MEREQ: Max-Ent Residual-Q Inverse RL for
Sample-Efficient Alignment from Intervention

Yuxin Chen*!, Chen Tang*-2, Jianglan Wei', Chenran Li'!, Ran Tian',
Xiang Zhang', Wei Zhan', Peter Stone?-3, Masayoshi Tomizuka'
*Denotes equal contribution
YUniversity of California, Berkeley — 2The University of Texas at Austin ~ 3Sony Al

Abstract: Aligning robot behavior with human preferences is crucial for deploy-
ing embodied Al agents in human-centered environments. A promising solution
is interactive imitation learning from human intervention, where a human expert
observes the policy’s execution and provides interventions as feedback. How-
ever, existing methods often fail to utilize the prior policy efficiently to facilitate
learning, thus hindering sample efficiency. In this work, we introduce Maximum-
Entropy Residual-Q Inverse Reinforcement Learning (MEREQ)', designed for
sample-efficient alignment from human intervention. Instead of inferring the com-
plete human behavior characteristics, MEREQ infers a residual reward function
that captures the discrepancy between the human expert’s and the prior policy’s
underlying reward functions. Residual Q-Learning (RQL) is then employed to
align the policy with human preferences using the inferred reward function. Ex-
tensive evaluations on simulated and real-world tasks show that MEREQ achieves
sample-efficient alignment from human intervention compared to baselines.

Keywords: Interactive imitation learning, Learning from human feedback, In-
verse reinforcement learning

1 Introduction

Recent progress in embodied Al has enabled advanced robots to perform complex real-world tasks
that go beyond pre-scripted routines and highly controlled environments. Increasing research atten-
tion has been focused on how to align their behavior with human preferences [1, 2], which is crucial
for their deployment in human-centered environments. One promising approach is interactive im-
itation learning, where a pre-trained policy can interact with a human and align its behavior to the
human’s preference through human feedback [2, 3]. In this work, we focus on interactive imitation
learning using human interventions as feedback. In this setting, the human expert observes the policy
during task execution and intervenes whenever it deviates from their preferred behavior. A straight-
forward approach [4, 5, 6] is to update the policy through behavior cloning (BC) [7]—maximizing
the likelihood of the collected intervention samples under the learned policy distribution. However,
BC ignores the sequential nature of decision-making, leading to compounded errors [8]. Addition-
ally, Jiang et al. [9] pointed out that these approaches are not ideal for the fine-tuning setting, since
the policies are fine-tuned to fit solely the collected intervention data, thus suffering from catas-
trophic forgetting, which hinders sample efficiency.

We instead study the learning-from-intervention problem within the inverse reinforcement learning
(IRL) framework [10, 11]. IRL models the expert as a sequential decision-making agent who max-
imizes cumulative returns based on their internal reward function, and infers this reward function
from expert demonstrations. IRL inherently accounts for the sequential nature of human decision-
making and the effects of transition dynamics [12]. Maximum-entropy IRL (MaxEnt-IRL) further

"Website: https://thomaschen98.github.io/mereq.github.io/.

9th Conference on Robot Learning (CoRL 2025), Seoul, Korea.

https://thomaschen98.github.io/mereq.github.io/

Policy Aligned with Human Preference

@3 Updated Policy

Sample Collection

o
| el
Policy Update

Features

Figure 1: Overview of MEREQ, designed for sample-efficient alignment from human interven-
tion. From human intervention samples, MEREQ infers a residual reward that captures the discrep-
ancy between the human expert’s and the prior policy’s underlying reward functions via maximum-
entropy inverse reinforcement and then updates the prior policy with Residual Q-Learning (RQL).

accounts for the sub-optimality in human behavior by favoring randomness in the policy that is
learned from the inferred reward function [13, 14, 11]. However, directly applying IRL to fine-tune
a prior policy from interventions can still be inefficient. The prior policy is ignored in the learning
process, except as an initialization for the learning policy. Consequently, like other approaches, it
fails to effectively leverage the prior policy to reduce the number of intervention samples needed.

To address this shortcoming, this paper introduces Maximum-Entropy Residual-Q Inverse Rein-
forcement Learning (MEREQ) for sample-efficient alignment from human intervention. The key
insights behind MEREQ are to infer a residual reward function that captures the discrepancy be-
tween the human expert’s internal reward function and that of the prior policy, rather than inferring
the full human reward function from interventions. MEREQ then employs Residual Q-Learning
(RQL) [15] to fine-tune and align the policy with the unknown expert reward, leveraging the in-
ferred residual reward function. We show that MEREQ can effectively align a prior policy with
fewer interventions than baselines in both simulation and real-world tasks.

2 Related Work

Interactive imitation learning (IL) utilizes human feedback to align policies with human behavior
preference [2, 3]. Forms of human feedback include preference [16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26], interventions [6, 27, 28, 29, 30, 4, 31, 32], scaled feedback [33, 34, 35, 36, 37, 38, 39, 40]
and rankings [41]. Like ours, several approaches [26, 42, 43, 44, 45] opt to infer the internal reward
function of humans from their feedback and update the policy using the inferred reward function.
While these methods have demonstrated improved performance and sample efficiency compared to
those without a human in the loop [5], further enhancing efficiency beyond the sample collection
pattern has not been thoroughly explored. Our method addresses this gap by building on a prior
policy and inferring only the residual reward to improve sample efficiency. Based on similar moti-
vation, Jiang et al. introduced TRANSIC [9], which learns a residual policy from human corrections
and integrates it with the prior policy for autonomous execution. Their framework addresses the
sim-to-real gaps through human corrections, whereas our method targets the problem where there is
a mismatch in rewards between the prior policy and the human subject.

3 Preliminaries

In this section, we briefly review two techniques used in MEREQ, which are RQL and MaxEnt-IRL,
to establish the foundations for the main technical results.

3.1 Policy Customization and Residual Q-Learning

Li et al. [15] introduced a new problem setting termed policy customization. Given a prior policy,
the goal is to find a new policy that jointly optimizes 1) the task objective the prior policy is designed
for; and 2) additional task objectives specified by a downstream task. The authors proposed RQL as
an initial solution. Formally, RQL assumes the prior policy 7 : S x A — [0, 00) is a max-ent policy
solving a Markov Decision Process (MDP) defined by the tuple M = (S, A, r,p, po,7), where
S € R” is the state space, A € R4 is the action space, : S X A +— R is the reward function,
p:SxAxS — [0,00) represents the probability density of the next state s;1; € S given the
current state s; € S and action a; € A, py is the starting state distribution, and v € [0,1) is the
discount factor. That is to say, 7 follows the Boltzmann distribution [46]:

wlals) = 5o (1" (1)

where QQ* (s, a) is the soft Q-function as defined in [46], which satisfies the soft Bellman equation.

Policy customization is then formalized as finding a max-ent policy 7 : S x A — [0, 00) for a new
MDP defined by M = (S, A, r+rr,Dp, po,7), where rg : S x A — R s a residual reward function
that quantifies the discrepancy between the original task objective and the customized task objective
for which the policy is being customized. Given m, RQL finds this customized policy without
knowledge of the prior reward r. Specifically, define the soft Bellman update operator [46, 47] as:

A 1 -
Qt+1(sv a) = TR(Sv a) + T(Sa a) + ’VES’NpHs,a) |:0A[IOg/A exp (th(slv a/)) da,:| ; (2)

where Qt is the estimated soft Q-function at the ¢'" iteration. RQL introduces a residual Q-function
defined as Qr; := Q¢+ — Q™. It was shown that Qg ; can be learned without knowing r and the
customized policy can be defined using Qg+ and .

RQL considers the case where 7y is specified. In this work, we aim to customize the policy towards a
human behavior preference, under the assumption that rg is unknown a priori. MEREQ is proposed
to infer rg from interventions and customize the policy towards the inferred residual reward.

3.2 Maximum-Entropy Inverse Reinforcement Learning

In the IRL setting, an agent is assumed to optimize a reward function defined as a linear combination
of a set of features f : S x A +— RS with weights § € R/: r = 0T£({). Here f(() is the trajectory
feature counts, £(C) = 3, a,) £(si;a;), which are the sum of the state-action features f(s;, a;)
along the trajectory (. IRL [10] aligns the feature expectations between an observed expert and
the learned policy. However, multiple reward functions can yield the same optimal policy, and
different policies can result in identical feature counts [11]. One way to resolve this ambiguity is
by employing the principle of maximum entropy [48], where policies that yield equivalent expected
rewards are equally probable, and those with higher rewards are exponentially favored:

p(¢)

p(¢lo) = 20

exp (07£(¢)) = 54(8) exp Z 0 f(si,a;) |, (3)
(

Si,a;)

where Z¢(6) is the partition function defined as [p(¢) exp (6" £(¢)) d¢ and p(¢) is the trajectory
prior. The optimal weight 6* is obtained by maximizing the likelihood of the observed data:

0* = arg max L = arg max log p(é|6‘), 4

where ¢ represents the demonstration trajectories. The optima can be obtained using gradient-based
optimization with gradient defined as VoL = £(¢) — [p(¢|0)f(¢)d(. At the maxima, the fea-
ture expectations align, ensuring that the learned policy’s performance matches the demonstration,

regardless of the specific reward weights the agent aims to optimize.

4 Problem Formulation

We focus on the problem of aligning a given prior policy with human behavior preferences by
learning from human intervention. In this setting, a human expert observes a policy as it executes the
task and intervenes whenever the policy behavior deviates from the expert’s preference. The expert
then continues executing the task until they are comfortable disengaging. Formally, we assume
access to a prior policy 7 to execute, which is an optimal max-ent policy with respect to an unknown
reward function r. We assume a human with an internal reward function 7eypert that differs from r
observes 7’s execution and provides interventions. The problem objective is to infer rexpert and use
the inferred reward function to learn a policy 7 that matches the max-ent optimal policy with respect
t0 Texpert. During learning, we can execute the updated policy under human supervision to collect
new intervention samples. However, we want to minimize the number of samples collected, so as to
limit the cognitive cost to the human. We assume access to a simulator.

If the ground truth 7rexpery Were known, we could synthesize the max-ent optimal policy with respect
to that reward using max-ent RL [46, 47]. We could then evaluate the success of a particular method
by measuring how closely the learned policy 7 approximates this optimal policy. However, we can-
not access the human’s internal reward function in practice. Therefore, we assess the effectiveness
of an approach by the human intervention rate during policy execution, measured as the fraction of
time steps during which the human intervenes in a task episode. We aim to develop an algorithm to
learn a policy that can minimize the number of intervention samples required to reach a target in-
tervention rate threshold. Additionally, we design synthetic tests where we know the expert reward
and train a max-ent policy under the ground-truth reward as a human proxy, so that we can directly
measure the sub-optimality of the learned policy (see Sec. 6).

5 Max-Ent Residual-Q Inverse Reinforcement Learning (MEREQ)

In this section, we present MEREQ, a sample-efficient algorithm for alignment from human inter-
vention. We first introduce a naive MaxEnt-IRL solution (Sec. 5.1), and analyze its drawbacks to
motivate residual reward learning (Sec. 5.2). We then present the complete algorithm (Sec. 5.3).

5.1 A Naive Maximum-Entropy IRL Solution

A naive way to solve the target problem is to directly apply MaxEnt-IRL to infer the human reward
function rexpert and find 7. We model the human expert with the widely recognized model of
Boltzmann rationality [13, 14], which conceptualizes human intent through a reward function and
portrays humans as choosing trajectories proportionally to their exponentiated rewards [49]. We
model rexpert as a linear combination of features, as stated in Sec. 3.2. We initialize the learning
policy 7 as the prior policy 7. We then iteratively collect human intervention samples by executing
, and then infer reypere and update 7 based on the collected intervention samples. We refer to this
solution as MaxEnt-FT, with FT denoting fine-tuning. In our experiments, we also study a variation
with randomly initialized 7, denoted as MaxEnt.

In each sample collection iteration ¢, MaxEnt-FT executes the current policy 7 for 7" timesteps under
human supervision. The single rollout of length 7 is split into two classes of segments depending
on who takes control, which are policy segments ff , £§ , ..., &P, and expert segments &7, &5, ...,

¢, where a segment ¢ is a sequence of state-action pairs { = {(s1,a1),...,(s;,a;)}. We define
the collected policy trajectory in this iteration as the union of all policy segments, =P = | Ji*, £}
Similarly, we define the expert trajectory as Z° = | J;_, £¢. Note that " | €0+ >0 , €8] =T.

Under the Boltzmann rationality model, each expert segment follows the distribution in Eqn. (3).
Assuming the expert segments are all independent from each other, the likelihood of the expert
trajectory can be written as p(2°|0) = [, _, p(£7]0). We can then infer the weights of the unknown
human reward function by maximizing the likelihood of the observed expert trajectory, that is

6" = argmaxlog p(=°|0) = argmgx;bgp(fk\@), 5)

then update 7 to be the max-ent optimal policy with respect to the reward function 0* " f. Note that
directly optimizing these reward inference and policy update objectives completely disregards the
prior policy. Thus, this naive solution is inefficient in the sense that it is expected to require many
human interventions, as it overlooks the valuable information embedded in the prior policy.

5.2 Residual Reward Inference and Policy Update

In this work, we aim to develop an alternative algorithm that can utilize the prior policy to solve
the target problem in a sample-efficient manner. We start with reframing the policy update step in
the naive solution as a policy customization problem [15]. Specifically, we can rewrite the unknown
human reward function as the sum of 7’s underlying reward function r and a residual reward func-
tion rr. We expect some feature weights to be zero for rr, specifically for the reward features for
which the expert’s preferences match those of the prior policy. Thus, we represent rr as a linear
combination of the non-zero weighted feature set fg : S x A — R/® with weights 6.

If Og is known, we can apply RQL to update the learning policy 7 without knowing r (see Sec. 3.1).
Yet, 6y is unknown, and MaxEnt can only infer the full reward weights 6 (see Eqn. (5)). Instead,
we introduce a novel method that enables us to directly infer the residual weights Or from expert
trajectories without knowing r, and then apply RQL with 7 and 7 to update the policy &, which will
be more sample-efficient than the naive solution, MaxEnt. The residual reward inference method
is derived as follows. By substituting the residual reward function into the maximum likelihood
objective function, we obtain the following objective function:

L= Z r(&) + Orfr(€7)] — log Zk(0r), 6)

where f (£) is a shorthand for Z(S aiee fR(Si,a;), and r(£) isashorthand for 3,) ce 7(sis @)

The partition function Zj, is defined as Zj (0r) = [p(&k) exp |r [(&) + HPT{fR(ﬁk.)] dé&y,, with €| =
|€5| for each k. We can then derive the gradient of the objective function as:

VorL = fr(h) Z 7 / (&) exp [r(&x) + 08 £ (€)] i ()i,
= ™
= Z fr (&) — Z Ee,~p(eelon) [Fr(ER)] -
k=1

k=1
The second term is essentially the expectation of the feature counts of fg under the soft optimal
policy under the current . Therefore, we approximate the second term with samples obtained by
rolling out the current policy 7 in the simulation environment:

Z]Ekap(kaR [fr (&k)] = *Zlﬁk |- Eense) fR(E)].)

k=1

The term |¢x1/7 is introduced to match the rollout length with that of the expert intervention samples.
We can then apply gradient descent to infer g directly, without inferring the prior reward term r.

5.3 Algorithm

The complete MEREQ algorithm is shown in Algorithm 1. In summary, MEREQ consists of an
outer loop for sample collection and an inner loop for policy updates. In each sample collection iter-
ation ¢+, MEREQ runs the current policy 7 under the supervision of a human expert, collecting policy
trajectory Z and expert trajectory Z¢ (Line 3). Afterward, MEREQ enters the inner policy update
loop to update the policy using the collected samples, i.e., ZF and =¢, during which the policy is
rolled out in a simulation environment to collect samples for reward gradlent estimation and policy
training. Concretely, each policy update iteration j alternates between applying a gradient descent
step with step-size 7 to update the residual reward weights g (Line 10), where the gradient is esti-
mated (Line 7) following Eqn. (7) and Eqn. (8), and applying RQL to update the policy using 7 and

the updated fr (Line 11). The inner loop is terminated when the residual reward gradient is smaller
than a certain threshold € (Line 8-9). The outer loop is terminated when the expert intervention rate,
denoted by A, hits a certain threshold § (Line 4-5).

Pseudo Expert Trajectories. Inspired by previous learning from intervention algorithms [31, 43],
we further categorize the policy trajectory =¥ into snippets labeled as “good-enough” samples and
“bad” samples. Let £ represent a single continuous segment within =7, and let [a, b) o £ denote a
snippet of the segment &, where a,b € [0, 1], a < b, referring to the snippet starting from the [a|¢]]
timestep to the [b|¢|] timestep of the segment. The absence of intervention in the initial portion
of ¢ implicitly indicates that the expert considers these actions satisfactory, leading us to classify
the first 1 — x fraction of ¢ as “good-enough” samples. We aggregate all such “good-enough”
samples to form what we term the pseudo-expert trajectory, defined as = = {(s,a)|(s,a) €
0,1 — K)o &, V& C EP}. Pseudo-expert samples offer insights into expert preferences without
additional interventions. If MEREQ uses the pseudo-expert trajectory to learn the residual reward
function, it is concatenated with the expert trajectory, resulting in an augmented expert trajectory
set, 25 = =25 U E;L, to replace the original expert trajectory. Adding these pseudo-expert samples
only affects the gradient estimation step in Line 8 of Algorithm 1.

Algorithm 1 Learn Residual Reward Weights fr in MEReQ-IRL Framework

Require: 7,4, ¢, fg, and n
1: O+ 0, T <7
2: fori=0,..., Ngy do
3: Execute current policy 7t under expert supervision to get =¢ and Z
4 if \; = len(Z¢)/len(ZY + =¢) < 4 then > Intervention rate lower than threshold
5 return
6 for j =0,..., Nydae do

7: Estimate the residual reward gradient Vg, £

8.

9

0

1

if Vg, L < e then > Or converges
return
Or < Or + Ve, L

10:
11: 7 + Residual_Q_Learning(m, 7, fr,0R)

6 Experiments

Tasks. We design multiple simulated and real-world tasks, which are categorized into two settings
depending on the expert type. First, we consider learning from a synthesized expert. We specify a
residual reward function and train an expert policy. Then, we define a heuristic-based rule to decide
when the expert should intervene or disengage. Since we know the expert policy, we can directly
evaluate the sub-optimality of the learned policy. Under this setting, we consider four simulated
tasks: 1) Highway-Sim: The task is to control a vehicle to navigate through highway traffic in the
highway-env [50]. The prior policy can change lanes arbitrarily to maximize progress, while the
expert policy encourages the vehicle to stay in the right-most lane; 2) Bottle-Pushing-Sim: The task
is to control a robot arm to push a wine bottle to a goal position in MuJoCo [51]. The prior policy
can push the bottle anywhere along the height of the bottle, while the expert policy encourages
pushing near the bottom of the bottle; 3) Erasing-Sim: In this task, a robot arm erases a marker on a
whiteboard in MuJoCo [51]. The prior policy applies insufficient force for effective erasing, whereas
the expert encourages greater contact force to ensure the marker is fully erased; 4) Pillow-Grasping-
Sim: The task is to control a robot arm to grasp a pillow in MuJoCo [51]. The prior policy does not
have a grasping point preference, whereas the expert favors grasping from the center.

We then validate MEREQ with human-in-the-loop (HITL) experiments. The tasks are similar to the
ones with synthesized experts, specifically: 1) Highway-Human: A human expert monitoring task
execution through a GUI and intervening using a keyboard. The human is instructed to keep the
vehicle in the rightmost lane if possible; 2) Bottle-Pushing-Human: This experiment is conducted
on a Fanuc LR Mate 200:D/7L 6-DoF robot arm with a customized tooltip to push the bottle. The

- =B 3 ; ‘ I
EEEE HiERis FIESEIfS REASFSES

Method
—e— MEReQ MEReQ-NP —s— MaxEnt —+— MaxEnt-FT ~—e— HG-DAgger-fT —— IWR-FT

~.
.

%"\\"\/\/i
\<>i§g;2:

‘\‘

Expert Intervention Rate
Expert Intervention Rate
Expert Intervention Rate

5

12 8 9 10 102 8 9 10 12 9 10

3 4 5 6 7 8
Sample Collection Iteration

5
ZZ 005 =3 01 X 015

7000
10000
4 6000 10000 "

.
£ 5000

£ 4000

l E000
. 5 2000
5] { 8 Fe
| B
K

#1000

3000 6000

4000

M

Total Expert Samples

Total Expert Sampl
Total Expert Sample:

2000 &)
3

oEE

ni o
o LUK K i o &l kil 0

“ero Mf”“0r/vpMQ*E"'%“":;@’D@QM:/ o Mereq heq.,, a*fmi{'}“"‘ggs» ;;W o teq S /Vp%””'%kf"fg"%gy:/ "

(a) Highway-Sim (b) Bottle-Pushing-Sim (c) Erasing-Sim (d) Pillow-Grasping-Sim

Figure 2: Sample Efficiency. (Top) MEReQ converges faster and maintains at low intervention
rate throughout the sample collection iterations. The error bands indicate a 95% confidence interval
across 8 trials. (Bottom) MEReQ requires fewer total expert samples to achieve comparable policy
performance compared to baselines under varying intervention rate thresholds 6. The error bars
indicate a 95% confidence interval. See Tab. 1 in Appendix B for detailed values.

human expert intervenes with a SpaceMouse when the robot does not aim for the bottom of the
bottle; 3) Pillow-Grasping-Human: The experiment configuration is similar to bottle pushing, but
the robot arm is equipped with a two-finger gripper. In these experiments, the specific algorithm
variant was hidden from the expert during each trial. Please refer to Appendix A for more details.

Baselines and Evaluation Protocol. We compare MEReQ with the following baselines:

, a MEReQ variation that does not use pseudo-expert trajectories (i.e., No Pseudo); 2) MaxEnt-
F'T, the naive max-ent IRL solution (see Sec. 5.1); 3) MaxEnt, the naive solution but with random
policy initialization; 4) HG-DAgger-FT, a variant of DAgger tailored for interactive imitation learn-
ing (IL) from human experts in real-world systems [4]; 5) IWR-F'T, an intervention-based behavior
cloning method with intervention weighted regression [31]. To ensure a fair comparison between
MEReQ and the two interactive IL. methods, we implemented the following adaptations: 1) We
rolled out the prior policy to collect samples, which were then used to warm start HG-DAgger-FT
and IWR-FT with behavior cloning. As shown in Fig. 2 (top), the initial intervention rates of the
warm-started HG-DAgger-FT and IWR-FT are comparable to those of the prior policy of MEReQ;
2) Since both interactive IL methods maintain a dataset of all collected expert samples, we retained
the full set of expert trajectories from each iteration, Z¢ = [J, =5, where ¢ denotes the iteration
number, for the residual reward gradient calculation (Algorithm 1, line 7) of MEReQ. As discussed
in Sec. 4, we use expert intervention rate as the main criterion to assess policy performance. We are
primarily interested in the sample efficiency of the tested approaches. Specifically, we measure the
number of expert samples required to have the intervention rate A reach a certain threshold value 4.

6.1 Experimental Results

Experiments with Synthesized Experts. We evaluate each method using 8 random seeds and 10
data collection iterations per run. For each method, we compute the number of expert intervention
samples needed to reach intervention rate thresholds 6 = [0.05,0.1,0.15]. As shown in Fig. 2
(top), MEReQ consistently achieves higher sample efficiency than baselines across all tasks and
thresholds. Notably, it exhibits significantly lower variance across seeds compared to HG-DAgger-
FT and IWR-FT, especially in more challenging environments like Bottle-Pushing-Sim, Erasing-
Sim, and Pillow-Grasping-Sim. We further analyze behavior alignment in Bottle-Pushing-Sim, and

Method
—e— MEReQ —x— MaxEnt —=— MaxEnt-FT —+— HG-DAgger-FT —s— IWRFT

RS

0.8

)
> @
o o
& &
°
>

o o o
kel © ©
o o o
€ = =
] g \ \ = 2o4 N / Z
§oa g \§ \ g \/\></\4
g g g
g \’_‘\ o2 %x 202 K\/‘\/\
go0. = g N g
& ——— & s &
0.0 * 0.0 J 0.0
1 2 3 4 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 10
Sample Collection lteration Ssample Collection lteration Sample Collection lteration
(a) Highway-Human (b) Bottle-Pushing-Human (c) Pillow-Grasping-Human

Figure 3: Human Effort. MEReQ can effectively reduce human efforts. The error bands indicate
a 95% confidence interval across 3 trials. See Tab. 2 in Appendix B for detailed values.

Before Alignment " § Before Alignment |

After Alignment |
y

Figure 4: Left: Bottle-Pushing-Human Rollout. Before alignment, the robot knocks down the
bottle with a high contact point. The robot pushes the bottle to the goal position with low contact
point after alignment. Right: Pillow-Grasping-Human Rollout. Before alignment, the robot fails
to grasp the pillow by the center. The robot grasps the pillow successfully after alignment.

find that the MEReQ policy matches the synthesized expert more closely in terms of feature and
reward distributions than baselines (see Appendix B for more detailed results).

We would like to highlight two design choices that enable MEReQ’s sample efficiency and stabil-
ity. First, the combination of residual reward learning and RQL allows MEReQ to effectively lever-
age the prior policy to facilitate sample efficiency, thus outperforming MaxEnt-FT. In particular,
MaxEnt-FT’s expert intervention rate quickly rises to match that of MaxEnt after the first iteration
in Bottle-Pushing-Sim, suggesting it only benefits from the prior policy in the early stage. Second,
incorporating pseudo-expert samples further stabilizes training. MEReQ shows lower variance than

. We hypothesize this because expert sample variance increases when intervention rates
are low. Pseudo-expert samples help reduce the variance and stabilize training.

Human-in-the-loop Experiments. We investigate whether MEReQ effectively reduces the effort
required from human experts. We set § = 0.05 and conducted three trials per method with a human
expert. In Highway-Human, the human expert is tasked with supervising 50 rollouts, each consisting
of 40 steps, during every outer loop. For both Bottle-Pushing-Human and Pillow-Grasping-Human,
10 rollouts are supervised by the expert in each outer loop. The training process concludes once the
specified threshold is reached. As shown in Fig. 3, compared to the max-ent IRL baselines, MEReQ
aligns the prior policy with human preferences in fewer sample collection iterations and with fewer
human intervention samples (See Tab. 2 in Appendix B). These results demonstrate that MEReQ
can be effectively adopted in real-world applications. As shown in Fig. 4, the prior policies fail to
complete the Bottle-Pushing or Pillow-Grasping tasks due to inappropriate contact points, while the
aligned policies successfully complete the tasks after adaptation from human interventions.

7 Limitations and Future Work

We introduce MEReQ, a novel algorithm for sample-efficient policy alignment from human inter-
vention, which learns a residual reward function capturing the discrepancy between the human ex-
pert’s and the prior policy’s rewards. Across seven tasks in both simulation and real-world systems,
MEReQ achieves alignment with significantly fewer human interventions than baseline approaches.
While these results highlight the effectiveness of MEReQ, several limitations and promising future
directions remain.

First, the current policy-updating process requires rollouts in a simulation environment, causing
delays between sample-collection iterations. Parallel rollouts could speed up the training process.
Adopting offline or model-based RL could also be a promising direction. Second, high variance
in expert intervention samples could perturb the stability of MEREQ’s training procedure. While
the pseudo-expert approach can mitigate this issue, it is nevertheless a heuristic. More principled
methods to reduce sample variance may be useful to further improve MEREQ. Additionally, noise
and inconsistency in intervention actions may also perturb performance. We report preliminary
studies on these effects across different algorithms in App. B, though how to fully address them is
beyond the current scope and remains an important avenue for future research.

Third, MEREQ follows the linear reward model commonly used in inverse reinforcement learning
(IRL). We are actively exploring IRL methods without this assumption [52, 53] and plan to extend
MEReQ along this line in future work. Finally, in our human-in-the-loop experiments, each task
was overseen by a single operator, which may introduce bias based on that person’s skills, system
familiarity, and tolerance level to undesirable behaviors. A broader study involving more participants
would deepen our insight into how trust and subjectivity influence the timing, criteria, and frequency
of interventions.

References

[1] J. Ji, T. Qiu, B. Chen, B. Zhang, H. Lou, K. Wang, Y. Duan, Z. He, J. Zhou, Z. Zhang, et al.
Ai alignment: A comprehensive survey. arXiv preprint arXiv:2310.19852, 2023.

[2] C. Arzate Cruz and T. Igarashi. A survey on interactive reinforcement learning: Design prin-
ciples and open challenges. In Proceedings of the 2020 ACM designing interactive systems
conference, pages 1195-1209, 2020.

[3] Y. Cui, P. Koppol, H. Admoni, S. Niekum, R. Simmons, A. Steinfeld, and T. Fitzgerald. Un-
derstanding the relationship between interactions and outcomes in human-in-the-loop machine
learning. In International Joint Conference on Artificial Intelligence, 2021.

[4] M. Kelly, C. Sidrane, K. Driggs-Campbell, and M. J. Kochenderfer. Hg-dagger: Interactive
imitation learning with human experts. In 2019 International Conference on Robotics and
Automation (ICRA), pages 8077-8083. IEEE, 2019.

[5] H. Liu, S. Nasiriany, L. Zhang, Z. Bao, and Y. Zhu. Robot learning on the job: Human-in-
the-loop autonomy and learning during deployment. Robotics: Science and Systems (R:SS),
2023.

[6] J. Zhang and K. Cho. Query-efficient imitation learning for end-to-end autonomous driving.
arXiv e-prints, pages arXiv—1605, 2016.

[7] S.Ross and D. Bagnell. Efficient reductions for imitation learning. In Proceedings of the thir-
teenth international conference on artificial intelligence and statistics, pages 661-668. JMLR
Workshop and Conference Proceedings, 2010.

[8] D. Garg, S. Chakraborty, C. Cundy, J. Song, and S. Ermon. Ig-learn: Inverse soft-q learning
for imitation. Advances in Neural Information Processing Systems, 34:4028-4039, 2021.

[9] Y. Jiang, C. Wang, R. Zhang, J. Wu, and L. Fei-Fei. Transic: Sim-to-real policy transfer by
learning from online correction. arXiv preprint arXiv:2405.10315, 2024.

[10] A.NG. Algorithms for inverse reinforcement learning. In Proc. of 17th International Confer-
ence on Machine Learning, 2000, pages 663—670, 2000.

[11] B.D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey. Maximum entropy inverse reinforcement
learning. In Proceedings of the 23rd national conference on Artificial intelligence-Volume 3,
pages 1433-1438, 2008.

[12] S. Arora and P. Doshi. A survey of inverse reinforcement learning: Challenges, methods and
progress. Artificial Intelligence, 297:103500, 2021.

[13] J. Von Neumann and O. Morgenstern. Theory of games and economic behavior, 2nd rev.
Princeton university press, 1947.

[14] C. L. Baker, J. B. Tenenbaum, and R. R. Saxe. Goal inference as inverse planning. In Proceed-
ings of the annual meeting of the cognitive science society, volume 29, 2007.

[15] C. Li, C. Tang, H. Nishimura, J. Mercat, M. Tomizuka, and W. Zhan. Residual g-learning:
Offline and online policy customization without value. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

[16] Y. Yue, J. Broder, R. Kleinberg, and T. Joachims. The k-armed dueling bandits problem.
Journal of Computer and System Sciences, 78(5):1538-1556, 2012.

[17] A. Jain, B. Wojcik, T. Joachims, and A. Saxena. Learning trajectory preferences for manip-
ulators via iterative improvement. Advances in neural information processing systems, 26,
2013.

[18] P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei. Deep reinforcement
learning from human preferences. Advances in neural information processing systems, 30,
2017.

[19] E. Buyik, D. P. Losey, M. Palan, N. C. Landolfi, G. Shevchuk, and D. Sadigh. Learning reward
functions from diverse sources of human feedback: Optimally integrating demonstrations and
preferences. The International Journal of Robotics Research, 41(1):45-67, 2022.

[20] K. Lee, L. Smith, and P. Abbeel. Pebble: Feedback-efficient interactive reinforcement learning
via relabeling experience and unsupervised pre-training. In 38th International Conference on
Machine Learning, ICML 2021. International Machine Learning Society (IMLS), 2021.

[21] X. Wang, K. Lee, K. Hakhamaneshi, P. Abbeel, and M. Laskin. Skill preferences: Learning
to extract and execute robotic skills from human feedback. In Conference on Robot Learning,
pages 1259-1268. PMLR, 2022.

[22] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,
K. Slama, A. Ray, et al. Training language models to follow instructions with human feedback.
Advances in neural information processing systems, 35:27730-27744, 2022.

[23] V. Myers, E. Biyik, and D. Sadigh. Active reward learning from online preferences. In 2023
IEEE International Conference on Robotics and Automation (ICRA), pages 7511-7518. IEEE,
2023.

[24] R. Rafailov, A. Sharma, E. Mitchell, C. D. Manning, S. Ermon, and C. Finn. Direct pref-
erence optimization: Your language model is secretly a reward model. Advances in Neural
Information Processing Systems, 36, 2024.

10

[25] J. Hejna, R. Rafailov, H. Sikchi, C. Finn, S. Niekum, W. B. Knox, and D. Sadigh. Contrastive
preference learning: Learning from human feedback without reinforcement learning. In The
Twelfth International Conference on Learning Representations, 2023.

[26] T. Tian, C. Xu, M. Tomizuka, J. Malik, and A. Bajcsy. What matters to you? towards vi-
sual representation alignment for robot learning. In The Twelfth International Conference on
Learning Representations, 2023.

[27] W. Saunders, G. Sastry, A. Stuhlmiiller, and O. Evans. Trial without error: Towards safe
reinforcement learning via human intervention. In Proceedings of the 17th International Con-
ference on Autonomous Agents and MultiAgent Systems, pages 2067-2069, 2018.

[28] Z. Wang, X. Xiao, B. Liu, G. Warnell, and P. Stone. Appli: Adaptive planner parameter learn-
ing from interventions. In 2021 IEEE international conference on robotics and automation

(ICRA), pages 6079-6085. IEEE, 2021.

[29] C. Celemin and J. Ruiz-del Solar. An interactive framework for learning continuous actions
policies based on corrective feedback. Journal of Intelligent & Robotic Systems, 95:77-97,
2019.

[30] Z. M. Peng, W. Mo, C. Duan, Q. Li, and B. Zhou. Learning from active human involvement
through proxy value propagation. Advances in neural information processing systems, 36,
2024.

[31] A. Mandlekar, D. Xu, R. Martin-Martin, Y. Zhu, L. Fei-Fei, and S. Savarese. Human-in-the-
loop imitation learning using remote teleoperation. arXiv preprint arXiv:2012.06733, 2020.

[32] J. Spencer, S. Choudhury, M. Barnes, M. Schmittle, M. Chiang, P. Ramadge, and S. Srinivasa.
Learning from interventions: Human-robot interaction as both explicit and implicit feedback.
In 16th Robotics: Science and Systems, RSS 2020. MIT Press Journals, 2020.

[33] W.B. Knox and P. Stone. Reinforcement learning from human reward: Discounting in episodic
tasks. In 2012 IEEE RO-MAN: The 21st IEEE international symposium on robot and human
interactive communication, pages 878-885. IEEE, 2012.

[34] B.D. Argall, E. L. Sauser, and A. G. Billard. Tactile guidance for policy refinement and reuse.
In 2010 IEEE 9th International Conference on Development and Learning, pages 7-12. IEEE,
2010.

[35] T. Fitzgerald, E. Short, A. Goel, and A. Thomaz. Human-guided trajectory adaptation for
tool transfer. In Proceedings of the 18th International Conference on Autonomous Agents and
MultiAgent Systems, pages 13501358, 2019.

[36] A. Bajcsy, D. P. Losey, M. K. O’malley, and A. D. Dragan. Learning robot objectives from
physical human interaction. In Conference on robot learning, pages 217-226. PMLR, 2017.

[37] A. Najar, O. Sigaud, and M. Chetouani. Interactively shaping robot behaviour with unlabeled
human instructions. Autonomous Agents and Multi-Agent Systems, 34(2):35, 2020.

[38] N. Wilde, E. Biyik, D. Sadigh, and S. L. Smith. Learning reward functions from scale feedback.
In 5th Annual Conference on Robot Learning, 2021.

[39] G. Warnell, N. Waytowich, V. Lawhern, and P. Stone. Deep tamer: Interactive agent shaping in
high-dimensional state spaces. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

[40] J. MacGlashan, M. K. Ho, R. Loftin, B. Peng, G. Wang, D. L. Roberts, M. E. Taylor, and
M. L. Littman. Interactive learning from policy-dependent human feedback. In International
conference on machine learning, pages 2285-2294. PMLR, 2017.

11

[41] D. Brown, W. Goo, P. Nagarajan, and S. Niekum. Extrapolating beyond suboptimal demon-
strations via inverse reinforcement learning from observations. In International conference on
machine learning, pages 783-792. PMLR, 2019.

[42] Y. Cui and S. Niekum. Active reward learning from critiques. In 2018 IEEE international
conference on robotics and automation (ICRA), pages 6907-6914. IEEE, 2018.

[43] J. Spencer, S. Choudhury, M. Barnes, M. Schmittle, M. Chiang, P. Ramadge, and S. Srinivasa.
Expert intervention learning: An online framework for robot learning from explicit and implicit
human feedback. Autonomous Robots, pages 1-15, 2022.

[44] A. Bobu, A. Bajcsy, J. F. Fisac, and A. D. Dragan. Learning under misspecified objective
spaces. In Conference on Robot Learning, pages 796-805. PMLR, 2018.

[45] A. Bobu, M. Wiggert, C. Tomlin, and A. D. Dragan. Feature expansive reward learning:
Rethinking human input. In Proceedings of the 2021 ACM/IEEE International Conference on
Human-Robot Interaction, pages 216224, 2021.

[46] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine. Reinforcement learning with deep energy-
based policies. In International conference on machine learning, pages 1352-1361. PMLR,
2017.

[47] T.Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In International conference on machine
learning, pages 1861-1870. PMLR, 2018.

[48] E.T.Jaynes. Information theory and statistical mechanics. Physical review, 106(4):620, 1957.

[49] A. Bobu, D. R. Scobee, J. F. Fisac, S. S. Sastry, and A. D. Dragan. Less is more: Rethinking
probabilistic models of human behavior. In Proceedings of the 2020 acm/ieee international
conference on human-robot interaction, pages 429-437, 2020.

[50] E. Leurent. An environment for autonomous driving decision-making. https://github.
com/eleurent/highway-env, 2018.

[51] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2072
IEEE/RSJ international conference on intelligent robots and systems, pages 5026-5033. IEEE,
2012.

[52] S. Levine. Nonlinear inverse reinforcement learning with gaussian processes. NeurIPS, 2011.
[53] A. Boularias. Relative entropy inverse reinforcement learning. In PMLR, 2011.

[54] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[55] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[56] M. Menéndez, J. Pardo, L. Pardo, and M. Pardo. The jensen-shannon divergence. Journal of
the Franklin Institute, 334(2):307-318, 1997.

12

https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env

A Detailed Environment Settings

Tasks. We design a series of both simulated and real-world tasks featuring discrete and continuous
action spaces to evaluate the effectiveness of MEREQ. These tasks are categorized into two exper-
iment settings: 1) Learning from synthesized expert with heuristic-based intervention rules, and 2)
human-in-the-loop (HITL) experiments.

A.1 Learning from Synthesized Expert with Heuristic-based Intervention

In order to directly evaluate the sub-optimality of the learned policy through MEREQ, we specify a
residual reward function and train an expert policy using this residual reward function and the prior
reward function. We then define a heuristic-based intervention rule to decide when the expert should
intervene or disengage. In this experiment setting, we consider two simulation environments for the
highway driving task and the robot manipulation task.

A.1.1 Highway-Sim

Overview. We adopt the highway-env [50] environment for this task. The ego vehicle must nav-
igate traffic using discrete actions to control speed and change lanes. The expert policy prefers the
ego vehicle to stay in the right-most lane of a three-lane highway. Expert intervention is based on
KL divergence between the expert and learned policies: the expert steps in if there is a significant
mismatch for several consecutive steps and disengages once the distributions align for a sufficient
number of steps. Each episode lasts for 40 steps. The sample roll-out is shown in Fig. 5.

Rewards Design. In Highway-Sim there are 5 available discrete actions for controlling the ego
vehicle: A = {@iane 1eft; Aidle, Alane right; Afaster, Aslover ;- Rewards are based on 3 features:
f= {fcollisiona fhig}Lspeeda fright,lane}v defined as follows:

* fo11ision € {0,1}: 0 indicates no collision, 1 indicates a collision with a vehicle.

* fhign speea € [0,1]: This feature is 1 when the ego vehicle’s speed exceeds 30 m/s, and
linearly decreases to 0 for speeds down to 20 m/s.

* frignt1ane € {0,0.5,1}: This feature is 1 for the right-most lane, 0.5 for the middle lane,
and O for the left-most lane.

The reward is defined as a linear combination of the feature set with the weights 6. For the prior
policy, we define the basic reward as

r=—0.5 * fcollision +0.4 * fhigh,speed~ (Al)
For the expert policy, we define its reward as the basic reward with an additional term on fright 1ane

Texpert = —0.5 * foo1158i0n +0.4 * fhigh,speed

A2
+05 * fright,lane~ ()

Both prior and expert policy are trained using Deep Q-Network (DQN) [54] with the reward defined
above in Gymnasium [55] environment. The hyperparameters are shown in Tab. 6.

Intervention Rule. The expert intervention is determined by the KL divergence between the expert
policy 7, and the learner policy 7 given the same state observation s, denoted as Dk, (7 (als) ||

I | e |
e e e | | R
Figure 5: Highway-Sim Sample Roll-out. The green box is the ego vehicle, and the blue boxes are
the surrounding vehicles. The bird-eye-view bounding box follows the ego vehicle.

13

Figure 6: Bottle-Pushing-Sim Sample Roll-out. The location of the wine bottle and the goal are
randomly initialized for each episode.

me(als)). At each time step, the state observation is fed into both policies to obtain the expert action
a,, the learner action 4, and the expert action distribution 7.(als), defined as

ro(als) = exp(Qs(s; a)) (A.3)

X exp(Qi(s,)’

where Q7 is the soft Q-function. The learner’s policy distribution 7 (a|s) is treated as a delta distri-
bution of the learner action d[ay].

We define heuristic thresholds (Dkr, upper; DKL lower) = (1.62,1.52). If the learner policy is in
control and Dk1, > Dx1,,upper fOr 2 consecutive steps, the expert policy takes over; During expert
control, if Dk, < Dxkr, 1ower fOr 4 consecutive steps, the expert disengages. Each expert intervention
must last at least 4 steps.

A.1.2 Bottle-Pushing-Sim

Overview. A 6-DoF robot arm is tasked with pushing a wine bottle to a random goal position.
The expert policy prefers pushing from the bottom for safety. Expert intervention is based on state
observation: the expert engages if the tooltip is too high, risking the bottle tilting for several consec-
utive steps, and disengages when the tooltip stays low enough for a sufficient number of steps. Each
episode lasts for 100 steps. The sample roll-out is shown in Fig. 6.

Rewards Design. In Bottle-Pushing-Sim, the action space a € R? is continuous, representing
end-effector movements along the global x, y, and z axes. Each dimension ranges from —1 to 1,
with positive values indicating movement in the positive direction and negative values indicating
movement in the negative direction along the respective axes. All values are in centimeter. The
rewards are based on 4 features: f = {ftip2bott1e7 fbo‘ctle2goa17 fcontrol-efforty ftable_distance}a with:

* fiipobottie € [0,1]: This feature is 1 when the distance between the end-effector tool tip
and the wine bottle’s geometric center exceeds 30 cm, and decreases linearly to 0 as the
distance approaches 0 cm.

* foottieagoar € [0,1]: This feature is 1 when the distance between the wine bottle and the
goal exceeds 30 cm, and decreases linearly to 0 as the distance approaches 0 cm.

* feontroletfort € [0,1]: This feature is 1 when the end-effector acceleration exceeds 5 x
1073 m/s?, and decreases linearly to 2 as the acceleration approaches 0.

* fiabie distance € [0, 1]: This feature is 1 when the distance between the end-effector tool tip
and the table exceeds 10 cm, and decreases linearly to 0 as the distance approaches 0 cm.

The reward is defined as a linear combination of the feature set with the weights 6. For the prior
policy, we define the basic reward as

r=-10 * ftip2bottle —1.0 % fbottlngoal

(A4)

—-0.2 % fcontrol_effort~

14

Y R | |

Figure 7: Erasing-Sim Sample Roll-out. The location of the whiteboard is fixed for each episode.

For the expert policy, we define the expert reward as the basic reward with an additional term on
f.table_dista.nce

Texpert = —1.0 * fiipopottie — 1.0 * fiort1e2g0a1

(A.5)

—-0.2 * fcontrol_effort —0.8 * ftable_distance~

Both prior and expert policy are trained using Soft Actor-Critic (SAC) [47] with the rewards defined
above in MuJoCo [51] environment. The hyperparameters are shown in Tab. 8.

Intervention Rule. During learner policy execution, the expert policy takes over if either of the
following conditions is met for 5 consecutive steps:

1. After 20 time steps, the bottle is not close to the goal (fyott162g0a1 = 3 cm) and the distance
between the end-effector and the table exceeds 3 cm (fiapie_gistance = 3 CM).

2. After 40 time steps, the bottle is not close to the goal (fyott1e2g0a1 = 3 cm) and the bottle
movement in the past time step is less than 0.1 cm.

During expert control, the expert disengages if either of the following conditions is met for 3 con-
secutive steps:

1. The distance between the end-effector and the table exceeds 3 cm (fiapie gistance < 3 €M)
and the bottle movement in the past time step is greater than 0.1 cm.

2. The bottle is close to the goal (foott1e2g0a1 < 3 CM).

A.1.3 Erasing-Sim

Overview. A 6-DoF robot arm is tasked with erasing marker on a whiteboard on the table with an
eraser. The expert policy prefers applying a larger normal force to ensure the erasing performance.
Expert intervention is based on the contact force of the end-effector: the expert engages if the normal
force applied by the end-effector is too small for several consecutive steps, and disengages after a
fixed number of steps. Each episode lasts for 100 steps. The sample roll-out is shown in Fig. 7.

Rewards Design. In Erasing-Sim, the action space a € R? is continuous, representing end-effector
movements along the global z, y, and z axes. Each dimension ranges from —1 to 1, with positive
values indicating movement in the positive direction and negative values indicating movement in the
negative direction along the respective axes. All values are in centimeter. The rewards are based on

4 features: f = {ftip_hor_move7 ftip-ver-dista fcontrol_effort7 ftip_force}» with:

* fiipnormove € [0,1]: This feature is 1 when the horizontal movement of the end-effector
since last step exceeds 0.6 cm, and decreases linearly to 0 as the movement approaches 0.

* fiipveraist € [0, 1]: This feature is 1 when the distance between the eraser and the white-
board exceeds 4 cm, and decreases linearly to O as the distance approaches 0 cm.

* feontroletsort € [0,1]: This feature is 1 when the end-effector acceleration exceeds 5 x
1073 m/s?, and decreases linearly to 2 as the acceleration approaches 0.

15

Figure 8: Pillow-Grasping-Sim Sample Roll-out. The expert prefers grasping from the center for
improved success rate.

* fiip force € [0,1]: This feature is 1 when the normal force applied by the eraser exceeds 4
N, and decreases linearly to 0 as the normal force approaches 0 N.

The reward is defined as a linear combination of the feature set with the weights 6. For the prior
policy, we define the basic reward as

r=10 x ftipjlormove —1.0 = ftip,ver,dist

(A.6)

— 02 * fcontrol,effort'

For the expert policy, we define the expert reward as the basic reward with an additional term on
ftable,distance

Texpert — 1.0 * ftimerJnove —1.0 * ftip,ver,dist

—0.2 % fcontrol,effort + 2.0 * f1',ip,force-

(A7)

Both prior and expert policy are trained using Soft Actor-Critic (SAC) [47] with the rewards defined
above in MuJoCo [51] environment. The hyperparameters are shown in Tab. 8.

Intervention Rule. During learner policy execution, the expert policy takes over if the normal force
applied by the end-effector is smaller than 2 N (f;ip force < 2 N) for 5 consecutive steps. Expert
control will last for 5 steps and automatically disengages.

A.14 Pillow-Grasping-Sim

Overview. A 6-DoF robot arm is tasked with grasping a pillow with a parallel two-finger gripper.
The expert policy prefers grasping from the center. Expert intervention is based on the state obser-
vation: the expert engages if the gripper is not going lower and closer to the center, and disengages
when the gripper is actively moving towards the center. Each episode lasts for 100 steps. The sample
roll-out is shown in Fig. 7.

Rewards Design. In Erasing-Sim, the action space a € R3 is continuous, representing end-effector
movements along the global x, y, and z axes. Each dimension ranges from —1 to 1, with positive
values indicating movement in the positive direction and negative values indicating movement in
the negative direction along the respective axes. All values are in centimeter. The gripper will
automatically close once the end-effector reach the pillow. The rewards are based on 4 features:
f= {ftip2pillom fpillowjleighty fcontrol,efforh ftip2center}s with:

* fiipopittow € [0, 1]: This feature is 1 when the vertical movement of the end-effector to-
wards the surface of the pillow since last step exceeds 0.5 cm, and decreases linearly to 0
as the end-effector moving away from the surface of the pillow for more than 0.5 cm.

* foi110u heignt € [0, 1]: This feature is 1 when the distance between the pillow and the table
surface 5 cm, and decreases linearly to O as the distance approaches 0 cm.

* feontroletsort € [0,1]: This feature is 1 when the end-effector acceleration exceeds 5 x
103 m/s?, and decreases linearly to 2 as the acceleration approaches 0.

16

(a) Policy Control (b) Human Engage (c) Human Control (d) Human Disengage

Figure 9: Highway-Human Graphic User Interface. There are four different scenarios during the
sample collection process. When the human expert engages and takes over the control, additional
information would show up for available actions.

* fiipocenter € [0,1]: This feature is 1 when the movement of the end-effector towards the
center of the pillow since last step exceeds 0.5 cm, and decreases linearly to 0 as the end-
effector moving away from the center of the pillow for more than 0.5 cm.

The reward is defined as a linear combination of the feature set with the weights 6. For the prior
policy, we define the basic reward as
r=—0.5 * fiipopitiow + 2.0 * fhi110uneignt
(A.8)
—0.2 % fcontrol_effort~
For the expert policy, we define the expert reward as the basic reward with an additional term on

ftable_distance

Texpert =-0.5 = ftip2pillow +2.0 * fpillow_height (A 9)

—0.2 * feontroleffort — 0.8 * ftiP2¢‘3ntel”'

Both prior and expert policy are trained using Soft Actor-Critic (SAC) [47] with the rewards defined
above in MuJoCo [51] environment. The hyperparameters are shown in Tab. 8.

Intervention Rule. During learner policy execution, the expert policy takes over if:

1. The horizontal movement of the end-effector towards the center of the pillow during last
step is less than a pre-defined threshold for 5 consecutive steps. The threshold varies de-
pending on the current vertical distance between the end-effector and the center. For ver-
tical distance larger than 5 cm, the threshold is 0.4 cm; for vertical distance between 3 cm
and 5 cm, the threshold is 0.2 cm; for vertical distance smaller than 3 cm, the threshold is
—0.5 cm (moving away from the center for more than 0.5 cm in the last step).

2. The vertical movement of the end-effector towars the surface of the pillow during last step
is less than 0.15 cm for 10 consecutive steps.

During expert control, the expert disengages if the horizontal end-effector towards the center of the
pillow during last step is greater than the pre-defined threshold for 3 consecutive steps.

A.2 Human-in-the-loop Experiments

For the human-in-the-loop experiments, we substitute the synthesized experts in the corresponding
experiments with human experts.

A.2.1 Highway-Human

Overview. We use the same highway-env environment with a customized Graphic User Interface
(GUI) for human supervision. Human experts can intervene at will and control the ego vehicle using
the keyboard. The sample GUI of 4 different scenarios are shown in Fig. 9.

Human Interface. We design a customized Graphic User Interface (GUI) for highway-env as
shown in Fig. 9. The upper-left corner contains information about: 1) the step count in the current

17

(a) Bottle-Pushing-Human Hardware Setup (b) Pillow-Grasping-Human Robot Gripper

Figure 10: Hardware setups for robot experiments. (Left) In the Bottle-Pushing-Human task, we
use a Fanuc LR Mate 200:D/7L 6-DoF robot arm mounted on a tabletop, a fixed RealSense D435
depth camera for tracking AprilTags attached to the bottle and goal position, and a 3Dconnexion
SpaceMouse for online human intervention. (Right) In the Pillow-Grasping-Human task, we use a
two-finger parallel gripper mounted on the robot end-effector for grasping the pillow.

episode; 2) the total episode count; and 3) last executed action and last policy in control. The upper-
right corner contains information about: 1) forward and lateral speed of the ego vehicle; and 2)
basic and residual reward of the current state. The lower-left corner contains the user instruction on
engaging and action selection. Whenever the human user is taking control, the lower-right corner
shows the available actions and the corresponding keys.

A.2.2 Bottle-Pushing-Human

Overview. We use a Fanuc LR Mate 200:D/7L 6-DoF robot arm with a customized tooltip to
push the bottle. Human experts can intervene at will and control the robot using a 3DConnexion
SpaceMouse. Please refer to Fig. 4 (left) for a sample failure rollout where the robot knocks down
the wine bottle before alignment, and a sample rollout where the robot successfully pushes the bottle
to the goal position after alignment.

Human Interface. The hardware setup for the real-world experiment is shown in Fig. 10a. The
robot arm is mounted on the tabletop. We use the RealSense d435 depth camera to track the April-
Tags attached to the bottle and the goal position for the state feedback. The human expert uses the
SpaceMouse to control the 3D position and orientation of the end-effector. The end-effector con-
sists of a pair of tooltips specifically designed for the bottle-pushing task, which are 3D printed and
attached to a parallel gripper with a fixed distance between the two fingers.

A.2.3 Pillow-Grasping-Human

We use the same robot arm with a standard two-finger parallel gripper (see Fig. 10b) to grasp the pil-
low. Human experts can intervene at will and control the robot using a 3DConnexion SpaceMouse.
Please refer to Fig. 4 (right) for a sample failure roll-out where the robot fails to grasp the pillow by
the center before alignment, and a sample roll-out where the robot successfully grasps the pillow by
the center after alignment. The human interface is the same as Bottle-Pushing-Human.

B Additional Results

Sample Efficiency. Tab. 1 and Tab. 2 present the detailed numerical results corresponding to the
plots shown in Fig. 2 and Fig. 3, respectively. Both tables report the mean values and 95% con-
fidence intervals of the number of expert samples required by each algorithm. The results clearly
demonstrate the advantage of MEREQ over the baseline methods with respect to sample efficiency.

18

Table 1: MEReQ and its variation require fewer total expert samples to achieve com-
parable policy performance compared to the max-ent IRL baselines MaxEnt and MaxEnt-FT,
and interactive imitation learning baselines HG-DAgger-FT and IWR-FT under varying criteria
strengths in different task and environment. Results are reported in mean (95%c1i).

Environment 1) MEReQ MaxEnt MaxEnt-FT ~HG-DAgger-FT IWR-FT
0.05 1819 (456) 1990 (687) 4363 (1266) 4330 (1255) 1871 (183) 2284 (1039)
Highway-Sim 0.1 1208 (254) 1043 (154) 2871 (1357) 1612 (673) 1754 (160) 1856 (1214)

0..15 965 (100) 965 (37) 2005 (840) 1336 (468) 1458 (194) 1527 (930)

0.05 1707 (261) 3338 (1059) 5298 (2000) 2976 (933) 2519 (1459) 3554 (1118)
Bottle-Pushing-Sim 0.1 1613 (141) 2621 (739) 4536 (1330) 2636 (468) 1706 (785) 2280 (1273)
0.15 1604 (134) 2159 (717) 4419 (1306) 2618 (436) 1692 (787) 1290 (516)

0.05 925(51) 989 (228) 8627 (3019) 1899 (2796) 1268 (827) 4236 (1670)
Erasing-Sim 0.1 923 (45) 989 (228) 7965 (3610) 1899 (2796) 1258 (842) 3643 (2231)
0.15 923 45) 989 (228) 7965 (3610) 1899 (2796) 1258 (842) 2968 (1934)

0.05 2848 (699) 3086 (672) 4992 (2375) 3188 (1360) 7699 (624) 9645 (1034)
Pillow-Grasping-Sim 0.1 2398 (470) 2807 (558) 4127 (2737) 2808 (1135) 6490 (1696) 9645 (1034)
0.15 2284(332) 2564 (633) 3993 (2681) 2715 (913) 5427 (2170) 8879 (1960)

Table 2: MEReQ require fewer total human samples to align the prior policy with human preference.
Results are reported in mean (95%ci).

Environment MEReQ MaxEnt MaxEnt-FT HG-DAgger-FT IWR-FT
Highway-Human 654 (174) 2482 (390) 1270 (440) 864 (194) 927 (237)
Bottle-Pushing-Human 423 (107) 879 (56) 564 (35) 450 (105) 524 (130)
Pillow-Grasping-Human 149 (20) 376 (123) 234 (141) 456 (126) 497 (301)

Behavior Alignment. As discussed in Sec.6.1, when using a synthesized expert, we can directly
measure the alignment between the behaviors of the learned and expert policies, since both the ex-
pert policy distribution and the ground-truth expert reward are available. Specifically, for the Bottle-
Pushing-Sim task, we collect sample rollouts from both policies, estimate their feature distributions,
and compute the Jensen—Shannon divergence [56] between these distributions as a quantitative mea-
sure of behavior alignment. The feature distributions and their corresponding Jensen—Shannon di-
vergences relative to the expert policy are shown in Fig. 11 and Tab. 3. We also visualize the reward
distributions for all policies in Fig. 11 and report their means and standard deviations in Tab. 4.
These results show that the MEREQ policy more closely matches the synthesized expert in terms of
both feature and reward distributions compared to the baseline methods.

Performance under Noisy Intervention. Our work focuses on learning from interventions pro-
vided by a single, consistent human expert—i.e., assuming a single trainer whose behavior pref-
erence does not shift. There could still be some noise, and indeed that was not controlled for in
the experiments. However, handling noisy or inconsistent interventions is beyond our scope and
remains a valuable direction for future work. As a preliminary exploration, we introduced Gaussian
noise (mean 0, standard deviation 0.1) to the normalized actions [—1, 1] of synthesized expert inter-
ventions (see Tab. 5, results are reported in mean (95%ci) with § = 0.1) in the Bottle-Pushing-Sim
environment. While MEREQ’s performance degrades under injected noise, it still outperforms the
baselines.

C Implementation Details

In this section, we provide the hyperparameters for the prior policy training (see Tab. 6 and Tab. 8)
and the Residual Q-Learning training (see Tab. 7 and Tab. 9).

19

Prior [Expert [0 MEReQ MEReQ-NP [MaxEnt MaxEnt-FT 0 HGDAgger-FT

=
o

1

o
©
)

e
o
L

Scaled Feature Distribution

o
=}

:6;4
o
=

Method

" , LIITTTLL ':'.-_Zé_-_

IWR-FT

V4

l |

6

tip2bottle_dist

T T |
bottle2goal_dist control table_dist

Figure 11: Behavior Alignment. We evaluate the policy distribution of all methods with a conver-
gence threshold of 0.1 for each feature in the Bottle-Pushing-Sim environment. All methods align
well with the Expert in the feature table_dist except for IWR-FT. Additionally, MEReQ aligns
better with the Expert across the other three features compared to other baselines.

Table 3: The Jensen-Shannon Divergence of the feature distribution between each method and the
synthesized expert in the Bottle-Pushing-Sim environment. Results are reported in mean (95%c1i).
The intervention rate threshold is set to 0.1.

Features MEReQ MaxEnt MaxEnt-FT ~ HG-DAgger-FT IWR-FT
scaled_tip2wine 0.237 (0.032) 0.265 (0.023) 0.245(0.022) 0.250 (0.038) 0.240 (0.017) 0.302 (0.058)
scaled_wine2goal 0.139 (0.005) 0.194 (0.044) 0.247 (0.046) 0.238 (0.039) 0.167 (0.033) 0.236 (0.040)

scaled_eef_acc_sqrsum 0.460 (0.018) 0.479 (0.022) 0.500 (0.026) 0.505 (0.016) 0.707 (0.006) 0.654 (0.022)
scaled_table dist 0.177 (0.021) 0.219 (0.025) 0.236 (0.029) 0.210 (0.049) 0.284 (0.080) 0.308 (0.051)

0.0175

0.0150

0.0125

ity

0.0100

Dens

0.0075

0.0050

0.0025

0.0000

policy

[—JExpert
[_IMEReQ

MEReQ-NP
[IMaxEnt
[IMaxEnt-FT
[HGDAgger-FT
JIWR-FT

-400 -350 -300 -250 -200 -150 -100 -50
Trajectory Reward

Figure 12: Reward Alignment. We visualize the reward distributions of all methods with a conver-
gence threshold of 0.1 for each feature in the Bottle-Pushing-Sim environment. MEReQ aligns best
with the Expert compared to other baselines.

Table 4: The mean and standard deviation of the reward distribution of each method.

Expert MEReQ

MaxEnt MaxEnt-FT HG-DAgger-FT

IWR-FT

-115.9(25.9) -140.5(30.8) -184.7(46.9) -231.1(52.9) -214.1(36.7) -157.5 (46.1)

228.1 (56.1)

Table 5: Number of total expert samples with noisy intervention.

MEReQ MaxEnt-FT HG-DAgger-FT IWR-FT

No Noise
10% Noise
50% Noise

1613 (141) 2636 (468) 1706 (785) 2280 (1273)

1043 (420) 2228 (182) 3987 (1831) 11921 (1749)
1011 (315) 2612(252) 3612(1529) 11487 (3966)

20

Table 6: Hyperparameters of DQN Policies.

Hyperparameter

Highway-Sim Highway-Human

n_timesteps
learning rate

batch_size

buffer_size
learning_starts

gamma
target_update_interval
train_freq
gradient_steps
exploration_fraction
net_arch

5 x 10°
10~4
32

1.5 x 10*

200
0.8
50
1
1
0.7

256, 256]

5% 10°
10~4
32
1.5 x 10*
200
0.8
50
1
1
0.7
[256, 256]

Table 7: Hyperparameters of Residual DQN Policies.

Hyperparameter

Highway-Sim Highway-Human

n_timesteps
batch_size
buffer_size
learning starts
learning rate
gamma
target_update_interval
train_freq
gradient_steps
exploration_fraction
net_arch
env_update_freq
sample_length
epsilon
eta

4 x 104
32
2000
2000
10~4
0.8
50
1
1
0.7

256, 256]

1000

1000

0.03
0.2

4 x 104
32
2000
2000
10~4
0.8
50
1
1
0.7
[256, 256]
1000
1000
0.03
0.2

Table 8: Hyperparameters of SAC Policies.

Hyperparameter — Bottle-Pushing-Sim Bottle-Pushing-Human Erasing-Sim Pillow-Grasping-Sim Pillow-Grasping-Human
n_timesteps 5 x 10* 5 x 10* 5 x 10* 5 x 10% 5 x 10%
learning rate 5x 1073 5x 1073 5x 1073 5x 1073 5x 1073
batch_size 512 512 512 512 512
buffer_size 108 108 108 109 108
learning starts 5000 5000 5000 5000 5000
ent_coef auto auto auto auto auto
gamma 0.9 0.9 0.9 0.9 0.9
tau 0.01 0.01 0.01 0.01 0.01
train freq 1 1 1 1 1
gradient_steps 1 1 1 1 1
net_arch [400, 300] [400, 300] [400, 300] [400, 300] [400, 300]

21

Table 9: Hyperparameters of Residual SAC Policies.

Pillow-Grasping-Human

Hyperparameter Bottle-Pushing-Sim Bottle-Pushing-Human Erasing-Sim Pillow-Grasping-Sim
n_timesteps 2 x 10* 2 x 104 2 x 104 2 x 10% 2 x 104
batch_size 512 512 512 512 512
buffer_size 10° 108 106 10¢ 106
learning starts 5000 5000 5000 5000 5000
learning rate 5x 1073 5x 1073 5x 1073 5x 1073 5x 1073
ent_coef auto auto auto auto auto
ent_coef prior 0.035 0.035 0.035 0.035 0.035
gamma 0.9 0.9 0.9 0.9 0.9
tau 0.01 0.01 0.01 0.01 0.01
train freq 1 1 1 1 1
gradient_steps 1 1 1 1 1
net_arch [400, 300] [400, 300] [400, 300] (400, 300] (400, 300]
env_update_freq 1000 1000 1000 1000 1000
sample_length 1000 1000 2000 2000 1000
epsilon 0.2 0.2 0.1 0.1 0.4
eta 0.2 0.2 0.2 0.2 0.2

22

	Introduction
	Related Work
	Preliminaries
	Policy Customization and Residual Q-Learning
	Maximum-Entropy Inverse Reinforcement Learning

	Problem Formulation
	Max-Ent Residual-Q Inverse Reinforcement Learning (MEReQ)
	A Naive Maximum-Entropy IRL Solution
	Residual Reward Inference and Policy Update
	Algorithm

	Experiments
	Experimental Results

	Limitations and Future Work
	Detailed Environment Settings
	Learning from Synthesized Expert with Heuristic-based Intervention
	Highway-Sim
	Bottle-Pushing-Sim
	Erasing-Sim
	Pillow-Grasping-Sim

	Human-in-the-loop Experiments
	Highway-Human
	Bottle-Pushing-Human
	Pillow-Grasping-Human

	Additional Results
	Implementation Details

