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Abstract—We present CIS2VR (CNN-based Indoor Scan to
VR), an authoring framework designed to transform input RGB-
D scans captured by conventional sensors into an interactive VR
environment. Existing state-of-the-art 3D instance segmentation
algorithms are employed to extract object instances from RGB-
D scans. A novel 3D Convolutional Neural Network (3D CNN)
architecture is used to learn 3D shape features common to
both classification and 3D pose estimation problems, enabling
rapid shape encoding and pose estimation of objects detected
in the scan. The generated embedding vector and predicted
pose are then used to retrieve and align a matching 3D CAD
(Computer-Aided-Design) model. The aligned models, along with
the estimated layout of the scene, are transferred to Unity, a 3D
game engine, to create a VR scene. An optional human-in-the-
loop system allows users to validate results at various steps of the
pipeline, improving the quality of the final VR scene. We evaluate
and compare our approach to existing semantic reconstruction
methods on key metrics. The proposed approach outperforms
several existing methods in object alignment, coming close to
the state-of-the-art, while speeding up the process an order of
magnitude. CIS2VR takes an average of (.68 seconds for the
entire conversion across our test dataset of 312 scenes. The code
for the proposed framework will be made publicly available on
GitHub.

Index Terms—Artificial Intelligence, Virtual Reality, Deep
Learning, Machine Learning

I. INTRODUCTION

Interest in Virtual, Augmented, and Mixed Reality (VR,
AR, MR: together referred to as Extended Reality/XR sys-
tems) systems has grown significantly in recent years ow-
ing to the widespread adoption of commodity depth-sensing
devices (Microsoft Kinect, iPhones, etc.) and improvements
in Human Interface Devices (HID) for XR systems such as
Microsoft Hololense 2, Apple Vision Pro, Meta Quest 3,
etc. However, the accessibility of XR experiences has been
restricted, partially attributable to the resource-intensive and
time-consuming process inherent in the development of 3D
experiences and related 3D assets. The replication of real-
world scenes for XR systems further compounds the intricacies
of the development procedure. Frameworks facilitating the
automated conversion of RGB-D data into a 3D environment
hold substantial promise in alleviating these development
challenges.

3D reconstruction techniques can be broadly classified into
two types based on their output: dense 3D reconstruction and
3D semantic reconstruction. A substantial body of research
has been devoted to dense 3D reconstructions [1]- [13].
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Pioneering efforts like KinectFusion [1] and StereoScan [11]
introduced algorithms capable of generating dense, precise,
and smooth 3D surface reconstructions from real-time RGB-
D videos. Subsequent advancements, exemplified by works
such as ElasticFusion [13] and BundleFusion [15], have further
refined various facets of the reconstruction process. While
3D environments generated through such methods can boast
detailed and photorealistic attributes, they inherently manifest
noise and incompleteness due to factors like scanning pat-
terns, camera viewpoints, and sensor noise. Furthermore, these
environments often entail substantial file sizes (ranging from
hundreds of megabytes to multiple gigabytes depending on
point density) with the major drawback that individual objects
in the scene cannot be interacted with, which makes them
suboptimal for collaborative or interactive applications.

3D Semantic reconstruction techniques [14]- [18] address
these challenges by substituting objects in the scene with CAD
(Computer Aided Design) models that are semantically and
geometrically similar to objects in the RGB-D scan. While
scenes generated through 3D semantic reconstruction may not
achieve the same level of photorealism or geometric precision
as dense 3D reconstructions, they offer completeness, reduced
file sizes, and interactivity. The representation of scene ob-
jects using individual CAD models enables the resulting 3D
environment to incorporate details such as texture, material
composition, and other physical characteristics of each object.
This proves crucial for VR experiences and 3D simulations
where the physical attributes of objects significantly contribute
to the overall experience. Semantic 3D reconstruction presents
several challenges, primarily along with object detection
within the scene and the subsequent retrieval and alignment
of CAD models corresponding to each identified object. Re-
cent contributions in semantic reconstruction [14] [15] [16]
[17] [18] have made notable progress in confronting these
challenges. However, to the best of our knowledge, there is
currently no existing work that comprehensively benchmarks
and transforms an input RGB-D scan into a functional 3D VR
scene.

Proposed Approach: We present an authoring framework
CIS2VR (CNN-based Indoor Scan to VR), an authoring frame-
work designed to transform an input indoor RGB-D scene
into a functional 3D VR environment in the Unity framework.
We start with a state-of-the-art 3D instance segmentation
algorithm for detecting object instances in the input RGB-D
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Fig. 1: An overview of CIS2VR (CNN-based Indoor Scan to VR).

scan. Detected instances are then processed with a novel 3D
Convolutional Neural Network (CNN), inspired by Choy et.
al [19], that learns feature space common to both scan and
CAD objects and generates a shape encoding for 9 Degrees
of Freedom (DoF) pose (translation, rotation, and scale, each
along z,y, z axes). The resultant shape encoding is used to
retrieve a corresponding CAD model from the database, with
the predicted pose facilitating the alignment of the CAD model
to the object instance. The aligned models are transferred to
a Unity scene for downstream use cases.

Contributions: CIS2VR is an end-to-end framework that
transforms an indoor RGB-D scan into a functional 3D VR
scene with the following salient features.

o A novel and efficient 3D CNN architecture that concur-
rently learns a shared feature space for both scan and
CAD objects while also predicting their category and 9-
DoF pose simultaneously in a single pass.

CIS2VR serves as an authoring framework to create a
semantically and visually similar VR scene in Unity from
an RGB-D scan.

We incorporate a flexible human-in-the-loop approach to
allow users to modify the results of the system.

The proposed method achieves close to the state-of-the-
art alignment performance while demonstrating signifi-
cantly reduced runtime. CIS2VR takes an average of 0.68
seconds for the entire conversion across our test dataset
of 312 scenes.

The code for the proposed framework will be made
publicly available on GitHub.

II. RELATED WORK

There exists a rich line of research on 3D reconstruction
from diverse inputs such as multi-view RGB images, fused
RGB-D scans, and point clouds. Prior works have also looked
at reconstructing entire scenes in an online fashion and real-
time constraints, as seen in KinectFusion [1] [25], BundleFu-
sion [2] and NeuralRecon [26]. However, most of them focus
on producing a mesh or TSDF output with predefined quality
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constraints and rely on color information for accurate repre-
sentation. The reconstruction based on CAD models facilitates
enhanced user interaction with the environment and grants
greater freedom to VR environment designers, enabling them
to manipulate and alter object parameters without necessitating
post-processing on noisy reconstructed meshes.

A. CAD Model Retrieval and Alignment

Machine learning approaches for aligning CAD models to
3D scenes have been studied both from classical, hand-tuned
features [29] [30] [31] perspective and deep learning-based
methods [17]. Song et al. [29] use linear SVMs (Support
Vector Machines) corresponding to each model in a CAD
dataset and iteratively go over the scene via a sliding window
approach. Li et al. [28] obtain shape descriptors and key points
for both noisy scans and 3D CAD models, encoding their
geometric features for efficient matching. Gupta et al. [17]
leverage CNNs to output probable poses for objects already
segmented by an existing segmentation method. ASIST [31]
tries to have a single, unified pipeline for semantic labeling and
retrieval via an energy-based formulation for an input point
cloud. 3DMatch [35] developed a Siamese neural network as
a feature extractor for establishing correspondences between
the input scans and models.

Scan2CAD [14] proposes a 3D CNN approach to target
similar correspondences and address issues with the domain
gap of real-world scans and CAD models. They also introduce
an annotated dataset for CAD model retrieval and alignment
based on ScanNet [36] and ShapeNet [37]. Dahnert et al. [16]
proposed a joint embedding space between CAD models and
scanned objects based on existing Scan2CAD model annotated
datasets. SceneCAD [15] considers the layout reconstruction
part of the overall problem where instead of independently as-
sessing each object, a graph neural network is used to enforce
consistency in the scene’s reconstruction. Other approaches
have used a single RGB image of a scene to retrieve and
align CAD models. Lim et al. [42] use an RGB image to
estimate the relative pose between a CAD model and an
object in the image. Huang et al. [44], Manni et al. [39], and
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Izadinia et al. [43] use an RGB image to perform semantic
3D reconstruction, relying on depth data inferred from deep
learning models.

B. Virtual World Reconstruction

Some of the algorithmic ideas have been primarily used in
applications pertaining to Virtual, Augmented and Mixed Real-
ity (VR/AR/MR) where creating an environment from scratch
might be time-consuming. RealitySkins [38] tries to address
this problem by dynamically generating the environment based
on the input scan from a user’s head-mounted display (HMD).
Snap2Cad [39] shows a system that utilizes the built-in RGB
sensors on modern smartphones to reconstruct an object in AR
via matching with CAD models for use in online multiplayer
scenarios. VRFromX [40] also uses neural network-based
methods for object retrieval and alignment with human-in-
the-loop as a part of an interactive content creation tool. In
a similar vein, TransforMR [41] is a mixed reality system for
object substitution that leverages segmentation and accurate
pose estimation for consistent replacement and use in character
animation.

III. CIS2VR DESIGN

CIS2VR converts an input indoor RGB-D scan into a
semantically and visually similar, interacTable IIID scene in
Unity, as described in Figure 1. To achieve our goal, we start
by segmenting objects in the input RGB-D scene utilizing
an instance segmentation algorithm introduced by Vu et al.
[21]. Subsequently, we process the extracted object instances
through our 3D shape encoder and 9-DoF (translation, rotation,
and scale, each along x, y, z axes) pose estimation algorithm,
which generates a vector embedding for retrieving a geometri-
cally matching CAD model and predicts the pose for aligning
the matched CAD model to the RGB-D object instance in
one forward pass. We use a K-Nearest Neighbors (KNN)
based search algorithm in conjunction with the predicted
semantic label to fetch a matching model from our CAD
model database built using the ShapeNetV2 dataset [37]. To
reconstruct the structural components of the scene, such as
walls, floor, and ceiling, we isolate points corresponding to
the relevant classes from the instance segmentation results. We
employ RANSAC to further filter out points associated with
each structure, subsequently using a 3D Oriented Bounding
Box (OBB) to quantify the alignment of the structures. The
information on retrieved CAD models and their corresponding
poses is passed to Unity, which then retrieves and aligns each
model, effectively reconstructing the scene. The subsequent
sub-sections provide further details on each step of the process.

A. Input Data

RGB-D is a widely used input modality to capture 3D data,
with high-quality annotated indoor RGB-D datasets such as
S3DIS [46], ScanNet [36], and SUN-RGB-D [47] available
today. Two types of RGB-D data are widely available: RGB-
D images and RGB-D scans. RGB-D images resemble a 2D
RGB image augmented with depth data derived from a depth
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sensor. Consequently, they may exhibit blind spots, signifying
areas with missing depth data due to occlusion from various
objects in the scene. Furthermore, RGB-D images provide a
restricted, single-perspective view of the scene. This limitation
is suboptimal for reconstructing entire scenes, as objects with
missing parts are susceptible to misidentification, and the
confined field of view captures only a fraction of the actual
scene. RGB-D scans overcome this issue by combining several
RGB-D images, either from an RGB-D video or individual
RGB-D images taken from different viewpoints to cover
for blind spots. Consequently, RGB-D scans boast superior
point density, capturing finer details, maintaining consistent
completeness in object depiction, and encompassing more, if
not the entirety, of the indoor scene in a single scan. Due
to these advantages, we opt to utilize RGB-D scans as the
input for the proposed system. For this implementation, we
use scenes from ScanNet v2 dataset [36] for training and
evaluation.

B. Object Detection and Segmentation

To semantically reconstruct a given 3D scene, the initial
step involves the detection and extraction of objects present
in the input RGB-D scan. Owing to breakthroughs in 3D
deep learning architectures and advancements in computa-
tional hardware making training large models more accessible,
CNN-based 3D object detection and segmentation methods
have made significant strides [21] [22] [48]. Recent con-
tributions in this domain [20] [21] [32] [48] [49] can be
broadly categorized into bounding-box-based methods (object
detection algorithms) [21] [19] [32] [48] and mask-based
methods (semantic segmentation algorithms) [20] [21] [49].
Bounding box-based methods output a 3D bounding box for
each object instance in the scene, while mask-based methods
produce semantic and instance labels for each point in the
input point cloud. In indoor scenes, objects are often in close
proximity, posing a challenge for bounding box-based methods
as they can be imprecise in extracting points corresponding to
a specific instance in the presence of overlap. This overlap may
cause the bounding box to encompass points from adjacent
objects, potentially altering the geometric characteristics of the
instance and misleading the CAD model retrieval algorithm.
To circumvent this issue, we opt for a mask-based method that
generates precise segmentation masks for each instance in the
scene. Each point P; in the scene point cloud is associated
with a singular instance and semantic label in a segmentation
mask, eliminating the potential for overlap between segmented
point clouds of different object instances and resolving the
aforementioned problem.

C. Model Retrieval and Alignment

With the goal of generating an interactive VR scene, the
imperative is to replace objects in the scene with aligned
3D object models that possess both semantic and geometric
similarity. Previous works have explored different ways to
address this challenge. Some early approaches have used
template matching with hand-crafted per-class templates [50].
More recent works have utilized large model datasets like
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ShapeNet [37] and ModelNet [51] in conjunction with 3D
CNNs for their model retrieval tasks [14] [16], using the CNN
to generate 3D shape encoding. Matching models are retrieved
by using a nearest-neighbor-based search. This ensures that the
system can handle a very large number and wide variety of
models for each semantic class while keeping the run-time
computational costs low.

1) CAD Retrieval and 9-DoF Pose: Object classification
networks are adept at learning features for distinguishing be-
tween objects with high accuracy. We posit that these features,
designed for object classification, could also be advantageous
for object pose estimation. To harness these features for
3D pose estimation and allow the joint prediction of object
category and pose, we propose a novel 3D CNN architecture
inspired by [19]. This architecture is designed to concurrently
learn semantic classification and predict the 9 Degrees of
Freedom (DoF) pose for both scan instances and CAD models,
despite the differences in their low-level geometric features.
Employing such a model enables us to utilize features acquired
for classification in the 9-DoF object pose estimation task,
while making the CAD retrieval and pose estimation process
much faster.

2) Architecture Design: We experimented with two varia-
tions of the proposed architecture. In the first variant, we use
80 outputs for pose estimation, with 10 outputs allocated for
each category. In this configuration, the pose output consid-
ered for pose loss calculation corresponds solely to the pose
prediction corresponding to the predicted category, allowing
for categorical separation of pose features in the network.
In contrast, the second network employs only 10 output
channels for pose, with the loss function being category-
agnostic. Experimental comparisons consistently showed that
the class-agnostic variant outperformed the category-aware
one. This outcome is attributed to inaccuracies in classification
predictions affecting pose predictions, as an incorrect category
prediction may result in the selection of a pose vector for a
category different from the object’s actual category. Based on
these outcomes, we chose the class-agnostic variant for our
final results shown in Table I

To address object symmetries and the absence of symmetry
annotations, we train this model utilizing a Chamfer distance-
based loss function. The loss function’s symmetry-agnostic
nature enables it to offer more effective guidance for the
pose estimation task. This approach streamlines the process by
generating the 3D shape embedding and predicting the 9-DoF
pose in a single forward pass, thereby significantly reducing
the overall processing time.

D. VR Reconstruction

1) Human-in-the-loop: To enhance the authoring capabil-
ities of CIS2VR, we have implemented a human-in-the-loop
system before generating the final environment. This feature
allows users to review and validate results at different stages
in the pipeline. Specifically, prompts are presented to the user
following instance segmentation, CAD model retrieval and
alignment, and layout estimation steps. Users can choose to
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accept or reject the results generated by the framework at
these steps, contributing to the reduction of inaccuracies and
an overall improvement in the quality of the reconstructed
scene. This system can also be disabled by the user to
allow the framework to be executed without needing human
intervention.

2) Semantic Reconstruction: Following the retrieval of
CAD models corresponding to object instances in the scene
and the replication of primary structural components, the
subsequent phase involves the creation of a VR environment
based on this acquired information. We chose Unity for our
implementation due to the existing ecosystem for use cases
like simulation, games, etc, but with very minor modifications,
the framework can be made to work with other game engines
as well. To summarize our design choices for different parts
of the system (overview shown in Figure 1), we:

Detect object instances in input RGB-D scans using a
state-of-the-art 3D instance segmentation model.
Generate shape encodings and predict the 9-DoF pose of
each instance using our proposed 3D CNN model (class-
agnostic variant). The shape encodings and predicted pose
are used to retrieve and align a CAD model respectively.
Estimate the layout of the scene using the predicted
semantic mask and RANSAC.

Use a human-in-the-loop approach to validate results
from various steps of the pipeline.

Construct a VR environment in Unity using retrieved
CAD models, their corresponding pose estimations, and
the structural components of the indoor scene.

IV. IMPLEMENTATION
A. Dataset

Owing to the challenges associated with manual annota-
tions, real-world indoor RGB-D datasets remain limited, with
notable examples including the Stanford 3D Indoor Scene
Dataset [56], ScanNet v2 [36], and SUN RGB-D [47]. In
addition to instance segmentation annotations, there is a re-
quirement for annotations pertaining to 3D pose estimation
to train our 9-DoF pose estimation algorithm. To the best of
our knowledge, Scan2CAD [14] presented by Avetisyan et al.
is the only dataset that satisfies our requirements. The dataset
matches object instances from the ScanNet v2 dataset to CAD
models from the ShapeNetV2 dataset, with annotations for
pose and symmetry available for each matched CAD model.

1) 3D Pose Annotations: While the Scan2CAD dataset
offers 3D pose annotations for instances in ScanNet v2, a
direct mapping between object instances in ScanNet v2 and
aligned CAD models in Scan2CAD is not explicitly provided.
Additionally, not all object instances in ScanNet v2 possess
corresponding pose annotations in Scan2CAD. Consequently,
a need arises to establish a match between aligned CAD
models from Scan2CAD and corresponding ScanNet object
instances for the purpose of generating annotated data for
3D pose estimation. To address this challenge, we employ a
matching procedure described in Algorithm 1 to match each
pose annotation in Scan2CAD to the corresponding ScanNet
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object instance. The instances matched to each aligned CAD
model in Scan2CAD using Algorithm 1 are further validated
by a human annotator. Subsequently, we update the Scan2CAD
dataset with a matched ScanNet instance label for each aligned
CAD model in the dataset. We provide this updated dataset
as a part of the code that is made publicly available. In
algorithm 1, the determination of the threshold for overlap
is based on empirical studies. It is noteworthy that the pose
annotations within this dataset are relative to the default poses
of CAD models in the ShapeNet dataset. All CAD models in
the ShapeNet dataset are centered at the origin and share a
consistent default rotational alignment across each category,
which we refer to as the default pose Py ;.

Algorithm 1 Scan2CAD annotations to ScanNet instances

for S in ScanNet scenes do

1:

2 anno < Load scene annotation from Scan2CAD
3 insts <— Scene ScanNet instances

4: instCenters < mean(i) for i in insts

5: cads < Scan2CAD aligned CAD models

6 bozres <— CAD OBBs

7 for i: 0— len(cads) do

8: ¢ < cads]i], obb < bozxes]i

9: dists < ||instCenters — obb.center||
10: sortedInsts <— sort insts based on closest dists
11: for si in sortedInsts do
12: overlap < Overlap between obb and si
13: catMatch < c.category == si.category
14: d <+ distance between c¢ and si
15: if overlap > 80% and catMatch then
16: validMatch < si

17: Remove si from insts
18: break

2) Data Pre-processing: We use the pose annotations for
scan objects to align them with Py.;. During the training
phase, a random pose, comprising of a random rotation, trans-
lation, and scale, is generated and applied to the object point
clouds to introduce variance in training data. We formulate
the pose of an object as a 10-element vector comprising of
3 coordinates for center, 3 coordinates for scale and rotation
expressed in quaternion format (4 elements). We avoid using
Euler angles for representing rotation as they are susceptible
to ambiguity and Gimbal lock [61].

B. Instance Segmentation

Prominent recent contributions to 3D instance segmentation
are evident in works such as [21] [22] [57] [49]. For our
framework, we have opted to implement the approach pro-
posed by Vu et al. [21] (SoftGroup). This decision is motivated
based on their performance, ability to work on unprocessed
point clouds, quality of code base, and ease of reproducing
the published results. It’s worth noting that, with ongoing
advancements in 3D instance segmentation, this module can be
readily substituted with a better performing algorithm in the
future. SoftGroup builds upon the foundation laid by Chen
et al. [49], introducing modifications and enhancements to
the instance proposal pipeline. One notable limitation shared
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by many existing instance segmentation algorithms, includ-
ing SoftGroup, pertains to the scope of supported semantic
classes. SoftGroup, specifically, accommodates a total of 18
semantic classes, including structural categories such as walls,
floor, ceiling, and windows, among others. Given our specific
objective of replacing movable objects in the scene with
CAD models to generate an interactive VR environment, we
exclude object categories related to structural components
from the CAD retrieval pipeline. Additionally, as we utilize
a mixed dataset comprising ShapeNet and ScanNet objects,
the semantic classes that can be employed are restricted to
those common to both datasets. Consequently, this constrains
the object categories supported by CIS2VR to 8: bathtub, bed,
bookshelf, chair, desk, sofa, table, and toilet, presenting a
significant limitation within the proposed framework.

Instance segmentation frameworks gauge their efficacy
through variations of the intersection-over-union (IoU) metric,
which assesses the overlap between ground truth and predicted
masks. This metric, however, does not translate very well when
extracting object instances from the predicted mask due to the
presence of erroneously labeled small clusters of points in
the predictions. Although these clusters may not significantly
impact the mean IoU (mlIoU) due to their size relative to the
overall point cloud, they can substantially affect the quality
of reconstruction. To mitigate the impact of these noisy
predictions, we implement thresholds for the confidence score
(Tconf) and the number of points in the instance (Tpoints).
Our evaluation involves testing the algorithm with different
configurations of T, and T)sinss to analyze the effects of
varying these parameters on performance. The results of these
evaluations are detailed in Figure 2. Based on our findings,
we have identified T,y ;=0.5 and T},,;,1s=512 as the optimal
configuration for avoiding most false positives, which works
b?st for our approach.
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08 :::T’w’j_,‘;—)

—_—
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=8 08
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Fig. 2: Evaluating the effect of varying T,y with Tjpints =
512 (left) and changing T}ints With Tiopp = 0.5 (right) on
Precision, Recall and Fl1-score (Y axis).

C. Model retrieval and 9-DoF Pose estimation

Following instance segmentation, we retrieve and align a
semantically and geometrically matching CAD model for each
scanned object from our CAD database. To achieve this, we
introduce a 3D CNN architecture inspired by the work of Choy
et al. [19], which can encode the 3D shape of both scan and
CAD objects, and predict the 9 Degrees of Freedom (DoF)
pose of an object in a single forward pass.

1) Architecture: For our 3D shape encoding network, we
train an object classification model and utilize the output of its
final layers as our feature vector. Ideally, an object detection
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model should be agnostic to the pose of the input object,
meaning it should classify the object consistently regardless
of its pose. Aligning with this objective, the features learned
by such models are often pose-invariant, which contradicts
our need to use the same network for predicting object
pose. To overcome this challenge, we propose the network
architecture illustrated in Figure 3, which is based on the
Minkowski Engine framework proposed by Choy et al [19]
and inspired by architecture proposed by Harry et al. [65].
The network extracts multi-scale point-wise features, which
are then used in conjunction with more convolutional blocks to
extract task-specific features. To facilitate the learning of both
pose-invariant features for effective shape encoding and pose-
dependent features for accurate pose estimation, we bifurcate
the network into two branches. Introducing the fork earlier
in the architecture enhances feature separation but increases
model size, complexity, and inference time while delaying
the fork compromises performance. After iterative testing, we
settled on the final architecture, balancing lower model com-
plexity without significant compromise in performance. The
class prediction directly outputs from the linear layer of the
classification branch, and the pose outputs pass through a TanH
activation layer. The resulting model comprises approximately
45 million trainable parameters.

Classification Branch

48x(3,1,0)

1024 x (3, 2, 0)
512x512

512x(3,2,0)
Cross Entropy Loss

64x(3,2,0)

Pose Branch

96x(3,2,0)

S12x64

128x(3,2,0)

1024 x (3, 2,0)
$12x2%
L1 + Chamfer loss

512 (3,2,0)

2

-
=
a

B convolution Block 8 MLP Block [l Dropout(0.5) [ Max pool with (3,2,0) [l Linear

Global max pooling Global average pooling ° Slice operation ° Concatenation

Fig. 3: Model architecture of the proposed retrieval and alignment
method. The initial four convolutional blocks are responsible for
extracting point-level geometric features across various scales, with
later being branched off to pose estimation and shape classification
modules.

2) Loss Function: To train the proposed network, we em-
ploy a hybrid loss function that accommodates both classifica-
tion and pose estimation tasks. For the classification loss Ls,
our experimentation involved considering both Focal loss and
Cross-Entropy (CE) loss, with CE loss demonstrating superior
performance in most scenarios.

Les = BOCE(X, Xgt) (1)

For pose estimation, we use a combination of L1 loss (LI11)
and Chamfer loss (Lchamf). Although L2 loss has been widely
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used for regression tasks, we found the quadratic nature of the
loss to be undesirable for loss values below 1, especially for
rotation estimation. Our empirical studies also found L1 to be
more effective for our architecture due to the linear nature of
the loss.

Lj = ||Pt _Pgt_tH + ||Pq _Pgt_qH + HPS _Pgt_SH 2

However, L1 loss lacks sensitivity to rotational symmetry.
Although Scan2CAD contains symmetry annotations, only a
minority of CAD models from ShapeNet are covered in the
dataset. As we use all models from ShapeNet for our dataset,
we choose to ignore the symmetry annotations for training.
To account for rotational symmetry, we integrate a Chamfer
distance-based loss function, a methodology relatively under-
explored for objects, though previously applied in contexts
such as human pose estimation [59] [60]. To compute Chamfer
loss, we start by calculating a transformation matrix 7" using
the predicted pose P and subsequently applying it to the
default pose object point cloud, resulting in a transformed
point cloud S;. We then calculate the Chamfer distance
between S; and the input point cloud Sy as:

Lonorny(S1. 82) = 73 dist($1.52) + @dist(&b, S)
. . , (3)
dist(S1,Sq) = Plzg:& min [|Pr = P[5 4
The final pose loss is computed as:
Lypose = Li1 +5 % Lepamy ©)

3) Training: The model is trained using a Stochastic Gra-
dient Descent (SGD) optimizer with an initial learning rate of
0.01 and a momentum of 0.9. We employ Cosine Annealing
(without warm restarts) to dynamically adjust the learning
rate throughout the training process, and the network weights
are randomly initialized. To investigate the hypothesis that
low-level features learned for classification can enhance the
learning of features for pose estimation, we conduct a two-
step training procedure. Initially, the network undergoes pre-
training on a classification task with L., for 10,000 iterations,
involving both CAD and Scan objects. Subsequently, we freeze
the initial convolution layers and the classification branch.
The network is then trained for pose estimation using L; and
Lchamy losses for 20,000 steps. This approach yields an 8%
increase in average alignment accuracy compared to training
the network for both pose estimation and classification tasks
concurrently. Furthermore, it demonstrates a 10% increase in
accuracy compared to training solely for pose estimation, with
the classification branch completely removed. These findings
support our hypothesis that lower-level features learned for
classification contribute to the network’s ability to acquire
better features for pose estimation.

D. Layout detection

To recreate the VR scene’s structural layout, we use the
instance segmentation mask to extract points related to struc-
tural elements such as walls, floors, ceilings, counters, win-
dows, and doors. RANSAC is employed for planar structure
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TABLE I: Alignment results for CAD models on ScanNet data are assessed using pose annotations and evaluation metrics from Scan2CAD

[14]. Numbers represent accuracy for each category, higher is better.

bath bookshelf | cabinet | chair | sofa table Class avg | Avg
FPFH [68] 0.00 1.92 0.00 10.00 | 5.41 2.04 3.22 4.45
SHOT [67] 0.00 1.43 1.16 7.08 3.57 1.47 2.45 3.14
Li et al. [66] 0.85 0.95 1.17 14.08 | 6.25 2.95 4.375 6.03
3D Match [35] 0.00 5.67 2.86 21.25 | 1091 | 6.98 7.945 10.29
Scan2CAD [14] 36.2 36.4 34 4426 | 70.63 | 30.66 | 42.025 31.68
End-to-End [64] 38.89 | 41.46 51.52 73.04 | 26.83 | 76.92 | 51.44 50.72
SceneCAD [15] 4242 | 36.84 58.33 81.23 | 82.86 | 45.6 57.88 61.24
CIS2VR (Ours with GT instance annotations) | 57.14 | 27.5 45.08 78.64 | 7237 | 69.88 | 58.44 72.23
CIS2VR (Ours with SoftGroup) 49.66 | 19.52 29.92 6747 | 54.02 | 56.54 | 46.19 60.25

detection, using parameters optimized for the ScanNet dataset
(minimum points: 5, distance threshold: 10cm, iterations:
1000). The OBB around planar structures’ points provides
orientation information for replication in Unity. The absence
of CAD models for structural components leads us to use a
Unity unit cube model, deformed based on calculated pose
parameters to replicate the layout. We also provide the user
an option to replace the estimated layout (planes) with a mesh
created from points corresponding to the layout from the input
scan for a more accurate but less interactive environment.

Fig. 4: ScanNet RGB-D scenes (left) and corresponding Unity
reconstruction (right), produced without any human intervention.

E. Unity Reconstruction

The associations between objects and CAD models, along
with their respective transformation parameters for each input
RGB-D scan, are written to a JSON file. This file is used
by Unity to load CAD models and apply the corresponding
transformation parameters. To enhance the visual similarity
between the reconstructed scene and the RGB-D scan, we
employ a coloring scheme for the aligned CAD models based
on their corresponding scan objects. In this process, each
vertex of the CAD model is colored according to the RGB
values of points in the instance point cloud that are spatially
closest to the vertex. Figure 4 shows VR scenes produced
using input RGB-D scans from ScanNet.

V. RESULTS AND EVALUATION
A. CAD Alignment

We evaluate our framework on the ScanNet Scan2CAD
dataset, employing metrics introduced by Avetisyan et al. [14]
to measure alignment accuracy. A successful alignment is
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defined within 20 c¢m translation, 20° rotation, and 20% scale
of the ground truth. The evaluation encompasses the entire
pipeline, including instance segmentation and object retrieval.
To allow comprehensive comparison with existing works while
quantifying the performance of the proposed pose estimation
algorithm, we use two types of inputs for pose estimation:
ground truth (GT) instance annotations and predicted instances
from SoftGroup. Additionally, we restrict the evaluation to
categories common to all works due to discrepancies in the
supported object categories. Table I shows CIS2VR’s perfor-
mance benchmarked against methods utilizing hand-crafted
feature descriptors (FPFH [68], SHOT [67], Li et al. [66]),
learned feature descriptors (3D Match [35], Scan2CAD [14],
End-to-End [64]), and recent techniques that leverage object-
object and object-layout relationships for pose estimation
(SceneCAD [15]). Note that these results are obtained with
the human-in-the-loop system disabled.

The results indicate that our framework, including the
instance segmentation module (SoftGroup), performs com-
petitively, surpassing most existing approaches and closely
trailing the current state-of-the-art approach by Avetisyan et
al. SceneCAD [15]. Notably, when evaluating only the pose
estimation algorithm using ground truth instance annotations
from ScanNet, there is a significant improvement in perfor-
mance. This suggests that the alignment performance of the
framework is, to some extent, constrained by the effectiveness
of the instance segmentation module. As advancements in in-
door 3D segmentation continue, substituting this module with
more advanced algorithms could further enhance the overall
performance of the framework. The outcomes underscore the
efficacy of our proposed model, coupled with a Chamfer loss-
guided learning strategy, revealing that features learned by a
model for a classification task contribute significantly to object
pose estimation.

In our ablation studies, we investigated the influence of
Chamfer distance on the algorithm’s training. The removal
of Chamfer distance from our loss formulation led to a note-
worthy loss in performance, approximately 6%, underscoring
the importance of the symmetry-agnostic nature of Chamfer
loss in the learning process. Additionally, we explored the
scenario of removing the classification branch and training the
network exclusively for a class-agnostic pose estimation task.
In this case, we observed a marginal decrease in performance,
approximately 2%, compared to the architecture incorporating
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the classification branch.

B. Runtime Analysis

To assess the runtime efficiency of our framework, we
measured the time taken for different steps across the ScanNet

validation dataset (consisting of 312 scenes).

Table II
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Fig. 5: Runtime on SoftGroup for validation scenes from ScanNet.

TABLE 1II: Runtime (in ms) & computational cost of modules in

CIS2VR.
Task A_verage Computational cost
Time taken
Instance segmentation 383.65 13.65 TFLOP
3D Shape Encoding + | 28.88 1.027 TFLOPS
9-DoF Pose estimation
CAD model retrieval 10.84 40 Million Cycles
Layout estimation 60.91 225 Million Cycles
Unity scene generation 70.60 261 Million Cycles
Misc. processing 129.78 480 Million Cycles
14.67 TFLOP + 107
Total 684.66 CPU Cycles

TABLE III: Runtime (in ms) comparison

with existing methods.

7 Objects | 16 Objects | 20 Objects
Scan2CAD [14] | 288.60 565.86 740.34
SceneCAD [15] | 2.0(5) - 2.60(26)
End-to-End [64] | 0.62 1.11 2.60
CIS2VR (Ours) 0.55 0.61 0.66

displays the individual runtimes for various algorithms in the
pipeline. The results indicate that the instance segmentation
algorithm accounts for a significant portion of the overall
runtime, while the combined time for shape encoding, pose
estimation, and CAD model retrieval averages around 40ms.
As shown in Figure 5, further examination of the instance
segmentation algorithm’s runtime across scenes with varying
numbers of objects and spatial sizes reveals a general trend of
increasing inference time based on the number of objects in the
scene. In addition to the time taken for each step in Table II,
we include the computational cost in terms of Trillion Floating
Point Operations (TFLOP) for GPU-based tasks and CPU
cycles for CPU-based tasks, offering a more objective quantifi-
cation of the computational cost of the proposed pipeline. Our
test system uses an RTX 3090 GPU (35.58 TFLOPS) with an
AMD Ryzen 9 5900X CPU (3.7G cycles/s). Table III provides
a comparison of the overall runtime of the proposed framework
(including Unity scene generation time) in various scenarios
with recent works on CAD model retrieval and alignment.
Across the ScanNet test dataset consisting of 312 scenes, our
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framework takes approximately 0.68 seconds, on average, to
convert an input RGB-D scan into a Unity VR scene. Notably,
our framework demonstrates enhanced scalability with larger
scenes containing more objects, efficiently converting a scene
with 20 objects in just 0.66 seconds. It’s worth noting that
while the number of instances used by SceneCAD [15] (#
objects 1, 5, 26) may not precisely match ours, [14] and [64],
efforts were made to align them with the nearest correspond-
ing number in our evaluation. The efficient runtime of the
proposed framework enables its application in collaborative
settings and real-time scenarios.

VI. CONCLUSION

We have presented a VR authoring framework that allows
users to create an interactive VR environment using an RGB-
D scan in less than a second. To enable fast and accurate
object retrieval and alignment, we propose a CNN-based
architecture that jointly learns object classification and pose
estimation, allowing it to leverage the features learned for
the classification task for pose estimation, while significantly
reducing the overall time taken for the whole process. We
estimate the layout of the scene and approximate the texture
of the CAD model (including structural components) based
on corresponding scan objects to further enhance the visual
similarity between the created environment and the RGB-D
scan. The runtime efficiency of the proposed framework makes
it a viable candidate for applications requiring collaboration
and real-time interactions.

VII. LIMITATIONS AND FUTURE WORK

While CIS2VR efficiently generates VR environments from
RGB-D scans, our primary emphasis lies in object pose
estimation. A notable limitation is the layout reconstruction
algorithm, often resulting in disjointed structural components
and incomplete scene layouts. Employing advanced tech-
niques, such as room corner and edge detection, can enhance
the quality and completeness of layouts. Improving CAD
model retrieval quality involves leveraging datasets with CAD
similarity annotations, like the Scan-CAD Object Similarity
dataset [16]. The efficacy of our texture mapping depends on
precise CAD model alignment; exploring advanced algorithms
using key-point matching could enhance this aspect. Further-
more, investigating input modalities such as RGB-D videos
and leveraging mature and accurate 2D object segmentation
models holds the potential for increased flexibility.
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