflow. Figure 2 shows
how Miresga works on a flow. When a client starts to establish a
connection (①), the programmable switch just returns a SYN-ACK
packet with a random acknowledgment number (②), awaiting the
establishment of the connection and the client sending an HTTP
request. Upon receiving the HTTP request (③), the programmable
switch transmits it to the front-end server (④) to process. The front-
end server caches this packet, parses the relevant parts of the HTTP
request, determines the back-end server based on pre-configured
rules, and then sends a special SYN packet with the acknowledg-
ment number that was replied by the programmable switch to the
selected server to establish a connection (⑤). After receiving the

3
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Figure 2: Miresga’s complete workflow on one flow.
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Figure 3: The workflow of Miresga Programmable switch

SYN packet, the back-end agent will store the acknowledgment
number to the BPF Map with pre-allocated memory specifically
for storing sequence number information and then send a normal
SYN packet to the kernel stack (⑥), waiting for the kernel stack
to return the SYN-ACK packet (⑦). It will calculate the difference,
store it in the BPF Map, and send this to the front-end server (⑧).
The front-end server then sends the cached packet to the back-end
server (⑨). If the front-end server finds this flow is an elephant
flow according to the L7 protocol, the front-end server will send
the entry to the programmable switch (⑨’). The local control plane
will write this entry to the Offloaded Connection Tanle. For the
subsequent responses, the programmable switch or the front-end
server will modify the IP and port. The back-end agent will mod-
ify the sequence and acknowledgment number. For the inbound
traffic packets, Miresga will modify its ⟨𝑑𝑠𝑡𝐼𝑃, 𝑑𝑠𝑡𝑃𝑜𝑟𝑡⟩ to the real
IP and port (⟨𝐷𝐼𝑃, 𝐷𝑃𝑜𝑟𝑡⟩) of the back-end server, and for the out-
bound traffic packets, Miresga will modify its ⟨𝑠𝑟𝑐𝐼𝑃, 𝑠𝑟𝑐𝑃𝑜𝑟𝑡⟩ to
⟨𝑉 𝐼𝑃,𝑉𝑃𝑜𝑟𝑡⟩. So, the client can not get the real IP and port of the
back-end servers, thus protecting them to a certain extent. When
receiving FIN/RST packets from the client or the back-end server,
we will remove the entry from the Offloaded Connection Table, Full
Connection Table, and the BPF Map.

4 Design Details
This section presents the design details of Miresga. We mainly intro-
duce our designs on how to solve the three challenges mentioned
before.

4.1 Efficient Connection Splicing
Connection splicing is carried out jointly by three components.
Once the connection with the back-end server is established, the
flow enters the connection splicing phase. Depending on whether
the flow is offloaded to the programmable switch, the IP/port is
modified either by the front-end server (i.e., slow path) or the pro-
grammable switch (i.e. fast path). The back-end agent is responsible
for modifying the sequence and acknowledgment numbers before
the Web server processes the request. In this way, two connections
are merged into one. We will explain how the front-end server
performs in §4.2. In this subsection, we mainly introduce the design
of the programmable switch and the back-end agent.

4.1.1 Programmable Switch in Action. This sub-section describes
how programmable switches handle connection splicing for of-
floaded flows and correctly forward the remaining flows. InMiresga,
the programmable switch mainly has five key components:
• Key Extraction: This module first determines the direction
of this flow and then computes the key corresponding to the
direction.

• Connection Query: It occupies the majority of stages in the
ingress pipeline. Based on the computed key, we find the corre-
sponding entry in the Offloaded Connection Table and set up
the metadata to pass it to the egress pipeline.

• Packet Steering: This module determines which egress port
the packet should be forwarded to according to whether the
packets belong to the offloaded traffic and according to the flow
direction.

• Header Rewriting: It is responsible for adjusting the IP and
port based on the metadata set by the Connection Query module.
It also needs to generate the SYN-ACK packet to establish a
connection with the client.

• Offloaded Connection Table: It stores the compressed infor-
mation of the offloaded connections and can be accessed by the
Connection Query module. The control plane can also use the
vendor-provided southbound APIs to update its entries.

Workflow. Figure 3 shows the workflow of the data plane. All
packets need to be processed in the ingress pipeline first and then in
the egress pipeline. Miresga comprises four modules in the ingress
pipeline. First, packets are processed in the Key Extraction module
to extract the key and determine the direction of the packet. After
obtaining the key, the Connection Query module checks if the
key exists in the Offloaded Connection Table. Then Miresga sets
the compressed information stored in the Offloaded Connection
Table as metadata. The Packet Steering module determines the
egress port of the packet based on its direction and whether it
belongs to the offloaded flow. In the egress pipeline, the primary
task is to perform connection splicing based on the metadata. Only
packets belonging to the offloaded flows will be rewritten. The
Header Rewriting module will modify the IP and port based on
the metadata. Especially, for the inbound SYN packet, the Header
Rewriting module will return a SYN-ACK packet.

4
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Figure 4: The state transition diagram of the TCP FSM
Entry Compression. Since programmable switches have very lim-
ited memory resources, the capacity would be severely restricted
if we stored complete information about each connection. Hence,
Miresga saves memory space by compressing table entries. Con-
sidering that using hash values as keys requires the involvement
of the programmable switch’s slow control plane to handle hash
collisions, Miresga adopts an alternative method to compress the
table entries.

For both inbound and outbound packets of the same flow,
the common point is that either the ⟨𝑠𝑟𝑐𝐼𝑃, 𝑠𝑟𝑐𝑃𝑜𝑟𝑡⟩ or the
⟨𝑑𝑠𝑡𝐼𝑃, 𝑑𝑠𝑡𝑃𝑜𝑟𝑡⟩ matches the ⟨𝐶𝐼𝑃,𝐶𝑃𝑜𝑟𝑡⟩. Also, as each TCP
connection is uniquely identified by its ⟨𝑠𝑟𝑐𝐼𝑃, 𝑠𝑟𝑐𝑃𝑜𝑟𝑡⟩ and
⟨𝑑𝑠𝑡𝐼𝑃, 𝑑𝑠𝑡𝑃𝑜𝑟𝑡⟩ tuple, there can only be one flow between the same
⟨𝐶𝐼𝑃,𝐶𝑃𝑜𝑟𝑡⟩ and ⟨𝑉 𝐼𝑃,𝑉𝑃𝑜𝑟𝑡⟩ at any given time. Miresga assumes
that a programmable switch will be set to just one ⟨𝑉 𝐼𝑃,𝑉𝑃𝑜𝑟𝑡⟩,
so at the same time, ⟨𝐶𝐼𝑃,𝐶𝑃𝑜𝑟𝑡⟩ can only correspond to one flow.
Hence we can use the tuple ⟨𝐶𝐼𝑃,𝐶𝑃𝑜𝑟𝑡⟩ as the identifier for this
flow. Since both ⟨𝑉 𝐼𝑃,𝑉𝑃𝑜𝑟𝑡⟩ and ⟨𝐷𝐼𝑃, 𝐷𝑃𝑜𝑟𝑡⟩ are set up by the
service provider, we can access all ⟨𝑉 𝐼𝑃,𝑉𝑃𝑜𝑟𝑡⟩ and ⟨𝐷𝐼𝑃, 𝐷𝑃𝑜𝑟𝑡⟩
tuples that the programmable switch needs to handle and store
them in the programmable switch in two tables called VIP Table
and DIP Table I. In the entries of the Offloaded Connection Table,
we can use one index 𝐷_𝑖𝑛𝑑𝑒𝑥 to compress ⟨𝐷𝐼𝑃, 𝐷𝑃𝑜𝑟𝑡⟩ tuples
and store the mapping of 𝐷_𝑖𝑛𝑑𝑒𝑥 and ⟨𝐷𝐼𝑃, 𝐷𝑃𝑜𝑟𝑡⟩ in another
table called DIP Table II. Hence, the Key Extraction module can
determine whether the ⟨𝑠𝑟𝑐𝐼𝑃, 𝑠𝑟𝑐𝑃𝑜𝑟𝑡⟩ is in the DIP Table I and
whether the ⟨𝑑𝑠𝑡𝐼𝑃, 𝑑𝑠𝑡𝑃𝑜𝑟𝑡⟩ is in the VIP Table. If the VIP Table is
hit, the packet is considered inbound, and ⟨𝐶𝐼𝑃,𝐶𝑃𝑜𝑟𝑡⟩ represents
⟨𝑠𝑟𝑐𝐼𝑃, 𝑠𝑟𝑐𝑃𝑜𝑟𝑡⟩. If the DIP Table I is hit, the packet is considered
outbound, and ⟨𝐶𝐼𝑃,𝐶𝑃𝑜𝑟𝑡⟩ represents the ⟨𝑑𝑠𝑡𝐼𝑃, 𝑑𝑠𝑡𝑃𝑜𝑟𝑡⟩.

Another task is how to schedule these modules within a limited
number of stages. The pipelined design of a programmable switch
means that each of our modules takes up a certain number of stages,
but we can combine them to reduce the number of stages by placing
them in ingress and egress pipelines respectively. Through this, the
other modules are placed in as less stages as possible, so that the
Offloaded Connection Table has more stages. The detail of the table
arrangement is described in Appendix A.

4.1.2 Back-end Agent in Action. The programmable switch can
complete the modification of IP and port, as well as the synchroniza-
tion of sequence numbers and acknowledgment numbers entirely
on its own. However, unlike IP and port, which can be compressed
without loss, it is challenging to compress the nearly random dif-
ference between sequence numbers and acknowledgment numbers.
This necessitates storing the full 32-bit difference in the limited

memory of the programmable switch. Expanding the size of the
entry would further increase the bandwidth consumed by the opera-
tion of offloading the entry, thereby impacting system performance.
Given that the server has ample memory space compared to the
limited memory of the programmable switch, we opt to introduce
a back-end agent to handle the more memory-intensive task of se-
quence number and acknowledgment number synchronization. We
use eBPF to implement the back-end agent. Since the eBPF program
runs in the kernel and the operations we perform are simple, the
back-end agent has a negligible impact on throughput or latency.
The back-end agent consists of two main parts: Ingress Program
using XDP [26] and Egress Program using TC [27]. It synchronizes
the sequence number and the acknowledgment number between
the two connections. Two BPF Maps (seq map, diff map) are used
to transfer information between two programs.

Upon receiving the special SYN packet from the front-end server,
the Ingress Program inserts the acknowledgment number (i.e., the
sequence number the programmable switch replied) 𝐿 into the seq
map using ⟨𝑠𝑟𝑐𝐼𝑃, 𝑠𝑟𝑐𝑃𝑜𝑟𝑡⟩. The Web server using the kernel stack
then returns a normal SYN-ACK packet. The Egress Program gets
the number from the seq map, calculates the diff Δ between the
sequence number 𝑆 of the SYN-ACK packet and the found number
𝐿 in the seq map, and then inserts Δ = 𝑆 −𝐿 to the diff map. Since in
our design, the LB does not modify any of the load content, the se-
quence numbers grow at the same rate for both connections, so the
difference stays the same throughout the flow. For the subsequent
ingress packet, Miresga adds Δ to the acknowledgment number, and
for the subsequent egress packet, Miresga deletes Δ to the sequence
number. When the ingress or egress receives the RST/FIN packet,
the entry is removed from the BPF Map.

4.2 Lightweight Protocol Stack
In L7 load balancing, the critical task is to obtain and parse the appli-
cation layer protocol, which is why the front-end server functions
more as a bridge, connecting the client and the back-end server.
Although utilizing the kernel protocol stack is convenient for de-
ployment, its inherent complexity and redundancy are detrimental
to Miresga’s performance. To mitigate this issue, the front-end
server employs our custom-designed lightweight protocol stack. In
this subsection, we mainly show the details of the compressed TCP
finite state machine (FSM) and the packet I/O. We take HTTP 1.0
as an example, while the discussion of other protocols is deferred
to Appendix B.

TCP FSM. To handle stateful TCP protocol, we design a TCP FSM
to handle the states in the two connections. The task of establishing
connections with the client is simple and stateless, so we delegate
it to the programmable switch. Considering the potential for SYN-
Flooding attacks, we only pass the flow to the lightweight protocol
stack for processing after the client sends a request. The front-end
server stores the states and relevant information of all connections
in a hash map called the Full Connection Table in the memory,
using the client IP and client port, i.e., ⟨𝐶𝐼𝑃,𝐶𝑃𝑜𝑟𝑡⟩ as the key. The
state transition diagram of the FSM is shown in Figure 4. The state
is initialized to 𝐼𝑁 𝐼𝑇 . When Miresga receives the packet from the
client with a new request from a new flow (①), Miresga parses the
request, finds the corresponding load balancing rule, and sends
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the special SYN packet whose acknowledgment number is set to
the acknowledgment number of the cached packet minus 1 to the
back-end server. After Miresga obtains the SYN-ACK response of
the server (② and ②’), Miresga sends the cached HTTP GET packet
to the back-end server. If the flow needs to be offloaded to the
programmable switch, Miresga prepares the information required
to be offloaded. The offloaded data will be translated into table
entries and updated to the programmable switch, and the state will
be set to 𝑂𝐹𝐹𝐿𝑂𝐴𝐷𝐸𝐷 . Otherwise, the state will be 𝐶𝑂𝑀𝑃𝐿𝐸𝑇𝐸.
In states 𝐶𝑂𝑀𝑃𝐿𝐸𝑇𝐸 and 𝑂𝐹𝐹𝐿𝑂𝐴𝐷𝐸𝐷 , the front-end server just
performs connection splicing by modifying the IP and port, and
then forwarding it. Especially, if Miresga detects a packet containing
a new request that requires a different back-end server to process,
it will terminate the current connection to the back-end server
and establish a connection to the new back-end server. When the
flow is completed, the front-end server returns the RST packet,
removes the entry in the Full Connection Table, and informs the
programmable switch to delete the corresponding entry if needed.

Retransmissions are inevitable throughout the flow. Since both
the client and server need to acknowledge the correct receipt of
data packets, retransmissions occur if no response is received from
the other side within a certain period. Therefore, we have designed
a passive retransmission mechanism. The implementation details
are provided in Appendix C.
Packet I/O. For Miresga, as we do not require any kernel stack
support, we utilize DPDK [36] to receive and send packets. By
bypassing the kernel, DPDK enables us to achieve line-rate packet
processing on the front-end server. We dedicate a core to each rx/tx
queue to leverage multithreading capabilities.

4.3 State Consistency Maintenance
Similar to existing proxy-like approaches, Miresga acts as a for-
warder, performing TCP splicing. It then sends packets to the client
or server after the LB has established connections with both the
client and the server. However, the stateful nature of the TCP pro-
tocol requires us to synchronize the state of the same flow across
different components. As the front-end server is responsible for
storing all flow states, Miresga must synchronize the states be-
tween the front-end server and the programmable switch, as well
as between the front-end server and the back-end agent.

For the former task, there are two main subtasks to be addressed:
obtaining the initial sequence number of the client and the pro-
grammable switch and synchronizing the state of the flows to be
offloaded to the programmable switch. For the first one, the front-
end server can retrieve the initial sequence number of the client
and the programmable switch by subtracting 1 from the sequence
number and the acknowledge number. For the second subtask, the
state-of-the-art solution, Prism, blocks all traffic for a flow until its
state is fully synchronized, a process that can introduce notable
latency, particularly during the transmission of small objects. In
contrast, Miresga’s strategy does not require that the state on the
programmable switch is always consistent with the front-end server.
Miresga permits the programmable switch to temporarily deviate
from the state of the front end. For flows involving small objects,
the extra latency incurred by adding an entry to the switch often
exceeds the latency savings from offloading the flow. Consequently,
Miresga opts to offload only those flows where the duration of

subsequent packet delivery significantly surpasses the additional
latency caused by offloading. For other flows, Miresga refrains from
blocking traffic until the entry is written to the hardware, allowing
the front-end server to handle packets in the interim. A potential
connection issue arises when a single flow has multiple requests
that need to be offloaded to the programmable switch and processed
by different back-end servers. Before we finish the modification of
the Offloaded Connection Table entries, the front-end server has
broken the connection with the old back-end server. The data sent
by the client will be directed to the old back-end server based on
the outdated rules, and the old back-end server will return the RST,
resulting in the connection closing abnormally. To prevent such
occurrences, Miresga employs a two-step process: it immediately
removes the entry upon receiving a new request and reinserts it
following the reception of the SYN-ACK. This strategy provides
Miresga with the necessary time to delete the relevant entries be-
fore the first packet from the client arrives, thereby precluding
errors.

For the latter task, Prism both synchronizes the state and avoids
the tedious TCP three-way handshake by passing serialized TCP in-
formation. However, this design means that we need to modify the
Web server running on the back-end server, which complicates de-
ployment. Given that the back-end agent only requires knowledge
of the two initial sequence numbers to synchronize the sequence
numbers and the acknowledgment numbers of the two connections,
we can leverage the unused acknowledgment number field in the
SYN packet to convey this information. The front-end server sends
a special SYN packet whose acknowledgment number is set to the
sequence number returned by the programmable switch, and the se-
quence number is set to the initial sequence number that the client
chooses so that we do not need any extra overhead to synchronize
information between the front-end server and the back-end server.

5 Implementation
We implemented the Miresga programmable switch on a 3.2 Tbps,
2-pipelined Intel Tofino programmable switch with a built-in Intel
Xeon D-1527 8-core CPU and 16GB of memory. We implemented
the Miresga programmable switch using ∼1K lines of P416 code for
the data plane and ∼1.4K lines of C code for the control plane to
receive the entries from the front-end server and insert them into
the offloaded connection table. The two pipelines are the same as
described in §4.1. We implemented the Miresga front-end server
using ∼1.5K lines of C++ code with DPDK-19.11. We implemented
the Miresga back-end agent using ∼0.5K lines of C code.

6 Evaluation
In this section, we focus on comparing the performance of existing
software and hardware load balancing schemes with Miresga and
assessing the performance improvement of Miresga. We intend to
answer the following questions:
• Does Miresga outperform software and hardware load balancing
designs in terms of end-to-end throughput (§6.2.1) and end-to-
end latency (§6.2.2) across different response sizes?

• Is Miresga more suitable for application in heavy-tailed traffic
distributions like those in data centers (§6.2.3)?

• Can Miresga scale to take on larger traffic (§6.3)?
6
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Figure 5: End-to-end throughput and latency comparisonwith differentmessage sizes and using heavy-tailed traffic distributions.
The distribution of the response size in Traffic 1 is 100% 1KB; Traffic 2 is 70% 1KB, 20% 10KB, 8% 1MB, and 2% 10MB. The
distribution of the response size in Traffic 2 is 50% 1KB, 30% 10KB, 15% 1MB and 5% 10MB. We only measure the latency when
the response size is 1KB.
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message size.

Figure 6: Throughput with different CPU core numbers used. The gray bar chart shows the CPU usage of the back-end server

• Can our table entry compression and back-end agent design
effectively conserve resources (§6.4)?

6.1 Testbed
Our testbed consists of a 3.2 Tbps, 2-pipeline Intel Tofino pro-
grammable switch, 4 servers with 24-core CPUs and 64GB of mem-
ory, and 1 server with 32-core CPUs and 128GB of memory. Each
server is equipped with a 100 Gbps Mellanox ConnectX-6 or 100
Gbps Intel E810CQDA2NIC.We use two 16-core servers to generate
HTTP requests and another two 16-core servers to handle the re-
quest.We use the 32-core server to run the software L7 LB/front-end
server for comparison. We use Nginx as the back-end server to han-
dle the requests. The programmable switch runs the Miresga/Prism
program when testing Miresga/Prism and acts as a router when
testing software load balancing.
Baselines. We choose HAProxy with f-stack [67] as our software-
based comparison baseline because it is widely adopted and pro-
vides high performance. We implemented Prism [35] on the same
programmable switch as our hardware-based comparison baseline.

6.2 Performance
6.2.1 End-to-end Throughput. We test the end-to-end throughput
of Miresga, HAProxy, and Prism with different message sizes. We
use wrk [33] to generate the HTTP requests and use Nginx as the
Web server. We also use Lua scripts to modify HTTP headers to
request different files, simulating traffic in an actual production en-
vironment. We perform L7 load balancing based on domain names,
directing traffic with the domain name mysite1.com to one server,
and traffic with the domain name mysite2.com to another server.
Prior to this, we conducted a preliminary test to determine if offload-
ing the flow could accelerate the delivery of subsequent packets.
We observe that the performance gain from offloading becomes sig-
nificant when the message size reaches 64KB, effectively offsetting

the latency incurred by the offloading procedure. Consequently, we
have selected 64KB as the threshold for offloading.

We measure throughput by multiplying the number of requests
per second (RPS) reported by wrk with the response size. We set the
response sizes and then use wrk to issue the corresponding HTTP
requests. Figure 5a shows the throughput comparison of Miresga,
HAProxy, and Prism. In the case of large object transfers, Miresga
offloads the data transmission process—constituting the majority
of packets during the entire access—to the programmable switch.
As a result, the throughput advantage of Miresga over HAProxy
increases with the response size. At a message size of 64KB, the
throughput of Miresga reaches 3× that of HAProxy, and when
the response size is increased to 8MB, the throughput of Miresga
reaches 4× that of HAProxy. For small message sizes, Miresga also
achieves high performance due to its simplified protocol stack, with
throughput that is still 2× better compared to HAProxy. For Prism,
the hardware and software parallel strategy of Miresga makes it
achieve 5× throughput than Prism for small objects. For large ob-
jects, we find that our scheme performs similarly to Prism, as both
Miresga and Prism delegate the delivery of these objects to the
programmable switch.

6.2.2 End-to-end Latency. We use the same method as in §6.2.1
to issue requests. We run tests for three minutes at each response
size and use tcpdump [10] to capture the pcap files for analysis.
Figure 5b shows the average and the 90th latency with different
response sizes for the three designs. Since Miresga simplifies the
TCP stack, uses DPDK to improve the processing speed for small
objects, and leverages the programmable switch to accelerate the
big message transmission, Miresga has less latency than HAProxy
for both small and large objects. For Prism, it needs two entry op-
erations per request and blocks the traffic before the state is fully
synchronized, which leads to an increase in latency. The increase is
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most obvious for small objects. Miresga circumvents this problem
well because of its hardware and software parallel design. Although
our overall design uses more components, the exception case of a
flow is handled entirely by the client and the back-end server. This
design makes our system more stable. The result that the latency of
the 90th percentile is not much different from the average latency
proves this. In contrast, HAProxy, where the load balancer manages
two connections, is more susceptible to abnormal conditions. For
Prism, frequent entry modifications lead to greater latency fluc-
tuations when dealing with smaller objects. Consequently, Prism
exhibits the opposite behavior for small objects: the difference be-
tween the 90th percentile latency and the average latency is more
pronounced for smaller objects.
6.2.3 Real-world Traffic Simulation. In real data centers, traffic
distribution is often heavy-tailed, where a small proportion of flows
contribute to the majority of the data. To evaluate the performance
of Miresaga under a real-world workload, we generate two types
of heavy-tailed traffic distributions and use wrk to send requests
according to these distributions to the back-end servers. Figure 5c
shows the throughput comparison. For software load balancing,
as latency increases, the corresponding RPS decreases, resulting
in a decline in throughput. Since Prism does not perform well
when dealing with small objects, its RPS is not as good as Miresga,
resulting in some degradation in throughput. Figure 5d shows the
latency of the packets whose response size is 1KB. As mentioned in
§2.2, when using heavy-tailed traffic distributions, different flows
will compete with each other for the limited CPU time, causing
latency to increase. In contrast, Miresga offloads the elephant flows
to the programmable switch with high performance, ensuring that
elephant flows do not influence other flows processed by the front-
end server. There is only a slight increase in processing latency
compared to when all responses are 1KB. Prism, on the other hand,
is limited by its slow handling of small objects, resulting in higher
latency. With the increase of the proportion of large flows, the
number of requests issued by the client per second decreases so
that the pressure on the entries insertion becomes smaller. As a
result, the latency of Prism on 1KB objects decreases. These two
results indicate that Miresga is better suited for handling traffic
distribution in data centers.

6.3 Scalability
In addition to throughput and latency, another metric to measure
the performance of load balancing is scalability. We demonstrate
that our system scales well by adjusting the number of CPU cores
used by the front-end server. The result is shown in Figure 6. We
empirically choose two small message sizes (1KB, 16KB) and two
big message sizes (1MB, 8MB) to test. With small message sizes, the
Miresga front-end server, which processes all packets, becomes the
primary bottleneck. As the number of CPUs increases, the through-
put rises linearly, and similarly, the CPU usage of the back-end
servers also increases linearly. This demonstrates that we can en-
hance throughput further by deploying additional front-end servers.
The scenario changes when dealing with larger objects. In this case,
the front-end server can achieve very high throughput with min-
imal CPU resources, thanks to offloading the majority of packet
delivery to the programmable switch. The bottleneck shifts to the
back-end server capacity, which quickly reaches full utilization

Method Maximum # of Concurrent Connections
b+c 0.16M
a+b 0.86M
a+c 1.02M

a+b+c 1.43M
a: entry compression, b: table arrangement, c: back-end agent

Table 1: The maximum number of concurrent connections
with and without a specific optimization method.

per CPU. Therefore, we believe that our system’s performance can
be significantly improved by increasing the number of back-end
servers.
6.4 Maximum Number of Concurrent

Connections
To prove that our designs effectively improve the table capacity,
we successively test the largest table entry capacity before and
after using each optimization: the table compression, the table
arrangement, and the back-end agent. Table 1 shows the results. The
entry compression greatly compresses the space of one entry and
merges the two entries that were originally set for the inbound and
outbound traffic distribution, thus providing the largest increase
(∼9×). By properly scheduling the entries in ingress and egress,
we allocated 2 additional stages for the offload connection table,
resulting in a capacity increase of nearly 40%. Without the back-
end agent, we need to store an additional 32-bit sequence number
difference, which is 1.66× larger than without the back-end agent.

7 Limitations
Although we have attempted various optimization methods to en-
hance performance, our design still faces several limitations. Firstly,
the speed at which the built-in CPU added the entries to the Of-
floaded Connection Table is low, making it challenging to increase
the CPS. Secondly, our design processes encrypted packets more
slowly because it is hard to perform the TLS termination on the
programmable switches, so we need software help to do TLS ter-
mination. However, there are several hardware acceleration tech-
niques available, so we believe that achieving TLS termination on
programmable switches is not impossible. Finally, although we have
compressed table entries, the limited size of SRAM still constrains
performance.

8 Conclusion
In this paper, we propose Miresga, which, to our knowledge, is the
first attempt to accelerate L7 load balancing using programmable
switches. To leverage the full performance potential of the pro-
grammable switch, Miresga partitions the L7 load balancing process
into three distinct parts: connection establishment, rule applica-
tion, and data transmission. By offloading elephant flows to the
programmable switch, which constitutes the bulk of the traffic, to
the switch, Miresga achieves a significant boost in throughput and
a reduction in latency. Our experiment proves that Miresga is more
suitable for heavy-tailed traffic distributions, which are similar to
those in the data center. In the future, we plan to expand our design
further, such as by exploring the introduction of RDMA to expand
the limited memory of programmable switches.

This paper does not raise any ethical issues since all the traffic is
simulated and does not contain any personal data.
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A Table Arrangement
Since the same stage in the ingress pipeline and the egress pipeline
sharing the resources and the limited SRAM prevents us from ex-
panding the connection capacity. We specially allocated the tables

DIP Table II

Offloaded Connection Table

Stage 1

VIP Table

DIP Table I

Forwarding
TablesPreprocess

SYN-
Responder

Stage 2 Stage 3-10 Stage 11 Stage 12

Figure 7: Table Arrangement

described above to make full use of the in-switch memory. Figure 7
shows the table arrangement of Miresga using a typical 12-stage
programmable switch as an example. Since some tables do not oc-
cupy all the SRAM in a stage, our design integrates these tables
and places them in a single stage. In the first two stages, we place
VIP Table I, DIP Table I, and DIP Table II together. We arrange the
Forwarding Tables at the last stage of the ingress pipeline. Since
multiple cases arise in the Packet Steering module, preprocessing is
needed and we place it in the second-to-last stage. The remaining
stages are allocated to the Connection Query module. Through
this design, we maximize the SRAM block size allocated for the
Offloaded Connection Table.

B Other Protocol Discussion
In this section, we discuss the differences of Miresga when using
protocols other than HTTP 1.0.

Unlike HTTP 1.0, HTTP 1.1 [24] allows a single TCP connection
to be reused for multiple requests, and these requests may need
to be forwarded to different servers. In the programmable switch,
Miresga can detect the presence of the content of the application
layer in a packet by comparing the total length field in the IP header
with the calculated header length obtained from the sum of the
IP header length and the TCP header length. Therefore, when a
packet with the application layer data is received from the client, the
programmable switch will send the packet to the front-end server
to check if the destination server needs to be changed. If the server
to which the client is connected changes, Miresga simply closes
the old connection, establishes a new connection with the new
server, and then modifies the corresponding entry in the Offloaded
Connection Table if needed.

To avoid head-of-line blocking, HTTP 2.0 [15] and SPDY [14]
propose out-of-order delivery of responses. We can still forward
the packets by adjusting the IP/TCP header correctly. However, our
design does not fully support multiplexing, especially when we
intend to route different requests to different servers, as we need
to establish connections with multiple servers simultaneously. In
fact, this poses a challenge for any design of the L7 load balancing
because we can not support frames from multiple different streams
within a single packet. Essentially, we are transmitting data across
multiple connections, contradicting the principle of multiplexing,
where multiple data transfers are completed within a single con-
nection. Therefore, if we receive multiple requests at the same time,
we will cache these requests. After the first request is completed,
Miresga closes the old connection, establishes the new connection,
and sends the next request. However, if all requests can be directed
to a single server for processing, no modifications to the design
are needed. The design of adjusting IP/TCP headers would still
facilitate data migration.

QUIC [41] uses UDP rather than TCP as the transport layer
protocol. However, QUIC encrypts its header so that we can’t use
the eBPF program to modify the header. We leave that for future
work.

C Retransmission
Although the lightweight protocol stack just does an IP/port mod-
ification after the state of the flow transmitting to 𝐶𝑂𝑀𝑃𝐿𝐸𝑇𝐸
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Figure 8: Retransmission Example

or 𝑂𝐹𝐹𝐿𝑂𝐴𝐷 , it still needs to manage retransmissions before it.
Miresga utilizes the retransmission mechanism of the client and
server to handle possible packet loss. Miresga does not need to
consider packet loss from the client or server side, as the client
or server will automatically retransmit packets if no response is
received within the timeout period. The Packet Processor will han-
dle only the retransmitted packets. Thus, Miresga only needs to
address the potential loss of packets sent by the front-end server
or the programmable switch. Figure 8 illustrates how we handle
retransmissions. Since we want to lighten the load of the front-
end server, we prefer the front-end server not to actively decide
whether to retransmit outgoing packets but rather to make this
decision passively based on whether duplicate packets are received.
Miresga stores the last received packet and the last sent packet of
each flow. Whenever a packet is received, Miresga first checks if
the received packet is the same as the last received packet. If it is,
Miresga simply resends the last sent packet. Through this method,
Miresga achieves a passive retransmission mechanism.
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