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ABSTRACT

This paper focuses on the challenge of machine unlearning, aiming to remove the
influence of specific training data on machine learning models. Traditionally, the
development of unlearning algorithms runs parallel with that of membership infer-
ence attacks (MIA), a type of privacy threat to determine whether a data instance
was used for training. Recognizing this interplay, we propose a game-theoretic
framework that integrates the attacks into the design of unlearning algorithms. We
model the unlearning problem as a Stackelberg game, introducing a two-player
dynamic: a defender striving to unlearn specific training data from a model, and
an attacker employing MIAs to detect the traces of the data. Adopting this adver-
sarial perspective allows the utilization of new attack advancements, facilitating
the design of unlearning algorithms. Our framework stands out in two ways. First,
it takes an adversarial approach and proactively incorporates the attacks into the
design of unlearning algorithms. Secondly, it utilizes implicit differentiation to
obtain the gradients that limit the attacker’s success, thus benefiting the process
of unlearning. We present empirical results to validate the effectiveness of the
proposed framework and algorithm.

1 INTRODUCTION

The enactment of the General Data Protection Regulation (GDPR) by the EU has elevated the im-
portance of deleting user data from machine learning models to a critical level. This process is
distinctly more intricate compared to removing data from conventional databases. Erasing the data’s
imprint from a machine learning model necessitates an approach to negate the data’s influence on
the model comprehensively while maintaining the utility and accuracy of the model.

Beyond this, establishing the true extent to which data influence has been erased from the model
poses a substantial challenge (Song & Mittal, [2021). Numerous methods and metrics have been
advanced to validate the thoroughness of data removal, each with varying degrees of reliability and
efficacy (Guo et al.l 2020; [Thud: et all 2022). Nonetheless, adopting an adversarial perspective
presents a novel and potentially more robust methodology. In this approach, the focus shifts to
simulating possible attacks aimed at ascertaining the data’s presence during the training phase of the
model. If, within this adversarial framework, an attacker fails to distinguish whether a data point
was part of the training set or merely a typical instance of unseen data, it can be construed that the
influence of the data point on the model has been successfully expunged.

We leverage advancements from the burgeoning domain of Membership Inference Attacks (MIA) to
simulate an adversary (Shokri et al.| |2017), therein framing a Stackelberg game (SG) between a de-
fender, tasked with orchestrating the unlearning process, and an attacker deploying MIA to deduce
the membership of data in the model’s training set. The key idea is for the defender to adjust the un-
learned model by utilizing gradient feedbacks from the attacker’s optimization problem, moving the
model in a direction that limits the effectiveness of the attack, thus achieving the goal of unlearning.
Specifically, we formulate the MIA as a utility-maximizing problem, where the utility measures the
remaining influence of a data point in the unlearned model. The defender’s loss function is defined
as a combination of the degradation of model performance and the attacker’s utility. We harness the
development from implicit differentiation and design a gradient-based algorithm to solve the game,
allowing for the seamless integration of the game into existing end-to-end pipelines (Gould et al.,
20165 |Amos & Kolter, 2017;|Agrawal et al., 2019).
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The contributions of the present paper are summarized below

1. We propose to evaluate the effectiveness of an unlearning algorithm from an adversarial
perspective, inspiring us to develop a game theory framework that enables utilizing ad-
vanced MIAs for enhancing the unlearning process.

2. Additionally, we design a gradient-based solution method to solve the game by leveraging
implicit differentiation, making it amenable to end-to-end pipelines.

3. Finally, we support the efficacy of the game and the solution method with empirical results.

2 RELATED WORK

The first related thread is machine unlearning, which focuses on removing the influence of a subset
of data (referred to as the forget set) from a machine learning model. The unlearning approaches are
divided into two classes. The first one is exact unlearning, which involves retraining a model on data
excluding the forget set. The second one is approximate unlearning. The ideas behind approximate
unlearning are twofold. The first is to track the influence of each training data on the updates
to a model’s weights, allowing for a rollback during unlearning (Bourtoule et al., |2021; |Graves
et al., 2021} |Chen et al., 2022)). The second is designing a loss function to capture the objectives
of unlearning (e.g., removing the influence of the forget set while maintaining model utility) and
modifying the model weights to minimize the loss (Guo et al., [2020; |Golatkar et al., |2020; |[zzo
et al.} 2021; Warnecke et al., 2023} [Chundawat et al., 2023} Jia et al., 2023)). The method proposed
in this paper aligns with the second idea. Specifically, we design a loss function that simulates
an attacker who evaluates the effectiveness of unlearning dynamically, enabling more informative
updates to the model weights. Besides algorithmic developments, [Jagielski et al.|(2023) proposes
a measure to quantify the forgetting during training; [Thudi et al.[ (2022) take a formal analysis on
the definition of approximation unlearning and propose methods to verify exact unlearning. Due to
space constraint, it is not feasible to provide a comprehensive review of all related studies. We refer
the readers to the survey article by Nguyen et al.[(2022) for a more exhaustive discussion.

The second related line is membership inference attacks (MIA). [Shokri et al.| (2017)) introduced
MIAs, showing the privacy risks of machine learning models. Subsequently, different attack meth-
ods are proposed (Chen et al., 2021; |Carlini et al., 2022; |Ye et al., 2022} Bertran et al., [2023)).
On the other hand, |Carlini et al.| (2022)) show that existing criteria to evaluate MIAs are limited in
capturing real-world scenarios and propose more practical evaluation metrics. In addition, compre-
hensive evaluation frameworks and tools are developed (Murakonda & Shokri, 2020;|Song & Mittal,
2021)). Finally, Nasr et al.| (2018]) propose a defense mechanism to counter MIAs from an adversarial
perspective. Our method shares conceptual similarities with this work, but there are several key dif-
ferences. Our primary focus is on machine unlearning problems, while their focus is on defending
against MIAs. This means that our framework needs to support multiple types of MIAs to provide
a comprehensive evaluation of unlearning, including both neural network (NN)-based and non-NN
based attacks. However, their framework only supports NN-based attacks. Furthermore, NN-based
attacks are generally not suitable for our runtime requirements; indeed, if unlearning takes longer
than retraining, we would opt for retraining instead.

3 PRELIMINARIES

Machine Unlearning. Let D = {(z;,y;) | x; € X, y; € YV} be alabeled dataset, where X (resp. )V)
denote the feature (resp. label) space. The training, validation, and test sets are Dy, Dyq1, and Dy,
respectively. A machine learning (ML) algorithm is denoted by .4, mapping from the joint space of
features and labels X’ x ) to a hypothesis class. We refer to the model trained on the entire training

set as the original model, i.e., 8, = A(Dy,). Let Dy = {(I;, y}) ?:1 C Dy, represent a forget set.
The goal of machine unlearning is to remove the influence of the forget set from the original model,
resulting in an unlearned model 6,, (i.e., 8, = U(0,)) where U represents a machine unlearning
algorithm. There are typically two settings in machine unlearning that differ in the sampling of
the forget set. One is class-wise, where the forget instances x ¢ are sampled from a single class.

The other is randomly sampled, where the instances are uniformly sampled at random from all the
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classes. We focus on the latter setting, which is based on real-world experiments that show forget
requests rarely come from a single category (Bertram et al.,[2019).

The unlearning algorithm may have access to other inputs (e.g., the validation set D,,,;) depending
on the problem settings. Let D, be the retain set, the subset of the training data excluding the forget
set, i.e., D, = Dy, \ Dy. The gold standard of machine unlearning is 6, = A(D,.), a model trained
on the retain set, excluding the influence of D ;. We use 0, as a gold standard for comparing machine
unlearning algorithms. Retraining is expensive, especially for deep neural networks. This motivates
the development of efficient machine unlearning algorithms that satisfy the following conditions:
1) the influence of D does not exist in the unlearned model, 2) the performance of the unlearned
model is comparable to the performance of the original model, and 3) computational costs (e.g.,
running time) are cheaper than those of retraining.

Membership Inference Attacks. A membership inference attack (MIA) aims to determine whether
a data instance was used to train an ML model (Shokri et al.L[2017). An instance that is in the training
set is called a member, while one that is not in the training set is called a non-member. Formally,
given a target model 6, an attacker infers the membership of an instance (x, y) based on the model’s
outputs (i.e., #(x)) and the label. The attacker does not have access to either the training data or the
model parameters of the target model. Instead, he gathers proxy training and test sets and learns a

model 6 to mimic the behavior of the target model. Using the predictions of 6 on its own training
and test data, the attacker acquires a labeled (member v.s. non-member) dataset. and then uses the
labeled dataset to train a binary classifier for determining the membership of an instance.

We adapt the idea of MIA for determining whether the influence of the forget set still exists in an

unlearned model 6,,. Define an auditing set Dy, = {(sjc7 1), (s,,0) 4_1, where s} (resp. §{€)

represents the outputs of the forget (resp. test) instances from the unlearned model, that is, s? =

6. (x%). Here, the test instances serve as an empirical distribution for the unseen data. The outputs
can be scalars, such as the cross-entropy losses; alternatively, they can be the vectors of probabilities
across the classes (Shokri et al.,[2017; |Carlini et al.,2022). The labels “1” and “0” indicate members
and non-members, respectively. The MIA reduces to a binary classification task on Dy, , aiming to
differentiate the forget instances from the test ones based on the outputs.

4 SETUPS FOR THE GAME FORMULATION

We model the machine unlearning problem as a Stackelberg game (SG) between a defender who
deploys models as services, and an attacker who launches MIAs against the model. The key idea is
to assess the effectiveness of an unlearning algorithm by measuring whether the attack succeeds. In
particular, the unlearning is considered effective when the attacker is unable to differentiate between
the forget set from the test set based on the outputs from the unlearned model. The SG is played in
a sequential manner: the defender first deploys an unlearned model, then the attacker launches an
MIA in response. Importantly, the advantage of first-mover endows the defender with the power to
make a decision knowing that the attacker will play a best-response (i.e., launching a strong attack).
We now formally define the models for both players.

4.1 THE ATTACKER’S MODEL

We begin by defining the attacker’s model. Suppose the defender has deployed an unlearned model
0,.. Following standard setup (Shokri et al.| 2017;|Song & Mittall 2021)), we assume that the attacker
has blackbox access to the model, allowing him to query the model, e.g., submitting data to the
model and collecting the outputs. The attacker’s goal is to determine whether the influence of the
forget set still exists in the model based on the querying outputs. To achieve this, the attacker
constructs an auditing set Dy, , consisting of the model’s outputs on the forget and test instances
(see Section [3]for details about the auditing set). The attacker assesses the distinctiveness of the two
sets with a binary classifier trained on the auditing set through cross validation.

Let U, be the attacker’s utility function, quantifying the distinctiveness of the forget and test in-
stances. Intuitively, a large U, indicates that the outputs of the forget instances are highly different
from the outputs of the test instances, a strong evidence that the influence of the forget set still exists
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in the unlearned model. We formulate the attacker’s model as the following optimization problem
Ua(eu) _ M( val 9 )

1
where 6, € B(0, ) = argmaxg ¢y, V(Dy;0.). M

The auditing set Dg is divided into the training set Dgr and the validation set D”‘” The constraint
encodes the process of learning a binary classifier; the function V represents the learnlng objective,
e.g., the log-likelihood of the training data. The set 5(6,,) are the attacker’s best-responses to the
defender’s decision—the unlearned model 6,,. The function M captures the evaluation of the binary
classifier on the validation data. The definition of M is flexible, One can use the accuracy to quan-
tify the average performance of the classifier, where true positives are weighted equally with true
negatives (Shokri et al.| [2017; [Song & Mittal, [2021). Alternatively, an average measure may not
capture real privacy threats. Instead, ROC curve or true positive rates at specified false positive rates
are employed for the evaluation |Carlini et al.[(2022).

The attacker’s model exhibits a high degree of generality, unifying several advanced MIAs in
the literature; this includes neural network-based attacks proposed by Nasr et al.| (2018)), quan-
tile regression-based attacks from Bertram et al.| (2019), and prediction confidence-based attacks
by [Song & Mittal| (2021)), etc. Under formulation of (I)), the mentioned attacks differ in 1) the hy-
pothesis class H, of the binary classifier and 2) the learning objective V. Notice the dependence
of the attacker’s best-response on 6,, (i.e., B(6,,)) arising from the defender’s first-mover advantage.
The defender utilizes this dependence to select an unlearned model that limits the attacker’s utility,
which we discuss next.

4.2 THE DEFENDER’S MODEL

Next, we define the defender’s model. Let C; represent the defender’s cost function, which encom-
passes two main objectives for unlearning. The first objective is to maintain the utility of the model,
ensuring that the unlearned model performs comparably (e.g., in terms of predictive power) to the
original model. To achieve this objective, we minimize a loss function L(D,;#,,) computed on the
retain set D, following the principles of empirical risk minimization. All regularization terms are
included in the loss function to simplify notation. The second objective focuses on eliminating the
influence of the forget set from the unlearned model 8,,. We approach this objective adversarially
by considering the attacker’s utility M (Dy,; 0,). In essence, a smaller value of the attacker’s utility
indicates that the forget set is harder to be distinguished from the test set, providing strong evidence
that the unlearning process is effective.

Formally, the defender’s optimization problem is to minimize the cost function below
Ca(0,) = L(D,;0,) 4+ a - M(Dy,;6,). 2)

The parameter o € R balances the loss L and the attacker’s utility M. Depending on the specific
setting, the cost function C; can be extended to incorporate additional objectives for unlearning. For
instance, one can specify that the unlearned model should perform poorly on the forget set (Graves
et al [2021)); this can be achieved by minimizing the likelihood of the forget set. Also, several
sparsity-promoting techniques have been shown helpful for unlearning (Jia et al.,2023); one way to
achieve this is by adding an ¢; regularization to the cost function.

4.3 THE STACKELBERG GAME

Now, with the defender and attacker models in place, we formally define the Stackelberg game (SG).
The SG is to solve the following bilevel optimization problem (Colson et al., 2007)

in L(D,;0,)+a-M(Dy ;6,
Jmin L ) +a - M(Do,;064) 3

st 0, € B(0y).

The hierarchical structure encodes the sequential order of the play, with the upper level correspond-
ing to the defender’s optimization problem and the lower level capturing the attacker’s best-response.
During the process of unlearning, the defender needs to proactively consider the attacker’s responses.
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Figure 1: The computational graph of the Stackelberg game. The top path represents a forward
passing with a standard loss function (e.g., the Cross-Entropy loss in green). The bottom path
represents solving and differentiating the attacker’s optimization problem by utilizing Differentiable
Optimization. The gradient Cy/d0,, is obtained by a standard forward-backward pass.

This requires selecting an unlearned model where the influence of the forget set is erased, or from
the attacker’s perspective, the forget instances are indistinguishable from the test ones.

One assumption of the SG is that if the forget set cannot be distinguished from the test set—in terms
of the effectiveness of an MIA—its influence is deemed eliminated from the unlearned model. We
justify this assumption from three angles. First, one common way to measure forgetfulness is by
assessing the accuracy of the unlearned model on the forget set (Graves et al.,[2021;|Chundawat et al.,
2023} Baumhauer et al., 2022). This approach is based on the observation that machine learning
models perform differently on training data compared to unseen data. However, it is important to
note that accuracy on the forget set does not necessarily correlate with forgetfulness. This is because
there are inherently difficult (or easy) instances that result in low (or high) accuracy regardless of
whether they were part of the training set (Carlini et al., 2022). Secondly, MIAs have been used to
study training data forgetting (Jagielski et al., [2023), demonstrating its utility in detecting residual
traces of a subset of data. Finally, from an adversarial perspective, if a sophisticated attack like an
MIA cannot differentiate the forget set from the test set, it is reasonable to expect that the influence
of the forget set has been removed.

We solve the SG using gradient-based methods, which allows for easy integration into end-to-end
training pipelines. One advantage is that there is no need to solve the attacker’s optimization problem
separately. Instead, we utilize Implicit Function Theorem to differentiate through the attacker’s
optimization and compute the gradient M /96,,. As aresult, the SG becomes a differentiable layer,
making it compatible with the standard paradigm of forward-backward computation. The solution
methods will be detailed in the next section.

5 OUR SOLUTION

In this section, we describe the algorithm for solving the Stackelberg game (SG). In general, it
is NP-hard to find an optimal solution (Conitzer & Sandholm), [2006). Therefore, our focus is on
efficient algorithms to find an approximate solution. The main technical challenge lies in computing
the gradient 9M /90,,, which requires differentiation through the attacker’s optimization problem.
This differentiation can be bypassed in some cases, e.g., when the defender’s hypothesis class is of
linear regressions (Tong et al., 2018). However, this is rarely applicable in our setting as our primary
focus is on deep neural networks.

Our solution is to utilize the implicit function theorem (Dontchev et al., [2009) and tools from Dif-
ferentiable Optimization (DO) to compute the gradient (Gould et al., [2016; |Amos & Kolter, 2017;
Agrawal et al.| |2019). The resulting solution is a gradient-based method, making the SG a differen-
tiable layer that is easily integratable into existing end-to-end pipelines.

We start by expanding the gradient of Cy w.r.t. 6, using the chain rule

0Cy _ OL(Dy:8) , OM(Dii'i0.) 26, 9D, @
0., 0., 90, oDt 00,

The gradient L /06, on the right-hand side can be easily computed using an automatic differen-
tiation tool like PyTorch (Paszke et al., 2017). In essence, the computation involves passing the
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D, through 6,, during the forward pass, computing the loss L, and obtaining the gradient in the
backward pass. The computational graph is illustrated in Figure[l| The second term on the right is
an expansion of M /90, using the chain rule. The gradient 9M /90, is obtained by performing a
standard forward-backward pass. Note that most commonly used metrics (e.g., the 0-1 loss, AUC,
recall, etc.) are non-differentiable. Therefore, when needed, we use a standard differentiable proxy
for M, e.g., using the logistic loss as a proxy for the non-differentiable 0-1 loss.

Computing 96,/ 8[?9“ requires differentiation through the attacker’s optimization problem. The
main challenge is the absence of an explicit analytical function that maps Dy, to 8,. However,

under certain regularity assumptions, one can derive an implicit mapping between Dy, and 6, based
on the optimality condition of the attacker’s optimization problem (Gould et al., 2016). A concrete
example is when the attacker’s optimization problem is convexﬂ In this case, the Karush-Kuhn-
Tucker conditions are expressed as a system of linear equations involving Dy, and 6,, i.e.,

f(Da,,0.) =0, (5)

where f encapsulates the stationarity conditions, the primal and dual feasibility conditions, and the
complementary slackness conditions (Boyd & Vandenberghe, [2004). For illustration purposes, a
concrete example of f for linear support vector machines is provided in We then utilize the
implicit function theorem to differentiate (3)) and obtain the gradient

Mo (0F(De,,00))  9f(Da,.0)
8Dy, 0Dy, 90,

(6)

We refer the readers to the lectures by |Gould| (2023) for details about differentiating through an
optimization problem with the implicit function theorem.

In practice, we capitalize on the tools from Differentiable Optimization (DO) to compute the above
gradient. Specifically, we describe the attacker’s optimization problem using a certain modeling
language, e.g., cvxpy (Diamond & Boyd,|2016); the optimization problem is parameterized by Dy,
and the corresponding optimal solution is 6,. Then, DO converts the description into a differentiable
layer, with the KKT conditions and the implicit differentiation implemented internally. Finally,
the differentiable layer is placed on top of the unlearned model 6,,, forming a computational path
from 6,, to 6,. An illustration of the gradient-based method is shown in Figure E} In particular,
the bottom path shows the process of differentiating through the attacker’s optimization problem.
The pseudocode is provided in Algorithm [I} The algorithm has time complexity O(n?), where
n represents the size of the attacker’s optimization problem (i.e., the number of variables and/or
constraints). The cubic dependence results from the matrix inversion in (6).

Algorithm 1 SG-Unlearn

I: Inpgt:'Drlef7Dtg and 0, ~10: 0, %DiffLayer(Dgi)
2: Initialize: ¢ = 0,60, = 0,, a scheduler on 7 1: M(D%;Ga)  Evaluate

3: While ¢ < epoch o oL ol

4§« 0 (x2), where (z2,) € D, 122 55, G Backward(M + L)
Zu 1 ) &

5 L(Dn0,,) < 1oy 225 CEG, w7) 13 G5t e+ B

6 7 O(a}). sl Ol (i) 14: il 9l —pt. gg;

7. Dgi + {(s]f, 1), (s1,,0) ;1.:1 15 i+11+1

8  AttOpt ¢+ Model (I) with cvxpy 16: End _

9: DiffLayer < DO (AttOpt) 17: Return: 0},

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUPS

We run experiments on CIFAR-10, CIFAR-100, and SVHN, three well-known image classification
datasets (Krizhevsky et al., [2009; Netzer et al.l 2011). For all experiments we use the ResNet-18

"This includes several state-of-the-art MIA (Bertran et al.| 2023} Song & Mittall |2021).
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architecture (He et al., 2016). We consider the setting where the forget set is randomly sampled from
the training set. For CIFAR-10 and CIFAR-100, the forget set consists of 10% of the training data;
for SVHN, the forget set is 5% of the training data. For all experiments, the attacker’s optimization
problem is instantiated as learning a linear support vector machine (SVM) to classify the forget
instances and the test ones.

We compare SG with the following baselines. For all methods, we use the SGD optimizer with
a weight decay of 5e-4 and a momentum of 0.9. Other hyperparameters are selected through the
validation set. Specifically, we create a new auditing set that includes the outputs of the forget set
and the validation set. For each unlearning method, we select the hyperparameters that maximize
the difference between the accuracy on the validation set and the MIA accuracy on the new auditing
set. Due to space limitations, the hyperparameters are listed in Table[d]in the appendix.

Retrain: The first baseline is retraining, where the unlearned model is obtained by training on the
retain set from scratch. We aim to develop unlearning algorithms so that the metrics they produce
are as closely aligned with those of the retraining as possible.

Fine-Tuning (FT): As the second baseline, FT continues to train the original model on the retain
set for a few epochs. This a standard baseline used in various prior research (Graves et al., 2021}
‘Warnecke et al., [2023)).

Gradient Ascent (GA): This baseline takes the original model as the starting point and runs a few
epochs of gradient ascent on the forget set D¢. The intuition is to disrupt the model’s generaliz-
ability on D (Graves et al., 2021).

Fisher Forgetting (FF): As the fourth baseline, FF assumes that the weights of the original model
0, are close to those of the retrained model 6,.. Then a step of Newton’s method is performed to
move , toward 6,. (Golatkar et al., [2020).

Influence Unlearning (IU): This baseline uses Influence Function to estimate the updates required
for a model’s weights as a result of removing the forget set from the training data (Izzo et al.l|2021;
Koh & Liang} 2017).

We evaluate SG and the baselines with the following metrics, which have been adopted in prior
studies (Bourtoule et al., [2021} Jagielski et al., 2023} Jia et al.| 2023} |(Chundawat et al., 2023). It is
important to note that the test accuracy is evaluated on a subset of the test data that is separate from
the one used for solving SG.

Retain accuracy and test accuracy: These two metrics are used to quantify model utility.

The accuracy, AUC and F1 score for MIA: These metrics quantify the effectiveness of unlearn-
ing, which are estimated on the auditing set using 10-fold cross validation. A good unlearning
algorithm should be close to random guessing in terms of the metrics.

Forget accuracy: This measures the accuracy of the unlearned model on the forget set. An effec-
tive unlearning algorithm should produce an unlearned model where the forget accuracy is close to
the test accuracy. Indeed, if the unlearned model has never seen the forget set, its performance on
this set should be consistent with that on the test set.

The absolute difference between the forget and test accuracy: This metric measures whether
the unlearned model performs consistently on the forget set and the test set.
Kolmogorov-Smirnov (KS) statistics: We collect the cross-entropy losses of the forget and test
instances from the unlearned model into the empirical distributions £ ¢ and L., respectively. Next,
we run a KS test to determine if the distributions can be differentiated from each other. The KS
statistic quantifies the differences between L ¢ and L;.; the p-value indicates whether the difference
is significant (Massey Jr, [1951).

Wasserstein distance: In addition to the KS statistics, we provide the Wasserstein distance be-
tween the empirical distributions of £ and L;.. This complements the KS statistics and evaluates
the unlearning performance in terms of the similarity between the losses.

6.2 EXPERIMENTAL RESULTS

The experimental results are presented in Table m Retraining is considered the gold standanﬂ
and the results that are closest to the results of retraining are highlighted in bold. SG achieves the
best performance for most of the metrics across the three datasets, demonstrating its effectiveness in

Notice that for retraining, the KS test cannot differentiate between the forget instances and the test instances
based on the cross-entropy losses as indicated by the large p-values.
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unlearning. Specifically, the KS statistic of SG is consistently smaller than that of the other baselines,
and there is an order of magnitude difference between the statistics on CIFAR-10. Intuitively, ML
models behave differently on training data compared to unseen data, and this difference is usually
reflected in the corresponding losses (Carlini et al.,2022). The small KS statistic of SG implies that
the forget and test instances exhibit greater similarity in terms of the model’s behavior, although there
is still a discernible difference between the losses. We provide a visualization of the cross-entropy
losses for the forget and test instances from one of the experiments in the appendix (Figure [6).

Another observation from the table is that there is a clear trade-off between model performance,
measured by test accuracy, and the effectiveness of unlearning, measured by MIA accuracy. Specif-
ically, SG is more effective in unlearning compared to the other baselines. This is shown by the
lower values of (MIA) accuracy, AUC, and F1 score. However, this effectiveness comes at a cost to
the test accuracy on CIFAR-10 and CIFAR-100, although the degradation is not significant. Indeed,
for CIFAR-10, SG experiences on average a 2.8% drop in test accuracy but the MIA accuracy is
6.6% lower (or better) than other baselines; for CIFAR-100, there is on average a 10.8% drop in test
accuracy and a 22.7% decrease in MIA accuracy.

Finally, we conduct a comparison study to understand the impact of adversarial modeling on the pro-
cess of unlearning. In Figure[2] we compare two cases where the trade-off parameter « is set to either
1 or 0, denoted by SG-1 and SG-0 respectively. The comparison is done for four metrics: 1) the test
accuracy; 2) the MIA accuracy; 3) the defender’s utility, evaluated as the test accuracy minus the
MIA accuracy, which provides a combined scalar value that measures both the performance of the
unlearned model and the effectiveness of unlearning; 4) the Wasserstein distance between the em-
pirical distributions of £ and L;.. We show the averages over 10 experiments with different seeds,
and 95% confidence intervals are displayed. The first observation is that the adversarial term (i.e.,
a - M(Dy,;6,) in (B)) acts as a regularizer, improving the generalizability of the unlearned model.
This observation is supported by comparing the test accuracy of SG-1 and SG-0 on CIFAR-10 (top
middle). Similar findings have been reported in Nasr et al.| (2018). Another observation is that
adversarial modeling limits the attacker’s ability to differentiate between the forget set and the test
set; this is demonstrated by the MIA accuracy on CIFAR-100 The right-most column displays the
Wasserstein distances between Ly and L. It is evident that the two losses are considerably closer
as a result of adversarial modeling. Additionally, the distances progressively decrease throughout
the epochs, confirming the effectiveness of the gradient-based method.
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Figure 2: An ablation study to understand the impact of adversarial modeling on the process of
unlearning; o = 1 and @ = 0 corresponds to the cases with and without adversarial modeling,
respectively. The results are the averages over 10 experiments with different seeds, and 95% confi-
dence intervals are displayed. From the left to the right: 1) the defender’s utility, evaluated as the
test accuracy minus the MIA accuracy; 2) test accuracy; 3) MIA accuracy; 4) Wasserstein distance
between the cross-entropy losses of the forget and test instances. Top: CIFAR-10; bottom: CIFAR-
100.
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CIFAR-10
Retrain SG FT GA FF 118
retain acc. 1 0.9953 1 0.9918 0.9997  0.9998
test acc. 0.8805 0.8935 0.9317 09159 09290 0.9295
forget acc. 0.8850 0.9249 0.9997 0.9919 0.9997 0.9997
|forget acc. — testacc.|  0.0045 0.0314 0.0685 0.0760 0.0708 0.0702
MIA acc. 0.5015 0.5157 0.5610 0.5513 0.5662 0.5662
MIA AUC 0.5028 0.5150 0.5927 0.5756 0.5994 0.5998
MIA F1 0.5084 0.6420 0.6929 0.6852 0.6958 0.6960
KS statistic (p-value) 0.0180 (0.4)  0.0381 0.1608 0.1360 0.1680 0.1682
Wasserstein distance 0.0435 0.1254 0.3034 0.3321 03076  0.3094
Run time (min.) 123.46 5.73 9.82 0.71 17.81 2.74
CIFAR-100

retain acc. 0.9998 0.9947 09997 0.9734 0.9996 0.9996
test acc. 0.6209 0.6687 0.7227 0.6726 0.7115 0.7101
forget acc. 0.6363 0.8595 0.9993 0.9726 0.9998  0.9998
|forget acc. — test acc.|  0.0154 0.1908 0.2766  0.2999 0.2883  0.2897
MIA acc. 0.5102 0.5932 0.7344 0.6774 0.7454 0.7452
MIA AUC 0.5064 0.5984 0.7544 0.7243 0.7710 0.7716
MIA F1 0.5677 0.6669 0.7890 0.7464 0.7959 0.7959
KS statistic (p-value) 0.0223 (0.26) 0.1945 0.5156 04144 0.5174 0.5193
Wasserstein distance 0.0703 0.8269 1.1357 1.2950 1.2049 1.2063
Run time (min.) 123.03 22.60 930 1.43 108.34  2.83

Table 1: Experimental results on CIFAR-10, CIFAR-100. The highlighted metrics are the closest to
those of retraining, which is considered as the best performance compared with the other baselines.
We provide the p-values for the KS statistics where the differences are not significant, meaning that
the distributions of looses cannot be differentiated from each other.

7 DISCUSSION

In this paper, we design a Stackelberg game framework for addressing the problem of unlearning a
subset of data from a machine learning model. Our approach focuses on evaluating the effectiveness
of unlearning from an adversarial perspective, conducting membership inference attacks (MIAs)
to detect any residual traces of the data within the model. The framework allows for a proactive
design of the unlearning algorithm, synthesizing two lines of research—machine unlearning and
MIAs—that have heretofore progressed in parallel. By utilizing implicit differentiation techniques,
we develop a gradient-based algorithm for solving the game, making the framework easily integrable
into existing end-to-end learning pipelines. We present empirical results to support the efficacy of
the framework and the algorithm.

The current framework assumes the presence of one defender and one attacker. It is based on the as-
sumption that the attacker uses a single hypothesis class, such as SVM, as we did in the experiments.
To expand the current framework, one possibility is to consider a scenario with multiple types of at-
tackers. For instance, the defender may aim to make the unlearned model robust against different
types of attacks simultaneously, such as quantile regression-based attacks (Bertran et al., 2023)), pre-
diction confidence-based attacks (Song & Mittal, 2021), and NN-based attacks (Nasr et al., [2018]).
One approach to implementing this scenario is to continue using the current SG framework but reg-
ularly update the attack methods. However, this approach may be time-consuming as it requires
solving the SG multiple times with different attacks. Additionally, the gradient feedback obtained
from these various attacks may no longer provide informative insights.
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A APPENDIX

A.1 EXPERIMENTAL RESULTS ON TEXT DATA AND TRANSFORMER ARCHITECTURES

To verify the effectiveness of the SG framework beyond image data, we conducted experiments using
the 20 Newsgroups dataset and a variant of the transformer architecture known as RoBERTa (Liu
et al.,|2019). We use a pre-trained checkpoint downloaded from HuggingFace. The experimental
setup is similar, with the exception that we randomly sample 20% of the training set uniformly to
create the forget set. The results are shown in Table[2]and Figure 3]

20 Newsgroups

SG FT GA
retain acc. 1.0 0.9999 09129
test acc. 1.0 0.9988  0.9349
forget acc. 1.0 0.9990 0.9071
|forget acc. — testacc.| 0.0 0.0003  0.0277
Run time (min.) 15.6 20.2 26.1
MIA acc. 0.5065 0.5147 0.5057
MIA AUC 0.4922 0.5090 0.5080
MIA F1 0.5627 0.6566 0.1579
KS statistic 0.0791  0.0676  0.0620

Wasserstein distance 0.0007 0.0100 0.1486

Table 2: Experimental results on 20 Newsgroups dataset on a pretrained RoBERTa architecture.
The gold standard of retraining is too time-consuming to be obtained. For MIA accuracy, AUC and
F1, we highlight the metrics that are closest to 0.5—the metrics of random guessing. We highlight
the lowest number for KS statistic and Wasserstein distance.
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Figure 3: Similar to Figure[2] we conduct an ablation study to understand the impact of adversarial
modeling on the process of unlearning; a = 1 and o = 0 corresponds to the cases with and without
adversarial modeling, respectively. The results are the averages over 10 experiments with different
seeds, and 95% confidence intervals are displayed.
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A.2 EXPERIMENTAL RESULTS ON THE SVHN DATASET

SVHN

retain acc. 0.9820 0.9396 0.9518 09585 0.9584 0.9588
test acc. 0.9540 0.9352 09339 0.9333 0.9333 0.9330
forget acc. 0.9449 0.9278 0.9352 0.9594 0.9604 0.9604
|forget acc. — test acc.|  0.0091 0.0074 0.0013 0.0282 0.0270  0.0304
MIA acc. 0.5045 0.5037 0.5014 0.5159 0.5144 0.5142
MIA AUC 0.4933 0.4848 0.5120 0.5410 0.5399 0.5397
MIA F1 0.1393 0.2444 0.4704 0.6504 0.6487 0.6491
KS statistic (p-value) 0.0399 (0.07) 0.0575 0.0519 0.0637 0.0671 0.0669
Wasserstein distance 0.0422 0.0307 0.0193 0.1029 0.0978 0.0977
Run time (min.) 95.10 8.73 4.78 0.52 17.53 1.89

Table 3: Experimental results on SVHN. The highlighted metrics are the closest to those of retrain-
ing, which is considered as the best performance compared with the other baselines. We provide the
p-values for the KS statistics where the differences are not significant, meaning that the distributions
of looses cannot be differentiated from each other.
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Figure 4: An ablation study to understand the impact of adversarial modeling on the process of
unlearning; o = 1 and o = 0 corresponds to the cases with and without adversarial modeling,
respectively. The results are the averages over 10 experiments with different seeds, and 95% confi-
dence intervals are displayed. From the left to the right: 1) the defender’s utility, evaluated as the
test accuracy minus the MIA accuracy; 2) test accuracy; 3) MIA accuracy; 4) Wasserstein distance
between the cross-entropy losses of the forget and test instances.
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A.3 THE EFFECT OF THE TRADE-OFF PARAMETER «

To gain a better understanding of the trade-off between model performance and unlearning, we
conduct experiments using 7 different values for the parameter « (see Eq. (2)), specifically « €
{0.05,0.1,0.25,0.5,1,2,5}. The results are shown in Figure where each dot represents a batch
of 5 random experiments at epoch 10 for a particular value of o. The coordinates represent the cor-
responding metrics averaged across the batch. The red dashed lines denote the metrics for retraining.
Ideally, we want the dots to be close to the intersections of the dashed lines. The left column displays
the test accuracy compared to the MIA accuracy across the values of «. It is evident that the trade-
off parameters have varying effects on the unlearning process across different datasets, although the
trend is not consistent. The general trend is that a larger « (e.g., &« = 5) is desirable as it brings the
unlearned model closer to the retrained one.
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Figure 5: Experiments on different values of the trade-off parameter . We consider 7 values
{0.05,0.1,0.25,0.5,1, 2, 5}. Each dot represents a batch of 5 random experiments with the same «.
The coordinates of a dot are the corresponding metrics averaged over the 5 runs. The dashed lines
are the performance of retraining, which is considered the gold standards. The colorbar indicates
the values of «. Top: CIFAR-10; middle: CIFAR-100; bottom: SVHN.
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A.4 BASELINE HYPERPARAMETERS

Tee hyperparameters used for SG and the baselines are in Table 4]

Table 4:

method.

CIFAR-10
Retrain  SG FT GA FF U
learning rate 0.1 0.01 0.01 le-5 x X
epochs 200 20 5 5 X X
noise level X X X X le-9 1e-9
CIFAR-100
learning rate 0.1 0.01 0.01 le-5 x X
epochs 200 10 5 10 X X
noise level X X X X le-9 le9
SVHN
learning rate 0.1 0.01 0.01 le6 x X
epochs 100 15 15 15 X X
noise level X X X X le-9 1le-9
20 Newsgroups
learning rate X le-5/1e-7 (attacker/defender) le-5 1le-6 X X
epochs X 15 10 5 X X
noise level X X X X X X

The hyperparameters for all the unlearning methods, which are selected through the
validation set. The symbol x indicates that the hyperparameter does not apply to the corresponding

A.5 DISTRIBUTION OF LOSSES

A visualization of the cross-entropy losses of the forget and test instances is in Figure[6]

Retrain SG FT GA FF U
10° 4 _ _ _ _ Test set
Forget set
0 5 5 0 10 0 10 0 10 0 10
>
(@)
C
@ 100 - - - -
)
o
o . . ; . : :
= o 10 10 0 10 0 10 0 10 0 10
10° ; ; ; ;
0 10 10 0 10 0 10 0 10 0 10

Cross entropy Loss

Figure 6: The distributions of the cross-entropy losses for the forget and test instances from the
unlearned models. The y-axis is in log scale for better visualization. The columns from left to right
correspond to Retrain, SG, FT, GA, FF, and IU. Top row: CIFAR-10; middle row: CIFAR-100;
bottom row: SVHN.
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A.6 AN EXAMPLE OF THE CONDITION IN (3)

In this section, we provide a concrete example of the KKT conditions for linear support vector
machines (SVM). As described in Section [I] the KKT conditions are key to relating the attacker’s
model parameters, denoted as 6, with the auditing set Dgu, which allows us to derive the gradient
00,/ abgu. The conditions f can be similarly derived for any model where the learning problem is

convex. To simplify the notations, we use {(x;,y;)}7_; to represent Deu. A standard formulation
of the linear SVM is as follows

1
min |0,
0q,b 2 (7)
sty (0] +b) >1,Vi,

where b is the bias term. The standard form is typically formulated as a minimization problem, so
the attacker is to maximize V = —% |6.|1?. Eq. is a convex program, and the optimal solution
(i.e., 07 and b*) is characterized by the KKT conditions. The Lagrangian of the above is as follows
where «; > 0 are the Lagrantian multipliers:

1 q
L(0a,b, ) = 5“‘%”2 —> ai(yi- (0w +b) —1). ®)
=1

Following sandard procedures (Boyd & Vandenberghe, [2004)), the KKT conditions are as folllows
q
0o — Y oyiz; =0
i=1

q
~ - i =0

f(Ds,,02) = ;a / : ©)

yi-(egmi—i—b)Zl

(67 > O,V’i

al(yz(Gle —+ b) — 1) = O,VZ

which implicitly define a function between 6, and the data Dy, = {(x;,v;)}7_,. In practice, we
describe the optimization problem (7) using cvxpy (Diamond & Boyd, [2016). Then, we employ
an off-the-shelf package called cvxpylayers (Agrawal et al.,[2019) to automatically derive the
KKT conditions and compute the gradient 90, /0Dy, .
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A.7 THE TRAINING LOSS FOR THE RETRAINING BASELINE

The losses for the retraining baseline across the epochs are displayed in Figure
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Figure 7: The training loss for the retrain baseline. For CIFAR10 and CIFAR100, the learning rate
is multiplied by 0.1 when epoch is at 60, 120, 160; for SVHN, the same multiplication is done at
epoch 60, 120. Top to bottom: CIFAR10, CIFAR100, SVHN.
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