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Abstract

Synthetic data generation has recently emerged as a solution in data-scarce reg-
ulated industries, such as finance and healthcare. While synthetic data requires
navigating various tradeoffs including fidelity, utility, fairness or privacy properties,
business objectives are usually focused on a single dimension. Although recent
optimization approaches such as SCGOAT [18] enable Bayesian optimization
to explore tradeoffs in synthetic data generation, determining the boundaries for
constraints remains challenging, as it relies on both the original dataset and the
trained generator(s). To tackle this issue, we propose a novel Adaptive Constrained
Threshold (ACT) strategy within the SCGOAT framework. Our method starts by
relaxing the constraints to identify feasible regions and progressively tightens them,
thereby minimizing wasted evaluations in infeasible spaces. Experiments on tabular
datasets demonstrate that our approach achieves a competitive tradeoffs between
various synthetic data dimensions such as downstream performance, fidelity and
privacy, improving over fixed-constraints baseline approaches.

1 Introduction

Synthetic data, as in data artificially generated rather than recorded from real world events, has
recently emerged as a solution across regulated and data-scarce sectors such as finance [4} 29] and
healthcare [[16}[17], as well as an approach to avoid the high cost of acquiring real data, especially for
large language models training and fine-tuning [24]. In financial fraud detection, synthetic datasets
have shown to be useful to augment fraud-detection pipelines and improve trading research [} 9]]. In
healthcare, synthetic data can be used to improve public health models for prediction of infectious
diseases [[14]], investigate healthcare policy implications [13} 3} |12] and to improve the downstream
performance of automatic imaging detection models [21}[11]. These technical advances have unfolded
alongside sectoral guidance, such as FERPA [27]], GDPR [19] and HIPAA [10], highlighting how
synthetic data can become a key component in machine learning development infrastructures [22].

While synthetic data generation can be driven by many factors, such as safeguarding privacy of the
training set records, fidelity of the generated data with respect to the training data distribution and
utility when using synthetic data for downstream tasks, in many applications the business objective
typically prioritizes a single aspect. Modelers and developers frequently focus on a single dimension,
such a privacy guarantee strong enough to unlock a use case, a fairness constraint required by

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Generative Al in
Finance.



law, or a downstream revenue indicator, while expecting remaining axes like fidelity, diversity and
generalization properties to be “as good as possible”. While recent evaluation frameworks provide
a way of evaluating synthetic data across these multiple axes [36} (1] and effectively find tradeoffs
across these different dimensions, they do not provide guidance for practitioners on what to prioritize
during model development. Additionally, deep generative models are trained to approximate the
empirical data distribution and are not amenable to incorporating constraints during training and
generation without significant structural changes; see for instance, [33} 23] [34].

Recent meta-approaches such as SCGOAT [[18]] focus on the optimization of a single downstream
metric, but extending such approaches to multiple dimensions becomes cumbersome, as approaches
such as augmented-Lagrangian formulation might suffer from feasibility issues and non-trivial
convergence behavior for non-convex objective and constraints [8, 25]]. In this work, we improve
over SCGOAT by proposing an adaptive-threshold optimization framework to generate synthetic data
that (i) optimizes for the business-critical objective, while (ii) iteratively tightening the constraints on
all other secondary criteria. Inspired by continuation methods [2]] and adaptive constraint handling in
evolutionary optimization [31]], we utilize an adaptive constraints threshold (ACT) strategy within
the SCGOAT framework [[18] for generating tabular data. In practice, we use Bayesian optimization
for optimizing the primary criterion, while initializing secondary criteria (fidelity, coverage) with
loose constraints that are adaptively reduced across iterations, shrinking the feasible set until we
land at a solution that minimizes the primary objective while achieving the best tradeoff elsewhere.
Our approach complements existing work on constraint layers [30], which enforces sample level
feasibility by providing an outer-loop mechanism that adaptively guides optimization, as well as
strategies that incorporate constraints during either training or hyper-parameter tuning [33} 23} 28]].

2 ACT-SCGOAT: Tabular Synthetic Data Generation with Adaptive
Constraints

In synthetic data generation, properties such as fidelity and privacy are often formalized as hard
constraints [28| [18], but whether the constraints (i) are feasible and, if so, (ii) how big is the
feasible region, is often data-dependent and hard to know in advance. This leads to a potential
large number of evaluations to be wasted on infeasible regions, which is a known challenge in the
Bayesian Optimization literature [15]. To address this, we propose to integrate ACT within the
SCGOAT framework [18], which optimizes synthetic tabular data generators on a downstream metric
performance by composing multiple models. Given M pre-trained generators, at each iteration k,

a synthetic dataset nyn is created using a mixture of synthetic data points from the generators

with proportions a(®) = {a1, g, ..., on}(k), with ) o, = 1. Once assembled, we evaluate
the synthetic dataset nyn on a downstream model (e.g., a binary classifier) and evaluate the main
objective I(«) and constraints. Crucially, ACT does not require setting fixed constraints boundaries
that would require domain knowledge or data-dependent analysis (as in [[15]), but rather evolves the

constraints over the iterations as detailed in Section[2.T]and Algorithm [I|below.

2.1 Adaptive Constraints Threshold

Let o denote the mixture weights over a set of M tabular generative models and let g; represents
constraint metrics g; (), such as privacy and fidelity. Let C7 indicate a constraint target bound, and
define the feasible region:

F = {a 185 gj(a) < Sj C;,VJ},

with s; = +1 for upper bound constraints and s; = —1 for lower bound constraints. Ideally, we
want the feasible region to either include the global maximum of the objective, i.e., @* = max,, l(a),
or values which are close to the global maximum, i.e., & = {a : s.t. |[[(a) — I(a*)| < €}

However, for each dataset and set of generative models, the target bounds are not known in advance:
setting them too loose might sacrifice other aspects outside of the objective too aggressively, and
setting them too tight might resolve in infeasibility or computational inefficiency in identifying a
feasible region. Instead of enforcing C directly, our approach ACT-SCGOAT begins with a relaxed

bound C' ](0) and updates thresholds at iteration t via a tightening schedule:



ot _ {max(Cj, cl - nje’t/T(C](.t) —Cj)) if upper bound constraint, )
=

min(Cj, Cjt) + nje_t/T(g - C;t))) if lower bound constraint.

with an auto shrink factor ;e ~*/7'€ (0, 1), over T iterations. C; and C; represent the upper and
lower bound of the constraints, which can be by taking into consideration the definition of the
constraint (or partial domain knowledge). For instance, one might want to set C; = 0.5 for a
downstream classifier AUC, to make sure the downstream classifier performs better then random.
In the early iterations, ACT tightens the constraints quickly, allowing for greater feasibility and
encouraging exploration. As the iterations progress, the tightening schedule gradually shrinks. This
design is inspired by homotopy methods in optimization [2]] and constraint adaptation in evolutionary
computation [31]]. To ensure feasibility is maintained throughout the process, we use a Guassian
process surrogate to evaluate the feasibility over the exploration space, as common in the Bayesian

optimization literature [[15]. For a candidate ¢, the probability of feasibility under thresholds C’j(-t)
can be computed by using a separate Gaussian process Gg; for each constraint:
J

[T(e:c®) =T .Pr (s;-g5(@) <s;-C").
i1 995 (@) !

To evaluate infeasibility, we check if maxq [[(a; C (t)) < p, where p is a feasibility floor. If the
maximum probability is below the feasibility floor, the algorithm reverts to the last feasible threshold.
This ensures robustness against infeasibility failures while maintaining diversity in the search. Finally,
the acquisition function for each « is then modeled by CEI() = El(a) - [[(a;; C), where EI ()
is the expected improvement in the objective.

3 Experiment

We evaluate our proposed framework on two benchmark datasets: the FICO dataselﬂ and Adult dataset
[6ﬂ Following the SCGOAT setup [18]], we optimize a mixtures of 4 synthetic data generators —
Gaussian Copula[20], CopulaGAN, CTGAN anb TVAE [335] — to maximize downstream AUC. We
enforce dataset-level constraints on privacy, using a nearest-neighbor-based re-identification score
(the number of synthetic samples for which the nearest neighbor is a real sample, akin to distance-
based privacy metrics in [26]) and summary statistics privacy (SSP intersection, [32]]), and on fidelity,
using the Kolmogorov-Sminorv test (KS, [7]). We compare ACT-SCGOAT against unconstrained
SCGOAT optimization, as well as two baseline which simulate different level of domain knowledge:
(a) SCGOAT-Medium and (b) SCGOAT Tight. We run both baselines by incorporating the constrained
Bayesian optimization approach by [15] within SCGOAT, with the difference being the upper and
lower bounds on constraints are set in advance based on a separate run of unconstrained optimization.
Constraints are set tighter for the SCGOAT-Tight variant, see Table[T|for details. All variants sample
an initial n = 20 points and are given a budget of n = 200 samples, which ACT-SCGOAT divides
equally over K = 5 rounds. Table [2]reports the results for the two datasets. As expected, we observe
a utility-privacy tradeoff when moving from unconstrained to constraint optimization. However,
using ACT-SCGOAT provides a better downstream performance (higher AUC) than the constrained
versions that required setting the threshold in advance (SCGOAT-Medium and SCGOAT-Tight), while
landing on final constraints not too dissimilar from the SCGOAT-Tight ones (see Table I)).

4 Conclusions and Future Work

This paper demonstrates the effectiveness of ACT as a strategy for constrained Bayesian optimization
that relaxes constraints early and tightens them over time within the SCGOAT framework for synthetic
tabular generation. On FICO and Adult datasets, ACT-SCGOAT achieves a superior balance between
downstream performance and compliance with constraint metrics compared to fixed-constraint
baselines. Future work will: (i) extend these experiments to additional data modalities and generators,
such as time series, (ii) evaluate algorithmic fairness constraints and (iii) compare ACT’s scheduling
strategies systematically for optimization of budget and number of iterations.

"Dataset available athttps: //community.fico.com/s/explainable-machine-learning- challenge
’Data available on the UCI platform at https://archive.ics.uci.edu/dataset/2/adult
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Algorithm 1: ACT-SCGOAT

Input: Real data D,..o;, Generators 0™ Vm € M initial thresholds C'(0), upper and lower
bounds 5j and C, iteration numbers K, feasibility floor p, time constant 7', shrink setting 7;.

Create Partition {Dtrairu Dvala Dtest} == {(Xtraina thrain)y (Xvalv Yval)a (Xtesh Y;est) }

Initialize o = {am fmenm

fork=1,..., K do

Sample DX = S, ([ak N];0™) VYm e M

Déc Xéo | Yhe
Create Dﬁyn = =
Divag Xivae | Yivare
Train ji* = f(Y}}, ~ XE)
Compute Yvkal = (iF(Xyq) and IF = E(Yvkal, Yoal)
Apply constraints:

» Evaluate constraint metrics gék)

« Compute feasibility probability [[(ct) = [[; Pr[(s;g;(a) < stJ(t)]
o If max, [J(a) < p then Revert to last feasible C(t) < C

* Mark o* feasible if ¢\ within C; (1)

Suggest a* ! using Bayesian optimization approach based on {a’, ..., a*} and {1°, ..., I*},
with acquisition weighted by feasibility under C(t)
Threshold update:
* Let U be indices of upper-bound constraints; L of lower-bound constraints
e step < ;- e k/T
s Cy(t+1) « max(Cy,Cy(t) — step - (Cy(t) — Cy))
e Cr(t+1) < min(Cr, CL(t) + step- (Cr — CL(1)))

return D¥,  where k* = arg min,, [*

Table 1: Constraints for SCGOAT-Medium and SCGOAT-Tight, with final ACT-SCGOAT constraints.

Metric Type of Bound | Medium Tight | ACT (Adult) ACT (FICO)
Re-ID Score  Upper bound (|) | < 0.20 <0.10 | <€0.094 < 0.087
KS Test Lower Bound (1) | > 0.60 >0.70 | <0.712 > 0.747
SSP Lower Bound (1) | > 0.05 > 0.10 | > 0.093 > 0.117

Table 2: Results across the Adult and FICO datasets, bolding the best constrained optimization model.

Dataset Method AUC - Objective (1) re-ID Score () KS Test (1) SSP (1)
SCGOAT 0911 0.106 0.935 0.096

Adult SCGOAT Medium 0.896 0.079 0.746 0.108
SCGOAT Tight 0.887 0.075 0.722 0.114
ACT-SCGOAT 0.902 0.087 0.776 0.103
SCGOAT 0.791 0.118 0.935 0.092

FICO SCGOAT Medium  0.771 0.035 0.922 0.393
SCGOAT Tight 0.769 0.033 0.912 0.423
ACT-SCGOAT 0.781 0.092 0.931 0.213
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A Experimental Details

The experiments were conducted using CUDA version 11.8 and Python version 3.11.5. Bayesian
optimization was performed with the Bayes OPT library, using 20 initial points, and 200 optimization
iterations. The constraint hyperparameters were set to 7; = 0.6, 1" = 25, p = 0.05. We split the data
into training, validation, and test sets with a ratio of 70%/15%/15% respectively. All experiments
were run on ml.r5.xlarge hardware, with the total runtime per dataset being approximately 4 hours for
the Adult dataset and 3 hours for the FICO dataset.
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