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Abstract
In differentially private (DP) machine learning,
the privacy guarantees of DP mechanisms are of-
ten reported and compared on the basis of a single
pε, δq-pair. This practice overlooks that DP guar-
antees can vary substantially even between mech-
anisms sharing a given pε, δq, and potentially in-
troduces privacy vulnerabilities which can remain
undetected. This motivates the need for robust,
rigorous methods for comparing DP guarantees in
such cases. Here, we introduce the ∆-divergence
between mechanisms which quantifies the worst-
case excess privacy vulnerability of choosing one
mechanism over another in terms of pε, δq, f -DP
and in terms of a newly presented Bayesian inter-
pretation. Moreover, as a generalisation of the
Blackwell theorem, it is endowed with strong
decision-theoretic foundations. Through appli-
cation examples, we show that our techniques can
facilitate informed decision-making and reveal
gaps in the current understanding of privacy risks,
as current practices in DP-SGD often result in
choosing mechanisms with high excess privacy
vulnerabilities.

1. Introduction
Protecting private information in machine learning (ML)
workflows involving sensitive data is of paramount impor-
tance. Differential Privacy (DP) has emerged as the pre-
ferred method for providing rigorous and verifiable privacy
guarantees, quantifiable by a privacy budget. This repre-
sents the privacy loss incurred by publicly releasing data
that has been processed by a system using DP, e.g. when a
deep learning model is trained on sensitive data using DP
stochastic gradient descent (DP-SGD, (Abadi et al., 2016)).
In principle, workflows utilising DP can offer strong protec-
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tion against specific attacks, such as membership inference
(MIA) and data reconstruction attacks. However, the proper
application of DP to defend against such threats relies on
a correct understanding of the quantitative aspects of pri-
vacy protection, which are expressed differently under the
various DP interpretations. For instance, in approximate
DP, the privacy budget is quantified using two parameters
pε, δq. Most relevant DP mechanisms, e.g. the subsampled
Gaussian mechanism (SGM) typically used in DP-SGD, sat-
isfy DP across a continuum of pε, δpεqq-values rather than
a single pε, δq tuple. For these mechanisms, δ is a function
of ε, represented as the privacy profile (Balle et al., 2020a).
An equivalent (dual) functional view is expressed by the
trade-off function in f -DP (Dong et al., 2022).

However, despite the fact that the DP guarantee of such
mechanisms can only be characterised by a collection of
pε, δq-values, it is common practice in literature to calibrate
against and report a single pε, δq-pair to express the privacy
guarantee of a DP mechanism (Abadi et al., 2016; Papernot
et al., 2021; De et al., 2022). This highlights a potential
misconception that such a single pair is sufficient to fully
characterise or compare DP guarantees. This assumption is
not generally true, as mechanisms can conform to the same
pε, δq-values but still differ significantly, as seen in Figure 1.
In other words: two DP mechanisms can be calibrated
to share an pε, δq-guarantee while offering substantially
different privacy protections.
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Figure 1: Privacy profiles of two SGMs with different noise
scales σ and sampling rates p. Both satisfy p4.00, 0.08q-DP,
but offer otherwise different levels of privacy protection.
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This leads us to ask whether interpreting and/or compar-
ing the privacy guarantees of DP mechanisms based on
their behaviours at a single pε, δq-tuple can lead to privacy
vulnerabilities. An affirmative answer is suggested by the
recent work of Hayes et al. (2023) on reconstruction attacks.
Therein, the authors demonstrate that calibrating two SGMs
with different parameters to meet the same pε, δq-guarantee
as shown above results in disparate effectiveness against
reconstruction attacks. In practice, this can occur when
the user simultaneously increases the sampling rate (e.g. to
utilise all available GPU memory) and the noise scale in
an attempt to maintain the same pε, δq-DP guarantee. In
reality, the privacy guarantee has been changed everywhere
except the calibration point (i.e. the pε, δq-tuple in question),
weakening the model’s protection against data reconstruc-
tion attacks. Similar evidence was presented by Lokna et al.
(2023), where it was shown that a single pε, δq-pair is insuffi-
cient to fully characterise a mechanism’s protection against
MIA. Both examples illustrate that differences between DP
guarantees which remain undetected by only considering a
single pε, δq-pair can lead to privacy hazards.

This reflects an unmet requirement for tools to quantitatively
compare the privacy guarantees offered by DP mechanisms
in a principled manner. Most existing techniques for com-
paring DP guarantees either rely on summarisation into a
single scalar (which can discard information), on average-
case metrics or on assumptions, thus lacking the required
generality. The arguably most theoretically rigorous mecha-
nism comparison technique relies on the so-called Blackwell
theorem, which allows for comparing the privacy guarantees
in a strong, decision-theoretic sense. However, the Black-
well theorem is exclusively applicable to the special case in
which the privacy guarantees of two mechanisms coincide
nowhere, i.e. when their trade-off functions/privacy profiles
never cross, excluding, among others, DP-SGD, as shown
above. To thus extend rigorous mechanism comparisons
to this important setting, a set of novel techniques is re-
quired, which our work introduces through the following
contributions.

Contributions To enable principled comparisons between
mechanism whose privacy guarantees coincide at a single
point but differ elsewhere, we generalise Blackwell’s theo-
rem by introducing an approximate ordering between DP
mechanisms. This ordering, which we express through the
newly presented ∆-divergence between mechanisms, quanti-
fies the worst-case increase in privacy vulnerability incurred
by choosing one mechanism over another in terms of hy-
pothesis testing errors, δpεq, and in terms of a novel Bayes
error interpretation. The latter is a probabilistic extension
of the hypothesis testing interpretation of DP and allows
for principled reasoning over the capabilities of DP adver-
saries. In addition, we analyse the evolution of approximate
comparisons into universal comparisons under composition,

yielding insights into the privacy dynamics of algorithms
like DP-SGD. Finally, we experimentally show how our
techniques can facilitate a more granular privacy analysis of
private ML workflows, and pinpoint vulnerabilities which
remain undetected by only focusing on a single pε, δq-pair.

Related Work Blackwell’s theorem (Blackwell, 1953)
originates in the theory of comparisons between informa-
tion structures called statistical experiments, and describes
conditions under which one statistical experiment is univer-
sally more informative than another. Blackwell’s framework
was later expanded by LeCam (1964); Torgersen (1991),
and we refer to the latter for a comprehensive overview of
the field. The equivalence between a subclass of statistical
experiments (binary experiments) and the decision prob-
lem faced by the MIA adversary led Dong et al. (2022) to
leverage the Blackwell theorem to provide conditions un-
der which one DP mechanism is universally more private
than another. This limits mechanism comparisons to the
special case when the mechanisms’ trade-off functions (or
privacy profiles (Balle et al., 2020a)) never cross. However,
as demonstrated above, crossing trade-off functions or pri-
vacy profiles are not the exception but the norm; however,
no specific tools to compare privacy guarantees in this case
are introduced by Dong et al. (2022).

As discussed above, privacy guarantees have so far often be
compared using metrics like attack accuracy or area under
the trade-off curve (see Carlini et al. (2022) for a list of
works). Besides summarising the privacy guarantee into a
single scalar (thus discarding much of the information about
the DP mechanism contained in the privacy profile or trade-
off function), such metrics model the average case instead
of the desirable worst case, rendering them sub-optimal
for DP applications. To remedy this, Carlini et al. (2022)
proposed comparing attack performance at a “low” Type-I
error. However, this method requires an arbitrary assump-
tion about the correct choice of a “low” Type-I error rather
than considering the entire potential operating range of an
adversary, thereby also discarding information. Moreover,
absent a universally agreed upon standard of what a correct
choice of Type-I error is, this could incentivise the reporting
of research results at a Type-I error which is “cherry-picked”
to e.g. emphasise the benefits of a newly introduced MIA,
i.e. p-hacking (Wasserstein & Lazar, 2016).

Notation and Background Here, we briefly introduce
the notation and relevant concepts used throughout the pa-
per for readers with technical familiarity with DP termi-
nology. A detailed background discussion introducing all
following concepts can be found in Appendix A. We will
denote DP mechanisms by M : pP,Qq, where pP,Qq de-
note the tightly dominating pair of probability distributions
which characterise the mechanism as described in Zhu et al.
(2022), and will assume that P and Q are mutually abso-
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lutely continuous. The Likelihood Ratios (LRs) will be de-
noted sX “ Qpωq{P pωq, ω „ P and sY “ Qpωq{P pωq, ω „ Q
for a mechanism outcome ω, where „ denotes sampling,
and the Privacy Loss Random Variables (PLRVs) will be
denoted X “ logp sXq and Y “ logpsY q. We will denote the
trade-off function (Dong et al., 2022) corresponding to M
by f : α ÞÑ βpαq, where pα, βpαqq are the Type-I/II errors
of the most powerful test between P and Q with null hypoth-
esis H0 : ω „ P and alternative hypothesis H1 : ω „ Q,
and α is fixed by the adversary. We will assume without loss
of generality that f is symmetric (thereby omitting the domi-
nating pair pQ,P q), and defined on R with fpxq “ 1, x ă 0
and fpxq “ 0, x ą 1.

The privacy profile (Balle et al., 2020a; Gopi et al., 2021)
of M will be denoted by δpεq, while the N -fold self-
composition of M (as is usually practised in DP-SGD
(Abadi et al., 2016)) will be denoted by MbN . We will
moreover denote the total variation distance between P and
Q by TVpP,Qq “ minαp1´α´fpαqq “ Adv, where Adv
is the MIA advantage (Yeom et al., 2018), and the Rényi
divergence of order t of P to Q by DtpP ∥Qq (Mironov,
2017). The party employing a DP mechanism to protect
privacy will be referred to as the analyst or defender.

2. A Bayesian Interpretation of f -DP
We begin by introducing a novel interpretation of f -DP
based on the minimum Bayes error of a MIA adversary.
While f -DP characterises mechanisms through their trade-
off between hypothesis testing errors, our interpretation
enriches this characterisation by incorporating the adver-
sary’s prior knowledge (i.e. auxiliary information). As
will become evident below, this allows for incorporating
probabilistic reasoning over the adversary and facilitates
intuitive operational interpretations of mechanism compar-
isons, while preserving the same information as f -DP.

Suppose that a Bayesian adversary assigns a prior proba-
bility π to the decision “reject H0”. Considering that the
adversary’s goal is a successful MIA on a specific challenge
example, H0 is synonymous with the hypothesis “the mech-
anism outcome was generated from the database which does
not contain the challenge example”. Thus, the prior on
rejecting H0 expresses the prior belief that the challenge ex-
ample is actually part of the database (i.e. a prior probability
of positive membership). For example, in privacy auditing
(where the analyst assumes the role of the adversary), π
corresponds to the probability of including the challenge
example (also called “canary”) in the database which is
attacked (Carlini et al., 2022; Nasr et al., 2023).

From the trade-off function, the Bayes error R at a prior π
can be obtained as follows:

Rpπq “ πα ` p1 ´ πqfpαq, (1)

where it is implied that the adversary fixes a level of Type I
error α. The minimum Bayes error function is derived from
the above by minimising over the trade-off between Type I
and Type II errors:

Rminpπq “ min
α

pπα ` p1 ´ πqfpαqq . (2)

We will refer to Rmin as just the Bayes error function for
short. Rmin is continuous, concave, maps r0, 1s Ñ r0, 1{2s,
satisfies Rminp0q “ Rminp1q “ 0, and Rminpπq ď

mintπ, 1 ´ πu. The minimax Bayes error R˚ is the maxi-
mum of Rmin over all values of π P r0, 1s:

R˚ “ max
π

Rminpπq. (3)

R˚ is realised at π “ 1{2 since f is assumed symmetric.

Rmin is a lossless representation of the mechanism’s privacy
properties as f can be reconstructed from Rmin as follows:

fpαq “ max
0ďπă1

ˆ

´
π

1 ´ π
α `

Rminpπq

1 ´ π

˙

. (4)

For examples of Rmin, see Figure 3 and Figure 8 in the
Appendix.

3. Blackwell Comparisons
3.1. Universal Blackwell Dominance

As stated above, the Blackwell theorem states equivalent
conditions under which a mechanism M is universally
more informative/less private than a mechanism ĂM, de-
noted M ľ ĂM from now on. For completeness, we briefly
re-state these conditions here, and extend them to include
our novel Bayes error interpretation.
Theorem 1. The following statements are equivalent:

1. @α P r0, 1s : fpαq ď rfpαq;
2. @ε P R : δpεq ě rδpεq;
3. @π P r0, 1s : Rminpπq ď rRminpπq.

The proofs of clause (1) and (2) can be found in Sections 2.3
and 2.4 of Dong et al. (2022), while the proof of (3) and all
following theoretical results can be found in Appendix B.4.

If any of the above conditions hold, we write M ľ ĂM and
say that M Blackwell dominates ĂM. Note the lack of a
clause related to Rényi DP (RDP), which is a consequence
of the fact that, while M ľ ĂM implies that DtpP ∥Qq ě

Dtp rP∥ rQq, for all t ě 1, the reverse does not hold in general
(Dong et al., 2022). RDP is thus a generally weaker basis
of comparison between DP mechanisms.

The relation ľ induces a partial order on the space of DP
mechanisms and expresses a strong condition, as it implies
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that the dominating mechanism is more useful for any down-
stream task, benign (e.g. training an ML model) or malicious
(e.g. privacy attacks) (Dong et al., 2022; Torgersen, 1991).
Note that Theorem 1 is inapplicable when the trade-off
functions, privacy profiles or Bayes error functions cross.
Addressing this issue is the topic of the rest of the paper.

3.2. Approximate Blackwell Dominance

As discussed above, Blackwell dominance expresses that
choosing the dominated mechanism is, in a universal sense,
a better choice in terms of privacy protection. In other words,
an analyst choosing the dominated mechanism would never
regret this choice from a privacy perspective. However,
more frequently, the choice between mechanisms is equivo-
cal because their privacy guarantees coincide at the calibra-
tion point, but differ elsewhere. They thus offer disparate
protection against different adversaries, meaning that no
choice fully eliminates potential regret in terms of privacy
vulnerability. A natural decision strategy under the princi-
ple of DP to protect against the worst case is to choose the
mechanism which minimises the worst-case regret in terms
of privacy vulnerability. To formalise this strategy, we next
introduce a relaxation of the Blackwell theorem. Similar to
how approximate DP relaxes pure DP, we term comparisons
using this relaxation approximate Blackwell comparisons.1

To motivate this formalisation within the DP threat model,
suppose that an analyst must choose between M and ĂM,
however they cannot unequivocally decide between them
because neither mechanism is universally more or less vul-
nerable to MIA. To express “how close” the analyst is to
being able to choose unequivocally between the mechanisms
(i.e. to Blackwell dominance being restored), we determine
the smallest shift κ ě 0 which suffices to move f below and
to the left of rf such that Theorem 1 kicks in and M ľ ĂM,
as shown in Figure 2.

Definition 1. The ∆-divergence of M to ĂM is given by

∆pM∥ ĂMq “ inftκ ě 0 | @α : fpα ` κq ´ κ ď rfpαqu.

This allows us to define approximate Blackwell dominance:

Definition 2. If ∆pM ∥ ĂMq ď D, we say that M D-
approximately dominates ĂM, denoted M ľD

ĂM.

The next theorem formally states equivalent criteria for ap-
proximate Blackwell dominance:

Theorem 2. The following are equivalent to M ľD
ĂM:

1. @α P r0, 1s : fpα ` Dq ´ D ď rfpαq;
2. @ε P R : δpεq ` D ¨ p1 ` eεq ě rδpεq;

1A related term in the experimental comparisons literature is
“deficiencies” (LeCam, 1964).
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Figure 2: The trade-off functions of a Gaussian (f , blue)
and a Laplace ( rf , red) mechanism cross, therefore neither
mechanism universally Blackwell dominates. Shifting f

left and down by κ yields fpαq ď rfpαq for all α P r0, 1s

(dashed blue), and restores universal Blackwell dominance.

3. @π P r0, 1s : Rminpπq ´ rRminpπq ď D.

The proof relies on fundamental properties of trade-off func-
tions, of the convex conjugate and its order-reversing prop-
erty and on the lossless conversion between trade-off func-
tion and Bayes error function.

Intuitively, when D is very small, the clauses of Theorem 2
are “approximate” versions of the corresponding clauses of
Theorem 1. In particular, D represents an upper bound on
the excess vulnerability of ĂM at any level α, choice of ε or
prior π. The computation of ∆pM∥ ĂMq is most naturally
expressed through the Bayes error functions:

Corollary 1. ∆pM∥ ĂMq “ maxπpRminpπq ´ rRminpπqq.

The ∆-divergence can be computed numerically through
grid discretisation with N points (i.e. to tolerance 1{N) in
OpNq time, and requires only oracle access to a function
implementing the trade-off functions of the mechanisms.
An example is provided in Appendix B.3.

Moreover, Corollary 1 admits the following interpretation:

∆pM∥ ĂMq expresses the worst-case regret of
an analyst choosing to employ ĂM instead of M,
whereby regret is expressed in terms of the adver-
sary’s decrease in minimum Bayes error.

We consider this connection between Bayesian decision
theory and DP the most natural interpretation of our results.
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3.3. Metrising the Space of DP Mechanisms

After introducing tools for establishing a ranking between
DP mechanisms in the preceding sections, we here show that
the ∆-divergence can actually be used to define a metric on
the space of DP mechanisms. In the sequel, we will say that
two mechanisms are equal and write M “ ĂM if and only
if their trade-off functions, privacy profiles and Bayes error
functions are equal. For a formal discussion on this choice
of terminology, see Remark 1 in the Appendix. Moreover,
we define the following extension of the ∆-divergence:
Definition 3 (Symmetrised ∆-divergence ∆Ø).

∆ØpM∥ ĂMq “ max
!

∆pM∥ ĂMq,∆p ĂM∥Mq

)

. (5)

Using Corollary 1, ∆Ø can be written as:

∆ØpM∥ ĂMq “ ∥Rminpπq ´ rRminpπq∥8. (6)

In terms of the trade-off functions, the following holds:

Lemma 1. Let ∆Ø “ ∆ØpM∥ ĂMq. Then it holds that:

fpα ` ∆Øq ´ ∆Ø ď rfpαq ď fpα ´ ∆Øq ` ∆Ø. (7)

This substantiates that ∆ØpM∥ ĂMq “ 0 is equivalent to the
equality of the trade-off functions, and thus of the privacy
profiles and Bayes error functions.

The similarity of Equation (7) to the Lévy distance is not
coincidental, and it is shown in Appendix B.2 that, by con-
sidering the trade-off function as a CDF (via fp1´αq), ∆Ø

exactly plays the role of the Lévy distance. Similarly to how
the Lévy distance metrises the weak convergence of random
variables, ∆Ø metrises the space of DP mechanisms:
Corollary 2. ∆Ø is a metric.

Note that this implies that ∆ØpM∥ ĂMq ą 0 unless the
mechanisms have identical privacy profiles, trade-off func-
tions or Bayes error functions, underscoring that sharing a
single pε, δq-guarantee is an insufficient condition for stating
that mechanisms provide equal protection.

3.4. Comparisons with Extremal Mechanisms

Next, we use the ∆-divergence to interpret comparisons
with two “extremal” reference mechanisms: the blatantly
non-private (totally informative) mechanism MBNP and
the perfectly private (totally non-informative) mechanism
MPP. These two mechanisms represent the “extremes” of
the privacy/information spectrum.

For this purpose, we define for MBNP: fBNPpαq “ 0,
RBNP

min pπq “ 0, and δBNPpεq “ 1. Moreover, we define for
MPP: fPPpαq “ 1 ´ α, RPP

minpπq “ mintπ, 1 ´ πu, and
δPPpεq “ 0. The next lemma establishes the “extremeness”:

Lemma 2. M ľ MPP and MBNP ľ M for any M.

We can thus compute a “divergence from perfect privacy”
∆pMPP ∥Mq, and a “divergence to blatant non-privacy”
∆pM∥MBNPq. Both have familiar operational interpreta-
tions in terms of quantities from the field of DP:
Lemma 3. It holds that ∆pMPP∥Mq “ 1{2TVpP,Qq “
1{2Adv “ 1{2δp0q.

This conforms to the intuition that, the “further” the mecha-
nism is from perfect privacy, the higher the adversary’s MIA
advantage can be.
Lemma 4. It holds that ∆pM∥MBNPq “ R˚ “ α˚, where
R˚ is the minimax Bayes error and α˚ the fixed point of the
trade-off function of M.

Recall that R˚ is the error rate of an “uninformed” adversary
(π “ 0.5, compare Figure 8a), whereas α˚ is the point on
the trade-off curve closest to the origin, i.e. to pα, fpαqq “

p0, 0q (see Figure 8b). When either point coincides with the
origin, the mechanism is blatantly non-private. Moreover,
the following holds for any mechanism:
Lemma 5. ∆pMPP∥Mq ` ∆pM∥MBNPq “ 0.5.

The results of Section 3.3 and Section 3.4 lead to the fol-
lowing conclusions: On one hand, the metric ∆Ø can be
used to measure a notion of “informational distance” even
between completely different mechanisms (e.g. Randomised
Response and DP-SGD). Additionally, the space of DP
mechanisms is a bounded partially ordered set with a max-
imal (MBNP) and a minimal (MPP) bound, and any DP
mechanism can be placed on the information spectrum be-
tween them. While not discussed in detail here, we note that
this set is also a lattice (Blackwell, 1953, Theorem 10).

4. Emergent Blackwell Dominance
We next study the interplay of mechanism comparisons and
composition. The fact that M ľ ĂM implies MbN ľ

ĂMbN is known (Torgersen, 1991). So far however, the
questions of (1) whether mechanisms which are initially not
Blackwell ranked will eventually become Blackwell ranked
and (2) which of their properties determine the resulting
ranking have not been directly investigated.

The next result follows from the fact that –under specific
preconditions– composition qualitatively transforms mecha-
nisms towards Gaussians mechanisms (GMs) due to a cen-
tral limit theorem (CLT)-like phenomenon (Dong et al.,
2022; Sommer et al., 2018). Since GMs are always Black-
well ranked (see Lemma B.2 in the Appendix), we expect
Blackwell dominance to emerge once mechanisms are suffi-
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ciently well-approximated by GMs. We first define:

η “
v1

a

v2 ´ v21
, (8)

which plays an important role in the analysis below. More-
over, in the sequel, v1, v2, v3 and v4 will denote the follow-
ing functionals of f :

v1 “ ´

ż 1

0

log

ˇ

ˇ

ˇ

ˇ

d

dx
fpxq

ˇ

ˇ

ˇ

ˇ

dx, (9)

v2 “

ż 1

0

log2
ˇ

ˇ

ˇ

ˇ

d

dx
fpxq

ˇ

ˇ

ˇ

ˇ

dx, (10)

v3 “

ż 1

0

∣∣∣∣log
∣∣∣∣
d

dx
fpxq

∣∣∣∣ ` v1

∣∣∣∣
3

dx, and (11)

v4 “

ż 1

0

ˇ

ˇ

ˇ

ˇ

log

ˇ

ˇ

ˇ

ˇ

d

dx
fpxq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

3

dx. (12)

Intuitively, these represent moments of the PLRV.
Lemma 6. Let tMNi : 1 ď i ď Nu8

N“1 be a triangular
array of mechanisms satisfying the following conditions:

1. lim
NÑ8

řN
i“1 v1pfNiq “ K;

2. lim
NÑ8

max1ďiďN v1pfNiq “ 0;

3. lim
NÑ8

řN
i“1 v2pfNiq “ s2;

4. lim
NÑ8

řN
i“1 v4pfNiq “ 0.

Analogously, define t ĂMNi : 1 ď i ď Nu8
N“1 for constants

rK, rs. Then, if K{s ą ĂK{rs, there exists N˚ such that, for all
N ě N˚:

MN1 b ¨ ¨ ¨ b MNN ľ ĂMN1 b ¨ ¨ ¨ b ĂMNN , (13)

where MN1 b ¨ ¨ ¨ b MNN denotes N -fold mechanism
composition and analogously for ĂMNi.

Our proof strategy relies on first showing that, under the
stated preconditions, mechanisms asymptotically converge
to Gaussian mechanisms under composition and combining
this fact with the property that Gaussian mechanisms are
always either equal, or one Blackwell dominates the other.

The conditions above are also used in Dong et al. (2022) to
prove the CLT-like convergence of the trade-off functions
of composed mechanisms to that of a GM, which we adapt
here to show conditions for the emergence of Blackwell
dominance between compositions of mechanisms in the
limit. Concretely, tMNiu

N
i“1 is a collection of mechanisms

calibrated to provide a certain level of privacy after compo-
sition, and the mechanisms in the sequence change (become
progressively more private) as N grows to 8 to maintain
that level of privacy as more mechanisms are composed.

However, from the more practical standpoint of compar-
ing instances of DP-SGD with different parameters, we are
rather interested in the question of approximate Blackwell
dominance after a finite number of self-compositions of
fixed parameter mechanisms. This is shown next.

Theorem 3. Let M, ĂM be two mechanisms with v4, rv4 ă

8 and denote by MbN , ĂMbĂN their N - and rN -fold self-
compositions. Then, N{ĂN ě rη2

{η2 implies:

∆pMbN∥ ĂMbĂN q ď 0.56

˜

η3v3
?
Nv31

`
rη3rv3

a

rNrv31

¸

(14)

In particular, if N “ rN , η ě rη implies:

∆pMbN∥ ĂMbĂN q ď
0.56
?
N

ˆ

η3v3
v31

`
rη3rv3
rv31

˙

. (15)

The proof relies on the aforementioned Blackwell domi-
nance properties between Gaussian mechanisms combined
with the triangle inequality property of the ∆-divergence
and a judicious application of the Berry-Esséen-Theorem.

Theorem 3 intuitively states that the ∆-divergence will ap-
proach zero not asymptotically as in Lemma 6, but within
a specific number of update steps and allows for choosing
N, rN differently. Seeing as the number of update steps is a
crucial hyper-parameter in DP-SGD (De et al., 2022), this
is required for practical usefulness. In addition, it pinpoints
the exact relationship between the mechanisms (rη2

{η2) that
determines which mechanism will eventually dominate. In
particular, if N{ĂN ě rη2

{η2, then ∆pMbN∥ ĂMbĂN q will van-
ish at least as fast as mintN, rNu´1{2, and if N “ rN , then
the emergence of Blackwell dominance depends only on
the parameters η, rη, i.e. on the PLRV moments. Moreover,
this result does not require scaling the mechanism parame-
ters at every step to prevent them from becoming blatantly
non-private, even at very large numbers of compositions.

5. Experiments
Approximate Comparisons in Practice Figure 3 demon-
strates a “canonical” example of an approximate compari-
son between the GM (σ “ 1) and the Laplace mechanism
(b “ 1) on a function with unit global sensitivity. Observe
that the Bayes error functions cross at π « 0.4, and that
∆pGauss ∥ Lapq “ 0.005 ă ∆pLap ∥Gaussq “ 0.034,
as seen by the length of the black “rulers” in the figure.
Therefore, the worst-case regret in terms of privacy vul-
nerability of choosing the Laplace mechanism is smaller
than for the GM. Moreover, the Gaussian mechanism offers
only marginally stronger protection for a narrow range of
π around 1{2 corresponding to the prior of an “uninformed”
adversary. This allows for much more granular insights
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Magnification

Figure 3: Approximate comparison between the Laplace
(b “ 1) and the Gaussian (σ “ 1) mechanism via their
Bayes error representations. Note that all divergence values
of interest are visually depicted in this representation.

into the mechanisms’ privacy properties beyond the folk-
lore statement that pure DP mechanisms (Laplace) offer

“stronger privacy” than approximate DP mechanisms (GM).

Tightness of the Bound in Theorem 3 To evaluate the
bound, we compare two SGMs M, ĂM with σ “ 2, rσ “ 3,
p “ rp “ 9 ¨ 10´4, N “ 1.4 ¨ 106 and rN “ 3.4 ¨ 106. The
predicted bound is ∆pMbN ∥ ĂMbĂN q ă 10´3, while the
empirically computed bound is 8 ¨ 10´4. The parameter
choices in this example mirror those used in De et al. (2022)
for fine-tuning on the JFT-300M dataset to p8, 5 ¨ 10´7q-DP,
underscoring the applicability of our bound to large-scale
ML workflows.

Bayesian Mechanism Selection An additional benefit
of our Bayes error interpretation is that it facilitates prin-
cipled reasoning about the adversary’s auxiliary informa-
tion. Recall that π expresses the adversary’s “informed-
ness”, i.e. the strength of their prior belief about the chal-
lenge example’s membership. This allows for introduc-
ing hierarchical Bayesian modelling techniques to mecha-
nism comparisons by introducing hyper-priors, i.e. prob-
ability distributions over the adversary’s values of π. For
example, if the defender is very uncertain about the antic-
ipated adversary’s prior, they can use an “uninformative”
hyper-prior such as the Jeffreys prior (Jeffreys, 1946) (here:
Betap0.5, 0.5q). Alternatively, a more “informed adversary”
with stronger prior beliefs (i.e. low or high values or π) could
be modelled by e.g. the UQuadraticr0, 1s distribution.
Then, denoting by Ψpπq the hyper-prior, one can obtain the
weighted minimum Bayes error RΨ

minpπq “ RminpπqΨpπq.

Similarly, a weighted ∆-divergence ∆ΨpM ∥ ĂMq “

maxπpRΨ
minpπq ´ rRΨ

minpπqq can be computed, which ex-
presses the excess regret of choosing ĂM over M modulated
by the defender’s beliefs about the adversary’s prior. In-
corporating such adversarial priors has recently witnessed
growing interest (Balle et al., 2022; Jayaraman et al., 2021).

Our method is a principled probabilistic extension of the
recommendation by Carlini et al. (2022) to choose the mech-
anism whose trade-off function offers higher Type-II errors
at “low α”. This recommendation requires a (more or less
arbitrary) choice of a “low” α; as discussed above, no stan-
dardised recommendation on this choice exists, leading to
poor comparability of results, and potentially skewed re-
porting. Moreover, the technique does not take all possible
adversaries into account.

These shortcomings are addressed by our proposed tech-
nique, as shown in Figure 4, which compares two SGMs:
M (blue) and ĂM (red). Without any hyper-prior (Figure 4a),
∆pM∥ ĂMq “ 0.01 ă 0.02 “ ∆p ĂM∥Mq, indicating that
choosing M is slightly riskier in the worst-case. Apply-
ing the Jeffreys hyper-prior (Figure 4b), which expresses
a minimal set of assumptions about the adversary, yields
∆BetapM ∥ ĂMq “ 0.007 ă 0.015 “ ∆Betap ĂM ∥ Mq,
expectedly not changing the ranking. However, when the
more pessimistic UQuadraticr0, 1s hyper-prior is applied
(Figure 4c), which models an adversary with strong prior
beliefs, we obtain ∆UQuadpM ∥ ĂMq “ 0.014 ą 0 “

∆UQuadp ĂM ∥ Mq, indicating that –against an informed
adversary– one would consistently prefer M.

Pareto-Efficient Choice of Noise Multipliers Deep learn-
ing with DP-SGD presents a trilemma between model ac-
curacy, privacy protection and resource efficiency. The
privacy-accuracy trade-off is well-known in the commu-
nity, whereas the efficiency trade-off is more apparent when
training deep learning models on large-scale datasets. In
the recent work of De et al. (2022, Section 5), the authors
posit that there exists an “optimal” combination of noise
multiplier and number of update steps to achieve the best
possible accuracy. Concretely, the authors calibrate seven
CIFAR-10 training runs with different noise multipliers and
numbers of steps while fixing the sampling rate to obtain
models which all satisfy p8, 10´5q-DP. Subsequently, they
determine that the “optimal” noise multiplier for their ap-
plication is rσ “ 3.0, whereas both higher and lower noise
multipliers deteriorate the training and validation accuracy.

Here, we re-assess the authors’ results using the novel tech-
niques introduced in this paper. For readability, we will from
now equate mechanisms with their noise multipliers, writing
e.g. ∆pσ∥rσ “ 3.0q to denote the ∆-divergence from the
baseline mechanism M with noise multiplier σ “ 2.0 and
a validation accuracy of 72.6%, to ĂM with rσ “ 3.0. The
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Figure 4: Hierarchical Bayesian modelling of adversarial strategies. Hyper-prior densities are plotted in the insets.

number of steps and sub-sampling rate are chosen exactly
as in De et al. (2022, Figure 6). Figure 5 summarises our ob-
servations. First, note that, even though the mechanisms are
all nominally calibrated to p8, 10´5q-DP, they are not equal
in the sense of Lemma 1. This is not unexpected, as it the
same phenomenon observed in Figure 1, and it once again
underscores the pitfalls of relying on a single pε, δq-pair to
calibrate the SGM. More interestingly, the ∆-divergence
from the baseline increases monotonically with increasing
noise multipliers. This introduces an additional “dimen-
sion” to the result of De et al. (2022): Choosing ĂM to have
rσ “ 3.0 is not actually an “optimal” choice but –at best– a
Pareto efficient choice in terms of balancing accuracy and
excess vulnerability over M. In particular, choosing rσ to
be larger or smaller than rσ “ 3.0 cannot simultaneously
increase accuracy and decrease excess vulnerability over
M. Thus, in this case, all mechanisms with rσ ą 3 are
Pareto inefficient choices, since one could simultaneously
increase accuracy and decrease excess vulnerability over M
by choosing rσ “ 3.0.

Effect of DP-SGD Parameters on the ∆-Divergence To
further examine the effect of mechanism parameter choices
on the ∆-divergence, Figure 6 investigates switching from
a base SGM M with p “ 0.01, N “ 500 and σ “ 0.54
to ĂM, where rp P r0.04, 0.9s, rN P r534, 1500s and the re-
sulting rσ P r0.55, 21s. All mechanisms are calibrated to
p8, 10´5q-DP using the numerical system by Doroshenko
et al. (2022) and the absolute calibration error in terms of ε is
ď 0.00042. A monotonic increase in the ∆-divergence with
the noise multiplier is observed, culminating in a maximum
divergence value of around 0.12. In particular, increases in
rp and rN are associated with an increase in the ∆-divergence.
Moreover, the ∆-divergence exhibits greater sensitivity to
variations in rp compared to changes in rN .

Figure 6 suggests that the maximal excess vulnerabilities are
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Figure 5: Validation accuracy (red) and ∆-divergence values
(blue) for mechanisms satisfying p8, 10´5q-DP. The combi-
nations to the right of ‹ are not Pareto efficient in terms of
balancing accuracy and excess vulnerability over M.

realised by large rp and rN . This once again highlights not
just that these vulnerabilities remain completely undetected
when only reporting that the mechanisms “satisfy p8, 10´5q-
DP”, but also that the current best practices in selecting
SGM parameters for training large-scale ML models with
DP, i.e. large sampling rates and many steps (De et al., 2022;
Berrada et al., 2023) unfortunately correspond to the most
vulnerable regime.

From ∆-Divergences to Attack Vulnerability To pro-
vide a practical understanding of what an excess vulnerabil-
ity of 0.12 (i.e. the maximum attained in Figure 6) means
in practice, we revisit the example by Hayes et al. (2023)
discussed in the introduction. Recall that the authors em-
pirically demonstrated that calibrating different SGMs to
a constant pε, δq-guarantee while changing the underlying
noise multiplier and sampling rate leads to mechanism with
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Figure 6: Association between the choice of SGM parame-
ters prσ, rp, rNq and the ∆-divergence compared to a baseline
mechanism M (marked with an arrow).

disparate vulnerability against data reconstruction attacks.

Using our newly introduced techniques, we can now for-
mally substantiate this finding, shown in Figure 7. The
horizontal axis shows the ∆-divergence value from M with
σ “ 0.6, p “ 0.01) to a series of mechanisms ĂM with
increasing values of rp and rσ, where all ĂM are calibrated
to p4, 10´5q-DP as previously described. The vertical axis
shows the theoretical upper bound on a successful data
reconstruction attack against the model (called Reconstruc-
tion Robustness by Hayes et al. (2023)). We note that these
theoretical upper bounds are matched almost exactly by
actual attacks, so the bounds are almost tight in practice.
These mechanism settings and resulting reconstruction at-
tack bounds are identical to Hayes et al. (2023, Figure 5).

Observe that the probability of a successful data reconstruc-
tion attack increases almost exactly linearly with the ∆-
divergence of the mechanisms from the baseline. This lends
the notion of “excess regret” a concrete quantitative inter-
pretation in terms of attack vulnerability, as in this example,
an increase of the ∆-divergence from 0 to 0.12 corresponds
to a 15% (!) vulnerability increase to data reconstruction
attacks compared to the baseline.

6. Discussion and Conclusion
In this work, we established novel mechanism comparison
techniques based on the rigorous foundations of the Black-
well theorem. Our results extend previous works by allow-
ing for principled comparisons between DP mechanisms
whose privacy guarantees coincide at the calibration point
but differ elsewhere. Operationally, this enables expressing
the regret of switching from one mechanism to another in
terms of excess privacy vulnerability in the worst case.
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Figure 7: ∆-divergence values from a baseline mechanism
compared to upper bounds on the success rate of data recon-
struction attacks against DP-SGD.

Our results are supported by a novel Bayesian interpretation,
which allows for modelling adversarial auxiliary informa-
tion. Such adversarial modelling is currently witnessing in-
creasing interest, as it enables a principled reasoning about
adversarial capabilities both in and beyond the worst case
(Balle et al., 2022). Moreover, our analysis characterises the
properties of mechanisms that determine the order of uni-
versal Blackwell dominance that inevitably emerges under
sufficiently many compositions, which facilitates the ap-
plication of our results to DP-SGD. Employing our results
to large-scale DP-SGD workflows reveals that calibrating
mechanism parameters to attain optimal accuracy must be
mindful of associated privacy vulnerabilities, emphasising
the risks of the common practice of reporting privacy guar-
antees in terms of a single pε, δq-pair. Thus, while approxi-
mate mechanism comparisons quantify differences between
mechanism in terms of privacy vulnerability, we have shown
that they can be integrated with considerations of model util-
ity in private ML. In future work, we aim to additionally
incorporate factors such as the cost of training models, into
our framework.

In conclusion, the widespread adoption of privacy-
enhancing technologies like DP relies heavily on a correct
and transparent understanding of privacy guarantees. Our
findings further this understanding, and offer tools to aid
informed decision-making in privacy-preserving ML.

Impact Statement
We improve the granularity of DP analyses by introducing a
novel method to compare privacy guarantees, which can be
applied to enhance the security properties of sensitive data
processing systems, benefiting individuals. We foresee no
specific negative social consequences of our work.

9



Beyond the Calibration Point: Mechanism Comparison in Differential Privacy

References
Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B.,

Mironov, I., Talwar, K., and Zhang, L. Deep learning
with differential privacy. In Proceedings of the 2016 ACM
SIGSAC conference on computer and communications
security, pp. 308–318, 2016.

Balle, B., Barthe, G., and Gaboardi, M. Privacy profiles and
amplification by subsampling. Journal of Privacy and
Confidentiality, 10(1), 2020a.

Balle, B., Barthe, G., Gaboardi, M., Hsu, J., and Sato, T.
Hypothesis testing interpretations and Rényi differential
privacy. In International Conference on Artificial Intelli-
gence and Statistics, pp. 2496–2506. PMLR, 2020b.

Balle, B., Cherubin, G., and Hayes, J. Reconstructing train-
ing data with informed adversaries. In 2022 IEEE Sym-
posium on Security and Privacy, pp. 1138–1156. IEEE,
2022.

Berrada, L., De, S., Shen, J. H., Hayes, J., Stanforth, R.,
Stutz, D., Kohli, P., Smith, S. L., and Balle, B. Unlock-
ing accuracy and fairness in differentially private image
classification. arXiv preprint arXiv:2308.10888, 2023.

Blackwell, D. Equivalent comparisons of experiments. The
Annals of Mathematical Statistics, pp. 265–272, 1953.

Carlini, N., Chien, S., Nasr, M., Song, S., Terzis, A., and
Tramer, F. Membership inference attacks from first prin-
ciples. In 2022 IEEE Symposium on Security and Privacy
(SP), pp. 1897–1914. IEEE, 2022.

De, S., Berrada, L., Hayes, J., Smith, S. L., and Balle, B. Un-
locking high-accuracy differentially private image classi-
fication through scale. arXiv preprint arXiv:2204.13650,
2022.

Dong, J., Roth, A., and Su, W. J. Gaussian dif-
ferential privacy. Journal of the Royal Statistical
Society Series B: Statistical Methodology, 84(1):3–
37, 2022. URL https://academic.oup.com/
jrsssb/article/84/1/3/7056089.

Doroshenko, V., Ghazi, B., Kamath, P., Kumar, R., and
Manurangsi, P. Connect the dots: Tighter discrete approx-
imations of privacy loss distributions. Proceedings on
Privacy Enhancing Technologies, 4:552–570, 2022.

Gopi, S., Lee, Y. T., and Wutschitz, L. Numerical composi-
tion of differential privacy. Advances in Neural Informa-
tion Processing Systems, 34:11631–11642, 2021.

Hayes, J., Mahloujifar, S., and Balle, B. Bounding Train-
ing Data Reconstruction in DP-SGD. In Thirty-seventh
Conference on Neural Information Processing Systems,
2023.

Jayaraman, B., Wang, L., Knipmeyer, K., Gu, Q., and Evans,
D. Revisiting membership inference under realistic as-
sumptions. Proceedings on Privacy Enhancing Technolo-
gies, 2021(2), 2021.

Jeffreys, H. An invariant form for the prior probability in
estimation problems. Proceedings of the Royal Society of
London. Series A. Mathematical and Physical Sciences,
186(1007):453–461, 1946.

LeCam, L. Sufficiency and approximate sufficiency. The
Annals of Mathematical Statistics, pp. 1419–1455, 1964.

Lokna, J., Paradis, A., Dimitrov, D. I., and Vechev, M.
Group and attack: Auditing differential privacy. In
Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security, pp. 1905–1918.
Association for Computing Machinery, 2023. ISBN
9798400700507.

Mironov, I. Rényi differential privacy. In 2017 IEEE 30th
computer security foundations symposium (CSF), pp. 263–
275. IEEE, 2017.

Nasr, M., Hayes, J., Steinke, T., Balle, B., Tramèr, F., Jagiel-
ski, M., Carlini, N., and Terzis, A. Tight auditing of
differentially private machine learning. In Proceedings
of the 32nd USENIX Conference on Security Symposium.
USENIX Association, 2023.

Neyman, J. and Pearson, E. S. On the problem of the most
efficient tests of statistical hypotheses. Philosophical
Transactions of the Royal Society of London. Series A,
Containing Papers of a Mathematical or Physical Char-
acter, 231(694-706):289–337, 1933.

Papernot, N., Thakurta, A., Song, S., Chien, S., and Erlings-
son, Ú. Tempered sigmoid activations for deep learning
with differential privacy. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, pp. 9312–
9321, 2021.

Sommer, D., Meiser, S., and Mohammadi, E. Privacy loss
classes: The central limit theorem in differential privacy.
Cryptology ePrint Archive, 2018.

Torgersen, E. Comparison of statistical experiments; En-
cyclopaedia of Mathematics and its Applications, vol-
ume 36. Cambridge University Press, 1991.

Wasserman, L. and Zhou, S. A statistical framework for
differential privacy. Journal of the American Statistical
Association, 105(489):375–389, 2010.

Wasserstein, R. L. and Lazar, N. A. The asa state-
ment on p-values: Context, process, and purpose.
The American Statistician, 70(2):129–133, April 2016.
ISSN 1537-2731. doi: 10.1080/00031305.2016.

10

https://academic.oup.com/jrsssb/article/84/1/3/7056089
https://academic.oup.com/jrsssb/article/84/1/3/7056089


Beyond the Calibration Point: Mechanism Comparison in Differential Privacy

1154108. URL http://dx.doi.org/10.1080/
00031305.2016.1154108.

Yeom, S., Giacomelli, I., Fredrikson, M., and Jha, S. Privacy
risk in machine learning: Analyzing the connection to
overfitting. In 2018 IEEE 31st computer security founda-
tions symposium (CSF), pp. 268–282. IEEE, 2018.

Zhu, Y., Dong, J., and Wang, Y.-X. Optimal accounting of
differential privacy via characteristic function. In Interna-
tional Conference on Artificial Intelligence and Statistics,
pp. 4782–4817. PMLR, 2022.

11

http://dx.doi.org/10.1080/00031305.2016.1154108
http://dx.doi.org/10.1080/00031305.2016.1154108


Beyond the Calibration Point: Mechanism Comparison in Differential Privacy

Appendix

A. Extended Background
In this section, we provide an extended introduction to the fundamental concepts used in our work for the purpose of
self-containedness and for readers without extensive background knowledge of DP.

pε, δq-DP A randomised mechanism M satisfies pε, δq-DP if, for all adjacent pairs of databases D, D1 (i.e. differing in the
data of a single individual), and all S Ď RangepMq:

Pr pMpDq P Sq ď eεPr
`

MpD1q P S
˘

` δ. (16)

We will denote adjacent D,D1 by D » D1.

(Log-) Likelihood Ratios The likelihood ratios (LRs) are defined as:

sX “
Lpω | MpD1qq

Lpω | MpDqq
, ω „ MpDq and (17)

sY “
Lpω | MpD1qq

Lpω | MpDqq
, ω „ MpD1q, (18)

for arbitrary D » D1, where Lpω | ¨q denotes the likelihood of ω and „ denotes “is sampled from”. Moreover, the log LRs
(LLRs) are defined as X “ logp sXq and Y “ logpsY q.

The LLRs are customarily called the privacy loss random variables (PLRVs), and their densities, denoted pX , pY , are called
the privacy loss distributions (PLDs). We will make no other assumptions about pP,Qq other than that they are mutually
absolutely continuous for all D » D1. This only excludes mechanisms whose PLDs have non-zero probability mass at ˘8

e.g. mechanisms which can fail catastrophically, but allows us to study almost all mechanisms commonly used in private
statistics/ML.

Hypothesis Testing and f -DP In the hypothesis testing interpretation (Wasserman & Zhou, 2010; Dong et al., 2022), a
MIA adversary observes a mechanism outcome ω and establishes the following hypotheses:

H0 : ω „ MpDq and H1 : ω „ MpD1q (19)

for arbitrary D » D1. H0 is called the null hypothesis and H1 the alternative hypothesis and H0 is tested against H1 using
a randomised rejection rule (i.e. test) ϕ : ω ÞÑ ϕpωq P r0, 1s, where 0 encodes “reject H0” and 1 “fail to reject H0”. We
then denote the Type-I error of ϕ by αϕ “ Eω„MpDqrϕpωqs and its Type-II error by βϕ “ 1 ´ Eω„MpD1qrϕpωqs, where the
expectation is over the joint randomness of ϕ and M.

The Neyman-Pearson lemma (Neyman & Pearson, 1933) states that the test with the lowest Type-II error at a given level of
Type-I error (called the most powerful test) is constructed by thresholding the (L)LR test statistic; therefore the PLRVs serve
as the test statistics for the adversary’s hypothesis test. At a level α fixed by the adversary, the trade-off function T of the
most powerful test is given by:

T pMpDq,MpD1qqpαq “ inf
ϕ

tβϕ | αϕ ď αu. (20)

f -DP (Dong et al., 2022) is defined by comparing T to a “reference” trade-off function. Formally, M satisfies f -DP if, for a
trade-off function f and for all D » D1:

@α P r0, 1s : sup
D»D1

T pMpDq,MpD1qqpαq ě fpαq. (21)

Trade-off functions are convex, continuous and weakly decreasing with fp0q “ 1 and fp1q “ 0. We will, without loss of
generality, extend any trade-off function f to R Ñ r0, 1s and set fpxq “ 1, x ă 0 and fpxq “ 0, x ą 1.
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Dominating Pairs Working with pairs of adjacent databases is not desirable, and not even always feasible when studying
general DP mechanisms. As shown by Zhu et al. (2022), it is instead possible to fully characterise the properties of DP
mechanisms by a pair of distributions, called the mechanism’s dominating pair. Formally, a pair of distributions pP,Qq is
called a dominating pair for mechanism M if, for all α P r0, 1s it satisfies:

sup
D,D1

T pP,Qqpαq ď T pMpDq,MpD1qqpαq. (22)

In particular, when for all α P r0, 1s it holds that:

sup
D,D1

T pP,Qqpαq “ T pMpDq,MpD1qqpαq, (23)

pP,Qq is called a tightly dominating pair.

As noted by Zhu et al. (2022), a tightly dominating pair which encapsulates the worst-case properties of the mechanism,
exists or can always be constructed. Therefore, we will from now on write M : pP,Qq to indicate that pP,Qq is a tightly
dominating pair of M, denote the trade-off function corresponding to the most powerful test between P and Q by f , its
Type-I and Type-II errors by α, βpαq and the LLRs/PLRVs corresponding to P and Q by sX,X and sY , Y . The trade-off
function f can be constructed from X and Y as follows. Denoting the CDF by F :

fpαq “ FY pF´1
X p1 ´ αqq. (24)

Privacy Profile As shown by Dong et al. (2022); Gopi et al. (2021), the privacy profile of M can be constructed as:

δpεq “ 1 ` f˚pP,Qqp´eεq “ sFY pεq ´ eε sFXpεq, (25)

where T˚ is the convex conjugate and sF the survival function. The privacy profile can also be defined through the
hockey-stick divergence of order eε of P to Q:

HeεpP ∥ Qq “

ż

max tP pxq ´ eεQpxq, 0u dx “ δpεq. (26)

Note that, for ε “ 0, H1pP ∥ Qq “ δp0q “ TVpP,Qq, where

TVpP,Qq “ 1{2

ż

|P pxq ´ Qpxq|1 dx (27)

is the total variation distance.

Additionally, the following property holds:

min
αPr0,1s

pα ` βpαqq “ 1 ´ TVpP,Qq, (28)

which links the properties of the privacy profile and the trade-off function. This also allows us to define the MIA advantage
(Yeom et al., 2018) of the adversary as follows:

Adv “ 1 ´ min
αPr0,1s

pα ` βpαqq “ TVpP,Qq. (29)

Rényi-DP Rényi DP (RDP) (Mironov, 2017) is a DP interpretation with beneficial composition properties. A mechanism
M : pP,Qq satisfies pt, ρptqq-RDP if it holds that:

DtpP∥Qq ď ρptq @t ě 1 (30)

for all adjacent pD,D1q, where Dt is the Rényi divergence of order t. The conversion between f -DP and the privacy profile
is exact, but conversions from RDP to either of the aforementioned are not, as RDP lacks a hypothesis testing interpretation
(Balle et al., 2020b; Zhu et al., 2022).
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B. Additional Results
B.1. Bayes Error Functions

Here, we demonstrate the construction of the minimum Bayes error function Rmin from the trade-off function f and vice
versa using the example of a Gaussian mechanism with σ2 “ 1 on a function with unit global sensitivity. Figure 8a shows
the construction of Rmin from f , while Figure 8b shows the construction of f from Rmin. Both directions incur no loss of
information, and thus the minimum Bayes error is equivalent to the trade-off function in terms of fully characterising the
mechanism.
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(b) Rmin Ñ f

Figure 8: Lossless conversion between Rmin and f . R˚ and α˚ are the minimax Bayes error and fixed point of f ,
respectively.

B.2. Interpreting ∆Ø as the Lévy Distance

Following the discussion in Section 3.3 regarding the conceptual equivalence of the ∆-divergence and the Lévy distance
between random variables, we here formally introduce and prove the statement.
Lemma B.1. For any mechanism with trade-off function f , pU,W q are a tightly dominating pair, where U is the continuous
uniform distribution on the unit interval and W has CDF: fp1 ´ αq. Moreover, for two mechanisms M : pU,W q and
ĂM : pU,W 1q, it holds that ∆ØpM∥ ĂMq “ ΛpW,W 1q, where Λ denotes the Lévy distance.

Proof. We will first show that, if M is tightly dominated by pP,Qq and has trade-off function f , it is also tightly dominated
by pU,W q. From Equation (24), T pU,W q is constructed as follows:

T pU,W qpαq “ FW pF´1
U p1 ´ αqq “ FW p1 ´ αq “ fp1 ´ p1 ´ αqq “ fpαq, (31)

which follows since the inverse CDF (quantile function) of the continuous uniform distribution is the identity function.
Therefore, T pU,W qpαq “ fpαq, for all α P r0, 1s, hence pU,W q is a tightly dominating pair for M. Next, recall the
definition of the Lévy distance:

ΛpW,W 1q “ inf tλ ě 0 | @x P R : FW px ´ λq ´ λ ď FW 1 pxq ď FW px ` λq ` λqu . (32)

Denoting f, rf the trade-off functions of M, ĂM respectively and inserting the respective CDFs of W,W 1, we obtain:

ΛpW,W 1q “ inftλ ě 0 | @α P R : fp1 ´ pα ´ λqq ´ λ ď rfp1 ´ αq ď fp1 ´ pα ` λqq ` λu (33)

“ inftλ ě 0 | @α P R : fp1 ´ α ` λq ´ λ ď rfp1 ´ αq ď fp1 ´ α ´ λq ` λu. (34)
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We can reparameterise the inequality chain from 1 ´ α to α to obtain:

ΛpW,W 1q “ inftλ ě 0 | @α P R : fpα ` λq ´ λ ď rfpαq ď fpα ´ λq ` λu. (35)

Noticing that the result is identical to the definition of ∆ØpM∥ ĂMq completes the proof.

B.3. ∆-Divergence Implementation

The following code listing implements the ∆-divergence computation corresponding to the mechanisms in Figure 3 in Python.
As seen, the algorithm only requires oracle access to a function implementing the trade-off function of the mechanism.

from scipy.stats import norm, laplace

import numpy as np
from functools import partial

from scipy.optimize import minimize_scalar

from multiprocessing import Pool

from os import cpu_count

from typing import Callable, Sequence, Union

def f_gauss(alpha: Union[Sequence[float], float], mu: float) -> float:

"Gaussian mechanism trade-off function at alpha with parameter mu."

assert (alpha >= np.zeros_like(alpha)).all() and (

alpha <= np.ones_like(alpha)

).all(), "alpha must be in [0, 1]"

assert mu >= 0, "mu must be non-negative"

return norm.cdf(norm.isf(alpha) - mu)

def f_lap(alpha: Union[Sequence[float], float], mu: float) -> float:

"Laplace mechanism trade-off function at alpha with parameter mu."

assert (alpha >= np.zeros_like(alpha)).all() and (

alpha <= np.ones_like(alpha)

).all(), "alpha must be in [0, 1]"

assert mu >= 0, "mu must be non-negative"

return laplace.cdf(laplace.isf(alpha) - mu)

def _compute_one_rmin(

pi: float,

f: Callable[[Union[Sequence[float], float]], float],

) -> float:

assert 0 <= pi <= 1, "pi must be in [0, 1]"

def func(alpha: float) -> float:

assert 0 <= alpha <= 1, "alpha must be in [0, 1]"

return pi * alpha + (1 - pi) * f(alpha)

return minimize_scalar(func, bounds=(0, 1)).fun

def rmin(

*,

f: Callable[[Union[Sequence[float], float]], float],

tol: float = 1e-4,

n_jobs: int = -1,

) -> Union[Sequence[float], float]:

"Bayes error function corresponding to f computed with tolerance tol."

assert tol > 0, "tol must be positive"

assert n_jobs == -1 or n_jobs > 0, "n_jobs must be positive or -1"

N: int = int(np.ceil(1 / tol))

pis: Sequence[float] = np.linspace(0, 1, N)

if n_jobs == -1:

processes = cpu_count()

else:
processes = n_jobs

with Pool(processes) as pool:

result = np.array(pool.map(partial(_compute_one_rmin, f=f), pis))

return result
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if __name__ == "__main__":

tol: float = 1e-4

mu: float = 1.0

rmin_lap: Sequence[float] = rmin(f=partial(f_lap, mu=mu), tol=tol, n_jobs=-1)

rmin_gauss: Sequence[float] = rmin(f=partial(f_gauss, mu=mu), tol=tol, n_jobs=-1)

divergence_gauss_lap: float = max(rmin_gauss - rmin_lap)

divergence_lap_gauss: float = max(rmin_lap - rmin_gauss)

print(f"Delta(Gauss || Lap): {divergence_gauss_lap:.3f}") #prints 0.005

print(f"Delta(Lap || Gauss): {divergence_lap_gauss:.3f}") #prints 0.034

B.4. Proofs

Theorem 1. The following statements are equivalent:

1. @α P r0, 1s : fpαq ď rfpαq;
2. @ε P R : δpεq ě rδpεq;
3. @π P r0, 1s : Rminpπq ď rRminpπq.

Proof. For a full proof, see the proof of Theorem 2, which recovers Theorem 1 for D “ 0.

Theorem 2. The following are equivalent to M ľD
ĂM:

1. @α P r0, 1s : fpα ` Dq ´ D ď rfpαq;
2. @ε P R : δpεq ` D ¨ p1 ` eεq ě rδpεq;
3. @π P r0, 1s : Rminpπq ´ rRminpπq ď D.

Proof.
(1) : Suppose ∆ “ ∆pM∥ ĂMq ď D. Since trade-off functions are weakly decreasing, we have:

fpα ` Dq ´ D ď fpα ` ∆q ´ ∆ ď rfpαq. (36)

Conversely, if fpα ` Dq ´ D ď rfpαq, then we have ∆pM∥ ĂMq ď D due to the infimum definition of the ∆-Divergence.
(1) ñ (2) : Suppose for all ´8 ă α ă 8, we have fpα ` Dq ´ D ď rfpαq. From Dong et al. (2022), we know that
δpεq “ 1 ` f˚p´eεq, where:

f˚pxq “ sup
´8ăαă8

xα ´ fpαq. (37)

denotes the convex conjugate. By direct computation of the convex conjugate we obtain:

δpεq ´ 1 “ f˚p´eεq “ sup
´8ăαă8

p´eεα ´ pfpα ´ D ` Dq ´ Dq ´ Dq ě sup
´8ăαă8

p´eεα ´ rfpα ´ Dq ´ Dq (38)

“ sup
´8ăαă8

p´eεpα ` Dq ´ rfpαqq ´ D “ rf˚p´eεq ´ D ¨ p1 ` eεq “ rδpεq ´ 1 ´ D ¨ p1 ` eεq, (39)

which yields the desired inequality.

(2) ñ (1) : Suppose that, for all 0 ď ε ă 8, we have δpεq`D ¨ p1`eεq ě rδpεq. Define the function rfpαq “ rfpα´Dq`D.
We then have for all ε ě 0:

f˚p´eεq “ δpεq ´ 1 ě rδpεq ´ 1 ´ D ¨ p1 ` eεq “ rf˚p´eεq ´ D ¨ p1 ` eεq (40)

“ sup
´8ăαă8

p´eεα ´ rfpαqq ´ D ¨ p1 ` eεq “ sup
´8ăαă8

p´eεpα ` Dq ´ p rfpαq ` Dqq (41)

“ sup
´8ăαă8

p´eεα ´ p rfpα ´ Dq ` Dqq “ sup
´8ăαă8

p´eεα ´ rfpαqq “ rf˚p´eεq. (42)

This shows f˚ ě rf˚, which implies f ď rf since the convex conjugate is order-reversing. By definition of rf , we showed for
all α:

fpαq ď rfpα ´ Dq ` D. (43)
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(1) ñ (3) : Suppose for all α P r0, 1s we have fpα`Dq´D ď rfpαq. Let α P r0, 1s, such that rRminpπq “ πα`p1´πq rfpαq.
If α ` D P r0, 1s, then we have:

Rminpπq ď πpα ` Dq ` p1 ´ πqfpα ` Dq ď πpα ` Dq ` p1 ´ πqp rfpαq ` Dq (44)
“ Rminpπq ` D. (45)

In the other, case, we have α ` D ą 1. But then, α ´ D P r0, 1s since α P r0, 1s. Using fp1q “ 0 “ fpα ` Dq, we also
obtain the desired bound:

Rminpπq ď π ` p1 ´ πqfp1q ď πpα ` Dq ` p1 ´ πqfpα ` Dq ď πpα ` Dq ` p1 ´ πqp rfpαq ` Dq (46)
“ Rminpπq ` D. (47)

(3) ñ (1) : Suppose maxπ Rminpπq ´ rRminpπq ď D. Let α P r0, 1s. If α `D ą 1, then trivially fpα `Dq ´D “ ´D ď

0 “ fpαq holds. Thus, assume α ` D P r0, 1s. Then, there exists a π P r0, 1s such that:

Rminpπq “ πpα ` Dq ` p1 ´ πqfpα ` Dq. (48)

We use the fact that rRminpπq ď πα ` p1 ´ πq rfpαq and obtain:

D ě Rminpπq ´ rRminpπq ě πpα ` Dq ` p1 ´ πqfpα ` Dq ´ pπα ` p1 ´ πq rfpαqq (49)

“ πD ` p1 ´ πqpfpα ` Dq ´ rfpαqq. (50)

Subtracting πD from both sides and subsequently dividing by 1 ´ π yields the desired inequality:

D ě fpα ` Dq ´ rfpαq. (51)

Corollary 1. ∆pM∥ ĂMq “ maxπpRminpπq ´ rRminpπqq.

Proof. By definition, we have
∆pM∥ ĂMq “ inftκ ě 0 | fpα ` κq ´ κ ď rfpαqu.

Applying clause (3) in Theorem 2, we immediately obtain:

∆pM∥ ĂMq “ inftκ ě 0 | max
π

pRminpπq ´ rRminpπqq ď κu.

The inf is attained at the largest difference in the Bayes error functions, thus:

∆pM∥ ĂMq “ max
π

pRminpπq ´ rRminpπqq. (52)

Lemma 1. Let ∆Ø “ ∆ØpM∥ ĂMq. Then it holds that:

fpα ` ∆Øq ´ ∆Ø ď rfpαq ď fpα ´ ∆Øq ` ∆Ø. (7)

Proof. Let D “ ∆pM∥ ĂMq and F “ ∆p ĂM∥Mq, i.e. we have M ľD
ĂM and ĂM ľF M. By Theorem 2, we have

that fpα ` Dq ´ D ď rfpαq and rfpαq ď fpα ´ Fq ` F, for all α. Since trade-off functions are weakly decreasing and
D,F ď ∆Ø, we have:

fpα ` ∆Øq ´ ∆Ø ď fpα ` Dq ´ D ď rfpαq ď fpα ´ Fq ` F ď fpα ´ ∆Øq ` ∆Ø. (53)

Corollary 2. ∆Ø is a metric.
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Proof. We need to show that ∆ØpM∥ ĂMq “ 0 ô M “ ĂM and that ∆Ø is symmetric and satisfies the triangle inequality.
Applying Corollary 1 we obtain:

∆ØpM∥ ĂMq “ max
!

∆pM∥ ĂMq,∆p ĂM∥Mq

)

(54)

“ max
!

max
π

´

Rmin pπq ´ rRmin pπq

¯

,max
π

´

rRmin pπq ´ Rmin pπq

¯)

“ ∥Rmin ´ rRmin∥8. (55)

Symmetry, triangle inequality, and ∆ØpM∥Mq “ 0 ô M “ ĂM follow from the fact that ∥¨∥8 is a norm.

Remark 1. Note that we introduced the order relation ľ which is implied by the Blackwell theorem as a partial order, and
refer to mechanisms as equal (M “ ĂM) if and only if they offer identical privacy guarantees. Moreover, we refer to ∆Ø

as a metric on the space of DP mechanisms. This choice is motivated by an operational interpretation: For all practical
intents and purposes, mechanisms which provide identical guarantees are the same mechanism. It is however also possible
to subject the aforementioned statements to a more formal order-theoretic treatment, where the symbol ““” is reserved
for objects which satisfy identity. Since conferring identical privacy guarantees is not sufficient for being identical, it can
be argued that it is more appropriate to refer to distinct mechanisms with identical privacy guarantees as being equivalent,
and writing M ” ĂM. For example, the mechanisms M : pN p0, 1q,N p1, 1qq and ĂM : pN p0, 2q,N p2, 2qq have identical
trade-off functions, privacy profiles and Bayes error functions and are thus equivalent, but they have different dominating
pairs, and are therefore not identical. Under this perspective, the order relation ľ formally loses its antisymmetry property,
since M ľ ĂM and ĂM ľ M no longer implies that M “ ĂM but rather M ” ĂM, and thus should be referred to as a
preorder. Moreover, since under this treatment, ∆ØpM∥Mq “ 0 implies ô M ” ĂM rather than ô M “ ĂM, ∆Ø

should be referred to as a pseudometric (which assigns zero value to non-identical (but equivalent) elements). We stress that
the discussed distinction is largely terminological and does not change any of the results of the paper.

Lemma 2. M ľ MPP and MBNP ľ M for any M.

Proof. (M ľ MPP): We have RPP
min ě Rmin, since, by definition, RPP

minpπq “ mintπ, 1´πu, and the Bayes error function
of any mechanism satisfies Rminpπq ď mintπ, 1´πu, for all π P r0, 1s. Thus, by Theorem 1, MPP is Blackwell dominated
by any mechanism.

(MBNP ľ M): By definition, RBNP
min pπq “ 0 and thus RBNP

min pπq ď Rminpπq, for all π P r0, 1s. Thus, by Theorem 1,
MBNP Blackwell dominates any mechanism.

Lemma 3. It holds that ∆pMPP∥Mq “ 1{2TVpP,Qq “ 1{2Adv “ 1{2δp0q.

Proof. We denote the Bayes error functions of M,MPP as Rmin, R
PP
min respectively. Note that RPP

minpπq “ mintπ, 1´πu ě

Rminpπq, for all π P r0, 1s. Using Corollary 1 we obtain:

∆pMPP∥Mq “ max
π

pRPP
minpπq ´ Rminpπqq “ max

π
pmin tπ, 1 ´ πu ´ Rminpπqq . (56)

Next, note that the maximum of mintπ, 1 ´ πu is at π “ 1{2 and that all Bayes error functions are concave by definition and
their maximum is also realised at π “ 1{2. Hence, the largest difference between the perfectly private mechanism and any
Bayes risk function must also be at π “ 1{2. We have:

∆pMPP∥Mq “ 1{2 ´ Rminp1{2q (57)
“ 1{2 ´ min

αPr0,1s
pα1{2 ` fpαq1{2q (58)

“ 1{2 min
αPr0,1s

p1 ´ α ´ fpαqq (59)

“ 1{2Adv “ 1{2TVpP,Qq “ 1{2δp0q. (60)

Lemma 4. It holds that ∆pM∥MBNPq “ R˚ “ α˚, where R˚ is the minimax Bayes error and α˚ the fixed point of the
trade-off function of M.
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Proof. Since the Bayes risk function of MBNP is 0 on the unit interval, the ∆-divergence becomes:

∆pM∥MBNPq “ max
π

pRminpπq ´ RBNP
min pπqq “ max

πPr0,1s
pRminpπq ´ 0q “ max

πPr0,1s
Rminpπq “ R˚, (61)

where we used Corollary 1 for the first equality. It remains to show that R˚ “ α˚. Recall that Rmin is concave and
symmetric around π “ 1{2 and assumes its maximum at π “ 1{2. To compute Rminp1{2q, we set the following derivative
equal to 0:

d

dα
r1{2πα ` 1{2p1 ´ πfpαqqs “ 0 ðñ

d

dα
fpαq “ ´1 ðñ α “ fpαq. (62)

The last equivalence follows from the fact that f is a symmetric trade-off function. Denote by α˚ the unique point in r0, 1s

such that α˚ “ fpα˚q. Then, we have:

∆pM∥MBNPq “ R˚
min “ Rminp1{2q “ 1{2α˚ ` 1{2fpα˚q “ 1{2α˚ ` 1{2α˚ “ α˚. (63)

Lemma 5. ∆pMPP∥Mq ` ∆pM∥MBNPq “ 0.5.

Proof. Since RPP
minpπq “ mintπ, 1 ´ πu which has a maximum at π “ 1{2, we have from Equation (57) that ∆pMPP∥

Mq “ 1{2 ´ Rminp1{2q. Moreover, by Equation (63), we have ∆pM∥MBNPq “ Rminp1{2q. Therefore, we obtain:

∆pMPP∥Mq ` ∆pM∥MBNPq “ 1{2 ´ Rminp1{2q ` Rminp1{2q “ 1{2. (64)

Before proceeding with Lemma 6 and Theorem 3, we prove the following statements, which will be used below:

Lemma B.2. If Gµ, Grµ are two Gaussian trade-off functions with µ ď rµ, then Gµ ě G
rµ.

Proof. We will prove that the trade-off function of the Gaussian mechanism is decreasing in µ for any fixed α. To show this,
we take the first derivative of the trade-off function of the Gaussian mechanism with respect to µ:

B

Bµ
Gµpαq “

B

Bµ
ΦpΦ´1p1 ´ αq ´ µq “ ´

?
2e´

pµ´
?

2 erfinv p1´2αqq2

2

2
?
π

, (65)

where erfinv denotes the inverse error function of the normal distribution. Since the exponential is always non-negative, the
right hand side is always negative. Hence:

µ ě rµ ðñ @α P r0, 1s : Gµpαq ď G
rµpαq. (66)

Lemma B.3. Let M1,M2,M3 be three mechanisms. Then, ∆pM1∥M3q ď ∆pM1∥M2q ` ∆pM2∥M3q.

Proof. Let M1,M2,M3 be three mechanisms and R1
min, R

2
min, R

3
min their respective Bayes error functions. Using

Corollary 1, we have:

∆pM1∥M3q “ max
π

pR1
minpπq ´ R3

minpπqq (67)

“ max
π

pR1
minpπq ´ R2

minpπq ` R2
minpπq ´ R3

minpπqq (68)

ď max
π

pR1
minpπq ´ R2

minpπqq ` max
π

pR2
minpπq ´ R3

minpπqq (69)

ď max
π

pR1
minpπq ´ R2

minpπqq ` max
π

pR2
minpπq ´ R3

minpπqq (70)

“ ∆pM1∥M2q ` ∆pM2∥M3q. (71)
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We now proceed with the proofs of Lemma 6 and Theorem 3 in the main manuscript.
Lemma 6. Let tMNi : 1 ď i ď Nu8

N“1 be a triangular array of mechanisms satisfying the following conditions:

1. lim
NÑ8

řN
i“1 v1pfNiq “ K;

2. lim
NÑ8

max1ďiďN v1pfNiq “ 0;

3. lim
NÑ8

řN
i“1 v2pfNiq “ s2;

4. lim
NÑ8

řN
i“1 v4pfNiq “ 0.

Analogously, define t ĂMNi : 1 ď i ď Nu8
N“1 for constants rK, rs. Then, if K{s ą ĂK{rs, there exists N˚ such that, for all

N ě N˚:

MN1 b ¨ ¨ ¨ b MNN ľ ĂMN1 b ¨ ¨ ¨ b ĂMNN , (13)

where MN1 b ¨ ¨ ¨ b MNN denotes N -fold mechanism composition and analogously for ĂMNi.

Proof. Denote by fN1 b ¨ ¨ ¨ b fNN and rfN1 b ¨ ¨ ¨ b rfNN the trade-off functions of the compositions MN1 b ¨ ¨ ¨ bMNN

and ĂMN1 b ¨ ¨ ¨ b ĂMNN respectively. Next, we apply Theorem 6 in Dong et al. (2022), which states that these trade-off
functions uniformly converge to the Gaussian trade-off functions G2K{s and G

2ĂK{rs
respectively, i.e.

lim
NÑ8

fN1 b ¨ ¨ ¨ b fNN “ G2K{s, (72)

lim
NÑ8

rfN1 b ¨ ¨ ¨ b rfNN “ G
2ĂK{rs

. (73)

Suppose 2K{s ą 2ĂK{rs holds. By Lemma B.2, we then have G2K{s ă G
2ĂK{rs

. Moreover, we have:

lim
NÑ8

fN1 b ¨ ¨ ¨ b fNN “ G2K{spαq ă G
2ĂK{rs

pαq “ lim
NÑ8

rfN1 b ¨ ¨ ¨ b rfNN pαq, (74)

where the limits converge uniformly in α. In particular, since the limits converge uniformly and are strictly ordered, there
must exist N˚ such that for all N ě N˚:

fN1 b ¨ ¨ ¨ b fNN ď rfN1 b ¨ ¨ ¨ b rfNN . (75)

This shows if 2K{s ą 2ĂK{rs, then there must exist N˚ such that for all N ě N˚:

MN1 b ¨ ¨ ¨ b MNN ľ ĂMN1 b ¨ ¨ ¨ b ĂMNN (76)

Theorem 3. Let M, ĂM be two mechanisms with v4, rv4 ă 8 and denote by MbN , ĂMbĂN their N - and rN -fold self-
compositions. Then, N{ĂN ě rη2

{η2 implies:

∆pMbN∥ ĂMbĂN q ď 0.56

˜

η3v3
?
Nv31

`
rη3rv3

a

rNrv31

¸

(14)

In particular, if N “ rN , η ě rη implies:

∆pMbN∥ ĂMbĂN q ď
0.56
?
N

ˆ

η3v3
v31

`
rη3rv3
rv31

˙

. (15)

Proof. Assume N{ĂN ě η{rη. Let MG, ĂMG be two Gaussian mechanisms with trade-off functions Gµ, Grµ respectively,
where:

µ “

?
N2v1

a

v2 ´ v21
“

?
N2η (77)

rµ “

a

rN2rv1
a

rv2 ´ rv21
“

a

rN2rη. (78)
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Between two Gaussian trade-off functions the one with the smaller mean parameter has a larger trade-off function:

Gµ ď G
rµ ðñ µ ě rµ ðñ

?
Nη ě

a

rNrη ðñ N{ĂN ě η{rη (79)

Since we assumed N{ĂN ě η{rη, we also have Gµ ď G
rµ. In particular, this implies ∆pMG∥ ĂMGq “ 0. Next, we apply the

triangle inequality from Lemma B.3 and obtain:

∆pMbN∥ ĂMbĂN q ď ∆pMbN∥MGq ` ∆pMG∥ ĂMbĂN q (80)

ď ∆pMbN∥MGq ` ∆pMG∥ ĂMGq ` ∆p ĂMG∥ ĂMbĂN q (81)

“ ∆pMbN∥MGq ` ∆p ĂMG∥ ĂMbĂN q. (82)

To bound the last two summands, we apply Theorem 5 in (Dong et al., 2022), which gives that for all α P r0, 1s:

Gµpα ` γq ´ γ ď fbN pαq ě Gµpα ´ γq ` γ, (83)

G
rµpα ` rγq ´ rγ ď rfbĂN pαq ď G

rµpα ´ rγq ` rγ, (84)

where

γ “
0.56v3

?
Npv2 ´ v21q

3{2
, (85)

rγ “
0.56rv3

a

rNprv2 ´ rv21q
3{2

. (86)

In particular, applying a shift by rγ in the last inequality in Equation (84) gives for all α P r0, 1s:

Gµpα ` γq ´ γ ď fbN pαq and rfbĂN pα ` rγq ´ rγ ď G
rµpαq. (87)

Next, note the definition of the ∆-divergence via the infimum to see that the above implies:

∆pMbN∥MGq ď γ and ∆p ĂMG∥ ĂMbĂN q ď rγ. (88)

Moreover, we can write γ, rγ in terms of η, rη respectively:

γ “
0.56η3v3
?
Nv31

and rγ “
0.56rη3rv3
a

rNrv31

. (89)

Thus, we have:

∆pMbN∥ ĂMbĂN q ď γ ` rγ “ 0.56

˜

η3v3
?
Nv31

`
rη3rv3

a

rNrv31

¸

. (90)

For N “ rN our result above becomes:

∆pMbN∥ ĂMbĂN q ď
0.56
?
N

ˆ

η3v3
v31

`
rη3rv3
rv31

˙

. (91)
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