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Abstract

Training large neural networks with end-to-end
backpropagation creates significant memory bot-
tlenecks, limiting accessibility to state-of-the-art
AI research. We propose DiffusionBlocks, a novel
training framework that interprets neural network
blocks as performing denoising operations in
a continuous-time diffusion process. By parti-
tioning the network into independently trainable
blocks and optimizing noise level assignments
based on equal cumulative probability mass, our
approach achieves significant memory efficiency
while maintaining competitive performance com-
pared to traditional backpropagation in generative
tasks. Experiments on image generation and lan-
guage modeling tasks demonstrate memory reduc-
tion proportional to the number of blocks while
achieving superior performance. DiffusionBlocks
provides a promising pathway for democratizing
access to large-scale neural network training with
limited computational resources.

1. Introduction
As neural networks grow following established scaling
laws (Kaplan et al., 2020; Hoffmann et al., 2022), they
become increasingly inaccessible to much of the research
community. Training models with hundreds of billions of
parameters requires computational resources available only
to select institutions, threatening to concentrate AI advance-
ment within well-resourced organizations.

The fundamental bottleneck lies in end-to-end backpropaga-
tion (Rumelhart et al., 1986; He et al., 2016), which requires
storing intermediate activations across the entire network,
resulting in prohibitive memory demands for large models.
This memory bottleneck is particularly critical for genera-
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tive AI applications, where large-scale models are essential
for high-quality generation.

Previous layerwise training approaches (Hinton, 2022; Ben-
gio et al., 2006; Nøkland & Eidnes, 2019; Belilovsky et al.,
2019; Siddiqui et al., 2024) have underperformed com-
pared to end-to-end backpropagation, primarily because
they lack principled mechanisms to coordinate information
flow between independently trained layers and struggle to
balance parameter allocation effectively. Moreover, these
approaches have been predominantly evaluated on image
classification tasks, with limited exploration of generative
modeling applications.

Meanwhile, diffusion models (Sohl-Dickstein et al., 2015;
Song & Ermon, 2019; Ho et al., 2020; Song et al., 2021)
have revolutionized generative modeling through their math-
ematically principled approach to distribution transforma-
tion. Recent advances in network conditioning (Karras et al.,
2022) and sampling efficiency (Lu et al., 2022; 2023; Zhao
et al., 2023) have established diffusion models as state-of-
the-art across multiple domains.

We propose DiffusionBlocks, a framework that reconceptual-
izes neural network training by interpreting network blocks
as implementing discretized steps of a continuous-time re-
verse diffusion process. Our key innovation is a principled
mapping between network blocks and noise-level ranges
based on equal cumulative probability mass, ensuring each
block confronts an equally challenging learning problem.
This approach enables independent block training without
requiring gradient communication between blocks. Through
experiments on image generation and language modeling
tasks, we demonstrate that DiffusionBlocks reduces mem-
ory requirements proportionally to the number of blocks
while achieving competitive or superior performance. Our
primary contributions are:

• A diffusion-inspired blockwise training framework
achieving true block independence in continuous time,
where each block can be trained without requiring gra-
dients from other blocks.

• An equi-probability partitioning strategy that optimally
allocates learning difficulty across blocks based on
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cumulative probability mass, ensuring balanced param-
eter utilization.

• Comprehensive empirical validation demonstrating B-
fold memory reduction (with B blocks) and improved
performance on both image generation and language
modeling tasks.

2. Preliminaries
2.1. Score-Based Diffusion Models

Let z0 ∈ Rd ∼ pdata denote a clean data sample. Following
the Variance-Exploding (VE) formulation (Song et al., 2021;
Karras et al., 2022), we perturb z0 with Gaussian noise
whose standard deviation σ(t) increases monotonically with
the (continuous) time variable t ∈ [0, 1]:

zt = z0 + σ(t)ϵ, ϵ ∼ N (0, I). (1)

This gives zt ∼ N (z0, σ(t)
2I) = pt(zt|z0) with marginal

distribution pt(zt) =
∫
pdata(z0)pt(zt|z0)dz0.

The continuous-time formulation of this process is described
by a stochastic differential equation (SDE):

dzt =

√
dσ(t)2

dt
dw, t ∈ [0, 1] (2)

where w is a standard Wiener process.

For generating samples, we employ the Probability Flow
ODE (PF-ODE), which shares the same marginal distribu-
tions as the SDE but follows deterministic trajectories:

dzt
dt

= −σ̇(t)σ(t)∇z log pt(zt) (3)

where σ̇(t) = dσ(t)
dt and ∇z log pt(zt) is the score of the

density pt(zt). Following Karras et al. (2022), we can elim-
inate the abstract time variable by parameterizing directly
in terms of noise levels. Setting σ(t) = t, the PF-ODE
simplifies to:

dzσ
dσ

= −σ∇z log pσ(zσ). (4)

To estimate this score function, we parameterize it using a
neural network. We leverage the relation∇z log pσ(zσ) ≈
z0−zσ

σ2 (Robbins, 1992) to approximate the score in terms of
a denoiser Dθ(zσ, σ) that predicts the clean data:

∇z log pσ(zσ) ≈
Dθ(zσ, σ)− zσ

σ2
(5)

The denoiser is trained using a weighted L2 loss:

L(θ) = Epdata,pσ,N (0,I)

[
w(σ)∥Dθ(zσ, σ)− z0∥22

]
(6)

where w(σ) is a weighting function and pσ is the distribution
from which noise levels are sampled during training.

2.2. Neural Network Block Structure

Consider a deep neural network with L layers, parame-
terized by θ = (θ0,θ1, . . . ,θL). Traditional end-to-end
training processes the input x ∈ X through the network to
produce an output ŷ ∈ Y as follows:

z(0) = f0(x;θ0) (input embedding) (7)

z(l) = fl(z
(l−1);θl), l ∈ [L] (8)

ŷ = fL+1(z
(L);θL+1) (output projection) (9)

A loss function L(ŷ,y) is computed between the predicted
output ŷ and target y. Backpropagation calculates gradients
∇θL by propagating error signals backward through the en-
tire network, requiring storage of all intermediate activations
{z(l)}Ll=0. This memory requirement scales with network
depth and batch size, creating a bottleneck for large-scale
models.

When partitioning a network into blocks, we group consec-
utive layers together to form B blocks, where each block
i ∈ [B] consists of multiple layers and is parameterized by
θi. In traditional blockwise approaches, defining appropri-
ate training objectives for each block remains challenging,
as these blocks must coordinate to accomplish the overall
task without end-to-end supervision.

2.3. Residual Connections as Euler Steps of the Reverse
Diffusion Process

The connection between residual networks and continuous-
time ODEs has been established in prior work (Haber &
Ruthotto, 2017; Chen et al., 2018), where residual updates
z(l) = z(l−1) + gθl

(z(l−1)) are shown to correspond to
Euler discretizations of ODEs. We extend this perspective
to our blockwise diffusion framework.

In diffusion models, the forward process adds noise pro-
gressively, while the reverse process removes it to generate
data. This reverse process can be formulated either as a
stochastic differential equation (SDE) or its deterministic
counterpart, PF-ODE (Eq. (3)). While both formulations
share the same marginal distributions, we focus on the PF-
ODE due to its deterministic nature, which aligns naturally
with the deterministic forward pass of neural networks.

Applying Euler discretization to Eq. (4) with noise levels
σ0 > σ1 > · · · > σN yields:

zσl
= zσl−1

−∆σl · σl−1∇z log pσl−1
(zσl−1

) (10)

= zσl−1
+

∆σl

σl−1

(
zσl−1

−Dθ(zσl−1
, σl−1)

)
︸ ︷︷ ︸

=:gθl
(zσl−1

)

, (11)

where ∆σl = σl−1 − σl > 0 and we used the score approx-
imation from Eq. (5).
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This reveals that each denoising step naturally takes the form
of a residual update zσl

= zσl−1
+gθl

(zσl−1
), matching the

structure of modern neural architectures with skip connec-
tions. This mathematical correspondence explains why skip
connections are essential for our framework: they naturally
implement the Euler discretization of the reverse diffusion
process. Architectures with residual connections—such as
ResNets (He et al., 2016), U-Nets (Ronneberger et al., 2015),
and transformer blocks with residual paths (Vaswani et al.,
2017)—are therefore ideally suited for our approach. Ar-
chitectures without skip connections would require implicit
ODE solvers, which are computationally more complex
and less compatible with our blockwise training approach.
Therefore, we restrict our framework to architectures with
explicit residual connections, ensuring compatibility be-
tween the network structure and the underlying continuous-
time diffusion process.

3. Method
We now present DiffusionBlocks, our approach for training
neural networks without end-to-end backpropagation. Our
key insight is interpreting neural networks as implementing
discretized steps of a continuous-time score-based diffusion
process. This perspective enables training individual blocks
independently while maintaining network-wide coherence
through a shared mathematical framework .

3.1. Diffusion-Based Blockwise Training Framework

Traditional neural networks transform input x through hid-
den layers to output ŷ. We reconceptualize this as a reverse
diffusion process: the input corresponds to noise (zσmax ∼
N (0, σ2

maxI)), and the output to clean data (z0 ∼ pdata).
Each network block then performs partial denoising within
a specific noise range.

Given a neural network with L layers, we partition it into
B blocks, where each block contains one or more consec-
utive layers. Instead of training the entire network end-
to-end, each block is assigned responsibility for a specific
range of noise levels in the diffusion process. Specifically,
Block i handles the noise level range [σi, σi+1], where
i ∈ {0, 1, ..., B − 1} and σ0 = σmax and σB = σmin (typi-
cally set to a small positive value or zero).

During training, for a block i handling noise level
range [σi, σi+1], we train the corresponding denoiser
Dθi

(zσ, σ,x) to predict the clean target:

L(θi) = E
pdata,p

(i)
σ ,N (0,I)

[
w(σ)∥Dθi

(zσ, σ,x)− y∥22
]

(12)
where p

(i)
σ is the distribution of noise levels specifically for

block i, defined by restricting the global noise distribution
to the range [σi, σi+1]. For tasks like language modeling,
we replace the L2 loss with cross-entropy after appropriate
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Figure 1. Block partitioning strategies for noise level assign-
ment. Colored regions represent individual blocks under our
equi-probability partitioning, where each block handles equal cu-
mulative probability mass from the EDM log-normal distribution
(blue curve). Orange circles show our equi-probability bound-
aries that concentrate in the challenging intermediate noise region,
while gray squares show uniform boundaries (equal intervals in
log-space) for comparison. This strategy ensures balanced learning
difficulty across blocks.

normalization.

Each block-specific denoiser includes input embedding lay-
ers, neural network blocks, and output embedding compo-
nents, making blocks truly independent.

This block independence is the key to our memory effi-
ciency—during training, we only need to store activations
for a single block rather than the entire network. Specifically,
our approach requires storage of activations for L/B layers
instead of all L layers needed by end-to-end backpropaga-
tion, resulting in approximately B-fold memory reduction
during training.

3.2. Equi-Probability Block Partitioning

A critical innovation in our approach is how we partition the
noise levels among blocks. Following Karras et al. (2022),
we recognize that different noise levels present varying de-
grees of difficulty for the denoising task. The intermediate
noise range tends to be most challenging and impactful for
learning, while very low or high noise levels are compara-
tively simpler. To optimize parameter utilization, we par-
tition the range of noise levels [σmin, σmax] into B blocks
such that each block handles an equal amount of cumulative
probability under the noise distribution:

σi = exp
(
Pmean + Pstd · Φ−1(pi)

)
(13)

where pi = CDFmin + i
B · (CDFmax − CDFmin) repre-

sents the target cumulative probability for block i, Φ−1 is
the inverse CDF of the standard normal distribution, and
CDFmin and CDFmax are the CDFs corresponding to σmin
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and σmax respectively. This partitioning ensures that each
block handles an equal amount of cumulative probability
mass: ∫ σi+1

σi

pσ(σ)dσ =
1

B
. (14)

Figure 1 illustrates how our approach allocates block bound-
aries to ensure equal cumulative probability across the noise
level distribution. This strategy ensures that each block
contributes equally to the overall learning task, optimizing
parameter utilization. In contrast, naive uniform partition-
ing (e.g., dividing [σmin, σmax] into equal intervals) would
allocate too many parameters to easy regions while under-
serving challenging noise levels.

3.3. Controlled Block Overlap

To mitigate potential discontinuities between blocks, we
introduce a controlled overlap between adjacent noise level
ranges. For a block i responsible for noise range [σi, σi+1],
we expand the training range to:

[σi/α, σi+1 · α], (15)

where α := (σi+1/σi)
γ and γ is the overlap coefficient.

This controlled overlap ensures smoother transitions during
inference by allowing each block to learn from samples
slightly outside its primary range of responsibility. In all
our experiments, we use γ = 0.1, which provides an ef-
fective balance between block independence and transition
smoothness.

3.4. Implementation Details

Our implementation follows the EDM framework (Karras
et al., 2022) including the preconditioning strategy. De-
tailed training and inference algorithms are provided in
Appendix C.

4. Experiments
We evaluate DiffusionBlocks on image generation and lan-
guage modeling tasks, demonstrating superior or compara-
ble performance to end-to-end backpropagation while train-
ing with significantly reduced memory requirements. We
also analyze key components of our framework.

4.1. Image Generation

Experimental Setup. We evaluate our method on CIFAR-
10 (Krizhevsky, 2009) and ImageNet (Deng et al., 2009)
at 256×256 resolution using Diffusion Transformer (DiT)
architectures (Peebles & Xie, 2023). We use DiT-S with
12 layers and DiT-L with 24 layers, and partition them
into 4 blocks. All models are trained with classifier-free
guidance (Ho & Salimans, 2022), dropping labels with prob-
ability 0.1. For ImageNet, we follow Peebles & Xie (2023)

Table 1. Image generation results comparing FID scores (lower
is better). DiffusionBlocks achieves superior quality while train-
ing each block independently.

Method CIFAR-10 ImageNet-256

End-to-End BackProp 41.87 16.62
Ours 41.39 15.55

compressing images using a pre-trained VAE. Detailed hy-
perparameters and implementation specifics are provided in
Appendix D.1.

Results. Table 1 compares our approach against end-
to-end backpropagation, showing that DiffusionBlocks
achieves better FID scores on both datasets. By training
only one block at a time and optimizing each block in-
dependently, our approach reduces memory requirements
during training by a factor of B (B = 4 in our ex-
periments)—backpropagation needs to be performed only
through the active block rather than the entire network. Fig-
ure 2 shows examples of generated images from our model
on the CIFAR-10 dataset.

Additionally, a significant advantage of our approach is
faster inference: while the baseline model requires forward-
ing through all layers for each diffusion step, our method
only needs to use the relevant block. This results in approxi-
mately 3× faster generation time.

4.2. Language Modeling

Experimental Setup. For language modeling, we use The
One Billion Words Benchmark (LM1B) (Chelba et al., 2014)
with a Llama-style architecture (Touvron et al., 2023) com-
prising 12 transformer layers partitioned into 4 blocks. We
implement specialized attention mechanisms (Arriola et al.,
2025) to handle autoregressive dependencies while main-
taining diffusion-based denoising capabilities.

We evaluate models using MAUVE score (Pillutla et al.,
2021), following the conditional generation protocol es-
tablished by SEDD (Lou et al., 2024). Detailed hyper-
parameters and implementation specifics are provided in
Appendix D.2.

Results. Table 2 shows that our method achieves superior
MAUVE scores compared to end-to-end backpropagation,
despite only requiring backpropagation through one block at
a time during training. This demonstrates that our blockwise
training approach can effectively learn high-quality text
generation while maintaining significant memory efficiency.
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Table 2. Language modeling results comparing MAUVE scores
(higher is better). Our method achieves superior performance
compared to end-to-end backpropagation.

Method MAUVE (↑)
End-to-End BackProp 0.595
Ours 0.779

Table 3. Effect of block partitioning strategy on CIFAR-10. Our
equi-probability partitioning outperforms uniform partitioning by
allocating blocks based on learning difficulty.

Partitioning Strategy FID (↓)
Uniform 68.06
Equi-Probability 45.50

4.3. Ablation Studies

We perform ablation studies on CIFAR-10 to analyze the
importance of key components in our framework. All exper-
iments use the same network architecture and hyperparame-
ters unless otherwise specified.

Block Partitioning Strategy. We compare our equi-
probability partitioning strategy against uniform partition-
ing across noise levels. We disabled the block overlap in
Section 3.3 to isolate the effectiveness of our partitioning
strategy. As shown in Table 3, our approach outperforms
uniform partitioning, achieving an FID of 45.50 compared
to 68.06. While this improvement is meaningful, the differ-
ence highlights that both strategies can achieve reasonable
performance, with our equi-probability approach providing
a consistent advantage. This supports our hypothesis that
allocating block capacity based on the intrinsic difficulty
of denoising at different noise levels (as visualized in Fig-
ure 1) contributes to more effective parameter utilization.
The uniform strategy, while functional, appears to be less
optimal as it allocates equal capacity across all noise regions
rather than concentrating resources where learning is most
challenging.

Effect of Block Overlap. To evaluate the importance of
controlled overlap between blocks, we varied the overlap
coefficient γ from 0 (no overlap) to 0.2 (substantial overlap).
Table 4 demonstrates that controlled overlap significantly
improves performance compared to strict block boundaries.
Without overlap (γ = 0), FID degrades to 45.50 due to dis-
continuities between independently trained blocks. Perfor-
mance improves as we introduce modest overlap, reaching
optimal results at γ = 0.1 (FID 41.39). However, exces-
sive overlap (γ ≥ 0.15) begins to degrade performance,
with γ = 0.2 producing significantly worse results (FID
56.69), likely due to conflicting learning objectives when

Table 4. Effect of block overlap on CIFAR-10. Controlled over-
lap between adjacent blocks significantly improves performance,
with γ = 0.1 providing the optimal balance between block inde-
pendence and transition smoothness.

Overlap Coefficient γ FID (↓)
γ = 0.00 45.50
γ = 0.05 42.98
γ = 0.10 41.39
γ = 0.15 42.84
γ = 0.20 56.69

Table 5. Effect of block count on CIFAR-10. Fewer blocks
achieve better FID but require more layers per diffusion step (L/S),
creating a trade-off between quality and efficiency. Note that
L/S=L/B, where L is the total number of layers (12) and B is the
number of blocks.

Number of Blocks FID (↓) L/S (↓) Relative Speed

B = 1 (End-to-End BackProp) 41.87 12 1.0×
B = 2 38.58 6 2.0×
B = 3 41.39 4 3.0×
B = 4 41.39 3 4.0×
B = 6 53.74 2 6.0×

blocks have substantial overlap in their training regions.
These results confirm that γ = 0.1 provides an effective bal-
ance between maintaining block independence and ensuring
smooth transitions during inference.

Effect of Block Count. We investigate how performance
varies with different numbers of blocks while keeping the
total network depth constant (12 layers). Table 5 reveals a
clear trade-off between FID score and computational effi-
ciency. Using fewer blocks yields better FID scores due to
larger block capacity—B = 2 achieves the best FID (38.58)
but requires processing 6 layers per forward pass. As the
number of blocks increases, inference becomes more effi-
cient: B = 4 processes only 3 layers per step (4× faster
than end-to-end) while maintaining reasonable FID (41.39),
and B = 6 achieves 6× speedup at the cost of degraded
performance (FID 53.74). The results suggest that B = 3
or B = 4 provide good balance points, offering substantial
efficiency gains while preserving competitive generation
quality. Beyond B = 6, individual blocks become too small
(2 layers each) to perform effective denoising, leading to
significant quality degradation. This analysis enables practi-
tioners to choose the appropriate block count based on their
specific quality requirements and computational constraints.
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5. Related Work
Diffusion Models and Score-Based Generation. Diffu-
sion models (Sohl-Dickstein et al., 2015; Ho et al., 2020)
and score-based generative models (Song & Ermon, 2019;
2020; Song et al., 2021) have emerged as powerful frame-
works for generative modeling. These models define pro-
cesses that gradually transform simple distributions into
complex ones through sequences of denoising steps. Recent
advances in network conditioning (Karras et al., 2022), sam-
pling efficiency (Lu et al., 2022; 2023; Zhao et al., 2023),
and architectural improvements (Rombach et al., 2022; Pee-
bles & Xie, 2023) have established diffusion models as
state-of-the-art across various generative tasks. Our work
leverages these mathematical foundations for neural net-
work training, interpreting layer transformations through
the lens of continuous-time diffusion processes.

Layer/Block-wise Training Methods. Various ap-
proaches have been proposed to train neural networks
without end-to-end backpropagation. Synthetic Gradi-
ents (Jaderberg et al., 2017) enables decoupled neural
interfaces by predicting gradients locally, while biologically-
motivated methods include Feedback Alignment (Lillicrap
et al., 2016), the Forward-Forward algorithm (Hinton,
2022), and Target Propagation (Lee et al., 2015). Addi-
tional approaches include local learning methods (Nøkland
& Eidnes, 2019; Belilovsky et al., 2019), greedy layer-wise
pretraining (Bengio et al., 2006), and Blockwise Self-
Supervised Learning (Siddiqui et al., 2024). However, these
methods face two fundamental limitations: they lack princi-
pled theoretical foundations for coordinating information
flow between independently trained components, and have
demonstrated limited effectiveness on generative modeling
tasks where maintaining coherent probabilistic modeling
across components remains challenging. DiffusionBlocks
addresses both limitations through the mathematical
rigor of continuous-time diffusion theory, where each
block’s denoising objective naturally aligns with the global
generative goal.

Memory-Efficient Implicit Depth Models. Neural
ODEs (Chen et al., 2018) parameterize network dynamics
as continuous-time differential equations, using the adjoint
sensitivity method to achieve constant memory backpropa-
gation through time. Deep Equilibrium Models (DEQs) (Bai
et al., 2019) represent another memory-efficient paradigm,
directly solving for fixed points of implicit layers using
root-finding and implicit differentiation, effectively creat-
ing infinite-depth networks with constant memory. While
both approaches achieve memory efficiency through im-
plicit computation, they fundamentally differ from our
method: Neural ODEs still require end-to-end backprop-
agation through a single monolithic network, and DEQs

focus on equilibrium computation rather than generative
modeling. In contrast, DiffusionBlocks achieves true block
independence by partitioning the continuous-time diffusion
process into disjoint noise-level ranges, enabling genuinely
parallel block training without any inter-block gradient flow.

Connection to Concurrent Work. Most closely related
to our work is the concurrent NoProp framework (Li et al.,
2025), which also interprets neural network training through
diffusion principles. NoProp’s discrete-time formulation
(NoProp-DT) treats each network layer as a discrete de-
noising step, achieving memory-efficient training for clas-
sification tasks. However, their continuous-time variant
(NoProp-CT) fundamentally differs from true blockwise
training: it employs a single network ûθ(zt, x, t) that must
handle all noise levels t ∈ [0, 1], requiring end-to-end back-
propagation through the entire architecture. This approach
more closely resembles Neural ODEs (Chen et al., 2018)
than blockwise methods.

Our framework achieves genuine blockwise indepen-
dence in continuous time by partitioning the noise range
[σmin, σmax] into B intervals, with each block Dθi indepen-
dently responsible for its assigned range [σi, σi+1]. This
enables B-fold memory reduction during training while
maintaining the mathematical rigor of continuous-time dif-
fusion. Furthermore, our equi-probability partitioning based
on cumulative distribution mass ensures optimal parameter
utilization across blocks—a principled approach absent in
NoProp’s fixed layer-to-timestep mapping. Notably, while
NoProp focuses primarily on classification tasks and eval-
uates against diffusion-inspired baselines, we demonstrate
superior performance on generative modeling tasks—image
generation and language modeling—where our framework
naturally excels, directly comparing against conventional
end-to-end backpropagation on established architectures.

6. Conclusion
We introduced DiffusionBlocks, a novel framework that en-
ables independent neural network block training by inter-
preting blocks as denoising operations at specific noise lev-
els in a continuous-time diffusion process. Our approach
achieves blockwise independence, optimal equi-probability
partitioning, and B-fold memory reduction with competitive
or superior performance on generative modeling tasks.

Experiments on image generation and language modeling
demonstrate that DiffusionBlocks outperforms end-to-end
backpropagation while requiring only 1/B the memory dur-
ing training. In our experiments with B = 4 blocks, this
translates to a 4× memory reduction with superior perfor-
mance, offering a principled pathway for democratizing
large-scale neural network training with limited computa-
tional resources.
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A. Limitations and Future Directions
Limitations. Our approach has two fundamental limitations. First, our framework requires architectures with explicit
residual connections, as these naturally implement the Euler discretization of the reverse diffusion process (Section 2.3).
This restricts applicability to ResNet-style, U-Net, and Transformer architectures, excluding feedforward networks and
other non-residual designs. While most modern architectures incorporate residual connections, this constraint prevents
exploration of alternative architectural paradigms. Second, for autoregressive tasks like language modeling, our approach
requires multiple diffusion steps per token, resulting in O(KM) forward passes for generating K tokens with M diffusion
steps. This multiplicative overhead compared to standard O(K) autoregressive generation may be prohibitive for real-time
applications, despite quality improvements through test-time scaling.

Future Directions. Several promising directions emerge from this work. First, while we focus on the VE formulation,
our DiffusionBlocks framework is fundamentally applicable to other diffusion formulations, including Variance Preserving
(VP) (Song et al., 2021), flow matching (Lipman et al., 2023; Liu et al., 2023), stochastic interpolants (Albergo & Vanden-
Eijnden, 2023; Albergo et al., 2023), and bridge matching (Shi et al., 2023).

Second, theoretical analysis of why DiffusionBlocks outperforms end-to-end backpropagation warrants investigation. We
hypothesize this improvement stems from two mechanisms. First, our framework may induce structured constraints on the
optimization process through the diffusion formulation, potentially providing a form of implicit regularization (Neyshabur,
2017) that guides parameter updates toward more principled solutions. Second, our equi-probability partitioning explicitly
allocates computational resources based on the empirical difficulty distribution of denoising tasks (Bengio et al., 2009),
which may lead to more efficient parameter utilization compared to the implicit allocation mechanisms in end-to-end
training.

Third, adapting recent advances in fast diffusion sampling (Lu et al., 2023; Zhao et al., 2023) could significantly reduce
inference costs for language modeling while preserving test-time scaling benefits.

Fourth, exploring block-parallel generation techniques (Arriola et al., 2025) could enable simultaneous token generation,
addressing sequential bottlenecks in autoregressive tasks.

Finally, investigating optimal architecture designs for different noise level ranges and extending our framework to multimodal
tasks with efficient architectures like Mixture-of-Experts could broaden its applicability and impact.

B. Mathematical Background
B.1. Variance Exploding Diffusion Models

In the Variance Exploding (VE) formulation (Ho et al., 2020; Song et al., 2021), a perturbed sample at noise level σ is
defined as:

zσ = z0 + σϵ, ϵ ∼ N (0, I), (16)

where zσ ∼ N (z0, σ
2I) =: pσ(zσ|z0) with marginal distribution pσ(zσ) =

∫
pdata(z0)pσ(zσ | z0)dz0.

Following Karras et al. (2022), we parameterize the continuous diffusion process directly in terms of noise levels σ,
eliminating the abstract time variable. The forward SDE becomes:

dzσ =
√
2σdw, (17)

where w is a standard Wiener process. The corresponding reverse SDE is:

dzσ = 2σ∇z log pσ(zσ)dσ +
√
2σdw̄, (18)

where w̄ is a standard Wiener process in reverse direction (from high to low noise levels).

B.2. Probability Flow ODE

The Probability Flow ODE (PF-ODE) is a deterministic process that shares the same marginal distributions as the stochastic
diffusion process. In our noise-level parameterization:

dzσ
dσ

= −σ∇z log pσ(zσ). (19)
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This formulation directly connects noise levels to the dynamics of the diffusion process, making it natural for our blockwise
approach where each block handles a specific noise level range.

B.3. Score Estimation and Denoising Score Matching

Our goal is to sample z0 ∼ pdata from zσmax ∼ N (0, σ2
maxI) by the reverse process. The score∇z log pσ(zσ) is approximated

using a neural network.

We leverage the relation ∇z log pσ(zσ | z0) = z0−zσ

σ2 (Robbins, 1992) to parameterize the score in terms of a denoiser
Dθ(zσ, σ) that predicts the clean data:

∇z log pσ(zσ) ≈
Dθ(zσ, σ)− zσ

σ2
. (20)

The denoiser is trained using a weighted L2 loss:

L(θ) = Ez0∼pdata,σ∼pσ,ϵ∼N (0,I)

[
w(σ)∥Dθ(zσ, σ)− z0∥22

]
, (21)

where zσ = z0 + σϵ and w(σ) =
σ2+σ2

data

(σ·σdata)2
following Karras et al. (2022).

B.4. Noise Level Scheduling

The distribution of noise levels pσ significantly impacts training efficiency and generation quality. Following Karras et al.
(2022), we use a log-normal distribution:

log(σ) ∼ N (Pmean, P
2
std). (22)

This distribution concentrates probability mass in intermediate noise regions, which empirically contribute most to learning
quality. Very low noise levels result in trivial denoising tasks, while very high noise levels destroy all meaningful information.

C. Algorithmic Details

Algorithm 1 DiffusionBlocks Training

Require: Dataset D = {(x(n),y(n))}Nn=1, Number of blocks B, Noise level range [σmin, σmax], Log-normal parameters
Pmean, Pstd

1: Compute block boundaries {σ0, σ1, . . . , σB} using Equation (13)
2: Initialize parameters {θ0, . . . ,θB−1}
3: while not converged do
4: Sample i ∼ Uniform(0, B − 1) {Select a block randomly}
5: Sample (x,y) ∼ D {Sample a data point}
6: Sample σ from [σi, σi+1] according to p

(i)
σ {Sample noise level for block i}

7: Sample ϵ ∼ N (0, I) {Sample noise}
8: zσ ← y + σϵ {Create noisy target}
9: if image generation task then

10: L ← w(σ)∥Dθi
(zσ, σ,x)− y∥22 {Compute L2 loss}

11: else if language modeling task then
12: L ← w(σ) · CrossEntropy(Normalize(Dθi(zσ, σ,x)),y) {Compute CE loss}
13: end if
14: Update θi to minimize L {Update only block i parameters}
15: end while

D. Experimental Details
D.1. Image Generation Details

Model Architecture For our image generation experiments, we employ Diffusion Transformers (DiT) (Peebles & Xie,
2023). We use DiT/S-2 and DiT/L-2 for CIFAR-10 and ImageNet, respectively. We partition them into 4 blocks for
DiffusionBlock.
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Algorithm 2 DiffusionBlocks Inference
Require: Input x, Trained block parameters {θ0,θ1, . . . ,θB−1}, Block boundaries {σ0, σ1, . . . , σB}, Number of inference

steps N , ODE solver (e.g., Euler or Heun)
1: Generate discretized noise levels {σ(0), σ(1), . . . , σ(N)} {EDM discretization}
2: Sample ϵ ∼ N (0, I)
3: z(0) ← σ(0)ϵ {Initialize with noise}
4: for j = 0 to N − 1 do
5: σ ← σ(j) {Current noise level}
6: Determine block index i such that σ ∈ [σi, σi+1) {Find responsible block}
7: z(j+1) ← ODESolverStep(z(j), σ(j), σ(j+1), Dθi ,x) {Apply ODE solver with block i}
8: end for
9: return z(N)

Training Settings For both CIFAR-10 and ImageNet, we train class-conditional models with classifier-free guidance (Ho
& Salimans, 2022), randomly dropping labels with 10% probability during training. All models are trained with a batch
size of 512 for 100 epochs using the AdamW optimizer with a learning rate of 1e-4. For ImageNet, following the latent
diffusion approach (Rombach et al., 2022), we first resize images to 256×256 and compress them using a pre-trained VAE
from Stability AI’s SDXL 1. The batch size is increased to 1024, with all other settings remaining the same as CIFAR-10.

Inference Settings For inference, we use classifier-free guidance with a scale of 2.0 and Euler sampling. We generate
50,000 samples and evaluate them using FID (specifically clean-FID (Parmar et al., 2022)) against the test sets. To reduce
the impact of random variation, we compute FID three times in each experiment and report the minimum following Karras
et al. (2022).

Fair Comparison To ensure fair comparison, we match the total number of layer forwards between our method and the
end-to-end backpropagation baseline. For the baseline with L layers trained for E epochs, each layer is updated L×E times.
For our method with B blocks, we train each block for E epochs, resulting in (L/B)× E ×B = L× E layer updates.

D.2. Language Modeling Details

Model Architecture For language modeling, we use a Llama-style architecture with Llama 2 tokenizer (Touvron et al.,
2023), choosing a model size comparable to DiT/B with 12 transformer layers, 768 hidden dimensions, and 12 attention
heads. The model is partitioned into 4 blocks of 3 layers each.

Training Settings We train on The One Billion Words Dataset (LM1B) (Chelba et al., 2014) with a batch size of 256 for
10 epochs using the AdamW optimizer with a learning rate of 3e-4 and weight decay of 0.0. We use a context length of 256
tokens.

Specialized Attention Masks A key challenge in autoregressive language modeling with diffusion models is maintaining
proper conditioning on clean previous tokens while denoising current tokens. To address this, we implement the Vectorized
Training approach from Block Diffusion (Siddiqui et al., 2024), which processes both clean and noisy sequences simultane-
ously by concatenating them and using specialized attention masks. This approach eliminates the need for multiple forward
passes and KV cache storage, making training significantly more efficient.

Evaluation Following SEDD (Lou et al., 2024), we evaluate using MAUVE score (Pillutla et al., 2021) on conditional
generation. We sample 1000 sequences from the LM1B test set, filtering for sequences with at least 100 tokens. For each
sequence, we use the first 50 tokens as prompts and generate 5 samples of 50 tokens each using 50 diffusion steps with
Euler sampling. We then compute MAUVE scores between the 5000 generated samples and 1000 reference samples from
the test set.

1https://huggingface.co/stabilityai/sdxl-vae
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E. Generated Samples
E.1. CIFAR-10 Class-Conditional Samples

Figure 2. Class-conditional samples generated by DiffusionBlocks on CIFAR-10. Each row shows samples from a different class.

E.2. Language Generation Samples

Table 6 presents an example of text generated by our language model trained on LM1B.

Table 6. Text samples generated by our language model trained on LM1B.

the United States are fighting for the English team, resuming training on Sunday and that his players will
be home from the Champions League final in Moscow on Wednesday. ”The evidence shows that the
manufacturing sector is not quite
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