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ABSTRACT

Recent pandemic of the coronavirus started in December 2019, which has af-
fected almost all groups of humankind. In this regard, accurate epidemic mod-
els are not only crucial for demonstrating the mitigation of the current pandemic
but also helpful for forecasting their future dynamics. In this work, we propose
a model for SARS-CoV-2 virus transmission to forecast the temporal dynamics
of the novel coronavirus disease by considering the characteristics of the disease
and the recent literature. Due to the nondeterministic and stochastic nature of the
novel-coronavirus disease, we present the model with the aid of stochastic dif-
ferential equations by considering two infectious phases: pre-symptomatic and
symptomatic, because both are significant in the spread of SARS-CoV-2 virus
transmission. We ensure that the model is well-posed and identify the necessary
conditions for disease eradication by proving the existence, uniqueness, and ex-
tinction analysis. The efficacy of the model and the importance of the current
study are demonstrated using the actual data. Finally, the model will be simulated
using Euler-Maruyama and Milstein’s numerical schemes to support the theoreti-
cal findings and show the significance of the results obtained.

1 INTRODUCTION

Diseases are mainly categorized into two groups: infectious and non-infectious diseases. Infectious
are those caused by viruses, fungi, parasites, and bacteria, and usually transferred in numerous ways
while causing fifty thousand deaths approximately every day all over the world. Some infectious
diseases can be directly communicated, while many transfer indirectly. Infectious diseases like
hepatitis B, seasonal influenza, HIV (human immunodeficiency virus), Middle East Respiratory
Syndrome (MERS), and SARS-CoV-2 are major health issues, affecting millions of populations
around the globe (Altamimi et al., 2020; Holmdahl & Buckee, 2020; Mann & Roberts, 2011; Reich
et al., 2019; Park et al., 2021). SARS-CoV is a family of viruses that usually cause illnesses such
as MERS and severe respiratory syndrome coronavirus (Syed, 2020). Coronaviruses are zoonotic
diseases, and the novel one is a new strain known as the SARS-CoV-2 virus, which broke out in
2019 and spread throughout the world (Rabaan et al., 2020). Bats are the most plausible ecological
reservoirs for SARS-CoV-2, but it’s also possible that the virus infected humans via an intermediate
animal host. This intermediate animal host could be an unidentified domesticated food animal, a
wild animal, or a domesticated wild animal. Millions of people are infected and face consequences
due to the novel disease of coronavirus (Shereen et al., 2020). Novel coronavirus transmits from one
person to another by direct contact with an infected individual and indirect with objects used by the
infected person (Chan et al., 2020). A novel coronavirus disease has multiple phases of infections,
pre-symptomatic, asymptomatic, environmental, and symptomatic (He et al., 2020). Especially,
the pre-symptomatic and symptomatic phases are very significant because 47% and 38% of cases
are reported respectively, by contact with these individuals (Ferretti et al., 2020). Generally, pre-
asymptomatic individuals have no symptoms while transmitting the disease to others. Therefore, the
immigration of pre-symptomatic and symptomatic patients from one place to another place leads to
a major source of novel coronavirus transmission. So, most countries around the globe restricted
air traffic and announced a lockdown to use the precautionary measure to minimize human lives as
much as possible. Also, every country tried to reduce unnecessary traveling, which helped in the
reduction of the newly reported cases. Many countries are badly affected by the pandemic of SARS-
CoV-2. Moreover, the economy of different countries has been influenced by the novel deadly virus
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badly. Many organizations and companies have stopped their production. As a result, the ratio of
unemployment as well as poverty has increased in various countries. Besides, the health systems
of many developed and powerful countries collapsed due to the consequences of the SARS-CoV-2
virus.

Mathematical modeling is one of the best tools to show disease mitigation and design control mecha-
nism. The epidemiology of infectious disease has a rich literature, see for instance, Mann & Roberts
(2011); Hattaf et al. (2012); Shi et al. (2015); Alaa & van der Schaar (2019); Kamarthi et al. (2021);
Yin et al. (2021). Various models have been used extensively by researchers to study the temporal
dynamics of different infectious diseases (Wang et al., 2014; Khan et al., 2018). Moreover, many
mathematicians and biologists also studied the dynamical behaviors of SARS-CoV-2 transmission.
More precisely, a model study has been reported to forecast the spread of a novel coronavirus out-
break in Wuhan (Wu et al., 2020). Guo et al. (2020) studied the prediction of host and infectiv-
ity of novel diseases using deep learning algorithm. Selvam et al. (2021) analyzed the spread of
corona virus diseases using mathematical modeling and performed stability analysis. Further, a
spatial-temporal model has been formulated to study the dynamic risk assessment of SARS-CoV-2
accounting for community virus exposure (Chen et al., 2021). Similarly, many other studies have
been reported by various authors to forecast the pandemic trend and control of novel disease (SARS-
CoV-2) transmissions (see for more details, Arik et al. (2020); Kucharski et al. (2020); Wang et al.
(2020); Flaxman et al. (2020); Chen et al. (2021); Zhang et al. (2021)). Very recently, a stochas-
tic epidemiological model has been analyzed for the dynamics of novel disease of corona virus by
Khan et al. (2021). Models with appropriate structure and accurate dynamics are not only impor-
tant to show disease mitigation but also to forecast the future dynamics of the disease, and thus are
helpful for public health planning. Indeed, the above-reported studies yielded some interesting out-
puts. However, their main objectives are to forecast disease dynamics using deterministic differential
equations. While the model related to the stochastic analysis of SARS-CoV-2 virus transmission is
reported in Khan et al. (2021), many factors are to be improved. For example, they considered the
random fluctuation only in the disease transmission rate, but the other parameters such as mobility,
vaccination, the occurrence of death, etc. also have stochastic nature. Moreover, the classification of
various infection phases of SARS-CoV-2 virus disease has not been considered, such that important
roles played by pre-symptomatic and symptomatic individuals were neglected in the pandemic trend
of novel corona virus disease. In fact, a small number of pre-symptomatic individuals will lead to a
major outbreak, because they have no symptoms while transmitting the disease to others. Further,
the pandemic of SARS-CoV-2 rises due to human interaction, but initial sources of transmission
were a reservoir that has been ignored.

Our goal is to enhance the model reported in Khan et al. (2021) by incorporating the missing parame-
ters and characteristics of SARS-CoV-2 virus disease that can influence the disease transmission. To
this end, we use various sources of randomness using different Brownian motions in each population
group to include the stochastic effect in every parameter as well as in every group of population. We
divide the total infected population into two sub-classes, namely pre-symptomatic and symptomatic,
according to the characteristics of the disease. We will also assume that both the pre-symptomatic
and symptomatic individuals will contribute to producing the reservoirs. To do this, first, we formu-
late the model and discuss its biological and mathematical feasibility to show the well-posedness of
the problem. For this purpose, we will use the combination of stochastic Lyapunov function theory
and the Itô formula. Further, the disease extinction of the model will be discussed to find the condi-
tions for disease elimination. We then develop the algorithms for the proposed epidemic problem to
discuss the numerical assessment and verify our analytical findings by using Euler-Maruyama and
Milstein’s methods. To show the effectiveness and justify the proposed epidemic problem, we fit the
model to real data of the SARS-CoV-2 virus reported in the United Arab Emirates in the period of
March, 21st 2022 to Jun, 21st 2022. Finally, we compare our results to show the significance of the
model solution.

2 PRELIMINARIES

In this section, we introduce some of the fundamental concepts and notations that will be helpful in
getting our main results, including a multidimensional Itô formula, the strong law of large numbers,
and some other results.
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Let R be the set of real numbers, Rn the space of n-tuple, and Rn
+ the set of n-tuple with non-

negative entries. (Θ,FT , (Ft)t∈[0,T ], P ) represents a filtered probability space (Θ,FT , P ) with a
right-continuous and complete filtration F = (Ft)t∈[0,T ], i.e., F+ = F and each Ft ∈ F contains
all P -null spaces (Klenke, 2007). If f(x) is a function over [a, b], then the mean value of f(x) is
defined as

⟨f(x)⟩ := 1

b− a

∫ b

a

f(x)dx.

In addition, C2(Rn) denotes the set of all real-valued and twice continuously differentiable func-
tions.

Lemma 1 (Kuo, 2006) Let a = (α1, . . . , αn) and b = (β1, . . . , βn) represent the n-dimensional
square-integrable adapted processes. We assume that X = (X1, . . . ,Xn), where Xk for k ∈
{1, . . . , n} is driven by the stochastic differential equation (SDE) with standard Brownian motion
B(t), i.e.,

dXk(t) = akdt+ βkdB(t), Xk(0) ∈ R.
Let H ∈ C2 (Rn), then

dH(X (t)) =

n∑
k=1

∂H(X (t))

∂xk
dXk(t) +

n∑
k,l=1

1

2

∂2H(X (t))

∂xkxl
d ⟨Xk(t),Xl(t)⟩ ,

where ⟨, ⟩ represents the inner product between two functions in C2(Rn).

Lemma 2 (Birkel, 1988) Let σ be the intensity of environmental fluctuation and B(t) the standard
Brownian motion, and assume that N = {Nt}t≥0 is a continuous real-valued martingale defined

by N(t) =
∫ t

0
σdB(s) and ⟨N,N⟩t =

∫ t

0
σ2dt, vanishes at t = 0, then

lim
t→∞

⟨N,N⟩t = ∞, implies lim
t→∞

N

⟨N,N⟩t
= 0.

Also

lim
t→∞

sup
⟨N,N⟩t

t
< 0, implies lim

t→∞

Nt

t
= 0.

3 MODEL FORMULATION AND ANALYSIS

In this section, we will discuss the enhancement of the model reported in Khan et al. (2021). For this,
let us assume that (Θ,FT , (Ft)t∈[0,T ], P ), on this space lives a 5-D Brownian motion W := {W(t) :

t ∈ [0, T ]} with W(t) :=
{
Wi(t) : i = 1, ..., 5

}
. Moreover, the natural filtration (Ft)t∈[0,T ] is

assumed to be generated by the Brownian motion W . Further, it could be noted that the spread of
SARS-CoV-2 disease is uncertain due to its novel nature. Thus, it transmits from human to human
as well as from reservoir to human while not uniform everywhere. We, therefore, assume that
the various compartments of the population have stochastic nature driven by different randomness
sources Bi(t), i = 1, . . . , 5. The proposed epidemiological model assumes that the variation in
all groups of population is connected to various sources of information represented by (Ft)t≥0,
where Ft := σ(B(t)) symbolizes the σ−algebra. We then assume the random fluctuation in every
group of the population and formulate the model based on available information about the biological
process through which the SARS-CoV-2 virus spreads. The multiple infection phases and reservoirs
play an important role in the novel disease transmission. The pre-symptomatic and symptomatic
populations are especially very significant. We divide the entire host population into various classes:
s = susceptible, a = pre-symptomatic, b = symptomatic, r = recovered, and m = reservoir.
The notion s defines the un-infected population at time t, but has a chance to get infected at time
t+∆t, where ∆t is the small increment in time. Similarly, the pre-symptomatic are those who are
infected while having no symptoms and are very significant in SARS-CoV-2 transmission because
of its novel nature, while the infected individuals showing symptoms are known as the symptomatic
population. The individuals who become healthy after the infection are the recovered ones. We
assume that all newborn babies, as well as immigrants from other populations, are susceptible.
Since still there is not enough evidence on the vertical transmission of the virus from the pregnant
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woman to the newborn baby, however, immigrants may or may not be infected. In the present case,
for the sake of mathematical simplicity, we assume that the immigrants are virus-free. Since the
population is assumed to be homogeneously mixed, the successful transmission of SARS-CoV-2
leads the susceptible individuals s into the pre-symptomatic or symptomatic with probability p and
(1 − p), respectively. Both the infected population (pre-symptomatic and symptomatic) and the
reservoir are responsible for disease transmission. We specify two modes of recovery based on the
characteristic of the disease. First, a fraction, denoted by ρ, of the pre-symptomatic population may
recover directly with q probability and enter the recovered class r in case the individual has a strong
immune system, while those who develop symptoms will lead to the symptomatic compartment
with (1 − q) probability. Second, the individual leaves the symptomatic class only after they have
fully recovered by taking proper treatment and move to the recovered class r or die. Based on the
effectiveness of the vaccine, the v-th portion of the susceptible population will move to the recovered
class directly. The ratio of the reservoirs contributing from infected (both the pre-symptomatic and
symptomatic) population are respectively denoted by α1 and α2, while the removal rate for the
reservoir is η. Further, the geometry of the proposed problem is depicted in Figure 1 and so the

Figure 1: The schematic process of the SARS-CoV-2 virus transmission model (1)

enhanced stochastic epidemiological model looks like this:

ds(t) =

{
Φ− ψ1s(t)a(t)

n(t)
− ψ2b(t)s(t)

n(t)
− ψ3s(t)m(t)

n(t)
− (υ + ϑ)s(t)

}
dt+ η1s(t)dB1(t),

da(t) =

{(
ψ1a(t)s(t)

n(t)
+
ψ2b(t)s(t)

n(t)
+
ψ3m(t)s(t)

n(t)

)
p− (ϑ+ ϑ1 + ρ)a(t)

}
dt+ η2a(t)dB2(t),

db(t) =

{
(1− p)

(
ψ1s(t)a(t)

n(t)
+
ψ2b(t)s(t)

n(t)
+
ψ3s(t)m(t)

n(t)

)
+ qρa(t)

− (ζ + ϑ+ ϑ2)b(t)

}
dt+ η3b(t)dB3(t),

dr(t) = {υs(t) + (1− q)ρa(t) + ζb(t)− ϑr(t)} dt+ η4r(t)dB4(t),

dm(t) = {α2b(t) + α1a(t)− ηm(t)} dt+ η5m(t)dB5(t),
(1)

where Φ is the birth rate, ψi, i = 1, 2, 3, are the disease transmission rates. The natural death is
assumed to be ϑ while the moving rate of pre-symptomatic individuals to the symptomatic popula-
tion is denoted by ρ. We also assume that ϑi, i = 1, 2, are the death rates that occur from disease
while ζ represents the recovery rate of the symptomatic population. Moreover, αi, i = 1, 2, are the
contributing rates for reservoir, and ηi, i = 1, . . . , 5, are the intensities of white noise.

3.1 WELL-POSEDNESS

This section is devoted to discussing the well-posedness of the proposed epidemic problem. We
show that the epidemic model (1) is mathematically as well as biologically feasible by proving
that the model has a unique and positive solution. We use the Lyapunov theory and Itô formula to
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perform the existence analysis of Eq. (1) which describes by the following theorem. Due to space
limit, all the proofs are deferred to appendix.

Theorem 1 For any initial population sizes (s(0), a(0), b(0), r(0),m(0)) ∈ R5
+, there exists a

unique global solution of the model (1) remains in R5
+, almost surely (a.s).

Theorem 2 For any (s(0), a(0), b(0), r(0),m(0)) ∈ R5
+, the solution of model (1) is positive when-

ever exists.

3.2 EXTINCTION

We discuss the novel disease extinction and find enough conditions for disease extinction in the form
of an expression containing the white noise intensities and epidemic parameters. Let us assume that
R0 is the stochastic reproductive parameter defined as R0 = RE

1 +RE
2 , where

RE
1 =

Φ(ψ1 + ψ1 + ψ1)p

(υ + ϑ)
(
ρ+ ϑ+ ϑ1 +

1
2η

2
2

) , and RE
2 =

Φ(ψ1 + ψ1 + ψ1)(1− p)

(υ + ϑ)
(
ζ + ϑ+ ϑ2 +

1
2η

2
3

) . (2)

Since the reproductive parameter is defined to be the average number of the secondary infectious
produced by a single infective individual whenever introduced into a susceptible population, the
infection dies out if R0 < 1, and spreads whenever R0 > 1. This shows that the threshold parameter
R0 is an important quantity, of which the sensitivity analysis against some chosen parameters is
described in the following figures.
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(a) Variation of R0 verses ν and ψ3.
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Figure 2: The graphical results show the variation of threshold parameter R0 against some chosen
parameters {ψ1, ψ3, ν}, while the other parametric values are: Φ = 0.9, ψ1 = 0.2, ψ2 = 0.3,
ν = 0.53, θ = 0.44, ρ = 0.55, θ1 = 0.45, θ2 = 0.65, p = 0.41, η2 = 0.51 and η23 = 0.65.
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(a) Variation of R0 verse θ1 and θ2.
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Figure 3: This visualizes the variation of threshold parameter R0 versus some sensitive epidemic
parameters {θ1, θ2, ζ}, while the other parametric values are: Φ = 0.9, ψ1 = 0.2, ψ2 = 0.3,
ν = 0.53, θ = 0.44, ρ = 0.55, θ1 = 0.45, θ2 = 0.65, p = 0.41, η2 = 0.51 and η23 = 0.65.

Further, regarding disease extinction, the following result is given.

Theorem 3 The novel disease of coronavirus dies out, if the stochastic reproductive number is less
than one (R0 < 1) and then

lim
t→∞

sup
ln a(t)

t
≤

(
ρ+ ϑ+ ϑ1 +

1

2
η22

)
(RE

1 − 1) < 0,
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and

lim
t→∞

sup
ln b(t)

t
≤

(
ζ + ϑ+ ϑ2 +

1

2
η23

)
(RE

2 − 1) < 0.

Also

lim
t→∞

s(t) =
Φ

υ + ϑ
, lim

t→∞
r(t) =

υΦ

ϑ(ϑ+ υ)
, lim

t→∞
m(t) = lim

t→∞
b(t) = lim

t→∞
a(t) = 0, a.s.

4 MODEL DISCRETIZATION

To perform the numerical assessment of the model that is under consideration, we use Eu-
ler–Maruyama (EM) method and Milstein’s Higher Order Method. We assume that the de-
sired time interval is [0, T ]. The time-step ∆t = T

L , where L is a positive integer. A point
of the discretized interval is τj = j∆t. For the sake of simplicity, a solution of the prob-
lem (s(τj), a(τj), b(τj), r(τj),m(τj)) can be written as (sj , aj , bj , rj ,mj) and Bi(τj) = Bij ,
i = 1, 2, . . . , 5. The Euler–Maruyama (EM) method for the proposed model will take the form:

sj = sj−1 +

{
Φ− ψ1aj−1sj−1

nj−1
− ψ2bj−1sj−1

nj−1
− ψ3mj−1sj−1

nj−1
− (υ + θ)sj−1

}
∆t

+ η1sj−1(B1j − B1j−1),

aj = aj−1 +

{
p

(
ψ1aj−1sj−1

nj−1
+
ψ2bj−1sj−1

nj−1
+
ψ3mj−1sj−1

nj−1

)
− (ρ+ θ + θ1)aj−1

}
∆t

+ η2aj−1(B2j − B2j−1
),

bj = bj−1 +

{
(1− p)

(
ψ1aj−1sj−1

nj−1
+
ψ2bj−1sj−1

nj−1
+
ψ3mj−1sj−1

nj−1

)
+ qρaj−1

− (ζ + θ + θ2)bj−1

}
dt+ η3bj−1(B3j − B3j−1

),

rj = rj−1 +

{
υsj−1 + (1− q)ρaj−1 + ζbj−1 − θrj−1

}
dt+ η4rj−1(B4j − B4j−1),

mj = mj−1 +

{
α1aj−1 + α2bj−1 − ηmj−1

}
dt+ η5mj−1(B5j − B5j−1

).

(3)

It can be noticed that in the deterministic case (ηi = 0), Eq. (3) reduces to Euler’s method. The next
step is to compute discretized Brownian paths that can be used to find Bi(τj)− Bi(τj−1) needed in
Eq. (1). For this, let us assume that the step size ∆t is an integral multiple ofR ≥ 1 of the increment
δt for the Brownian path. This ensures that the set of points t′js (the discretized Brownian path) also
contains τj (used in the EM solution). The increments Bi(τj)−Bi(τj−1) in the EM method (3) are
given by

Bi(τj)− Bi(τj−1) = Bi(jRδt)− Bi((j − 1)Rδt) =
jR∑

k=jR−R+1

dBk.

If one replaces these Brownian increments by
√
∆tVj (Vj takes the values +1 and −1 with equal

probability), it will give the weak Euler Maruyama (WEM) procedure. The above steps can be
concluded in Algorithm 1. Next, we truncate the Itô–Taylor expansion at a suitable point, which
gives Milstein’s procedure for SDE (1) as follows:

sj = sj−1 +

{
Φ− ψ1aj−1sj−1

nj−1
− ψ2bj−1sj−1

nj−1
− ψ3mj−1sj−1

nj−1
− (υ + θ)sj−1

}
∆t

+ η1sj−1(B1j − B1j−1) +
1

2
η21sj−1((B1j − B1j−1)

2 −∆t),

aj = aj−1 +

{
p

(
ψ1aj−1sj−1

nj−1
+
ψ2bj−1sj−1

nj−1
+
ψ3mj−1sj−1

nj−1

)
− (ρ+ θ + θ1)aj−1

}
∆t

+ η2aj−1(B2j − B2j−1
) +

1

2
η22aj−1((B2j − B2j−1

)2 −∆t),
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bj = bj−1 +

{
(1− p)

(
ψ1aj−1sj−1

nj−1
+
ψ2bj−1sj−1

nj−1
+
ψ3mj−1sj−1

nj−1

)
+ qρaj−1

− (ζ + θ + θ2)bj−1

}
dt+ η3bj−1(B3j − B3j−1

) +
1

2
η23bj−1((B3j − B3j−1

)2 −∆t),

rj = rj−1 +

{
υsj−1 + (1− q)ρaj−1 + ζbj−1 − θrj−1

}
∆t+ η4rj−1(B4j − B4j−1)

+
1

2
η24rj−1((B4j − B4j−1)

2 −∆t),

mj = mj−1 +

{
α1aj−1 + α2bj−1 − ηmj−1

}
∆t+ η5mj−1(B5j − B5j−1)

+
1

2
η25mj−1((B5j − B5j−1

)2 −∆t).

(4)

The main algorithm of Milstein’s Higher Order Method for the model is given in Algorithm 2.

5 EXPERIMENTAL RESULTS

In this section, we visualize the large-scale numerical simulations of our model as described by
Eq. (1). In the case of epidemiological models, it is very important to validate and justify the
model with the help of available data. We fit our model to the data of SARS-CoV-2 reported in
the United Arab Emirates (UAE) between March 21st, 2022 - Jun 21st, 2022, which clearly shows
the effectiveness of the model and the importance of the current study as shown in Figure 4. To fit
the model, parameters need be estimated. First, we import the data and accordingly use the theory
of the Runge-Kutta method for the numerical solution of the proposed system. We then use the
nonlinear fitting function ‘Isqcurvefit’ in matlab to estimate the epidemic parameter as presented in
table 1. The error analysis of the model predictions with real data is also performed by calculating
the error and absolute error as presented in Figure 4. Both the error and absolute error describe
that within the first 60 days the error curve fluctuates in the neighborhood of 0. That is the model
best fitting the data. Within this duration, one can say that the model covers above 95% of the data
points. Between 65 and 85 days, there is a gap between the observed data and the curve predicted
by the model. This is because, we have a sudden increase in the reported cases and mathematically,
such a drastic change in the dynamics of infection is very difficult to capture. Afterward, the error
tends to decrease, and the model again best fits the data which shows the effectiveness of the present
work. We use the schemes as reported in Algorithms 1-2 with an application of model parameters
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Figure 4: Parameter estimation and error analysis for the proposed model based on the data from
United Arab Emirates (UAE). The model fitted with the real data of daily new confirmed cases for
the time period March 21, 2022 to June 21, 2022. Moreover, calculated the error analysis of the
values via simulation and real data.

in a biologically feasible way, and initial sizes of populations, i.e., (20, 30, 35, 32, 50). We also
assume that the unit of the time interval is 0 to 10. Thus, the execution of the schemes as reported
above with the biologically feasible parametric value and initial compartmental population sizes
lead to the results as depicted in Figures 5, 6, and 7, where the solution curves of the proposed
epidemic problem (1) are represented by Figure 5. Particularly, the numerical solution retrieved by
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(b) Solution curves via Milstein’s method.

Figure 5: The plots visualizes the solution curves of the model (1) against the parameter values:
Φ = 0.1, ψ1 = 0.2, ψ3 = 0.01, ψ2 = 0.3, ν = 0.43, θ = 0.44, η1 = 0.41, η2 = 0.51, η3 = 0.65,
η4 = 0.731, η5 = 0.64, η = 0.4, p = 0.41, ρ = 0.55, θ1 = 0.45, q = 0.22, ζ = 0.01, θ2 = 0.65,
α1 = 0.43 and α2 = 0.87.

0 2 4 6 8 10
0

5

10

15

20

t

s(t)

 

 

E−M Method
MHO Method

(a) Susceptible Population

0 2 4 6 8 10
0

10

20

30

40

50

t

r(t)

 

 

E−M Method
MHO Method

(b) Recovered Population

Figure 6: The graphs represent the temporal dynamics of the compartmental population as well as
the comparative analysis of the results against parametric values: Φ = 0.9, ψ1 = 0.2, ψ3 = 0.01,
ψ2 = 0.3, ν = 0.43, θ = 0.44, η1 = 0.41, η2 = 0.51, η3 = 0.65, η4 = 0.731, η5 = 0.64, η = 0.6,
p = 0.41, ρ = 0.65, θ1 = 0.45, q = 0.022, ζ = 0.1, θ2 = 0.65, α1 = 0.43 and α2 = 0.87.

0 2 4 6 8 10
0

5

10

15

20

25

30

t

a(t)

 

 

E−M Method
MHO Method

(a) Asymptomatic Population

0 2 4 6 8 10
0

10

20

30

40

50

t

b(t)

 

 

E−M Method
MHO Method

(b) Symptomatic Population

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

t

m(t)

 

 

E−M Method
MHO Method

(c) Reservoir

Figure 7: The graphs represent the dynamics of the compartmental population as well as the com-
parative analysis of the results against parametric values: Φ = 0.9, ψ1 = 0.2, ψ3 = 0.01, ψ2 = 0.3,
ν = 0.43, θ = 0.44, η1 = 0.41, η2 = 0.51, η3 = 0.65, η4 = 0.731, η5 = 0.64, η = 0.6, p = 0.41,
ρ = 0.65, θ1 = 0.45, q = 0.022, ζ = 0.1, θ2 = 0.65, α1 = 0.43 and α2 = 0.87.
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Table 1: The values of epidemic parameters of model (1) estimated from real data of SARS-CoV-2

Parameters Description Value Source

ψ1 Disease transmission rate due to pre-symptomatic 0.1387 Fitted
ψ2 Disease transmission co-efficient due to symptomatic 0.6174 Fitted
ψ3 Disease transmission rate from reservoir 0.001024 Fitted
v Vaccination 0.00001 Fitted
p Probability at which the susceptible become pre-symptomatic 0.0003 Fitted
q Probability at which pre-symptomatic become recover 0.0102 Fitted
ρ Recovery rate of pre-symptomatic 0.09 Fitted
ϑ1 Death rate due to disease 0.0054 Fitted
ϑ2 Death rate due to disease 0.5245 Fitted
α1 Contributing rate for reservoir 0.3436 Fitted
α2 Contributing rate for reservoir 0.0083 Fitted
ζ Recovery rate of symptomatic individuals 0.001 Fitted
η Removal rate of reservoir 0.01 Fitted

Euler–Maruyama (EM) is visualized in Figure 5a while the graphs depicted in Figure 5b show the
solution trajectories carried out with the help of Milstein’s method.

Further, to show the comparison of solution for the compartmental populations of model (1), we
present the temporal dynamics of susceptible, asymptomatic, symptomatic, recovered and reservoir
in Figure 6a, 6b, 7a, 7b and 7c, respectively. More precisely, the solution curves of the model (1)
for the susceptible population are demonstrated in Figure 6a. The two trajectories represented by
the red and blue dashed lines, respectively, show the solution s(t) applying Euler–Maruyama (EM)
and Milstein’s methods as in Figure 6a. Similarly, the long-run numerical simulation for the pre-
asymptomatic, symptomatic, recovered, and reservoir visualized by the blue dashed line and red
dashed line, respectively, represents the solution retrieved by Euler–Maruyama (EM) and Milstein’s
methods, see Figure 6b-7c. It could be observed that the numerical solutions of the proposed prob-
lem via Euler–Maruyama (EM) and Milstein’s methods agree with each other in the long run, which
shows the significance of the developed algorithm. Likewise, the numerical verification of the the-
oretical results as stated by Theorem 3 is shown in Figure 6 and 7. We obtained this by calculating
the value of threshold parameter R0 = 0.2033 < 1 in this case. The numerical results verify the
analytical findings that whenever R0 < 1 the infection of novel disease dies out (infection popula-
tion vanishes) while there will be only susceptible and recovered population as shown in Figure 6.
Thus, it could be concluded that the elimination of the disease continuously depends on the threshold
parameter, and it is very necessary to keep its value less than unity as much as possible.

6 CONCLUSION

This paper formulated a stochastic epidemiological model for SARS-CoV-2 virus mitigation ac-
cording to the characteristics of newly reported coronavirus transmission. The impact of pre-
symptomatic, symptomatic, and reservoir has been incorporated to present accurate and well-
structured dynamics behavior of the disease. For this purpose, we divided the total compartmental
population into the various classes of susceptible, pre-symptomatic, symptomatic, recovered, and
reservoir. We showed the proper disease mitigation with the help of the stochastic differential equa-
tions model. We studied the existence and uniqueness analysis of the model and showed that the
model is biologically as well as mathematically feasible. We also discussed the extinction of the
model and calculated some sufficient conditions for the novel disease extinction. To perform the
long-run simulation of the proposed model Euler-Maruyama and Milstein’s schemes have been de-
veloped and supported the analytical findings with graphical representation. We also used real data
of the SARS-CoV-2 virus and fitted the model to the data and proved the effectiveness of the current
study. In the future, we will work on the dynamics and control of novel corona virus disease using
multiple strained model.
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APPENDIX

A.1 PROOF OF THEOREM 1

Proof. To begin, we use the methodology adopted in Lei & Yang (2017) which gives that for any
initial size of population (s(0), a(0), b(0), r(0),m(0)) ∈ R5

+, the proposed epidemic system (1)
admits a unique local solution (s(t), a(t), b(t), r(t),m(t) on t ∈ [0, τe) (where τe is the explosion
time). We investigate that τe = ∞ to prove that the solution is global a.s. To do, we assume that
κ0 ≥ 0 is sufficiently large such that 1

κ0
< (s(0), a(0), b(0), r(0),m(0)) < κ0. We define the

stopping time, τk for any κ ≥ κ0 by

τk = inf

{
t ∈ [0, τe) : min{s(t), a(t), b(t), r(t),m(t)} ≤ 1

k
or

max{s(t), a(t), b(t), r(t),m(t)} ≥ κ

}
.

Let us assume that ϕ is the null set and inf ϕ = ∞. Obviously, τk increasing whenever k increasing
unboundedly. We also set lim τκ = τ∞ whenever k → ∞, then τe ≥ τ∞. If we can show that
τ∞ = ∞ then τe = ∞ will also hold. To complete the proof, only we need to show that τe = ∞.
So, we are going to prove it on contrary basis that is if this statement is false, there exists a pair of
constants T > 0 and ε ∈ (0, 1), such that

P{τκ ≤ T} ≥ ε, (5)

for each κ ≥ κ0. Now define a function H ∈ C2 by H : R5
+ → R+ by

H(s, a, b, r,m) = s− 1− ln s+ a− 1− ln a+ b− 1− ln b+ r − 1− ln r +m− 1− lnm.

Clearly, H is non-negative, and thus by the virtue of the Itô formula, we obtain

dH =

(
1− 1

s

)
ds+

(
1− 1

a

)
da+

(
1− 1

b

)
db+

(
1− 1

r

)
dr +

(
1− 1

m

)
dm

+
1

2

(
η21 + . . .+ η25

)
dt+ η1 (1− s) dB1(t) + η2 (1− a) dB2(t)

+ η3 (1− b) dB3(t) + η4 (1− r) dB4(t) + η5 (1−m) dB5(t).

(6)

Since s+a+b+r+m = n, then using Eq.(1) in Eq.(6) with a little simplification and re-arrangement
implies

dH ≤ (Φ + 2(ψ1 + ψ2 + ψ3) + υ + ϑ+ ρ+ ζ + 4ϑ+ ϑ1 + ϑ2 + η + α1 + α2 + η) dt

+
1

2

(
η21 + . . .+ η25

)
dt− η1 (s− 1) dB1(t)− η2 (a− 1) dB2(t)

− η3 (b− 1) dB3(t)− η4 (r − 1) dB4(t)− η5 (m− 1) dB5(t).

For the shake of simplicity, let us assume that K = Φ+ 2(ψ1 + ψ2 + ψ3) + υ + ϑ+ ρ+ ζ + 4ϑ+
ϑ1 + ϑ2 + η + α1 + α2 + η + 1

2

(
η21 + . . .+ η25

)
, the above inequality looks like

dH ≤ Kdt− η1 (s− 1) dB1(t)− η2 (a− 1) dB2(t)

− η3 (b− 1) dB3(t)− η4 (r − 1) dB4(t)− η5 (m− 1) dB5(t).

For any t ∈ [0, T ] and κ ≥ κ0, the application of integration with limits 0 to τk ∧ t gives∫ τk∧t

0

dH ≤
∫ τk∧t

0

Kdt−
∫ τk∧t

0

(s− 1)η1dB1 −
∫ τk∧t

0

(a− 1)η2dB2

−
∫ τk∧t

0

(b− 1)η3dB3 −
∫ τk∧t

0

(r − 1)η4dB3 −
∫ τk∧t

0

(m− 1)η5dB5.

By taking the expectation we may arrive at

E
{
H(s(τk ∧ t), a(τk ∧ t), b(τk ∧ t), r(τk ∧ t),m(τk ∧ t))

}
≤ H(s(0), a(0), b(0), r(0),m(0)) + E

{∫ t

0

Kdv
}
,
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which implies

E
{
H(s(τk ∧ t), a(τk ∧ t), b(τk ∧ t), r(τk ∧ t),m(τk ∧ t))

}
≤ H(s(0), a(0), b(0), r(0),m(0)) + TK.

(7)

Let ∆κ = {T ≥ τκ} for every κ ≥ κ0, then P (∆κ) ≥ ε. Note that some compo-
nents of s(τk ∧ T ), a(τk ∧ T ), b(τk ∧ T ), r(τk ∧ T ), m(τk ∧ T ) equal either 1/κ or κ, and
H(s(τk ∧ t), a(τk ∧ t), b(τk ∧ t), r(τk ∧ t),m(τk ∧ t)) is not less than 1

κ+lnκ−1 or − lnκ+κ−1
for all ϖ ∈ ∆κ, thus we have

H
(
s, a, b, c,m

)
≥

(
− log κ− 1 + κ

)
∧
(
1

κ
− 1 + log κ

)
.

So from Eq.(5) and (7) we may conclude that

H((s(0), a(0), b(0), r(0),m(0))) + TK

≥ E
{
1∆κ(ϖ)H

(
s(τκ ∧ T ), a(τκ ∧ T ), b(τκ ∧ T ), r(τκ ∧ T ),m(τκ ∧ T )

)}
,

≥ E
{
1∆κ(ϖ)

(
log κ− 1 +

1

κ

)
∧ (− log κ− 1 + κ

)}
,

=

{
log κ− 1 +

1

κ

}
∧ (− log κ− 1 + κ

)
E
(
1∆κ(ϖ)

)
.

The last inequality gives

H((s(0), a(0), b(0), r(0),m(0))) + TK ≥ ε

(
lnκ+

1

κ
− 1

)
∧ (− log κ+ κ− 1),

where 1∆κ(ϖ) is the indicator function for ∆κ(ϖ). Thus for k approaches ∞ we may derive that
∞ = H

(
(s(0), a(0), b(0), r(0),m(0))

)
+KT <∞, which is a contradiction, so τe = ∞ a.s.

A.2 PROOF OF THEOREM 2

Proof. Let L ∈ [0,∞) and we suppose that the solution of the model (1) exists in L, then for every
t ∈ L, we have

s(t) = exp

{
−(υ + ϑ)t−

∫ t

0

(
ψ1a+ ψ2b+ ψ3m

n
+
η21
2

)
du

}
− η1

∫ t

0

dB1(u)

×
[
s(0) + Φ

∫ t

0

exp

{
(ε+ ϑ) t+

∫ u

0

(
ψ1a+ ψ2b+ ψ3m

n
+
η21
2

)
dv + η1

∫ u

0

dB1(v)

}
du

]
.

Next, the solution of the second equation of the proposed model looks like

a(t) = exp

{
−(ρ+ ϑ+ ϑ1)t+

∫ t

0

(
pψ1s

n
+
η22
2

)
du

}
+ η2

∫ t

0

dB2(u)×
[
a(0)

+

∫ t

0

p

(
ψ1bs+ ψ3ms

n

)
exp

{
(ρ+ ϑ+ ϑ1) t−

∫ s

0

(
pψ1s

n
+
η22
2

)
du+ η2

∫ s

0

dB2(u)

}
ds

]
.

Clearly, the above equation implies that s > 0 and a ≥ 0. In a similar fashion it can shown that b, r
and m are non-negative.
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A.3 PROOF OF THEOREM 3

Proof. To begin, first we integrate the proposed model (1) which yields∫ t

0

ds(y) = Φt−
∫ t

0

{
ψ1as

n
+
ψ2bs

n
+
ψ3ms

n
− (υ + ϑ)s

}
dy +

∫ t

0

η1s(x)dB1(y),∫ t

0

da(y) =

∫ t

0

p

{
ψ1as

n
+
ψ2bs

n
+
ψ3ms

n
− (ρ+ ϑ+ ϑ1) a

}
dy +

∫ t

0

η2a(y)dB2(y),∫ t

0

db(y) =

∫ t

0

(1− p)

{
ψ1as

n
+
ψ2bs

n
+
ψ3ms

n
− (ζ + ϑ+ ϑ2) a+ qρa

}
dy

+

∫ t

0

η2a(y)dB2(y),∫ t

0

dr(y) =

∫ t

0

(υs(x) + (1− q)ρa+ ζb− ϑr(y)) dy +

∫ t

0

η4r(y)dB4(y),∫ t

0

dm(y) =

∫ t

0

(α2b(x) + α1a(x)− ηm(y)) dy +

∫ t

0

η5m(y)dB5(y),

implies that

s(t)− s(0)

t
= Φ− ψ1

〈
as

n

〉
+

〈
ψ2bs

n

〉
+

〈
ψ3ms

n

〉
− (υ + ϑ) ⟨s⟩+ 1

t

∫ t

0

η1s(y)dB1(y),

a(t)− a(0)

t
= p

{
ψ1

〈as
n

〉
+ ψ2

〈
bs

n

〉
+ ψ3

〈ms
n

〉
− (ρ+ ϑ+ ϑ1) ⟨a⟩

}
+

1

t

∫ t

0

η2a(y)dB2(y),

b(t)− b(0)

t
= (1− p)

{
ψ1

〈as
n

〉
+ ψ2

〈
bs

n

〉
+ ψ3

〈ms
n

〉
− (ζ + ϑ+ ϑ2) ⟨a⟩+ qρ ⟨a⟩

}
+

1

t

∫ t

0

η2a(y)dB2(y),

r(t)− r(0)

t
= υ ⟨s⟩+ (1− q)ρ ⟨a⟩+ ζ ⟨b⟩ − ϑ ⟨r⟩+ 1

t

∫ t

0

η4r(y)dB4(y),

m(t)−m(0)

t
= α2 ⟨b⟩+ α1 ⟨a⟩ − η ⟨m⟩+ 1

t

∫ t

0

η5m(y)dB5(y).

Adding the first three equations we obtain

s(t) + a(t) + b(t)− s(0)− a(0)− b(0)

t
= Φ− (υ + ϑ) ⟨s⟩ − (ρ+ ϑ+ ϑ1) ⟨a⟩ − (ζ + ϑ+ ϑ2) ⟨b⟩

+
1

t

∫ t

0

{η1s(y)dB1(y) + η2a(y)dB2(y) + η3b(y)dB3(y)} .

Using some algebraic manipulation and little re-arrangement we arrive at

⟨s(t)⟩ = Φ

υ + ϑ
− ρ(1− q)

υ + ϑ
⟨a⟩ − (ϑ+ ϑ1) ⟨a⟩ − (ζ + ϑ+ ϑ2) ⟨b⟩+ f(t), (8)

where

f(t) = − 1

υ + ϑ

{
a(t) + b(t) + s(t)− b(0) + a(0) + s(0)

t

}
+

1

t

∫ t

0

{η1s(y)dB1(y) + η2a(y)dB2(y) + η3b(y)dB3(y)} .

Clearly, f(t) tend to 0 if t increasing unboundedly

lim
t→∞

f(t) = 0 a.s.

Now by Itô formula the second equation of model (1) leads to the following assertion

d ln a(t) = p

{
ψ1s

n
+
ψ2bs

an
+
ψ3ms

an

}
− (ρ+ ϑ+ ϑ1)−

1

2
η22 + η2dB2(t).

14
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Applying integration we get

1

t
ln a(t)t0 = p

{
ψ1

〈 s
n

〉
+ ψ2

〈
bs

an

〉
+ ψ3

〈ms
an

〉}
− (ρ+ ϑ+ ϑ1)−

1

2
η22 +

1

t
η2dB2(t).

Since s+ a+ b+ r +m = n, so the above equation may takes the following form

1

t
ln a(t)t0 ≤ p {(ψ1 + ψ2 + ψ3) ⟨s⟩} − (ρ+ ϑ+ ϑ1)−

1

2
η22 +

1

t
η2dB2(t). (9)

Plugging the value of ⟨s⟩ by following Eq.(8) in (9) we reach to the following assertion

1

t
ln a(t)t0 ≤ p (ψ1 + ψ2 + ψ3)

{
Φ

υ + ϑ
− ρ(1− q)

υ + ϑ
⟨a⟩ − ϑ+ ϑ1

υ + ϑ
⟨a⟩ − (ρ+ ϑ+ ϑ2) ⟨b⟩

+ f(t)

}
− (ρ+ ϑ+ ϑ1)−

1

2
η22 +

1

t
η2dB2(t),

≤ p (ψ1 + ψ2 + ψ3)

{
Φ

υ + ϑ
+ f(t)

}
− (ρ+ ϑ+ ϑ1)−

1

2
η22 +

1

t
η2dB2(t).

Following strong law of large number Birkel (1988) as well as using Eq.(2), the last inequality may
takes the form

lim
t→∞

sup
ln a(t)

t
≤

{
ρ+ ϑ+ ϑ1 +

1

2
η22

}
(RE

1 − 1) < 0 a.s.,

implies that lim a(t) = 0 whenever RE
1 < 1. In a similar the third equation of model (1) implies

that

d ln b(t) = (1− p)

{
ψ1as

n
+
ψ2s

n
+
ψ3ms

an

}
+
qρa

b
− (ζ + ϑ+ ϑ2)−

1

2
η23 + η3dB3(t).

Taking the integral of both sides, we derive

1

t
ln b(t)t0 = (1− p)

{
ψ1

〈as
bn

〉
+ ψ2

〈 s
n

〉
+ ψ3

〈ms
bn

〉}
+ qρ

〈a
b

〉
− (ζ + ϑ+ ϑ2)

− 1

2
η23 +

1

t
η3dB3(t).

Following the similar procedure as above we arrive at

1

t
ln b(t)t0 ≤ (1− p) (ψ1 + ψ2 + ψ3)

{
Φ

υ + ϑ
− ρ(1− q)

υ + ϑ
⟨a⟩ − ϑ+ ϑ1

υ + ϑ
⟨a⟩ − (ρ+ ϑ+ ϑ2) ⟨b⟩

+ f(t)

}
− (ζ + ϑ+ ϑ2)−

1

2
η23 +

1

t
η3dB2(t),

≤ (1− p) (ψ1 + ψ2 + ψ3)

{
Φ

υ + ϑ
+ f(t)

}
− (ζ + ϑ+ ϑ2)−

1

2
η23 +

1

t
η3dB2(t).

Substituting Eq.(2), and following again the strong law of large number, so the final inequality leads
to

lim
t→∞

sup
ln b(t)

t
≤

{
ζ + ϑ+ ϑ2 +

1

2
η23

}
(RE

2 − 1) < 0,

which implies that lim b(t) = 0 for t tend to ∞ whenever RE
2 < 1. Moreover, the last equation

of model (1) yields that m(t) = 0 if t → ∞. Thus, Eq.(8) gives that lim s = Φ
υ+ϑ . Therefore,

we conclude that the extinction of the novel disease depend continuously on R0, and so vanishes
whenever the value of R0 is less then unity.
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A.4 ALGORITHMS

Algorithm 1 Euler Maruyama Method (EMM)

1: Descretization of [0, T ] into L equal subintervals of width ∆t = T
L > 0: 0 = τ0 < τ1 < · · · <

τL = T .
2: Setting the initial data (s0, a0, b0, r0,m0).
3: Recursive definition of (sj , aj , bj , rj ,mj) for 1 ≤ j ≤ L as in (3).
4: Discretization of the Brownian paths that can be used in finding Bi(τj) − Bi(τj−1) using the

constant R ≥ 1 and the increment δt for the Brownian path.

5: Finding of Bi(τj)− Bi(τj−1) = Bi(jRδt)− Bi((j − 1)Rδt) =
∑jR

k=jR−R+1 dBk.

Algorithm 2 Milstein’s Higher Order Method (MHOM)

1: Descretization of [0, T ] into L equal subintervals of width ∆t = T
L > 0: 0 = τ0 < τ1 < · · · <

τL = T with τn = n∆t.
2: Setting the initial data (s0, a0, b0, r0,m0).
3: Recursive definition of (sj , aj , bj , rj ,mj) for 1 ≤ j ≤ L as in (4).
4: Discretization of the Brownian paths that can be used in finding Bi(τj) − Bi(τj−1) using the

constant R ≥ 1 and the increment δt for the Brownian path.

5: Finding of Bi(τj)− Bi(τj−1) = Bi(jRδt)− Bi((j − 1)Rδt) =
∑jR

k=jR−R+1 dBk.
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