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ABSTRACT

The learning to defer (L2D) framework gives a model the choice to defer prediction
to an expert based on the model’s uncertainty. We assume an L2D setting for
sequence outputs where a small model can defer specific outputs of the whole model
prediction to a large model in effort to interweave both models throughout the
prediction. We propose a Learn then test approach to tune a token-level confidence-
based thresholding rejector for pre-trained predictors with statistical guarantees of
being within a user-defined budget and maximizing accuracy. We use Bayesian
optimization to efficiently search the space of thresholds. In the experiments, we
also empirically demonstrate that this method can achieve budget control while
maintaining prediction quality of prediction system in text summarization.

1 INTRODUCTION

While large language models have received great praise for their strong predictive capabilities, their
inference latency can increase with the size of the model. Recently, Learning to defer (L2D) (Madras
et al., 2018) has gained attention for controlling inference costs when there is access to multiple
models of various sizes. In L2D, a deferral rule determines whether an input would be routed to a
smaller model or a larger model depending on the smaller model’s uncertainty on the input.

Existing L2D methods (Mozannar & Sontag, 2020; Verma & Nalisnick, 2022; Mao et al., 2024a;b)
are designed to defer the entire prediction to a large model which can quickly become expensive in the
case of large sequence outputs. A more cost-efficient approach is to query the larger models only for
tokens where the smaller model exhibits high uncertainty. Token-wise deferral can also improve the
overall quality of the prediction by interweaving the expert in the small model’s prediction, thereby
preventing the propagation of model uncertainty. Moreover, current methods do not account for the
plausible scenario where the user is operating under a budget, necessitating a strategy that takes into
account the limited computational resources and limits the number of queries made to the larger
model. If L2D methods are employed in its present form, they will fail to provide guarantees on
keeping the rejection costs below a threshold.

To this end, we introduce a deferral rule based on thresholds functions of the token-level uncertainty
characterized by the small model. Inspired by Laufer-Goldshtein et al. (2023), we adopt a bayesian
optimization (BO) method to efficiently filter the entire search space of thresholds to a subset of
promising thresholds that minimize costs while maximizing prediction quality. We then design a
Learn then test (LTT) framework (Angelopoulos et al., 2021a) to identify the optimal rejector from the
subset of thresholds chosen in the previous step, ensuring deferral costs remain within user-specified
budget while maximizing prediction quality with high probability. We evaluate the performance of
our method with text summarization through which we will assess the quality and the cost of the
prediction systems designed by the rejector selected by our method.

2 PROBLEM SETTING

Let V be a vocabulary and Y ⊆
⋃L

l=1 V l be the output space of all sequences with a maximum length
of L. Let X represent the feature space. Suppose there are two pre-trained auto-regressive language
models h1, h2 : X → Y: h1 is a smaller, cost-efficient model, and h2 a larger, more accurate one.
Our goal is to use h1 as the baseline and learn when to defer to h2, while ensuring budget adherence.
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Influenced by Rayan & Tewari (2025), we adopt a token-level deferral mechanism that leverages the
auto-regressive nature of the language models. For each token position j ∈ [L], we define a quality
function s : X × Y≤j → R that evaluates the predicted output. Here, Y≤j represents the space of
partial sequences up to the jth token and s(x, ŷ1:j) could be the softmax output or the entropy of the
softmax layer of h1. Additionally, we introduce a threshold λ that comes from some domain Λ ⊆ R.
When generating jth token, if s(x, y1:j) > λ, the system defers to the larger model h2 and incurs
a cost c(x, y<j); otherwise, it maintains the smaller model h1’s prediction. If ŷ(1)j and ŷ

(2)
j denote

the predicted tokens generated by models h1 and h2, respectively, the final output sequence ŷ is
defined recursively as ŷ1:j =

(
ŷ<j , ŷ

(1)
j 1{s(x,y1:j)≤λ} + ŷ

(2)
j 1{s(x,y1:j)>λ}

)
. The total deferral cost

incurred by the system for a full prediction would be Lcost(λ, x, y) =
∑L

j=1 c (x, ŷ<j)1{s(x,y1:j)>λ}
and the accuracy of the prediction produced by the system is determined by Lacc(λ, y, ŷ). Crucially,
Lacc must decrease as the prediction quality improves and it can be selected based on the task.

The risks are denoted as Rcost(λ) = E(x,y)∼PX,Y
[Lcost(λ, x, y)] and Racc(λ) =

E(x,y)∼PX,Y
[Lacc(λ, y, ŷ)]. Thus, we need to select a threshold λ ∈ Λ that minimizes Racc(λ)

while constrainingRcost(λ) to a budget.

Although it would be desirable to directly solve this optimization problem, the lack of oracle
access to PX×Y makes it challenging. Instead, we can use empirical estimates of the risks on
a data set to solve a similar optimization problem. If R̂c

cost (λ) = 1
nc

∑
(xi,yi)∈Dc

Lcost(λ, xi, yi)

and R̂c
acc (λ) =

1
nc

∑
(xi,yi)∈Dc

Lacc(λ, xi, yi) are the empirical estimate of Lcost-risk and Lacc-risk

respectively using the calibration data set Dc = {(xi, yi)}nc
i=1, we aim to identify λ̂ that satisfies the

following (α, δ) risk-controlling property such that

P
(
Rcost

(
λ̂
)
≤ α

)
≥ 1− δ (1)

where the probability is with respect to Dc and α is the user-defined deferral budget. If a set of
configurations Λ̂ satisfy this property, λ̂ will be the maximizer of R̂c

acc (λ) among Λ̂.

3 METHODOLOGY

To achieve the risk control described in Equation 1, a grid search over Λ is typically employed.
However, evaluating R̂c

acc (λ) and R̂c
cost (λ) on every grid point can be computationally expensive and

the quality of the search would rely on the precision of the discretization of the domain. Additionally,
the costs of exploring the grid are further exacerbated by the dimensionality of the sequence length.
Inspired by Laufer-Goldshtein et al. (2023), we deploy hyperparameter optimization (HPO) techniques
based on Bayesian Optimization (BO) (Wang et al., 2022) to identify thresholds that minimize cost
and maximize accuracy while efficiently exploring the search space. These thresholds will then be
inputted into the Learn Then Test (LTT) framework (Angelopoulos et al., 2021a) to identify λ̂ with
high-probability guarantees of budget adherence while maintaining high accuracy. This approach
enables us to direct the LTT method towards regions of the search space where a risk-controlling λ is
more likely to be identified instead of uniformly searching the entire domain.

3.1 HYPERPARAMETER OPTIMIZATION (HPO)

Uncovering relevant parts of the search space requires paying heed to the cost-accuracy trade off:
improving accuracy typically incurs higher computational costs as a result of increased large model
queries. Therefore, no single solution optimizes both risks simultaneously. Instead, we aim to
discover a Pareto-optimal set which is defined as:

ΛP =
{
λ ∈ Λ | ∄λ′ ∈ Λ with R̂c

acc(λ
′) ≤ R̂c

acc(λ), R̂c
cost(λ

′) ≤ R̂c
cost(λ), λ

′ ̸= λ
}

Intuitively, the Pareto-optimal set contains configurations that cannot be outperformed by any other
in terms of both accuracy and cost. Thus, the Pareto front can be constructed as follows - P :=

{(R̂acc(λ), R̂cost(λ)) | λ ∈ ΛP}. To evaluate the quality of a Pareto front,P , we use the Hypervolume
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Indicator (HV) (Deb, 2001), defined with respect to a reference point r ∈ R2

HV (P, r) =
∫
R2

1 {z ∈ H (P, r)} dz

where H (P, r) =
{
z ∈ R2 | ∃p ∈ P : p1 ≤ z1 ≤ r1, p2 ≤ z2 ≤ r2

}
. The Hypervolume indicator

measures the volume in the objective space dominated by a set of Pareto-optimal solutions with respect
to a reference point. Typically, the reference point is set to the nadir of the Pareto front, representing
the worst objective values in the approximation to ensure that all Pareto optimal solutions have
positive hyper-volume contributions. To identify efficient thresholds that balance cost and accuracy,
we pursue the maximization of Hypervolume Improvement (HVI):

HV I (λ,P; r) = HV
(
P ∪ (R̂c

acc(λ), R̂c
cost(λ)), r

)
−HV (P, r) (2)

Maximizing the HVI helps us draw nearer to finding the optimal balance between cost and accuracy.
Given the computational expense of direct optimization of Equation (2), we approximate each risk
using Gaussian Process (GP) surrogates. At each iteration, the posterior mean of the GP is used
to compute Equation (2), guiding the selection of the next candidate hyperparameter λ. The true
empirical risks R̂c

acc(λ), R̂c
cost(λ) of the candidate are then used to refit the GPs. This procedure is

iterated until the maximum number of iterations is reached, resulting in an approximate Pareto front.
The complete pseudo-code of this procedure and a visual representation of HVI can be found in
Appendix B.

3.2 LEARN THEN TEST (LTT)

Having obtained an optimal search space ΛP from the HPO step, we can now use the “Learn then
test” approach to select a threshold with statistical guarantees. LTT (Angelopoulos et al., 2021a) aims
to calibrate learned models to provide finite-sample guarantees without assuming the underlying data
distribution. LTT seeks to upper bound the expectation of general losses conditioned on Dc with high
probability. It starts with a predictor f which is trained on some data set Dt and it uses Dc data to
learn a λ̂ using a multiple testing procedure such that the interleaved prediction ŷ which controls the
riskRcost(λ) at the level α with probability 1− δ.

To apply LTT for token-level deferrals, for a given budget α and error level δ, we must: 1) find finite
sample and super-uniform p-values pλ for the null hypothesis Hλ : Rcost (λ) > α for each λ ∈ Λ

using R̂cost (λ), 2) apply a family-wise error rate (FWER) controlling multiple hypothesis strategy to
identify a subset of non-rejected values of lambda or Λ̂, 3) select λ̂ with the smallest R̂acc (λ) from Λ̂.
For the first step, we use Lemma 3.1 to calculate p-values for each λ ∈ ΛP . The proof of Lemma 3.1
is adapted from a similar proof in (Quach et al., 2023), and we defer the proof to Appendix C.

Lemma 3.1 If Binom(n, p) is a binomial random variable with n trials and success probability p,

then pcλ = P

(
Binom(ncL,α) ≤ ncLR̂

c
cost(λ)

)
is a valid p-value, where R̂c

cost(λ) is the empirical
Lcost-risk on Dc

With {pcλ}λ∈ΛP , we can pass the p-values into a multiple hypothesis testing algorithm. While the
Bonferroni procedure is a valid FWER controlling algorithm, the multiplicity correction tends to
degrade the power of the test as |ΛP | increases, resulting in Λ̂ = ∅. Fixed sequence testing is optimal
when we have apriori information about the likelihood of rejecting Hλ. To collect this information,
we employ Pareto testing (Laufer-Goldshtein et al., 2022).

In Pareto testing, the Pareto front described in Section 3.1 is filtered out of ΛP and the Pareto front is
ordered by increasing p-values from Theorem 3.1 using Dc. P-values pdλ are then computed using the
empirical Lcost-risk on another dataset Dd or R̂d

cost(λ). Finally, fixed sequence testing is applied in
the order specified in the previous step to return a set of acceptable configurations or Λ̂. If|Λ̂| > 1,
we select the configuration with the lowest empirical Lacc-risk on Dd or R̂d

acc(λ).

Theorem 3.2 If λ̂ = argmin
λ∈Λaccept

R̂d
acc(λ), (α, δ) risk control or Equation (1) has been satisfied.

The proof of Theorem 3.2 follows from Theorem 1 in (Angelopoulos et al., 2021b).
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4 EXPERIMENTS

We perform our experiments on the Extreme Summarization task to demonstrate the performance of
a confidence thresholding rejector. h1 or the small model is a t5-small model (Niemiec) finetuned
on the XSUM dataset (Narayan et al., 2018) while h2 is a t5-large model (Stept) finetuned on both
XSUM and CNN Daily Mail (Nallapati et al., 2016) data sets. For the calibration procedure, 400
article-summary pairs from the XSUM dataset whose summary length doesn’t exceed 20 tokens are
selected. 200 of those samples form Dc, which is used for BO and the first stage of Pareto testing step
while the rest or Dd is used for the second stage of Pareto testing. The models were set to generate
sequences with maximum length of 20 tokens. λ̂ is evaluated against 100 test points with summary
lengths less than 20 tokens with the results averaged over 5 runs.

Here, q(x, ŷ<j) is the negative logarithmic softmax output of the greedy token prediction from h1.
The deferral cost c(x, ŷ<j) is set to 0.05, making Lcost the fraction of expert calls per prediction. We
used 1− ROUGE score as Lacc to evaluate prediction quality. A Matern kernel with ν = 2.5 is used
to fit the GPs. LTT is implemented with various α levels upto 0.2 and δ = 0.1. All inference passes
are done on an Nvidia A40 GPU. We evaluate λ̂ on total deferral cost Lcost and prediction quality
Lacc. We test how often the L2D system stays within budget and achieves the desired prediction
quality for various α levels on a test set.

(a) Budget Adherence (b) ROUGE Accuracy

Figure 1: Figure (a) plots the average cost against various alpha levels with the red dotted line
denoting the budget or α level. Figure (b) is a plot of the ROUGE accuracy.

We demonstrate how our method performs in terms of accuracy and budget adherence. Figure 1a
demonstrates how our method complies with the budget across all alpha levels. For certain budget
settings, our method tends to be too conservative even when exhausting the budget would better
maximize accuracy and balance the cost-accuracy trade off. However, in Figure 1b, we see that using
BO gives increasing accuracy as the budget increase.

5 DISCUSSION

This work raises many interesting questions. The choice of having a uniform threshold for all
token positions was made to provide ease in implementing the BO step. To make the thresholds
multidimensional without BO suffering from curse of dimensionality, we would like to implement
group thresholds. For group thresholds, a single threshold will be used for contiguous portions of
the sequence generation as opposed to the whole sequence. Furthermore, we are also interested in
using other state-of-the-art HPO methods like HyperBand (Li et al., 2018) and Bayesian optimization
hyperband (Wang et al., 2018). We expect using methods that perform better than BO in HPO can
select better threshold configurations for hypothesis testing procedure.

4
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A RELATED WORK

Cascades and Learning to Defer. Cascading is a line of work that involves routing input to the right
models. This is often done by thresholding the predicted probabilities (Wang et al., 2017; Narasimhan
et al., 2024; Jitkrittum et al., 2024). Our method most closely aligns with these methods. However,
they lack guarantees on budget adherence and simply maximize prediction quality. Specifically,
Narasimhan et al. (2024) queries both models to determine deferral decisions, defeating the purpose
of this framework. Inspired by learning to defer methods (Mozannar & Sontag, 2020; Verma &
Nalisnick, 2022), some cascade approaches use deep learning architectures to model a rejector (Wang
et al., 2023; Ding et al., 2024; Wang et al., 2024; Gupta et al., 2024), however their training procedures
for whole deferrals don’t feasibly extend to token-wise deferrals and lack nice statistical properties
that typical learning to defer loss functions possess.

Calibration Methods. This deferral problem aims to characterize token-wise model uncertainty with
guarantees on its accuracy. This closely relates problems tackled by calibration methods. Calibration
concerns processing predictions to account for model uncertainty providing some statistical guaran-
tees. There is a plethora of work (Ren et al., 2023; Deutschmann et al., 2024; Ravfogel et al., 2023)
that uses conformal prediction in language models to provide coverage guarantees. However, these
methods focus on capturing overall sequence-level uncertainty, making it difficult to glean granular
insights. Quach et al. (2023) uses the “Learn then test” framework (Angelopoulos et al., 2021a) to
achieve risk control. However, they perform a grid search over a high-dimensional space which can
be computationally intractable. Our method is inspired by Laufer-Goldshtein et al. (2023) which
replaces the grid search with a bayesian optimization to efficiently control multiple risks.

B ALGORITHM

Rcost

Racc

rP1

P2

P3

P4

(R̂cost(λ); R̂acc(λ))

HVI

Figure 2: Illustration of the HVI with the reference point r set to the nadir. The green-shaded region
represents the HV of the Pareto front {P1, P2, P3, P4}. The red-shaded rectangle highlights the
additional hypervolume contributed by the new point (R̂cost(λ), R̂acc(λ)), denoting the HVI.

Algorithm 1: Approximate Pareto Front with BO
Input: Initial set of configurations Λ0, Calibration set Dc

Output: Optimized set of configurations ΛP

Initialize ΛP ← Λ0;
repeat

Fit Gaussian Processes for R̂c
acc and R̂c

cost using ΛP ;
Compute the Pareto front P of ΛP ;
Compute the reference point r;
Maximize Hypervolume Improvement (HVI) acquisition function to propose new λ;
Calculate accuracy risk R̂c

acc(λ) and cost risk R̂c
cost(λ) on Dc;

Update ΛP ← ΛP ∪ {λ};
until maximum iterations;
return ΛP ;
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C PROOF OF THEOREM 3.1

We will show that pcλ is super uniform or ∀u ∈ [0, 1] P (pcλ ≤ u) ≤ u conditioned on the null
hypothesis being true. Let A = Binom(ncL,α) and let Y = ncLR̂cost(λ). Let’s say Y ∼ B =

Binom(ncL,α
′). Under the null hypothesis, R(Tλ) > α. We know that R̂cost(λ) is an unbiased

estimate of Rcost(λ) or E
[
R̂cost(λ)

]
because we are just taking an empirical estimate. The null

hypothesis can be restated as follows:

α < Rcost(λ)

= E
[
R̂cost(λ)

]
= α′

So under the null hypothesis, I can say that

FB(z) ≤ FA(z)

Now the p-value can be rewritten as:

P
(

Binom(ncL,α) ≤ ncLR̂cost(λ)
)
= P (A ≤ B) = FA(B)

So, for u ∈ [0, 1]

P (pλ < u) = P (FA(B) < u)

≤ P (FB(B) < u) under the null, α′ > α

= P
(
B < F−1

B (u)
)

= FB(F
−1
B (u))

= u
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