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Abstract

Understanding and improving generalization ca-
pabilities is crucial for both classical and quantum
machine learning (QML). Recent studies have
revealed shortcomings in current generalization
theories, particularly those relying on uniform
bounds, across both classical and quantum set-
tings. In this work, we present a margin-based
generalization bound for QML models, providing
a more reliable framework for evaluating gener-
alization. Our experimental studies on the quan-
tum phase recognition dataset demonstrate that
margin-based metrics are strong predictors of
generalization performance, outperforming tra-
ditional metrics like parameter count. By connect-
ing this margin-based metric to quantum infor-
mation theory, we demonstrate how to enhance
the generalization performance of QML through a
classical-quantum hybrid approach when applied
to classical data.

1. Introduction

Quantum machine learning (QML) presents exciting oppor-
tunities to expand the horizons of machine learning beyond
classical approaches. Generalization—the ability to learn
from examples and make accurate predictions on unseen
data—is a core component of intelligence and a critical fac-
tor that quantifies the effectiveness of machine learning mod-
els in real-world applications. Thus, fundamental challenge
in QML, as in classical machine learning, is to understand,
characterize, and optimize generalization. Generalization in
QML has been studied through various factors, such as the
number of parameters (Caro et al., 2022), effective dimen-
sion (Abbas et al., 2021a), quantum resource theory (Bu
etal.,2021;2022; 2023), and quantum information-theoretic
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quantities (Banchi et al., 2021; Caro et al., 2024). Despite
these efforts, existing methods have shown limitations in
fully capturing the behavior of QML models.

The current understanding of generalization in QML pre-
dominantly relies on uniform bounds, which hold uniformly
across all hypotheses within a given class. However, in clas-
sical deep learning, uniform bounds have faced significant
criticism for their lack of practical relevance (Zhang et al.,
2021; Nagarajan & Kolter, 2019; Dziugaite & Roy, 2017).
In particular, Zhang et al. (2021) demonstrated that mod-
ern deep learning models can easily overfit random labels.
Since uniform bounds apply equally to all hypotheses in
the function family, this result indicates that these bounds
fail to distinguish between models that generalize well and
those that merely memorize data, highlighting their vacuity
in deep learning. Building on this observation, Gil-Fuster
et al. (2024) explored the use of parameterized quantum
circuits, also known as Quantum Neural Networks (QNNs),
on a benchmark quantum dataset with randomized labels.
Despite the small number of qubits, the QNNs were able to
overfit the random labels, indicating that uniform bounds
are equally ineffective in the QML framework.

In classical deep learning, the looseness of uniform bounds
has prompted many researchers to shift their focus toward
explanatory tools, such as exploring their correlation with
observed generalization. Notably, Bartlett et al. (2017) pro-
posed a margin-based generalization bound for deep net-
works and demonstrated that spectrally normalized margin
distribution is strongly correlated with generalization per-
formance. Subsequent research has consistently found that
margin-based metrics are reliable predictors of generaliza-
tion performance (Neyshabur et al., 2018; Jiang et al., 2018;
Dziugaite et al., 2020).

In this work, we demonstrate that margins are strong predic-
tors of generalization performance within the QML frame-
work as well. Our goal is to shift the focus away from the
commonly emphasized parameter count, highlighting mar-
gins as a more effective tool for evaluating and controlling
generalization. Moreover, this margin-based perspective
provides a systematic pathway to improving the general-
ization of QML models when applied to classical data, as
it reveals that maximizing the separability of classes em-
bedded in the quantum feature space is key to optimizing
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performance.

The central contributions of this work are:

* We establish margin-based generalization bound for
multiclass classification with QNNs by adapting the ap-
proach of Bartlett et al. (2017), originally developed for
classical neural networks, to the quantum domain. This
involves interpreting quantum measurements as Lips-
chitz continuous nonlinear activations and extending
matrix covering techniques to complex-valued spaces.
The unitary constraints of quantum circuits and normal-
ization of quantum states simplify the complexity of
the original framework, enabling us to assess general-
ization performance through the margin normalized by
the spectral norms of the measurement operators. This
margin-based bound yields tighter upper bound when
the hypothesis achieves larger margins on the sample
set, addressing the limitations of uniform bounds in
capturing meaningful generalization behavior.

* We experimentally demonstrate a strong correlation
between generalization and margin distribution, even
in scenarios with random labels, where traditional met-
rics like parameter count are ineffective. Furthermore,
we compare margin-based metrics (e.g., lower quartile,
median, and mean) against parameter-based metrics,
consistently finding margins to be more reliable predic-
tors of generalization in QNNss.

* We further establish a connection between margins
and quantum state discrimination, a core concept in
quantum information theory. This insight underscores
the pivotal role of quantum embeddings in both opti-
mization and generalization, providing valuable guid-
ance for designing effective QML models when applied
to classical data. We demonstrate that Neural Quan-
tum Embedding (NQE) (Hur et al., 2024), a classical-
quantum hybrid approach optimized for high data dis-
tinguishability, yields large margins, thereby enhances
generalization performance.

2. Related Works

The concept of margin was popularized in machine learn-
ing by the development of support vector machines (Cortes
& Vapnik, 1995). Following this, the theoretical connec-
tions between large margins and generalization bounds were
explored for model classes such as two-layer neural net-
works (Bartlett, 1996) and linear classifiers (Shawe-Taylor
et al., 1998), establishing margin analysis as a valuable tool
for understanding generalization. In the context of modern
deep learning, spectrally normalized margin bounds were
introduced, derived from perspectives including covering
number arguments (Bartlett et al., 2017) and PAC-Bayesian

theory (Neyshabur et al., 2018). More recently, Jiang et al.
(2018) have underscored the importance of analyzing the
margin distribution across training samples for accurately
predicting the generalization gap.

Concurrently, efforts to understand generalization in QML
have often involved extending established techniques from
classical learning theory. These include metrics such as
parameter counts (Caro et al., 2022), effective model di-
mensions (Abbas et al., 2021b), and quantum information-
theoretic measures (Caro et al., 2024). However, a dedicated
extension of margin-based generalization analysis to the
QML domain has remained a significant gap. This paper
directly addresses this by developing a margin-based frame-
work for QML models, aiming to provide more effective
predictions of their generalization capabilities.

The process of data embedding is another critical aspect
when applying QML models to classical data, with demon-
strable impacts on approximation error (Schuld et al., 2021),
optimization landscapes (Holmes et al., 2022), and on gen-
eralization error (Caro et al., 2021). Specifically, Caro et al.
(2021) investigated the role of quantum embedding on gen-
eralization utilizing fat-shattering arguments. In Section 5,
we introduce a novel approach to investigating the influ-
ence of data encoding on generalization by leveraging our
margin-based framework. We establish a connection be-
tween the margin mean and the trace distance, a key mea-
sure of quantum state distinguishability. This perspective
not only contributes to the theoretical understanding of how
data embeddings affect generalization but also offers a prac-
tical guide for enhancing the performance of QML models.

3. Margin Bound for Quantum Neural
Networks

3.1. Multiclass Classification with Quantum Neural
Networks

Consider an unknown joint probability distribution D gov-
erning the quantum state p and its corresponding label y,
where p € CV*N and y € [k], representing an n-qubit
(n = logy N), k-class classification task. QNNs employ
a parameterized quantum circuit U (), along with a set of
positive operator-valued measurements (POVMs) {Ez}fz1
to perform classification. Here, U (6) is a unitary operator
parameterized by 6, satisfying UUT = UTU = I, where
UT is the conjugate transpose of U. POVM:s are a gener-
alization of projective measurements in quantum mechan-
ics, where {FE;}*_| represents a set of positive semidefi-
nite operators that sum to the identity. Specifically, the
QNN maps a quantum state to a k-dimensional vector,
he(p) = {Tr(U(0)pUT(0)E;)}r_,, where each element
represents the probability of the state being assigned to a
particular class.



Understanding Generalization in Quantum Machine Learning with Margins

Given m independent and identically distributed (i.i.d.) sam-
ples S = {(ps,y:) ;. the goal is to find a hypothesis
h* (or optimal parameters 60*) that minimizes the true er-
ror, R(h*) = E(, ) ~p[l(argmax; h*(p); # y)], where
1(x) = 1if z is true, and O otherwise. Since the true
distribution D is unknown, we instead seek a hypothesis
h (from a hypothesis class H) with small empirical risk,

R(h) =m~1>"" 1(argmax; h(pi); # yi)-

For a given hypothesis h, the generalization gap is de-
fined as the difference between the true and empirical risks,
g(h) = R(h) — R(h). A common approach to under-
standing generalization is to upper bound g(h) using a
complexity measure that depends on the hypothesis class,
H = {p— {Tx(UpUTE)}e_, : U € Ug}, where Ug
denotes the space of unitaries accessible by QNNs. The
complexity of H depends on hyperparameters such as the
quantum circuit architecture, the choice of unitary ansatz,
the number of unitary layers, and the selection of POVMs.

3.2. Margin Generalization Bound

The concept of margin has been extensively explored since
the early days of machine learning, offering theoretical
foundations for support vector machines (Cortes & Vapnik,
1995). Recently, margin is adopted to understand general-
ization in deep learning (Bartlett et al., 2017; Neyshabur
et al., 2018).

Margin generalization utilizes the ramp loss function [, :
R — R™,

0, ifx >~
Lz)=¢1—z/y, if0<z<xy
1, if 2 < 0.

For multiclass tasks, we define the margin operator M as
M(v,y) = v, —max;-, v;, measuring the gap between the
correct label’s probability and the highest competing label.

To derive margin bound for QNNs, we utilize Rademacher
complexity on the function class F, = {(p,y) +—
Iy(M(h(p),y)) : h € H} (Mohri et al., 2018). Let o; be
i.i.d. Rademacher random variables, each taking values 1
with equal probability. For a sample S = {(p;, y;)}/~,, the
sample Rademacher complexity is defined as R((F)|s) =
m T Efsupser >im 0if((pisyi))]- Then, for any § > 0
and v > 0, with probability at least 1 — § over the ran-
dom draw of an i.i.d. sample S of size m, the following
inequality holds for all h € H:

In(2/9)

2m

R(h) < R (h) + 2R((F,)s) + 3 ;D)

where R, (h) represents the empirical margin loss, i.e.,
Ry (h) =m= 3000 L(h(pi)y, < v+ maxzy, hip:);).

In this section, we present an analytic bound for R((F,)|s)
in terms of quantum channel components, thereby estab-
lishing a margin-based generalization bound for QML. We
focus on pure state inputs, x € C¥, which can be general-
ized to mixed state inputs via vectorization.

Given a set of POVMs {E;}*_,, we define the quantum
measurement functions as g;(z) = z!FE;z and g(z) =
{«TE;z}*_,. For pure state inputs, the function class be-
comes F, = {(z,y) —= I,(M(g(Ux),y)) : U € Ug}.

To derive an analytic expression for the Rademacher com-
plexity 3((F,)|s) in terms of the quantum channel com-
ponents, we employ covering number techniques, which
discretize the function class with a finite set of representa-
tive elements. The e-covering number of a set A, denoted
as N (4, ¢, - ||), represents the minimum cardinality of
any subset B C A such that sup,¢ 4 mingep |ja — b|| < e.
Obtaining a covering number bound for (F,)|s involves
two steps: (1) utilizing the Lipschitz continuity of i, M,
and g, and (2) employing matrix covering techniques in the
context of QNNs.

Let || - ||» denote the spectral norm, and let || - ||, , denote
element-wise (p, ¢) matrix norm. For any y and p > 1,
,(M(-,y)) is 2/~-Lipschitz in the [, norm (see Lemma A.3
of Bartlett et al. (2017)). Moreover, g; is 2|/ E;|| ,-Lipschitz,
as || Vgi(2)||2 < 2||E;||» for all normalized quantum states
z. Consequently,

lg(u) = g(v)lla <2, /Z I3 1w = vll2,

showing that g is 2E-Lipschitz, where E = />, || E;||2.

Lipschitz continuity reduces the covering numbers of
(F)s to matrix covering. For a data matrix X € CV*™,
where each column represents a quantum state, the Frobe-
nius norm satisfies || X|2 = /m due to normalization.
Given a reference unitary U, and bound b such that
|lU — Usetll2,1 < bforall U € Ug, we obtain

N (F sl ll2) SN ({UX U € Ugh 1, I I2)
2102
< exp (PQZ?VQE—‘ ln4N2) .

The first inequality follows from Lipschitz scaling, while the
second adapts matrix covering techniques to our quantum
setting, extending Bartlett et al. (2017) and Zhang (2002).

Finally, we bound the Rademacher complexity in terms
of the covering number using the Dudley’s entropy inte-
gral (Mohri et al., 2018; Shalev-Shwartz & Ben-David,
2014). Consequently, we have following margin bound
for QNN:gs.

Theorem 3.1. Consider an n-qubit QNNs consist of unitary
U € Ug and POVMs { E;}¥_, for k-class classification. Let
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b be a distance bound such that ||U — Uyet||21 < b holds
forany U € Uq, with U,er serving as the reference unitary
matrix. Then, for any § > 0 and v > 0, with probability at
least 1 — § over the random draw of an i.i.d. sample S of
size m, the following inequality holds for all h € H.:

k
n In(1/4
*ZHE¢||§+ M
mizl m

Unlike uniform generalization bounds, a margin bound of-
fers a tighter upper bound when the hypothesis classifies the
sample set S with larger margins. Thus, the margin distribu-
tion, normalized by the spectral norms of POVMs, is critical
for assessing generalization performance. For example, a
left-skewed margin distribution, where many samples are
classified with small margins, results in a large upper bound,
indicating poor generalization performance.

Furthermore, when the POVMs are projective measurements
(as in many QML models), the Lipschitz constant for quan-
tum measurements simplifies to 2v/k. In this case, the
margin bound simplifies as follows:

Corollary 3.2. Under the conditions of Theorem 3.1, if
the POVMs {E;}%_| are projective measurements, where
E? = E;and E;E; = 0 for all i # j, then:

. ~ (b [nk In(1/9)
R(h) < Ry(h)+ O <7\/;+ \/ m) .

This shows that, for QNNs with projective measurements,
the margin bound is independent of the choice of measure-
ment operators. Consequently, when comparing generaliza-
tion performance across models with projective measure-
ments, it suffices to evaluate the margin distribution alone,
as normalization by the spectral norm is unnecessary due to
its uniformity across models.

Details on the derivation of margin bound for QNNs and
its extension to mixed input quantum states are provided in
Appendix A.1.

4. Experimental Results

4.1. Margin Distribution and Generalization
Performance

In this section, we empirically demonstrate a strong corre-
lation between margin distribution and the generalization
performance of QML models. Building on the framework
presented by Gil-Fuster et al. (2024), we revisit the Quantum
Phase Recognition (QPR) with randomized labels, utilizing
Quantum Convolutional Neural Networks (QCNN) (Cong
et al., 2019; Hur et al., 2022). QPR is a classification task
aimed at identifying quantum phases of matter, a problem of

significant relevance in condensed matter physics (Sachdev,
1999; 2023; Broecker et al., 2017; Ebadi et al., 2021; Car-
rasquilla & Melko, 2017).

Specifically, we examine the generalized cluster Hamilto-
nian defined as H(J1, o) = >7_(Z; — J1X; X1 —
J2X;_1Z;X4+1), where X; and Z; are the Pauli operators
acting on site j. This Hamiltonian has tunable parameters J;
and J that control interaction strengths. Depending on the
values of these parameters, the ground state of the Hamilto-
nian falls into one of four distinct phases: (1) ferromagnetic,
(2) antiferromagnetic, (3) symmetry-protected topological
(SPT), or (4) trivial. Consequently, determining the phase of
a given ground state with unknown interaction parameters
is framed as a four-class classification problem.

QCNNs can overfit the randomized QPR labels, revealing
the limitations of uniform bounds in assessing generaliza-
tion performance (Gil-Fuster et al., 2024). We argue that the
margin bound offers a more accurate measure of generaliza-
tion in QML models, evidenced by the strong correlation
between margin distribution and test accuracy.

Figure 1 presents the margin distributions of optimized 8-
qubit QCNN s using box-and-whisker plots, along with cor-
responding test accuracies and generalization gaps, for mod-
els with one, five, and nine QCNN layers. A right-skewed
box plot suggests that the data are classified with larger
margins, which is associated with a tighter generalization
upper bound (i.e., a smaller right-hand side in the equation
of Theorem 3.1).

Across all layer configurations, increasing label randomiza-
tion leads to decreased test accuracy. Concurrently, label
randomization shifts the margin distributions significantly
to the left. This leftward shift in the margin distributions
results in a larger upper bound on the true error, as indicated
in Theorem 3.1, showing that the margin bound effectively
captures the generalization behavior under randomized la-
bels.

Additionally, when labels are not completely randomized,
QCNNs with deeper layers tend to achieve higher test accu-
racy. This suggests that deeper QCNNSs, due to increased
expressibility, can identify hypotheses closer to the optimal
one. As the test accuracy increases, we observe a corre-
sponding rightward shift in the margin distributions, further
highlighting that margin distributions are reliable indicators
of generalization performance in the QML framework.

Detailed experimental procedures and additional results
using different variational ansitze, including more fine-
grained analyses of noise levels and layer counts, are pro-
vided in Appendix A.3, Figures 20 and 21.
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Figure 1. A Tukey box-and-whisker plot depicting the margin distributions of optimized 8-qubit Quantum Convolutional Neural Networks
(QCNNSs). The results for QCNNs with one, five, and nine layers are displayed, along with their corresponding test accuracies and
generalization gaps indicated in the legend. QCNNs were trained for 4-class classification task aimed at quantum phase recognition
(QPR). The experiment was performed with varying degrees of label noise: QPR dataset with pure labels (left), half randomly labelled
dataset (middle), and full randomly labelled datasets (right). As the noise (randomization) level increases, the margin distributions tend
to exhibit a more pronounced skew towards the left, indicating that a greater proportion of samples are classified with smaller margins.
Notably, the margin distribution exhibits a strong positive correlation with test accuracy across all scenarios.

4.2. Predicting Generalization Gap: Parameters vs
Margins

In our earlier analyses, we identified a strong correlation be-
tween margin distributions and generalization performance.
Here, we demonstrate the effectiveness of margin-based
metrics in estimating the generalization gap, highlighting
their advantages over traditional uniform bounds.

Caro et al. (2022) showed that the generalization gap in
QML models can be estimated based on the number of train-
able parameters. Specifically, they proved that, in the worst
case, the generalization gap scales with the square root of
the parameter count. Furthermore, when only a subset of
parameters undergoes substantial change during training,
the generalization gap scales with the square root of the
number of effective parameters that undergo significant up-
dates. Despite being uniform bounds, the parameter-based
generalization approach has become a standard method for
understanding generalization behavior in QML models.

To illustrate the effectiveness of margins in estimating the
generalization gap, we compare three margin-based met-
rics with three parameter-based metrics. For margin-based
metrics, we analyze the lower quartile, median, and mean
values of the margin distribution. For parameter-based met-
rics, we examine both the total number of parameters and
the count of effective parameters that undergo substantial
change during optimization. Specifically, we define effec-
tive parameters using two thresholds, 10~* and 10~2, which
represent the minimum change in a parameter (the rotation
angle of parameterized quantum gates) for it to be consid-

ered effective.

Figure 2 depicts how the generalization gap, median margin,
and effective parameters (with a 10~2 threshold) change in
response to variations in the number of QCNN layers, the
percentage of randomized labels, and the choice of varia-
tional ansatz. Since margins are inversely correlated with
generalization gap (as shown in Theorem 3.1), the inverse
of the median margin is plotted instead. Additionally, fol-
lowing the results of Caro et al. (2022), we plot the square
root of the number of effective parameters.

Figure 2(a) shows how the generalization gap, inverse me-
dian margin, and the square root of effective parameters
vary with the number of QCNN layers—I1, 3, 5, 7, and 9.
The generalization gap reaches its peak at five layers before
slightly decreasing. While the effective parameters increase
monotonically with the number of layers, the median margin
effectively captures the peak at five layers.

Similarly, in Figure 2(b), the margin effectively captures the
rising generalization gap as the percentage of randomized
labels increases, while the number of effective parameters
show an inverse trend.

In Figure 2(c), we analyze three variational ansétze: QCNN,
QCNN with shared parameters (Cong et al., 2019; Hur et al.,
2022), and Strongly Entangling Layers (Bergholm et al.,
2020), arranged in decreasing order of expressibility. In
this case, the QCNN with shared parameters constrains the
local parameterized unitaries within the convolutional layers
to share identical parameter values. The margin correctly
reflects the rising generalization gap as expressibility de-



Understanding Generalization in Quantum Machine Learning with Margins

2.05 r40

35

30

gen. gap
=)
=
)

1.85 125

20

"/ —— gen. gap
-~ margin(Q2)~!

35.225 35

0.275

35.200
0.250

w
S)

35.175
0.225
35.150

N
o

0.200
35.125

margin (Q2)~*

35.100 0175

\ eff. params (1072)

N
=]

35.075 0.150

35.050 0.125 15

35.025 0.100

—_— AN 15
0.06 & \/eff. params (1072) ® 1170
1 3 5 7 9 0.0 0.5

Number of Layers

Percentage of Randomized Labels

(a) (b)

1.0 QCNN QCNN (param shared) SEL

Variational Ansatz

(©)

Figure 2. Tllustration of how the generalization gap, median of the margin distribution (a margin-based metric), and effective parameters
with a 1072 threshold (a parameter-based metric) vary with the number of layers, percentage of randomized labels, and the choice of

variational ansitze.

creases, while the number of effective parameters shows an
inverse trend.

In summary, the margin reliably captures variations in
the generalization gap across different hyperparameters,
whereas effective parameters fail to do so and sometimes
show the opposite trend. Note that the median margin is
used instead of the lower quartile (Q1) to avoid infinite
inverse margins when Q1 is zero, a scenario that occasion-
ally arises when the labels are fully randomized and the
model employs an inexpressive variational ansatz. Effec-
tive parameters are shown instead of the total number of
parameters, as the latter remains constant despite changes in
randomized label percentages, unlike the generalization gap.
Additional comparisons—margin mean and Q1 versus total
and effective parameters—without label noise are provided
in Appendix A.3, Figure 22.

Thus far, we have compared how margins and the number
of parameters capture generalization by varying one hyper-
parameter at a time while keeping the others fixed. Now, we
present a more comprehensive comparison with all hyper-
parameters varied simultaneously. More specifically, for a
given set of hyperparameters A, we examine the correlation
between the generalization gap g() and the correspond-
ing metric (). Here, as before, the metrics can be either
margin-based or parameter-based. To assess correlation,
we analyzed two different evaluation methods: mutual in-
formation and Kendall rank correlation coefficient. Both
methods (or their variants) have been used to assess gen-
eralization capacity in classical deep learning (Jiang et al.;
2020; Dziugaite et al., 2020).

In mutual information analysis, we treat the hyperparameter
A as a random vector, with g(A) and u(\) as functions
of this vector. Mutual information, denoted by I(g; u), is

defined as I(g; u) = E [log %} , which simplifies to

H(g) — H(g|p). Here, H(g) represents the entropy of g,
quantifying the uncertainty of the generalization gap, while
H(g|u) is the conditional entropy of g given p, indicating
the remaining uncertainty about the generalization gap given
. Thus, higher mutual information I(g; 1) suggests that
provides more information about g, reducing the uncertainty
associated with g.

In contrast, the Kendall rank correlation coefficient 7 mea-
sures the strength and direction of the association between
two variables. For pairs of generalization gap and metric
values, (g(A1), (A1) and (g(Az2), u(A2)), we expect the
metric to accurately capture the ranking of generalization
performance. Specifically, if g(A1) < g(A2), then p(A1)
should also be less than pi(A2). This implies that the metric
w effectively predicts relative generalization, with lower
values corresponding to better generalization (lower g). Con-
sider lists of n generalization gaps and corresponding met-
rics, denoted as G = [g1,...,9,) and M = [u1,. .., tn),
where each g; and p; corresponds to g(A;) and u()\;), re-
spectively. The Kendall rank correlation coefficient between
G and M is given by

1

TeM = 2n(n —1)

> 1+ sgn(g: — g;) sen(pi — pj)] -

i<j

This coefficient ranges from O to 1, where 7 = 1 indicates
perfect agreement between the rankings of g and p (all pairs
are concordant), and 7 = 0 indicates perfect disagreement
(all pairs are discordant).

Figure 3 shows the mutual information (solid) and Kendall
rank correlation coefficient (shaded) between the general-
ization gap and various metrics. In both evaluation methods,
margin-based metrics demonstrate stronger correlations than
parameter-based metrics, indicating that margins are more
effective in evaluating the generalization performance of
QML models.
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Figure 3. Comparative analysis of mutual information (solid) and Kendall rank correlation coefficients (shaded) between the generalization
gap and various metrics. The first three columns represent margin-based metrics, while the last three columns represent parameter-based

metrics.

Consistent with previous analyses, we used inverse margin
values to measure correlation, as larger margins correspond
to smaller generalization gaps. Further details on this exper-
iment can be found in Appendix A.2.

To further demonstrate the robustness of our results, we
present additional experimental results that reproduce the
main findings (Figures 1-3). These experiments were con-
ducted on supplementary datasets—the Transverse Field
Ising Model and the XXZ Heisenberg spin chain—with 8
and 10 qubits. These results are detailed in Appendix A.3.

5. Margins and Quantum Embedding

Up to this point, we have focused on scenarios involving the
classification of n-qubit quantum data using QML models.
Another important application of QML is the classification
of classical data. To work with classical data in a quan-
tum framework, the d-dimensional data, z € R?, must
be mapped to an n-qubit quantum state, represented by a
density matrix p(x) € C2"*2". This process, known as
quantum embedding, typically involves applying a quan-
tum embedding circuit Ueyp to the ground state, resulting in
P(@) = Uemo () (10) (0N 2" U ().

Quantum embedding is crucial to the overall performance
of QML models, as it establishes the lower bound of the
training loss (Lloyd et al., 2020; Hur et al., 2024). For exam-
ple, in a binary classification with a dataset of /N samples,
S = {z7,—1}, U {z;,+1}¥, the training loss with
respect to a linear loss function, denoted by Lg, is lower
bounded as

1 o
Ls > 5 = Du(p™p phpT).

Here, p* =3, p(zE) /N represents the quantum states
corresponding to the ensemble of each class. The proba-
bilities for each class are denoted by p* = N* /N, and
Dy (+,-) denotes the trace distance.

Given a sample dataset S, the quantum embedding circuit
determines Dy (p~p~,pTpT). A quantum embedding that
produces a large initial trace distance results in a smaller
loss, and vice versa. This is because quantum channels
are completely positive and trace-preserving (CPTP) maps,
which cannot increase the distinguishability between quan-
tum states. Formally, for a quantum channel A and a dis-
tance metric D (such as trace distance or infidelity), the
contractive property D(A(p™),A(p™)) < D(p™,p~) ap-
plies to any quantum states p™ and p~. This indicates that
the distance between two quantum states (representing data
from different classes) cannot increase as quantum opera-
tions are applied, emphasizing the importance of starting
with a large initial trace distance.

To address this limitation, Lloyd et al. (2020) introduced
trainable quantum embedding (TQE), where a parameter-
ized quantum circuit is optimized to maximize the sep-
aration between data classes in Hilbert space. Unlike a
fixed quantum embedding, the L-layer TQE incorporates
an additional parameterized unitary circuits, V' (¢), to con-
struct Uge(z, ) = HiLzl Uemb(2)V (¢;). The quantum
state associated with data x and parameter ¢ is given by
pla,¢) = Uge(, #)(|0)(0])E Ul (x, ). The trainable
parameters ¢ are optimized to enhance the distinguishabil-
ity between quantum states corresponding to different data
classes. This concept was later extended to quantum kernel
frameworks by Hubregtsen et al. (2022).

Building on this, Hur et al. (2024) proposed Neural Quan-
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Figure 4. A Tukey box-and-whisker plot illustrating the margin distributions of optimized 8-qubit Quantum Convolutional Neural Networks
(QCNNSs). The plot shows results for QCNNSs using fixed quantum embedding (left), trainable quantum embedding (middle), and neural
quantum embedding (right). The QCNNs were trained on a binary classification task using the MNIST (bottom), Fashion-MNIST
(middle), and Kuzushiji-MNIST (top) datasets. In addition to the margin distributions, the mean of the margins is indicated by a black
cross, and the trace distance between ensemble quantum states is marked by a red circle.

tum Embedding (NQE), which leverages classical neural
networks to optimize quantum embeddings. Their study
highlighted the inherent limitations of TQE in maximizing
trace distance and empirically demonstrated that NQE can
effectively identify quantum embeddings with a large initial
trace distance, outperforming the capabilities of TQE.

While both TQE and NQE are theoretically designed to im-
prove the lower bound of sample training loss, they have also
been shown to significantly enhance test accuracy, thereby
improving generalization performance. Although a posi-
tive relationship between a large initial trace distance and
improved generalization has been observed empirically, a
theoretical explanation for this relationship was previously
missing. Margin generalization offers this missing theoreti-
cal basis, as the trace distance serves as an upper bound on
the margin mean.

In binary classification, the margin mean simplifies to
L= %>, Tr(Up(x;)UE,,) — 1, where U denotes the
optimized unitary of QNN after the training. By defining
Er,=U tEL1U, the margin mean can be reformulated as,

9 Nt N~
= | 2o T B + ) Trlp(a ) BLy) | 1

=2Te(p*p EY,) + 2Te(p~p  EZy) — 1
< Du(pp*,p7p7), 2)

where the final inequality becomes equality if and only if
{E%,} corresponds to the Helstrom measurement (see Ap-
pendix A.4). In other words, TQE and NQE enhance the
model’s generalization capability by identifying quantum

embeddings with a large trace distance, thereby increasing
the upper bound of the margin mean. This margin-based
perspective on generalization enables a systematic optimiza-
tion of the generalization performance of QML models by
selecting quantum embeddings with large trace distances.

Figure 4 presents the classification of MNIST (LeCun
et al., 2010), Fashion-MNIST (Xiao et al., 2017), and
Kuzushiji-MNIST (Clanuwat et al., 2018) datasets using
8-qubit QCNN with various quantum embedding schemes.
The comparison highlights how the initial trace distance af-
fects the margin distribution and the model’s generalization
performance. Three quantum embedding schemes are em-
ployed to vary the initial trace distance: the fixed quantum
embedding (ZZ Feature Map introduced by Havlicek et al.
(2019)), TQE, and NQE.

As anticipated from previous research, we observed a pro-
gressively increasing trace distance (indicated by a red dot)
in the order of fixed quantum embedding, TQE, and NQE.
This increase in trace distance corresponds to higher margin
mean values (indicated by a black cross). Larger margin
means, coupled with right-skewed margin distributions, are
associated with improved test accuracies, aligning with the
principles of margin-based generalization. In summary,
using an optimal quantum embedding with a large initial
trace distance not only reduces sample training loss but
also results in larger margins and enhanced generalization.
Experimental details are provided in Appendix A.2.

6. Discussion

In this work, we proposed a margin-based framework to bet-
ter understand generalization in QML models. We began by
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addressing the limitations of uniform generalization bounds,
which have proven ineffective when models overfit noisy
labels in both classical and quantum settings. Drawing inspi-
ration from margin-based approaches in deep learning, we
developed a margin generalization bound for QNNss, offer-
ing tighter and more meaningful estimates of generalization
performance.

Through extensive empirical studies, we demonstrated that
margin-based metrics are highly predictive of generaliza-
tion performance in QML models. Our experiments with
QCNNSs on the QPR dataset revealed a strong correlation be-
tween margin distributions and generalization. Furthermore,
we compared margin-based metrics against parameter-based
metrics for predicting the generalization gap. In all settings,
margin-based metrics proved to be better predictors of the
generalization gap, showing higher mutual information and
Kendall rank correlation coefficients.

Additionally, we explored the connection between margin-
based generalization and quantum state discrimination, a
fundamental concept in quantum information theory. We
showed that quantum embeddings with a large trace distance
lead to larger margins, which in turn improve generalization.
By comparing different quantum embedding methods, we
experimentally demonstrated that embeddings with higher
trace distances consistently result in better generalization
performance.

Overall, our results suggest that margin-based metrics pro-
vide a more reliable and interpretable framework for under-
standing generalization in QML models. This framework
not only offers theoretical insights but also practical guid-
ance for designing QML architectures that generalize well.

We highlight several open questions for future research.
First, quantum computers without error correction are highly
susceptible to noise and decoherence. Quantum noise, mod-
eled by CPTP maps, reduces trace distance between quan-
tum states, leading to smaller classification margins and
poorer generalization performance. A deeper theoretical
understanding of the relationship between noise, margins,
and generalization, along with strategies to mitigate these
effects, will be critical for the effective use of QML in noisy
intermediate-scale quantum devices.

Furthermore, exploring generalization from the perspec-
tive of the learning algorithm would offer valuable in-
sights (Berberich et al., 2024). The algorithm .4, whether
classical or quantum, processes a training set S to pro-
duce a hypothesis . While traditional uniform bounds
focus on the worst-case scenario across the entire hypoth-
esis class, it is more practical to examine the generaliza-
tion gap of the specific hypothesis learned by the algo-
rithm, R(A(S)) — R(A(S)). In classical machine learn-
ing, research has explored this through algorithmic stabil-

ity, assessing how sensitive A is to changes in the training
data (Bousquet & Elisseeff, 2002; Neyshabur et al., 2017;
Dziugaite & Roy, 2017). Another promising approach ex-
plores the relationship between generalization and optimiza-
tion speed, such as the number of iterations required to reach
a certain training loss (Hardt et al., 2016). Extending these
lines of research to QML could provide deeper insights into
the generalization behavior of quantum models.
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A. Appendix
A.1. Derivation of Margin Bound and Generalization to Mixed States

In Section 3, we present a theoretical generalization bound for Quantum Neural Networks (QNNs) using margin-based
approaches. This bound quantifies how well a QNN model trained on a given dataset will perform on new, unseen samples.
In this appendix, we expand on the derivation of this bound, offering additional insights into the steps and calculations
involved.

To derive the upper bound, we apply Rademacher complexity to the hypothesis classes of QNN that incorporate margin
loss. We proceed by utilizing covering number arguments, which enable further refinement of the upper bound on sample
Rademacher complexity. Specifically, we employ Dudley’s Entropy Integral, a technique that converts the bound on
Rademacher complexity into a function of covering numbers.

Our derivation relies on three established lemmas, summarized below without proofs. For further details, proofs of
Lemma A.1 and Lemma A.3 can be found in Shalev-Shwartz & Ben-David (2014) and Mobhri et al. (2018), while proof of
Lemma A.2 can be found in Zhang (2002) and Bartlett et al. (2017).

Lemma A.1. (Rademacher Complexity) Let F be a class of functions where each f(z) takes values within an interval [0, 1].
Then, for any d > 0, with probability at least 1 — § over the random draw of an i.i.d. sample S of size m, the following
inequality holds for all f € F:

n(2/9)
om

1 m
sup E[f SEZ 2i) + 2R(Fis) + 3 3)

fer

Lemma A.1 provides an upper bound on the expectation of any function within F using sample Rademacher complexity

R(F|s)-

Lemma A.2. (Maurey’s Sparsification Lemma) Consider a Hilbert space H with a norm || - || and a set of vectors
V ={Vi,...,Va} where each V; € H. Define a scaled convex combination U = « - conv(V'), where « is a positive real
constant, and conv (V') denotes the convex hull of V. For any integer k, there exists a vector (k, ..., kq) € Z% such that

S ki =k, and

a2

k

UfkaV

Lemma A.2 provides an error bound for approximating a vector using a linear combination of discrete coefficients.

<

max V3|2 )

Lemma A.3. (Dudley’s Entropy Integral) Given a set U C [—1,+1]™ that contains the origin, the Rademacher complexity
R(U) can be bounded by:

a>0 m

%(U)smf(““ / NEYYCANE dﬁ) )

Lemma A.3 leverages covering numbers N (U, 3, || - ||2) to bound the Rademacher complexity through an integral over
scales 3, with « acting as an adjustable parameter to tighten the bound.

Applying Lemma A.1 to the function class 7, = {(p,y) = Iy(M(h(p),y)) : h € H}, we establish a bound on the
expected margin loss in terms of the empirical sample. With probability at least 1 — §, for all A € H, we have:

In(2/9)

2m

Bl (M) )] € 0 D2, 00) + 2R(F)s) +3 ©

Since the ramp loss is lower bounded by the indicator function, 1(z < 0) < [,(z), the expected loss is directly related to
the misclassification probability: E [1(h(p), < max; h(p);)] < E[ly(M(h(p),y))]. Similarly, because I, (z) < L(z < 7),
the sample loss is bounded above by the empirical margin loss: m =1 Y7 | L, (M(h(p:),y:)) < m= 137 1(h(pi)y, <
v + max;zy, h(p;);). Substituting these relationships into the bound from Equation 6 yields Equation 1.

12
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Equation 1 includes the Rademacher complexity term 9((F,)s), which we analyze using covering number techniques.
Specifically, we are interested in the e-covering number of (F, )| g with respect to the I> norm, denoted by N'((F,)|s, €, || -[|2)-

For pure input states, the function class can be expressed as 7, = {(z,y) — 1, (M(g(Uz),y)) : U € Ugq}, where
g(z) = {zTE;z}%_ | and 2 € CN. As shown in the main text, [, (M(g(-),y)) is 4E/y-Lipschitz with respect to the 5

norm, where £ = /> || Eil 5.

For any L-Lipschitz function f over a set S, we have the following covering number bound: N'(f(S), €, ||||) < N (S,¢/L, |-
|I). Applying this property, we obtain

€
A ((F)js - l12) <N ({UX U € Ugh, 75,11+ I2) - ™
where X is N x m complex valued matrix whose i-th column represents the quantum state x;.

The next step is to bound the covering number for the set {UX : U € Ug}. Since the Frobenius norm is invariant under
conjugate transposition, we can write N'({UX : U € Ug}, e, || - o) = N{XTUT : U € Ug}, e, - [|2)-

Define Y € C™*¥ by normalizing each column of X to have unit ly-norm: Y, ; = Xij/HXIj |2- Also, let « € CV*¥ be

a scaling matrix where each element in the i-th row is set to ||XTZ||2 Then, we can express XU as Y(a @ U) = YB,
where ©® denotes the Hadamard product (element-wise multiplication) of matrices.

Consider the set V = {V4,..., Van2} = {gYejel : g € {+1,—1,+i,—i}, j € [N], k € [N]}. For any matrix B, we can
express Y B as

YB= ZBjkYeje;f = ||B||« - conv(V),
gk
where || B|| is defined as . ; (|Re(Bjy)| + [Im(Bjy)|).

For a distance bound b such that ||U]||21 < bforall U € Ug (which can be generalized to ||U — Uyet||2,1 < b for arbitrary
reference matrix Uyer), || B||« can be bounded by

IBll- <v2> Bl < v2|U

g,k

2,1/laf|2,00 < bV2m,

where the first inequality follows from the vector norm inequality, the second from Holder’s inequality, and the final
inequality from the fact that ||||2,00 = || X |2 = VM.

2mb?

For any € > 0, by setting & = [ =%~ | and applying Lemma A.2, we conclude that there exists a vector (ky, ..., kyn2) € Zi
with ), k; = k such that

2
Bl B|?
HX*UT - %Zkivj < Mm;mxll%ll2 <€ ®)
i 2

Consequently, the set C' = {% SkiViik > PT;’Z—‘ } serves as an e-cover for {XTUT : U € Ug} with respect to

2mb?
ly-norm. Since |C| < 4N %7 | it follows that

2mb? 9
ImnN ({UX :U € Ugl,e,| - |2) < = In4N*=. 9
Combining this with Equation 7, we obtain
32mb* E?
h’lN((f'y)\Svﬂ || ' HQ) < ’762’}/2-‘ ln4N2. (10)
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Next, we bound the Rademacher complexity term using covering numbers via Dudley’s Entropy Integral. Applying
Lemma A.2 yields,

. 4 12 32mb2E?
(70 < o 2+ v [ 225 | (7)) an

Setting o = \/18“‘4]\' [?’2”;%1, we find

R((F)s) < 12 owan F’QT”Z;QET €0 (bE\/W) : (12)
m 0% v Vm

This yields the margin-based generalization bound (Theorem 3.1) in terms of the QNN components.

The margin bound for QNNs can be extended to mixed quantum states via vectorization. Given a mixed quantum state p =
>_i.; Piz|)(j], we consider its vectorized form as a pure state: |p)) = >, ; pij|i) ® |j). In this framework, the measurement
function g; (corresponding to the POVM element F;) for the input mixed state is given by g;(p) = Tr(E;p) = ((E;|p)).
Since ||Vgi(p)ll2 = ||Ei]|2, the function g; is || E;||2-Lipschitz. Therefore, following the derivation in the main text, the
combined measurement function g is E-Lipschitz, where E = /. || E;i]5.

For the mixed input state, the function class F, is defined as F, = {(p, y) ~ ,(M(g(UpU")),y)}. Using the property
|UpUTY) = (U @ U*)|p)), we extend the margin bound from Theorem 3.1 to mixed input states. The extension involves a
slight adjustment: the distance bound b now applies to U ® U* rather than U, and E = />, || E;|3 is evaluated using the
Frobenius norm, unlike the spectral norm used for pure input states.

A.2. Experimental Details
QUANTUM PHASE RECOGNITION: MARGIN DISTRIBUTION

In Section 4.1, 8-qubit quantum convolutional neural networks (QCNNs) were trained to address the quantum phase
recognition (QPR) task using a generalized cluster Hamiltonian. The QCNNs employed nearest-neighbor two-qubit
parameterized quantum circuits (PQCs). For this experiment, we used the architecture proposed in Hur et al. (2022), where
the two-qubit PQCs follow the structure outlined in Figure 2 (i) of the reference.

The model was trained on 20 data points, evenly split across four classes. A small training sample was deliberately chosen to
explore the overfitting regime, where labels were intentionally randomized with noise, following a methodology similar to
that of Gil-Fuster et al. (2024). The test accuracy was measured on 1,000 test samples—far exceeding the size of the training
set—to provide a robust estimate of true accuracy. The model was trained using Adam optimizer, with a learning rate of
0.001 and full-batch updates (Kinga et al., 2015). The model was trained for up to 5,000 iterations, with early stopping
triggered based on a convergence interval of 500 iterations. Specifically, the training halted when the difference between
the average loss over two consecutive intervals became smaller than the standard deviation of the most recent interval. To
ensure reliable margin distribution boxplots given the small training set, the results were averaged over 15 experimental
repetitions, each using a different training sample.

QUANTUM PHASE RECOGNITION: MARGIN VS PARAMTER

In Section 4.2, we compare parameter-based metrics against margin-based metrics for predicting the generalization gap. The
experiment was conducted under the same conditions as described above, except for the convergence interval, which was set
to 300 iterations.

For the mutual information calculation, the empirical joint probability distribution was used for the generalization gap g
and metrics p to approximate the unknown true distribution. For Kendall rank correlation coefficient calculation, random
tie-breakers were used when equal generalization gap or metrics occurred.

Figure 2 compares the median of the margin distribution with the effective number of parameters (threshold 10~2) in
predicting the generalization gap. The experiments vary a single hyperparameter—either the number of layers, noise level,
or variational ansatz—while keeping the others fixed at seven layers, no noise, and QCNN.
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MARGINS AND QUANTUM EMBEDDING

In Section 5, we explore the influence of quantum embeddings and initial trace distances on margin and generalization
performance when applying QML models to classical data. To maintain a binary classification setting, we focused on
the first two classes from the MNIST, fashion-MNIST, and Kuzushiji-MNIST datasets. Unlike previous experiments, we
did not examine the overfitting regime under label noise, choosing instead to utilize the full training and test datasets.
Principal component analysis (PCA) was applied to reduce the dimensionality of the data to match the number of qubits.
The experimental setup remained the same as before, except for using a batch size of 16 instead of full-batch training.

We compared three quantum embedding methods, each resulting in distinct initial trace distances. For the fixed embedding,
we used the ZZ Feature Map with three repeated layers. The ZZ Feature Map consists of blocks of Hadamard gates,
single-qubit Pauli-Z rotations, and two-qubit Pauli-ZZ rotations as described in Havlicek et al. (2019).

For the trainable quantum embedding, we introduced trainable quantum layers along with the ZZ Feature Map. The trainable
quantum layers incorporate parameterized single-qubit Pauli-Y" rotations, exp(—z'ng), and nearest-neighbor two-qubit Y'Y
rotations, exp(i5Y;Yj1).

Neural Quantum Embedding (NQE) utilizes a classical neural network, o (z; w), where x represents the data and w the
network parameters. NQE maps classical data into quantum states as p(z) = Uemb (0 (z; w))|0) <0\®"U§mb(a(x; w)). Here,
the ZZ Feature Map was also employed as the quantum embedding circuit. The neural network was a fully-connected ReLU

network with layer dimensions of [8, 16, 32, 32, 16, 8], where each element represents the number of nodes in that layer.

A.3. Additional Experimental Results

This section details supplementary experimental investigations, where we replicated the core experiments presented in
Figures 1-3 of the main text. These replications involved larger 10-qubit systems and a more diverse set of Hamiltonians to
further validate the robustness of our methodology. In addition to the generalized cluster Hamiltonian (detailed in the main
text), our analysis includes the one-dimensional (1D) XXZ-Heisenberg spin chain and the 1D Transverse Field Ising Model
(TFIM).

XXZ-Heisenberg Spin Chain

The Hamiltonian for this model is defined as:

N
H(J,A)=J (Z XiXip1 + YY1 + AZiZHl) (13)

i=1

In our simulations, we set the coupling strength J = 1. The anisotropy parameter A was sampled uniformly from the
combined intervals [—2, —1) U (1, 2]. This configuration leads to a ground state that is either ferromagnetic (when A < —1)
or antiferromagnetic (when A > 1). QML models were subsequently trained to perform binary classification between these
two distinct phases.

Transverse Field Ising Model (TFIM)
The TFIM Hamiltonian is given by:

N N
H(J,A)=—J <Z ZiZig1 + A ZX) (14)
=1 =1

For dataset construction, both the coupling J and the transverse field strength A were sampled from uniform distributions.
Our investigation focused on the ordered phase, characterized by |A| < 1. The coupling J was varied within the range
[—1, 1], allowing the system to exhibit either a ferromagnetic (J > 0) or an antiferromagnetic (J < 0) phase. A QML
model was then trained for the binary classification task of distinguishing these phases.
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10-QUBIT GENERALIZED CLUSTER HAMILTONIAN
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Figure 5. Reproduction of Figure 1 with 10-qubit generalized cluster Hamiltonian.
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8-QUBIT XXZ-HEISENBERG SPIN CHAIN
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Figure 9. Reproduction of Figure 2 with 8-qubit XXZ-Heisenberg spin chain.
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10-QUBIT XXZ-HEISENBERG SPIN CHAIN
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Figure 12. Reproduction of Figure 2 with 10-qubit XXZ-Heisenberg spin chain.
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Figure 13. Reproduction of Figure 3 with 10-qubit XXZ-Heisenberg spin chain.
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8-QUBIT TRANSVERSE FIELD ISING MODEL
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Figure 15. Reproduction of Figure 2 with 8-qubit Transverse Field Ising Model.
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Figure 16. Reproduction of Figure 3 with 8-qubit Transverse Field Ising Model.
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10-QUBIT TRANSVERSE FIELD ISING MODEL
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Figure 17. Reproduction of Figure 1 with 10-qubit Transverse Field Ising Model.
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Figure 18. Reproduction of Figure 2 with 10-qubit Transverse Field Ising Model.
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Figure 19. Reproduction of Figure 3 with 10-qubit Transverse Field Ising Model.
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MARGIN DISTRIBUTION PLOTS
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Figure 20. Reproduction of margin distribution (Figure 1) using different variational ansitze.
Noise 0% Noise 25% Noise 50% Noise 75% Noise 100%
Test (Gen) Test (Gen) Test (Gen) Test (Gen) Test (Gen)
wWesomomm | F— |t{eaoeow | F— |%{=aomom  F—— i =5 02703y —— 14 =5 024 037 —————
[ 0.84 (0.06) 3 0.64 (0.17) = 0.42(0.28) = 0.28 (0.42) =3 0.25 (0.40)
[ 0.85(0.08) 3 0.63(0.17) 3 0.42(0.28) 3 0.28(0.44) 3 0.24(0.39)
3L \:losswoel«l:l:l—1 3L \:loeatomI—{ 3L 5043(025)2—1 3L moze«ou)j—{ ER :mumn):l—{
§ | = 085009 = 065 (0.16) = 042(032) = 029 (045) = 024 (042)
£

Figure 1 presents results for QCNNSs, where the two-qubit PQCs are permitted to have distinct parameter values within the
convolutional layer. In Figure 20, we provide additional experimental results using different variational ansétze: QCNN with
shared parameters and Strongly Entangling Layers. Strongly Entangling Layers consist of repeated single-qubit rotations
and two-qubit CNOT gates, provided as a built-in feature by PennyLane (Bergholm et al., 2020). Consistent with the
findings from the main text, we observe a decline in test accuracy as the noise level rises, accompanied by a left-skewed
margin distribution. Additionally, Figure 21 provides plot with more fine-grained experimental results. These details were
excluded from the main text purely for reason of display conciseness. The figure show performance across corruption levels
of 0%, 25%, 50%, 75%, 100% as well as for 1,3, 5, 7, 9 numbers of layers.
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Figure 21. Fine-grained margin distribution plots.
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MARGIN VS PARAMETERS
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Figure 22. Comparison of the lower quartile (a) and the mean (b) of the margin against parameter-based metrics for predicting the
generalization gap. The experiments use QCNNs (left) and QCNNs without parameter sharing (right) as the variational ansatz.

Figure 22 (a) and (b) compare parameter-based metrics with the lower quartile and mean of the margin, respectively.
Consistent with the results in the main text, the margin-based metrics more effectively capture the generalization gap across
all settings.

A.4. Margin mean and Quantum State Discrimination

In Section 5, we established a connection between quantum state discrimination and margin. Specifically, we showed that
the margin mean is upper bounded by the trace distance between quantum state ensembles, making a large initial trace
distance essential for achieving strong generalization. Here, we provide the detailed derivations.

Equation 2 demonstrated that margin mean can be expressed as:
i =2Te(p*p* ELy) +2Te(p~p” EZy) — L. (15)
Recall that { £, } forms a set of POVMs, meaning £, + E* | = I. Utilizing this property, we can rewrite:
Te(p*p* EL) + Te(p~p  EXy) =p~ + Tr (00" —p~p7)EL)
=p" —Tr((p*p" —p p )E*,)

1 1
=5 +5T (PP —p P ) (B — ELY)), (16)

where the final equality averages the first two.
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We are particularly interested in the maximum of Tr(p*p™E% ) + Tr(p~p~ E* ). Consider the spectral decompo-
sition pTpT — p~p~ = > Ni|hs) (1], where \; are real due to Hermitian nature of the density matrix. The maxi-
mum occurs when E7, are Helstrom measurements, which are projects onto the positive and negative subspaces, i.e.,

By = Z{i:)\i>0} |vi)(t;| and EZ | = Z{i:)\i<0} |thi) (Wil

Thus, we have:

X R 11
max Te(p* p* Ey) + Te(p™p” B2y) = 5+ 5 )\
+1 7
1 1 T
:§+§Dtr(p PP ) (17)

Substituting this into Equation 15, we obtain ii < Dy, (p™p*,p~p~), where equality holds when E% | are the Helstrom
measurements.
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