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ABSTRACT

Graph attention networks (GAT) have been state-of-the-art GNN architecture used
as the backbone for various graph learning problems. One of the key tasks in
graph learning is node classification. While several works cover multiple aspects
of node classification, there has yet to be an attempt to understand the behavior
of GAT models for node classification with a reject option. This paper proposes
a new approach called Node-CwR, which models node classification with a re-
ject option using GAT. We offer both cost-based and coverage-based models to
include the reject option in the node classification task. Cost-based models find
the optimal classifier for a given cost of rejection value. Such models are trained
by minimizing the rejection and misclassification rates on unrejected samples.
Coverage-based methods take coverage as input and find the optimal model for a
given coverage rate. We empirically evaluate our approaches on three benchmark
datasets and show their effectiveness in learning efficient reject option models for
node classification tasks. We observe that, in general, cost-based methods outper-
form coverage-based models for reject option. Additionally, our results include
robust learning of node classifiers using label smoothing in the presence of la-
bel noise. We observe that label smoothing works well to handle label noise in
cost-based models, while it works adversely in coverage-based models.

1 INTRODUCTION

The recent decade has witnessed a surge of interest in using graph neural networks (GNNs) in
various domains such as computer vision Satorras & Estrach (2018), natural language process-
ing Schlichtkrull et al. (2017), and bioinformatics Xia & Ku (2021), to name a few. GNNs (Kipf
& Welling, 2017) capture structural aspects of the data in the form of nodes and edges to perform
any prediction task. It learns node, edge, and graph-level embeddings to get high-dimensional fea-
tures using the message-passing mechanism in the GNN layer. Recently, graph attention networks
(GAT) (Veličković et al., 2018) have been shown to work well for node-level tasks as they leverage
the attention mechanism to learn the importance of neighboring nodes and scale their features ac-
cordingly before performing a linear combination of the nodes. The most common node-level task
is a node classification task, which uses graph-structured data to classify nodes.

Deep graph learning is also used in the field of responsible AI in high-risk applications such as
legal judgment prediction Dong & Niu (2021), disease prediction Sun et al. (2021), financial fraud
prediction Xu et al. (2021), etc., with the high cost of incorrect predictions. It is challenging to
overcome such issues while using standard GNN architectures. To deal with such scenarios of high-
risk applications, the model shouldn’t make a prediction and further examine the features instead of
making a wrong prediction with potential consequences. Can we allow GNN models to abstain in
case of insufficient confidence for prediction?

Reject option classifiers have an additional option of refraining from deciding when in a dilemma.
The attraction of reject option classification is evident in applications where one can afford partial
domain coverage and where extremely low risk is a must. Still, it is not achievable in standard
classification frameworks. Consider the case of the diagnosis of a patient for a specific disease.
In case of confusion, the physician might choose not to risk misdiagnosing the patient. She might
instead recommend further medical tests to the patient or refer her to an appropriate specialist.
The primary response in these cases is to ”reject” the example. Typically, there is a cost involved in
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rejecting an example. However, that cost is much smaller compared to misclassification. The goal of
integrating a reject option in the classification model is to allow it to abstain from giving a prediction
when it is highly uncertain to make a decision. These models are usually given the option not to
make a prediction based on the following two ideas: i) Coverage-based model: Coverage is defined
as the ratio of samples that the model does not reject. For a given coverage, the model finds the best
examples that can give the best performance. The coverage can further be varied post-training by
our choice of threshold. SelectiveNet (El-Yaniv et al., 2010; Geifman & El-Yaniv, 2019) is a recent
work that proposes a coverage based deep neural network (DNN) approach for the reject option
classifier. ii) Cost-based model: These models include the cost of rejection and misclassification.
The cost of rejection can vary based on the application. The model optimizes according to the cost
to minimize the number of examples rejected and misclassified. The loss in such approaches is l0d1
(Chow, 1970). However, in practice, surrogates of l0d1 (Bartlett & Wegkamp, 2008; Grandvalet
et al., 2009; Manwani et al., 2015; Shah & Manwani, 2019; Cortes et al., 2016) are used. DNN-
based reject option classifier are proposed in Kalra et al. (2021); Ni et al. (2019); Charoenphakdee
et al. (2021); Cao et al. (2022).

However, the reject option for the node classification problem using GNN has not been attempted.
Motivated by the abovementioned observations, we propose rejection-based GAT networks for the
node classification tasks, which we call NodeCwR. We consider an integrated reject option using
cost-based (NodeCwR-Cost) and coverage-based (NodeCwR-Cov) models. We can use NodeCwR-
Cost when the cost of rejecting an example and NodeCwR-Cov when the ratio of examples to predict
is specified. We also explore label smoothing to see if NodeCwR becomes robust when there is label
noise. Our contributions are as follows: i.) To the best of our knowledge, we are the first to learn
node embeddings using abstention-based GAT architecture. ii.) We extend and generalize GAT to
train for node features with cost-based and coverage-based abstention models. iii.) Finally, we per-
form an empirical study to evaluate our models on popular benchmark datasets for node classifica-
tion tasks. Our experimental results show that NodeCwR-Cost performs better than NodeCwR-Cov
in general. iv.) We also show experimentally that NodeCwR-Cost with label smoothing becomes
robust against label noise.

2 RELATED WORK

2.1 REJECT OPTION CLASSIFICATION

There are two broad categories of approaches for reject option classifiers: coverage-based and
cost-based. Coverage-based learn based on optimizing risk-coverage trade-offs. SelectiveNet is
a coverage-based method proposed for learning with abstention (El-Yaniv et al., 2010; Geifman &
El-Yaniv, 2019). SelectiveNet is a deep neural network architecture that optimizes prediction and
selection functions to model a selective predictor. As this approach does not consider rejection cost
d in their objective function, it can avoid rejecting hazardous examples. This, in particular, becomes
a severe issue in high-risk situations (e.g., healthcare systems, etc.). Cost-based approaches assume
that the reject option involves a cost d. Generalized hinge SVM (Bartlett & Wegkamp, 2008), dou-
ble hinge SVM (Grandvalet et al., 2009), double ramp SVM (Manwani et al., 2015), SDR-SVM
(Shah & Manwani, 2019), max-hinge SVM and plus-hinge SVM (Cortes et al., 2016) etc. are some
variants of support vector machine (SVM) for reject option classifiers. Nonlinear classifiers in these
approaches are learned using kernel functions. In (Kalra et al., 2021), the authors propose a deep
neural network-based reject option classifier for two classes that learn instance-dependent rejection
functions. In Ramaswamy et al. (2018), multiclass extensions of the hinge-loss with a confidence
threshold are considered for reject option classification. Ni et al. (2019) prove calibration results for
various confidence-based smooth losses for multiclass reject option classification. Charoenphakdee
et al. (2021) prove that K-class reject option classification can be broken down into K binary cost-
sensitive classification problems. They subsequently propose a family of surrogates, the ensembles
of arbitrary binary classification losses. Cao et al. (2022) propose a general recipe to convert any
multiclass loss function to accommodate the reject option, calibrated to loss l0d1. They treat rejec-
tion as another class.
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2.2 NODE CLASSIFICATION

Node classification is a fundamental task related to machine learning for graphs and network anal-
ysis. GNN methods can be broadly classified into three categories that perform node classification
as the primary task. The first set of models introduced convolution-based GNN architectures by
extending original CNNs to graphs Scarselli et al. (2008), Defferrard et al. (2016), Hamilton et al.
(2017), Kipf & Welling (2017) Bresson & Laurent (2017). Secondly, proposed attention and gating
mechanism-based architectures using anisotropic operations on graphs Veličković et al. (2018). The
third category focuses on the theoretical limitations of previous types Xu et al. (2018), Morris et al.
(2019), Maron et al. (2019), Chen et al. (2019).

2.3 LABEL SMOOTHING

Label smoothing uses a positively weighted combination of hard training labels and uniformly dis-
tributed soft labels. It was first proposed in Szegedy et al. (2016) for model regularization in the con-
text of CNNs. When there are noisy labels, label smoothing is a robust learning approach (Lukasik
et al., 2020). Wei et al. (2021) introduce the concept of negative label smoothing (NLS) in which
soft labels for some classes can be negative. They show that NLS is more effective than simple label
smoothing in case of a high noise rate.

3 METHOD

GAT focuses on learning effective and efficient representations of nodes to perform any downstream
task. Let X be the instance space and Y ∈ {1, . . . ,K} be the label space. We represent the
embedding space learned using GAT by H. Thus, GAT learns a mapping GAT : X → H. GAT
treats each instance as a node and learns embedding for each node.

3.1 NODECWR-COV: COVERAGE BASED NODE CLASSIFIER WITH REJECTION

NodeCwR-Cov uses coverage-based logic to learn node classifiers with a reject option. We use
similar ideas to SelectiveNet (Geifman & El-Yaniv, 2019) to learn the coverage-based rejection
function. Figure 1 shows the architecture of NodeCwR-Cov. Node representations are learned
using first GAT layer and given as input to second GAT layer which follows softmax layer. The
second GAT layer and softmax layer combined learn mapping f : H → ∆K−1 where ∆K−1 is
K-dimensional simplex. Function f is used to predict the class of a node. There are two more fully
connected layers after the softmax layer (having 512 nodes and one node) to model the selection
function g : H → {0, 1}. Selection function g decides whether to predict a given example or not.
Selection function g(h) is a single neuron with a sigmoid activation. At the beginning, a threshold
of 0.5 is set for the selection function, which means f(h) predicts h if and only if g(h) ≥ 0.5.
The auxiliary prediction head implements the prediction task a(h) without the need for coverage to
get a better representation of examples with low confidence scores, which are usually ignored by
the prediction head. This head is only used for training purposes. We use cross-entropy loss lce to
capture the error made by the prediction function f(h). The empirical risk of the model is captured
as follows.

r(f , g|Sn) =
1
n

∑n
i=1 l(f(hi), yi)g(hi)

ϕ(g|Sn)

where ϕ(g|Sn) is empirical coverage computed as ϕ(g|Sn) = 1
n

∑n
i=1 g(hi). An optimal selec-

tive model could be trained by optimizing the selective risk given constant coverage. We use the
following error function to optimize f(.) and g(.).

E(f , g) = r(f , g|Sn) + λΨ(c− ϕ(g|Sn))

where Ψ(a) = max(0, a)2 is a quadratic penalty function, c is the target coverage, and λ controls
the importance of coverage constraint. The loss function used at the auxiliary head is standard cross
entropy loss lce without any coverage constraint. Thus, the empirical risk function corresponding
to the auxiliary head is E(f) = 1/n

∑n
i=1 lce(f(hi), yi). The final error function of NodeCwR-Cov

is a convex combination of E(f, g) and E(f) as follows, E = αE(f , g) + (1 − α)E(f), where
α ∈ (0, 1). When the data is trained over a training set using a coverage constraint, this constraint
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Figure 1: Architecture of NodeCwR-Cov: Coverage based node classifier with rejection

is violated on the test set. The constraint requires the true coverage ϕ(g) to be larger than the given
coverage constraint c, which is usually violated. To get the optimal actual coverage, we calibrate
the threshold τ to select the example in g(h′) using this validation set, which results in coverage as
close as possible to target coverage.

3.2 NODECWR-COST: COST BASED NODE CLASSIFIER WITH REJECTION

In the cost-based method, the cost of rejection d is pre-specified. The architecture of NodeCwR-
Cost is presented in Figure 2. The first block in NodeCwR-Cost consists of two GAT layers. The
output of the second GAT layer is fed to a softmax layer with (K + 1) nodes. Note that we assume
rejection as the (K + 1)th class here. The second GAT layer and softmax layer combined learn
prediction function f : H → ∆K where ∆K is (K + 1)-dimensional simplex. Note that (K + 1)th

output corresponds to the reject option in this architecture. Let ej denote K +1-dimensional vector
such that its jth element is one and other elements are zero. Note that (K + 1)th element never
becomes one as we do not get a rejection label in the training data. We use the following variant of
cross-entropy loss, which also incorporates the cost of rejection (Cao et al., 2022).

ldce(f(h), ey, eK+1) = lce(f(h), ey) + (1− d)lce(f(h), eK+1)

= − log fy(h)− (1− d) log fK+1(h)

Here fK+1(h) is the output corresponding to the reject option, and fy(h) is the output related to
the actual class. For very small values of d, the model focuses more on maximizing fK+1(h) to
prefer rejection over misclassification. Note that loss ldce is shown to be consistent with the l0d1
loss (Cao et al., 2022). For d = 1, the loss ldce becomes the same as standard cross entropy loss
lce. We represent smooth label of j ∈ {1, . . . ,K + 1} with a K + 1-dimensional vector eLS

j as
eLS
j = (1 − ϵ)ej +

ϵ
K+11. Here ϵ ∈ (0, 1) is the smoothing parameter, 1 is a K + 1-dimension

vector whose all elements are one. ldce loss with smooth label is as follows.

ldce(f(h), e
LS
y , eLS

K+1) = lce(f(h), e
LS
y ) + (1− d)lce(f(h), e

LS
K+1)

= (1− ϵ)lce(f(h), ey) +
ϵ

K + 1
lce(f(h),1)

+ (1− d)

[
(1− ϵ)lce(f(h), eK+1) +

ϵ

K + 1
lce(f(h),1)

]
= (1− ϵ)ldce(f(h), ey, eK+1) +

(2− d)ϵ

K + 1
lce(f(h),1)

Thus, we also do smoothing over (K + 1)th class which is rejection. We observe that this way
of smoothing gives better performance in experiments. The extra term (2−d)ϵ

K+1 lce(f(h),1) acts as a
regularizer which penalizes the model for going away from the uniform distribution ϵ

K+11.

4 EXPERIMENTAL STUDY

This section describes the implementation details of NodeCwR-Cost and NodeCwR-Cov, their per-
formance evaluation, and their comparison. We also present results with label noise.
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Figure 2: Architecture of NodeCwR-Cost: Cost based node classifier with rejection

4.1 DATATSETS USED

We evaluated our model on three standard citation network datasets, Cora, Citeseer, and Pubmed
(Sen et al., 2008). In these data sets, each document is represented by a node, and the class label
represents the category of the document. Undirected edges represent citations. For training, we use
20 nodes per class. Thus, the number of nodes for training varies for each data set depending on the
number of classes. We use 500 nodes for validation and 1000 for testing on all the data sets.

4.2 GAT IMPLEMENTATION DETAILS

We used GAT as the base architecture for node classification and closely followed the experimental
setup mentioned in Veličković et al. (2018). We modified the GAT implementation available by
Antognini (2021) to implement our approach. We first applied dropout Srivastava et al. (2014) on
node features with p = 0.6. These node features, along with the adjacency matrix, are passed
through a GAT Layer having eight attention heads, where each head produces eight features per
node. We used LeakyReLU as the activation function inside the GAT Layer with α = 0.2. These
outputs are concatenated for the first layer (64 features per node). Another dropout layer with the
same probability follows this. The dropout layer’s output is passed through the final GAT layer with
a single attention head, which takes 64 features per node and outputs k features per node, where k
is the number of classes. It uses ELU Clevert et al. (2015) activation function. The network output
is passed through a softmax layer to get class posterior probabilities.

4.3 NODECWR-COV IMPLEMENTATION DETAILS

We use the GAT architecture noted above to integrate the coverage-based reject option into the
model as mentioned in Geifman & El-Yaniv (2019). The output from the softmax layer is separately
given to both prediction head f and auxiliary head h. The output from the second GAT Layer is
passed through a Fully Connected Hidden Layer with 512 nodes. This is passed through Batch
Normalization Ioffe & Szegedy (2015), ReLU, and a Fully Connected Output Layer with one node.
This is passed through Sigmoid Activation to get a selection score [0, 1]. The Prediction head and
Selection head are concatenated together, and the selective loss is performed on this output. We
set λ = 32 as the constraint on coverage to calculate this loss. Cross Entropy Loss is performed
on the output of the Auxiliary head but is not used for making predictions. A convex combination
of these two loss values with αl = 0.5 is used to optimize the model. We trained the model with
early stopping with patience of 100 epochs. Error on the validation set is used to implement the
stopping condition. We observed that the model trains for approximately 1800 epochs to train the
NodeCwR-Cov model. Once the model is trained, the number of covered examples on the test data
set when τ = 0.5 will vary highly because the model is not used for the test data. However, since we
have the selection scores of each node, we sort them and select a τ value that matches the coverage
we expect.

4.4 NODECWR-COST IMPLEMENTATION DETAILS

We also trained NodeCwR-Cost by taking the output of the GAT network. In the cost-based ap-
proach, we treat the reject option as an integrated class in the model. Hence, for a k class classifi-
cation problem, we change the model architecture from giving k outputs to k + 1 outputs. In this
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model, we have to perform CwR Loss for optimization. From the output, every node that gets k+1
as the output will be rejected. Here also, we used early stopping with a patience of 100 epochs.
Model trains for approximately 1000 epochs for NodeCwR-Cost.

4.5 RESULTS ON NODECWR-COV

We repeat each experiment 10 times with random initialization and report the average and standard
deviation. We see that the performance of NodeCwR-Cov decreases with label smoothing except
for the Citeseer dataset. For the Citeseer dataset, for d=0.1,0.2,0.8,0.9 LS = ϵ dominates LS = 0.
However, the gain is marginal.

Cora Pubmed Citeseer
Cov Acc(LS=0) Acc(LS=0.5) Acc(LS=0) Acc(LS=0.5) Acc(LS=0) Acc(LS=0.5)
0.1 97.8 ± 0.84 96.13± 2.42 93.4 ± 2.61 87.2± 5.36 89± 4.42 89.2 ± 4.6
0.2 97.1 ± 0.77 94.75± 1.86 80.4± 10.6 80.6 ± 12 87.5± 2.62 88.1 ± 1.92
0.3 96.43 ± 0.85 93.33± 1.43 85.5 ± 3.49 82.1± 3.81 85.6 ± 2.5 84.7± 3.42
0.4 95.62 ± 1.16 92.38± 0.77 85.3 ± 1.74 82.2± 2.23 85.2 ± 1.46 82.8± 3.44
0.5 93.96 ± 1.45 92.18± 1.1 83.2 ± 3.34 79.9± 2.47 81.3 ± 2.19 76.6± 6.06
0.6 92.65 ± 0.5 91.29± 1.32 82.6 ± 1.48 82.5± 1.87 79.6 ± 2.43 78.4± 4
0.7 91.29 ± 0.45 90.25± 1.7 79.8 ± 2.46 79.5± 0.98 75.9 ± 2.86 74.8± 2.12
0.8 89.12 ± 0.8 88.5± 1.43 80.9± 1.24 81 ± 0.44 72.8± 1.05 73.2 ± 2.29
0.9 86.65 ± 0.7 85.81± 1.03 79.7 ± 0.59 79± 1.17 72± 0.69 74.3 ± 0.41

Table 1: Accuracy and Coverage of GAT + CwR at different cost of rejection.

Although we can calibrate the threshold to cover any number of examples irrespective of the training
coverage, it is preferred to train the model on similar coverage rates and then calibrate it to our
preferred coverage to get the best results.

4.6 RESULTS ON NODECWR-COST

We repeat each experiment 10 times with random initialization and report the average and standard
deviation. As the d increases, the rejection rate decreases, increasing coverage. As the coverage
increases, more misclassifications happen, which decreases the accuracy. We observe this trend
even with label smoothing. This behavior is expected from a cost-based rejection model.

We observe that as the d increases, 0-d-1 risk increases initially, and it starts dropping after a certain
value of d. These values of d are called crossover values. These crossover values are 0.55 for
Cora, 0.45 for Pubmed, and 0.65 for Citeseer. For smaller values of d, when coverage increases, the
misclassification rate also increases, which causes an increase in 0-d-1 risk. But, as d increases, the
difference between misclassification cost (which is one) and rejection cost (d) reduces.

We observe an interesting behavior of 0-d-1 risk, which favors LS = 0 (no label smoothing) for
smaller d values and favors LS = ϵ (label smoothing) for higher values of d. This happens due
to the following reasons. Label smoothing allows each label to exist with non-zero probability, for
example. This creates more confusion areas for the classifier. This causes LS = ϵ to make more
rejections for smaller d values than LS = 0. This makes LS = ϵ incur higher 0 − d − 1 risk than
LS = 0 for smaller d values. For higher values of d, the rejection rate decreases for LS = ϵ and
LS = 0. As d increases, coverage increases, and the NodeCwR-Cost approach focuses more on
improving classification accuracy. At this point, the true power of LS = ϵ comes into the picture
due to its regularization effect. Thus, NodeCwR-Cost with LS = ϵ starts performing better for
higher d values than LS = 0.

While we can calibrate the number of examples we want to predict in selection-based models, we
can only choose a cost and let the model reject any examples in cost-based models. Hence, we
plotted the accuracy with respect to the coverage of both these models for better comparison.
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LS=0 LS=0.5

d
Acc. on
Unrejected

Coverage 0-d-1 Risk Acc. on
Unrejected

Coverage 0-d-1 Risk
C

or
a

0.1 97.5± 0.48 12.1 ± 0.95 0.091 ± 0.001 98.5± 1.52 5.5± 0.97 0.095± 0.001
0.2 97.5± 0.47 17.1 ± 1.6 0.17 ± 0.003 98.1± 0.68 10.7± 1.14 0.181± 0.003
0.3 97.5± 0.68 23.8 ± 1.75 0.235 ± 0.005 97.6± 0.38 18.8± 2.41 0.248± 0.007
0.4 96.6± 0.62 32.2 ± 0.91 0.282 ± 0.004 98.1± 0.21 30.9± 2.09 0.283± 0.008
0.5 95.8± 0.23 42.6± 1.88 0.305± 0.009 96.6± 0.39 45.9 ± 1.53 0.286 ± 0.007
0.6 95± 0.49 53.1± 1.07 0.308± 0.006 94.1± 0.55 61 ± 0.4 0.27 ± 0.003
0.7 92.8± 0.55 66.3± 1.81 0.283± 0.009 90.2± 0.52 80.4 ± 0.82 0.216 ± 0.006
0.8 90.1± 0.51 83.3± 0.68 0.216± 0.008 84.6± 0.42 98 ± 0.34 0.167 ± 0.003
0.85 87.2± 0.78 90.5± 1.11 0.196± 0.003 83.7± 0.7 100 ± 0.04 0.163 ± 0.007

Pu
bm

ed

0.1 97.4± 1.86 8.6 ± 3.12 0.094 ± 0.001 100 0.6± 0.25 0.099
0.2 97.7± 2.49 12.9 ± 4.52 0.178 ± 0.005 98.8± 2.63 1.5± 0.47 0.197± 0.001
0.3 93.5± 1.2 21.9 ± 2.77 0.249 ± 0.007 95.8± 1.62 7.9± 3.08 0.28± 0.008
0.4 92.4± 0.66 27 ± 5.33 0.313 ± 0.016 93.1± 0.95 24.2± 1.22 0.32± 0.005
0.5 88.9± 0.92 49.3± 5.48 0.309 ± 0.018 87.7± 0.94 50.2 ± 3.36 0.311± 0.01
0.6 84.6± 0.87 67.8± 4.81 0.298± 0.019 81.2± 0.29 84.4 ± 3.5 0.252 ± 0.015

C
ite

se
er

0.1 - 0 0.1 - 0 0.1
0.2 100 0.3 ± 0.17 0.199 - 0 0.2
0.3 99.2± 1.72 1.2 ± 0.85 0.297 ± 0.002 - 0 0.3
0.4 93.7± 2.26 4.3 ± 1.18 0.386 ± 0.004 - 0 0.4
0.5 91.6± 2.23 9.7 ± 1.7 0.46 ± 0.005 95.9± 2.53 1.9± 0.52 0.491± 0.002
0.6 87.9± 0.88 17.6 ± 1.64 0.516 ± 0.008 91.1± 2.4 11.7± 3.74 0.54± 0.018
0.7 85.5± 0.95 33.5± 3.72 0.514± 0.021 84.8± 1.09 36.1 ± 0.98 0.502 ± 0.007
0.8 79.5± 0.72 57.1± 2.1 0.46± 0.015 76.3± 1.33 87.2 ± 1.55 0.309 ± 0.01
0.83 75.8± 1.61 79.2± 2.74 0.368± 0.016 71.2± 1.3 99.8 ± 0.13 0.289 ± 0.013

Table 2: Performance results of NodeCwR-Cost with LS = 0 and LS = ϵ. Results with all values
of cost(d) are mentioned in Table 4

4.7 COVERAGE AND ACCURACY COMPARISONS BETWEEN NODECWR-COST AND
NODECWR-COV

Here, we compare the performance of cost-based and coverage-based approaches. We do the com-
parison using coverage vs. accuracy plots. Figure 3 shows the coverage versus accuracy plots
for both cost-based and coverage-based approaches on different datasets. The cost-based approach

(a) Cora (b) Pubmed (c) Citeseer

Figure 3: Coverage and Accuracy comparison between NodeCwR-Cost and NodeCwR-Cov

shows a clear advantage in terms of accuracy for most coverage rates. The reason is as follows. The
coverage constraint in NodeCwR-Cov does not ensure the rejection of those examples that are hard
to classify correctly. Thus, it may reject some of the easy examples. Thus, every coverage value
may include more hard examples. Label smoothing makes this situation worse for NodeCwR-Cov
due to soft labels. We also observe a very high standard deviation in the performance of NodeCwR-
Cov. On the other hand, NodeCwR-Cost prefers to reject hard examples first by assigning a cost to
rejection. This makes NodeCwR-Cost perform better than NodeCwR-Cov.
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4.8 NODE EMBEDDING VISUALISATION

We plotted t-SNE plots to represent the predicted class of each node.

Coverage 50%-51.5% Coverage 69.3%-69.6% Coverage 81.3%-82.4%
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Figure 4: t-SNE plots representing predictions on Cora data set where black represents the reject
option.

It was noticeable that in both models, the rejected examples are usually the nodes that highly overlap
between two or more classes. We can also notice that as the model coverage decreases, the number
of examples it rejects increases and covers more overlapping boundaries between classes. It is worth
noting that although the coverage and accuracy are almost similar in both models, the examples that
each model chooses to reject are from different overlapping classes.

4.9 EXPERIMENTS WITH LABEL NOISE

This section will discuss how label noise can affect the cost-based reject option classifiers learned
for node classification. We consider symmetric label noise (10% and 20%). Figure 5 shows the
effect of label noise on NodeCwR-Cost and NodeCwR-Cov in the absence of label smoothing. We
vary the noise rate from 10% to 20%. We observe that the overall performance of both approaches
worsens with the increase in the noise rate. Moreover, the coverage-based approach’s performance
degrades more than the cost-based approach with label noise.

8
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(a) Cora (b) Pubmed (c) Citeseer

Figure 5: Effect of label noise on NodeCwR-Cost and NodeCwR-Cov in the LS = 0 setting.

We performed experiments with label noise in the LS = ϵ setting to observe if label smoothing
makes the learning robust. Figure 6 the results with label smoothing when there is label noise. We
observe the following. In the cost-based models, when LS = ϵ, increasing the noise rate decreases
the performance. However, compared to LS = 0, LS = ϵ models show better performance. Thus,
label smoothing brings robustness against label noise in cost-based models. In the coverage-based
models, when LS = ϵ, increasing the noise rate decreases the performance. However, label smooth-
ing worsens the performance when there is label noise. Thus, label noise is ineffective in handling
label noise in coverage-based models.

NodeCwR-Cost NodeCwR-Cost NodeCwR-Cov
(Coverage vs. Accuracy) d vs. 0− d− 1 Risk (Coverage vs. Accuracy)

C
or

a
Pu

bm
ed

C
ite

se
er

Figure 6: Effect of label noise on NodeCwR-Cost and NodeCwR-Cov in LS = ϵ setting. The actual
numbers can be seen in Tables 3, 4, 5, and 6 in Appendix A and B.

5 CONCLUSION

We proposed a foundational model for node classification, which can abstain from making a predic-
tion when uncertain. We set up abstention-based GAT architecture to learn node embeddings and
show the effectiveness of two abstention models for graphs, which can be highly useful in high-risk
applications. Our code implementation is added to the supplementary file.
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A EXPERIMENTAL RESULTS OF NCWR-COV ON NOISY LABELS WITH
LABEL SMOOTHING

Dataset Coverage Noise=0.1, LS=0 Noise=0.1, LS=0.5 Noise=0.2, LS=0 Noise=0.2, LS=0.5

Cora

0.1 96.63± 2.387 94.75± 3.196 92.75± 2.55 93.12± 1.959
0.2 95.44± 1.841 93.56± 2.597 91.44± 3.51 90.88± 3.091
0.3 93.96± 2.229 91.96± 2.312 89.87± 3.06 88.66± 3.436
0.4 92.28± 2.627 90.94± 1.898 88.59± 3.362 86.97± 3.687
0.5 90.65± 2.463 89.9± 1.317 86.17± 3.152 85.38± 3.777
0.6 88.52± 2.837 87.9± 1.095 83.43± 3.604 83.75± 3.411
0.7 86.36± 2.344 86.41± 1.354 80.54± 3.232 81.01± 3.299
0.8 84.12± 2.167 84.25± 1.501 78.15± 3.247 78.2± 2.909
0.9 81.89± 2.071 81.9± 2.059 75.22± 2.906 74.9± 2.943

Pubmed

0.1 88± 8.92 84.6± 4.93 81.4± 7.67 81.2± 5.76
0.2 74.9± 12.03 80.8± 15.09 82.8± 9.83 70.3± 8.93
0.3 84.1± 3.88 80.3± 7.07 81.1± 2.9 77.2± 3.95
0.4 82.3± 3.97 77.5± 4.55 74.4± 5.5 74.5± 2.89
0.5 79.8± 1.82 79.9± 2.84 66.8± 4.22 74.8± 4.71
0.6 77.6± 2.1 76.8± 3.62 75.4± 5.63 71.5± 5.55
0.7 78.5± 1.88 78.6± 2.87 69.7± 3.43 70.7± 4.86
0.8 75.8± 3.37 74.9± 2.06 70.8± 3.76 70.1± 3.9
0.9 74± 1.83 73.6± 1.71 70.6± 1.39 70.5± 4.27

Citeseer

0.1 79.8± 8.14 86± 6.65 69.8± 24.56 75.5± 7.11
0.2 74.9± 14.26 83.3± 2.97 77.2± 4.47 76.8± 5.83
0.3 83.9± 3.86 83± 4.15 68.1± 5.17 70.7± 6.68
0.4 79.6± 2.36 76.9± 5.33 76.3± 2.63 71.4± 4.71
0.5 76± 2.35 71.9± 7.83 67.7± 5.51 68.1± 4.39
0.6 70.7± 2.4 74.6± 2.01 70.9± 3.77 68.3± 3.78
0.7 70.4± 2.86 70.3± 4.42 66.4± 4.13 63.2± 8.25
0.8 68.8± 3.07 69.2± 4.08 65.3± 3.12 67± 2.3
0.9 68.5± 3.47 68.1± 2.6 64.1± 3.09 66.9± 4.89

Table 3: Accuracy and Coverage of NCwR-Cov on noisy labels with Label Smoothing.
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B EXPERIMENTAL RESULTS OF NCWR-COST WITH LABEL SMOOTHING

Noise rate=0
LS=0 LS=0.5

d Acc. on
Unrejected

Coverage 0-d-1 Risk Acc. on
Unrejected

Coverage 0-d-1 Risk

C
or

a

0.1 97.5± 0.48 12.1 ± 0.95 0.091 ± 0.001 98.5± 1.52 5.5± 0.97 0.095± 0.001
0.15 97.3± 0.42 15.2 ± 1.29 0.131 ± 0.002 97± 1.03 6.8± 0.74 0.142± 0.001
0.2 97.5± 0.47 17.1 ± 1.6 0.17 ± 0.003 98.1± 0.68 10.7± 1.14 0.181± 0.003
0.25 97.2± 0.79 21.5 ± 2.31 0.203 ± 0.004 97.7± 0.38 15± 0.68 0.216± 0.002
0.3 97.5± 0.68 23.8 ± 1.75 0.235 ± 0.005 97.6± 0.38 18.8± 2.41 0.248± 0.007
0.35 97.2± 0.18 27.8 ± 1.73 0.26 ± 0.005 98± 0.12 26.3± 2.42 0.263± 0.008
0.4 96.6± 0.62 32.2 ± 0.91 0.282 ± 0.004 98.1± 0.21 30.9± 2.09 0.283± 0.008
0.45 96.2± 0.37 37.2± 2.36 0.297± 0.01 97.6± 0.59 38.2 ± 2.01 0.287 ± 0.007
0.5 95.8± 0.23 42.6± 1.88 0.305± 0.009 96.6± 0.39 45.9 ± 1.53 0.286 ± 0.007
0.55 95.4± 0.18 47.5± 1.12 0.311± 0.005 95.2± 0.51 54.6 ± 1.74 0.276 ± 0.007
0.6 95± 0.49 53.1± 1.07 0.308± 0.006 94.1± 0.55 61 ± 0.4 0.27 ± 0.003
0.65 94.2± 0.21 59.4± 1.87 0.298± 0.01 92.2± 0.73 70.6 ± 1.49 0.246 ± 0.005
0.7 92.8± 0.55 66.3± 1.81 0.283± 0.009 90.2± 0.52 80.4 ± 0.82 0.216 ± 0.006
0.75 91.5± 0.39 74.3± 0.87 0.256± 0.005 86.8± 0.61 91.1 ± 1.05 0.187 ± 0.008
0.8 90.1± 0.51 83.3± 0.68 0.216± 0.008 84.6± 0.42 98 ± 0.34 0.167 ± 0.003
0.85 87.2± 0.78 90.5± 1.11 0.196± 0.003 83.7± 0.7 100 ± 0.04 0.163 ± 0.007
1 82.4 ± 0.42 100 0.176 ± 0.004 82.2 ± 0.4 100 0.178 ± 0.004

Pu
bm

ed

0.1 97.4± 1.86 8.6 ± 3.12 0.094 ± 0.001 100 0.6± 0.25 0.099
0.15 98.6± 1.4 8.3 ± 2.79 0.139 ± 0.003 100 1± 0.79 0.148± 0.001
0.2 97.7± 2.49 12.9 ± 4.52 0.178 ± 0.005 98.8± 2.63 1.5± 0.47 0.197± 0.001
0.25 95.5± 1.21 15.9 ± 2.07 0.218 ± 0.003 96.1± 3.05 4.8± 0.9 0.24± 0.003
0.3 93.5± 1.2 21.9 ± 2.77 0.249 ± 0.007 95.8± 1.62 7.9± 3.08 0.28± 0.008
0.35 93.2± 1.8 23.9 ± 4.89 0.283 ± 0.011 94.7± 2.69 13.5± 3.03 0.31± 0.008
0.4 92.4± 0.66 27 ± 5.33 0.313 ± 0.016 93.1± 0.95 24.2± 1.22 0.32± 0.005
0.45 90± 1.08 37.8 ± 2.91 0.318 ± 0.007 90.7± 1.03 35.6± 1.91 0.323± 0.008
0.5 88.9± 0.92 49.3± 5.48 0.309 ± 0.018 87.7± 0.94 50.2 ± 3.36 0.311± 0.01
0.55 87.3± 1.77 55.9± 6.91 0.314± 0.02 84.6± 0.67 66.1 ± 4.13 0.288 ± 0.017
0.6 84.6± 0.87 67.8± 4.81 0.298± 0.019 81.2± 0.29 84.4 ± 3.5 0.252 ± 0.015
0.65 83.5± 0.36 73.2± 1.67 0.295± 0.008 78± 1.14 95.9 ± 0.47 0.238 ± 0.01
1 77.1 ± 0.29 100 0.229 ± 0.003 77.2 ± 0.94 100 0.228 ± 0.009

C
ite

se
er

0.1 - 0 0.1 - 0 0.1
0.15 100 0.6 ± 0.42 0.149 ± 0.001 - 0 0.15
0.2 100 0.3 ± 0.17 0.199 - 0 0.2
0.25 98.9± 2.49 0.8 ± 0.67 0.248 ± 0.001 - 0 0.25
0.3 99.2± 1.72 1.2 ± 0.85 0.297 ± 0.002 - 0 0.3
0.35 95.3± 2.91 3.3 ± 0.79 0.34 ± 0.002 - 0 0.35
0.4 93.7± 2.26 4.3 ± 1.18 0.386 ± 0.004 - 0 0.4
0.45 93.6± 3.76 6.9 ± 1.74 0.424 ± 0.005 97.5± 5.59 0.6± 0.25 0.448± 0.001
0.5 91.6± 2.23 9.7 ± 1.7 0.46 ± 0.005 95.9± 2.53 1.9± 0.52 0.491± 0.002
0.55 90.9± 1.33 14 ± 1.28 0.486 ± 0.007 97.1± 1.77 4.8± 0.49 0.525± 0.003
0.6 87.9± 0.88 17.6 ± 1.64 0.516 ± 0.008 91.1± 2.4 11.7± 3.74 0.54± 0.018
0.65 86.7± 0.7 24.7 ± 1.58 0.523 ± 0.007 87.3± 1.32 22.4± 1.68 0.533± 0.01
0.7 85.5± 0.95 33.5± 3.72 0.514± 0.021 84.8± 1.09 36.1 ± 0.98 0.502 ± 0.007
0.75 83.2± 0.96 43.6± 2.13 0.496± 0.011 81.6± 1.58 59 ± 2.21 0.416 ± 0.02
0.8 79.5± 0.72 57.1± 2.1 0.46± 0.015 76.3± 1.33 87.2 ± 1.55 0.309 ± 0.01
0.83 75.8± 1.61 79.2± 2.74 0.368± 0.016 71.2± 1.3 99.8 ± 0.13 0.289 ± 0.013
1 70.3 ± 0.5 100 0.297 ± 0.005 70.8 ± 0.44 100 0.292± 0.004

Table 4: Performance results of NodeCwR-Cost with LS = 0 and LS = ϵ.
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Noise rate=0.1
LS=0 LS=0.5

d Acc. on
Unrejected

Coverage 0-d-1 Risk Acc. on
Unrejected

Coverage 0-d-1 Risk

C
or

a

0.1 95.8 ± 1.27 9.2 ± 1.6 0.095 ± 0.001 97.6 ± 2.16 3.4 ± 1.02 0.097 ± 0.001
0.15 96.6 ± 1.45 10.9 ± 0.72 0.137 ± 0.002 98.2 ± 1.07 4.6 ± 1.04 0.144 ± 0.001
0.2 94.9 ± 1.96 13.5 ± 1.85 0.18 ± 0.003 97.8 ± 0.9 8.1 ± 1.04 0.186 ± 0.002
0.25 96.1 ± 1.09 17.1 ± 1.32 0.214 ± 0.002 97 ± 1.46 9.7 ± 2.22 0.229 ± 0.005
0.3 95.6 ± 0.68 20.3 ± 1.63 0.248 ± 0.005 96.9 ± 0.53 14.1 ± 1.29 0.262 ± 0.003
0.35 96.7 ± 1.33 20.4 ± 1.91 0.285 ± 0.007 97.4 ± 0.66 19.6 ± 2.19 0.286 ± 0.007
0.4 96.1 ± 0.88 25.7 ± 2.11 0.307 ± 0.008 97.1 ± 0.62 24.2 ± 4 0.31 ± 0.014
0.45 95.2 ± 0.82 31 ± 1.78 0.326 ± 0.005 96.4 ± 0.95 29.4 ± 2.55 0.328 ± 0.01
0.5 94.9 ± 1.2 37.3 ± 4.04 0.333 ± 0.02 96.7 ± 0.53 38.3 ± 2.69 0.321 ± 0.014
0.55 93.6 ± 0.84 39.7 ± 3.91 0.357 ± 0.021 95 ± 0.85 48 ± 4.89 0.31 ± 0.025
0.6 93.1 ± 1.91 49 ± 3.61 0.34 ± 0.022 94 ± 0.63 55.1 ± 2.34 0.302 ± 0.012
0.65 93.1 ± 1.78 53.6 ± 1.72 0.339 ± 0.01 91.8 ± 1.2 66.9 ± 2.01 0.27 ± 0.015
0.7 91.4 ± 1.11 61.9 ± 4.48 0.32 ± 0.023 88.9 ± 1.11 77.9 ± 1.99 0.241 ± 0.014
0.75 88 ± 1.04 71.6 ± 3.93 0.299 ± 0.03 85 ± 1.4 88.3 ± 1.47 0.22 ± 0.016
0.8 88 ± 1.46 80.8 ±1.62 0.25 ± 0.015 81.7 ± 2.35 98.2 ± 0.82 0.194 ± 0.02
0.85 83.8 ± 1.78 91.2 ±0.83 0.223 0± 0.011 80.1 ± 2.21 100 0.199 ± 0.022
1 77.3 ± 0.98 100 0.227 ± 0.01 77.5 ± 5.74 100 0.225 ± 0.058

Pu
bm

ed

0.1 96 ± 3.33 4 ± 1.74 0.098 ± 0.001 100 0.4 ± 0.26 0.1
0.15 91.2 ± 3.14 7.5 ± 2.37 0.146 ± 0.002 89.6 ± 12.2 1 ± 0.6 0.15 ± 0.001
0.2 91.2 ± 0.77 8.2 ± 1.65 0.191 ± 0.002 93.7 ± 7.95 2.1 ± 1.05 0.198 ± 0.002
0.25 93.4 ± 2.82 12 ± 4.25 0.228 ± 0.008 93.5 ± 2.38 5.3 ± 1.32 0.24 ± 0.003
0.3 91.9 ± 2.11 15.5 ± 3.95 0.267 ± 0.007 94 ± 2.57 7.1 ± 1.99 0.283 ± 0.003
0.35 88.9 ± 2.75 18.9 ± 9.44 0.306 ± 0.018 91.2 ± 2.46 11.7 ± 1.97 0.319 ± 0.007
0.4 86.4 ± 2.28 30 ± 4.1 0.321 ± 0.011 90.7 ± 1.7 19.5 ± 5.34 0.34 ± 0.017
0.45 84.7 ± 2.78 34.3 ± 2.33 0.349 ± 0.009 84 ± 4.36 28.6 ± 2.89 0.368 ± 0.01
0.5 85.6 ± 2.43 42.5 ± 4.29 0.349 ± 0.017 85.1 ± 2.21 46.2 ± 4.52 0.339 ± 0.009
0.55 82 ± 2.29 53.2 ± 5.56 0.354 ± 0.017 82.6 ± 2.3 62.2 ± 5.59 0.316 ± 0.03
0.6 80.4 ± 1.48 58.5 ± 4.24 0.363 ± 0.025 76.3 ± 2.32 81.5 ± 4.47 0.303 ± 0.032
0.65 77.1 ± 3.33 72.6 ± 7.61 0.346 ± 0.023 74.2 ± 3.67 94.3 ± 2.38 0.279 ± 0.04
1 70.3 ± 1.18 100 0.297 ± 0.012 73.2 ± 3.19 100 0.268 ± 0.032

C
ite

se
er

0.1 - - - - - -
0.15 - - - - - -
0.2 96.4± 8.13 0.6 ± 0.37 0.199 ±0.001 - - -
0.25 93.6 ±6.3 0.8 ± 0.34 0.248 ±0.001 - - -
0.3 93.5 ±6.15 0.9 ± 0.54 0.298± 0.001 - - -
0.35 91.5± 5.61 2.1 ± 1.03 0.345 ±0.003 - - -
0.4 87 ± 6.59 2.9 ± 1 0.393± 0.001 - - -
0.45 86.1± 7.48 4.4 ± 0.43 0.436± 0.004 93.3± 14.9 0.8 ± 0.73 0.447 ±0.004
0.5 87.7± 2.65 8.3 ± 2.26 0.469± 0.007 88.8± 5.2 ± 1.4 0.66 0.494± 0.003
0.55 86.7 ±6.75 11.4 ±3.82 0.501 ±0.02 87.9 ±3.13 3.8 ± 1.26 0.533 ±0.006
0.6 83.3 ±5.14 16.5 ±0.95 0.528± 0.011 88.3 ±1.56 9.4 ± 1.18 0.554 ±0.006
0.65 85.1± 1.91 22.4 ±2.87 0.538 ±0.017 87.1 ±0.93 19.3 ±2.72 0.549± 0.014
0.7 80.7± 1.96 29.2 ±2.54 0.551± 0.017 82.7± 3.4 31.1± 4.08 0.536± 0.021
0.75 77.4± 1.94 39.6± 2.14 0.542 ±0.014 82.1 ±2.28 55.1 ±4.71 0.435± 0.034
0.8 76.2± 2.11 56.3 ±3.56 0.484± 0.027 73.1± 2.55 85.1± 2.74 0.349± 0.016
0.83 72.8 ±1.27 78.8 ±5.09 0.395 ±0.038 68.6± 2.39 99.8± 0.25 0.315± 0.024
1 66.8 ±2.35 100 ± 0.332± 0.0235 67.4 ±2.25 100± 0.326 ±0.023

Table 5: Performance results of NodeCwR-Cost with LS = 0 and LS = ϵ on noise 0.1
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Noise rate=0.2
LS=0 LS=0.5

d Acc. on
Unrejected

Coverage 0-d-1 Risk Acc. on
Unrejected

Coverage 0-d-1 Risk

C
or

a

0.1 95.2 ±1.68 6.7 ±2.05 0.096 ±0.002 96.6 ±4.08 2.3 ±0.87 0.098 ±0.001
0.15 93.5 ±2.19 7.3 ±0.69 0.144 ±0.001 96.7 ±3.15 2.5 ±0.58 0.147 ±0.001
0.2 94.3 ±1.64 9.8 ±1.42 0.186 ±0.002 94.5 ±4.61 4.2 ±1.6 0.193 ±0.004
0.25 95.1 ±3.1 14 ±1.53 0.222 ±0.005 95.5 ±3.67 7.1 ±1.26 0.235 ±0.004
0.3 94.8 ±0.95 14.5 ±2.76 0.264 ±0.007 96.5 ±1.68 9.7 ±2.02 0.274 ±0.007
0.35 93.3 ±1.71 16.7 ±1.21 0.303 ±0.004 96.4 ±1.09 14.2 ±3.35 0.305 ±0.012
0.4 93.9 ±1.24 22.6 ±2.3 0.323 ±0.010 96.1 ±1 18.6 ±1.9 0.333 ±0.007
0.45 92.4 ±1.66 25.9 ±2.69 0.353 ±0.010 97.1 ±0.89 25.5 ±2.8 0.343 ±0.01
0.5 94.1 ±0.56 30.1 ±3.19 0.367 ±0.015 95.1 ±1.13 28.8 ±5.19 0.37 ±0.03
0.55 90.8 ±2.26 35.3 ±4.13 0.388 ±0.023 95 ±1.29 39.2 ±3.37 0.354 ±0.015
0.6 89.8 ±1.74 41.9 ±3.4 0.391 ±0.017 92.1 ±0.93 50.8 ±3.72 0.336 ±0.012
0.65 89.4 ±2.5 48.6 ±4.73 0.386 ±0.029 90.3 ±1.93 61.4 ±2.34 0.31 ±0.02
0.7 88.6 ±2.48 60.7 ±4.5 0.345 ±0.012 87.7 ±1.16 73.8 ±3.51 0.274 ±0.019
0.75 87.2 ±2.45 67.2 ±4.52 0.333 ±0.017 82.1 ±1.97 87.8 ±3.31 0.249 ±0.012
0.8 82.3 ±2.59 79 ±1.6 0.308 ±0.027 79.1 ±1.59 97.4 ±0.33 0.224 ±0.015
0.85 80.3 ±2.94 90.6 ±2.04 0.259 ±0.023 77 ±3.17 100 ±0.04 0.231 ±0.032
1 71.9 ±2.36 100 0.281 ±0.023 73.6 ±3.1 100 0.264 ±0.031

Pu
bm

ed

0.1 84.8 ±8.27 3.5 ±1.07 0.101 ±0.002 92.2 ±14.4 0.7 ±0.64 0.1 ±0.001
0.15 87.3 ±3.05 6.7 ±3.39 0.149 ±0.002 94.5 ±12.2 0.9 ±0.76 0.149 ±0.002
0.2 85.2 ±4.61 8.5 ±3.41 0.196 ±0.004 92.2 ±7.54 1.5 ±0.65 0.198 ±0.001
0.25 87.2 ±2.19 9.8 ±3.32 0.238 ±0.006 84.2 ±11.8 3.5 ±3.51 0.248 ±0.003
0.3 90.2 ±5.48 12.8 ±2.83 0.275 ±0.005 90.2 ±4.54 5.8 ±0.94 0.288 ±0.004
0.35 84.7 ±2.68 17 ±3.63 0.317 ±0.008 89.9 ±3.37 11.1 ±2.87 0.323 ±0.007
0.4 84.8 ±4.75 20.8 ±5.36 0.349 ±0.013 80.4 ±8.24 16.3 ±3.08 0.367 ±0.015
0.45 78.8 ±6.32 28.1 ±5.13 0.384 ±0.02 83.8 ±4.15 23.2 ±5.02 0.384 ±0.016
0.5 80 ±3.25 34.4 ±8.37 0.396 ±0.032 80.7 ±1.49 39.7 ±3.03 0.378 ±0.009
0.55 79.2 ±4.55 44.3 ±6.56 0.399 ±0.029 76.2 ±7.03 58.3 ±4.75 0.369 ±0.039
0.6 75.5 ±3.39 59.5 ±5.98 0.389 ±0.029 72.5 ±2.77 68.6 ±10.42 0.377 ±0.04
0.65 73.3 ±6.09 65.5 ±2.91 0.399 ±0.042 71.1 ±3.93 90 ±5 0.326 ±0.034
1 64.1 ±4.95 100 ±0 0.359 ±0.05 65.5 ±3.74 100 0 0.345 ±0.037

C
ite

se
er

0.1 - - - - - -
0.15 - - - - - -
0.2 100 0.4 ±0.2 0.199 ±0.001 - - -
0.25 100 0.5 ±0.15 0.249 ±0.001 - - -
0.3 91 ±14.51 0.9 ±0.6 0.299 ±0.001 - - -
0.35 89.6 ±8.95 1.9 ±0.95 0.345 ±0.003 - - -
0.4 82.5 ±5.38 3.5 ±1.21 0.392 ±0.004 - - -
0.45 79 ±10.23 4 ±1.01 0.44 ±0.006 91.2 ±11.8 0.4 ±0.4 0.449 ±0.001
0.5 75.9± 2.53 5.6 ±1 0.485 ±0.003 86.2 ±15.2 1.7 ±1.6 0.493 ±0.007
0.55 81.3 ±2.11 9.8 ±2.63 0.514 ±0.01 88.2 ±6.01 4.6 ±2.5 0.531 ±0.008
0.6 77 ±7.54 13.2 ±4.36 0.549 ±0.026 77.6 ±6.38 8.2 ±0.86 0.569 ±0.007
0.65 80.8 ±2.35 21.2 ±3.53 0.553 ±0.019 80.3 ±2.37 12.4 ±4.05 0.593 ±0.019
0.7 77 ±4.45 24.9 ±2.95 0.582 ±0.022 81.9 ±2.72 27.3 ±5.84 0.557 ±0.038
0.75 75.9 ±2.03 35 ±6.5 0.572 ±0.033 69.3 ±9 49.1 ±5.48 0.532 ±0.05
0.8 71.2 ±3.87 52.5 ±2.85 0.532 ±0.014 69.1 ±5.66 81.4 ±3.46 0.402 ±0.034
0.83 67.3 ±6.49 77.8 ±3.85 0.445 ±0.035 64.7 ±3.79 99.9 ±0.19 0.353 ±0.038
1 59 ±4.09 100 0.41 ±0.041 63.7 ±5.07 100 0.373 ±0.0507

Table 6: Performance results of NodeCwR-Cost with LS = 0 and LS = ϵ and noise 0.2
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