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Abstract001

From the arrival of patients at a health facility002
to their discharge, a vast amount of highly valu-003
able medical data are collected and gathered004
in Electronic Health Records (EHRs). How-005
ever, current data management faces a certain006
number of limitations, linked with the amount007
and type of data used (tables, reports, images,008
etc.), that could hinder the efficiency of med-009
ical services. As a consequence, the analysis010
of records could be long and laborious for a011
medical personnel member, whereas the admis-012
sion of patients in emergency situations calls013
for efficiency.014

This paper presents a flexible Generative Ar-015
tificial Intelligence-based framework for the016
processing of EHRs data. Through the use of017
Large Language Models and Vision Language018
Models, medical data are analyzed and aggre-019
gated in a single document summarizing the020
key information of a patient based on his/her021
medical history. This multimodal framework022
takes advantage of the strengths of language023
models to process structured data, medical re-024
ports, and medical images using text analy-025
sis, images processing, and Optical Character026
Recognition (OCR).027

Experiments, conducted using hospital EHRs028
data from the Medical Information Mart for029
Intensive Care IV (compiling data from Beth030
Israel Deaconess Medical Center, Boston). and031
Language Models (including Mistal, Deepseek,032
LLaMA, Gemma, and LLaVA models) exe-033
cuted locally for medical data confidential-034
ity, underscore promising results towards auto-035
mated mutimodal processing of EHRs through036
summarization of reports in summaries 11037
times shorter (for best LLMs) and the genera-038
tion of image description with an extraction of039
texts with OCR.040

1 Introduction041

Medical data is at the center of the organization of042

health facilities. The exploitation of such data, pro-043

viding valuable information about patients’ current 044

situations and reflecting their medical histories, is 045

essential for decision-making and management of 046

medical assets. In order to exploit efficient and 047

easy-to-use solutions, Electronic Health Records 048

(EHRs) are used by many health facilities to com- 049

pile patient data. Such solutions are at the center of 050

the activities of medical staff members who consult 051

existing data and collect new information during 052

the care of a patient. 053

However, medical data processing faces a cer- 054

tain number of challenges related to the amount 055

and type of data used in health facilities. In fact, 056

because data from previous admissions are kept 057

in the patient history, the study of records of a pa- 058

tient with a lot of previous stays can be long for 059

a medical personnel member whereas it is essen- 060

tial to correctly understand the patient background. 061

The processing of medical data is also complicated 062

by the type of data collected, including numerical 063

data (such as vital signs) but also images (such as 064

CT scan results) and textual data (medical reports, 065

commentaries written by medical personnel, etc.). 066

This study focuses on processing the data present 067

in EHRs to generate a summary of all the informa- 068

tion available about a patient. The purpose of the 069

developed framework is to aggregate all available 070

data about a patient into a global summary which 071

can be consulted by a member of the medical staff 072

before a future admission of the same patient. Data 073

processed include structured records, but also med- 074

ical reports and images. 075

This article is structured as follows. Section 076

2 analyzes studies focusing on the processing of 077

medical reports and the generation of medical sum- 078

maries. Section 3 presents the approach developed 079

by our team to generate medical summaries from 080

EHRs, including the preparation of data and the 081

processing of medical texts, images, and records. 082

Section 4 evaluates and compares the different solu- 083

tions . Section 5 draws a conclusion with prospects 084
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and Section 6 discusses about the limitations of the085

work.086

2 Literature review087

Many studies have focused on developing NLP088

strategies to process EHRs data, extract interesting089

features, and provide insights.090

First, approaches, such as (Vashishth et al.,091

2021), relying on Deep Learning models, were de-092

veloped to process medical texts and provide data093

extraction with semantic analysis.094

The latest advances in Generative Artificial Intel-095

ligence (Gen IA) and the advent of Large Language096

Models (LLMs) have shed light on generation tech-097

niques such as Retrieval-Augmented Generation098

(RAG), exploiting the capabilities of LLMs to pro-099

duce data insights from external knowledge bases100

(Gao et al., 2023). Opportunities for data man-101

agement, information retrieval were identified, but102

studies also raised challenges related to models and103

data management, such as (Yu et al., 2023) high-104

lighting the necessity to develop inclusive solutions105

while dealing with data privacy/security and ethi-106

cal concerns. Concrete applications of RAG were107

developed to process structured data and gener-108

ate insights through Table-to-Text generation (Wu109

et al., 2022). RAG was also adapted to the pro-110

cessing of texts written in natural language (such111

as medical reports) for the summarization of data112

(Goswami et al., 2024) and the extraction of key113

information (Alkhalaf et al., 2024). In an effort114

to valorize the available data, generation solutions,115

based on language models (Handa et al., 2023) and116

transformer encoder–decoder architectures (Bazi117

et al., 2023), were introduced to adapt EHR data118

processing to image analysis.119

Finally, the interactions between and users and120

data were developed through the creation of query-121

based generators (Zhao et al., 2023) leveraging122

the capabilities of Language Models to respond to123

users’ questions from provided data and instruc-124

tions. Medical applications of such technologies125

include chatbots that provide recommendations126

from patients’ queries and information (Yang et al.,127

2024).128

In summary, the studies in this literature review129

leverage RAG and Gen AI solutions to develop130

Data-to-Text solutions. Data are processed using131

various models in order to generate data descrip-132

tions, insights and summaries. However, they usu-133

ally focus on the processing of one type of data134

whereas EHRs are made of heterogeneous data. A 135

lot of Language Models-based studies also relies on 136

the use of Open AI GPT models, raising questions 137

about data confidentiality and computation capabil- 138

ities required to run the solutions. In response to 139

these challenges, this paper tries to develop a frame- 140

work for multimodal processing of EHR data, sum- 141

marized in a report that can be quickly reviewed 142

by a member of the medical staff. The proposed 143

solutions rely on open-source Language Models 144

with few weights to process locally structured data, 145

medical reports (texts), and medical images. 146

3 Methodology 147

3.1 Data exploited 148

This study, focusing on the processing of EHRs 149

data, was carried out through the case of study 150

of medical data collected in hospitals. The study 151

was conducted using data from the Medical Infor- 152

mation Mart for Intensive Care IV (MIMIC IV) 1 153

dataset (see (Johnson et al., 2023), (Johnson et al., 154

2020), and (Goldberger et al., 2000)), a public 155

de-identified dataset that regroups data from the 156

EHRs of the Beth Israel Deaconess Medical Center 157

(Boston). 158

The experiments were conducted by filtering the 159

data from four successive stays of two selected 160

patients (based on the total number of stays reg- 161

istered in the database). In order to experiment 162

with the generation of summaries, a certain number 163

of parameters are kept, including patient-related 164

data, hospital stay-related data, diagnoses and pro- 165

cedures for which the patient was billed during 166

his/her hospital stays, and discharge reports pro- 167

duced after each hospital stay. All textual data are 168

written in English. The data used for the experi- 169

ment include both structured and unstructured data. 170

In addition, a medical image dataset was created 171

to complete the records using publicly available 172

images from an image bank2. Thus, a set composed 173

of scanner result images with different sizes (to 174

test the flexibility of the solutions) was created 3. 175

Additionally, vial pictures were taken and used to 176

evaluate models on images containing texts and 177

experiment OCR. 178

1MIMIC IV: https://mimic.mit.edu/
2Image bank : https://pixabay.com/
3Note: As this study aims to build a flexible framework

and summarized data, the choice has been made to use vari-
ous images (such as scan results) although they may not be
related to the clinical condition of the patients studied in the
experiments.

2

https://mimic.mit.edu/
https://pixabay.com/


Data were filtered and aggregated to construct a179

data architecture, presented in Figure 1, which was180

used to simulate data management in hospitals and181

carry out experiments.182

Figure 1: Architecture of the database used for experi-
mentation.

Table 1 summarizes the number of records used183

for each type of data in the database.184

Data number of records
Patients 2
Hospital stays 8 (4 for each patient)
Diagnoses billed 64
Procedures billed 7
Medical reports 6
Medical images 7

Table 1: Number of records for each data exploited for
experiments.

3.2 Processing of reports and texts185

This section presents the approach developed to186

process texts written in natural language. This ap-187

proach is used to process discharge reports and188

medical commentaries written by medical person-189

nel to produce a brief textual summary of the main190

information of each document.191

The solution experimented relies on the use of a192

Large Language Model (LLM) coupled with with193

the EHR reports in order to produce short sum-194

maries (50 to 80 words) of each document with195

key information. The prompt sent to the LLM is196

fueled by the content of each document in order to197

generate a summary with patient data.198

In order to ensure the traceability of information,199

reports are processed one by one and summarized200

individually (with a prompt sent for each report)201

before all summaries are aggregated into a single202

document. This approach allows an easy identifica- 203

tion of the document associated with each informa- 204

tion and an easy sorting of data (using the date of 205

each document) from the latest information to the 206

oldest. The global architecture of this processing is 207

summarized in Figure 2. 208

Figure 2: LLM-based processing of texts.

This approach is tested in section 4.2 which eval- 209

uates different LLMs used for the generation of 210

summaries from reports. 211

3.3 Processing of images 212

Similarly to the previous section, this section de- 213

tails an approach used to summarize the content of 214

images stored in the EHR. 215

Such processing is enabled by the use of Vision 216

Language Model (VLM), a class of models able to 217

generate texts from images and instructions. Hence, 218

a VLM is fueled with each image of the EHR and 219

is prompted to briefly describe the content of each 220

image. This allows for a flexible processing of im- 221

ages (independent of the size of the image) and the 222

automated generation of a list of images with their 223

purpose. The OCR capabilities of VLM can also 224

be used to enhance the content of the description 225

(for example, to read the content of a label). 226

Similarly to the processing of texts, images are 227

processed one by one and summaries are aggre- 228

gated in a final result to provide a list of figures in 229

the report detailing the content of medical images 230

available. 231

This approach is tested in section 4.3 which eval- 232

uates different VLMs used for the generation of 233

descriptions from images. 234

3.4 Processing of structured data 235

Structured data (list of diagnoses, procedures, etc.) 236

are processed and summarized to complete the in- 237

formation provided by reports. 238

Similarly to the processing of text, Language 239

Models are used to generate a textual description of 240
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structured data using a LLM prompted with patient241

data. The use of LLM offers flexibility in final de-242

scription produce and allows advanced processing243

of data such as grouping of information, conver-244

sion of units, or modification of the format of data245

(such as dates, presented in the dataset with a for-246

mat "YYYY-MM-DD" but processed by the LLM247

to be presented with a format "Month date, Year").248

The enhancement of the model with external data249

could also allow more complex processing, such as250

the processing of information encoded using spe-251

cific standards (such as the Internal Classification252

of Diseases).253

3.5 Aggregation of data254

Once the EHR data are processed with the different255

methods presented in the previous sections, the256

data can be further processed and aggregated into a257

single document to summarize the key information258

for each patient.259

A final document aggregates the summaries in a260

final document following the scheme of Figure 3.261

Figure 3: Structure of the report summarizing patient
data.

4 Computational results262

4.1 Experimental protocol263

The summarization and aggregation of EHRs data264

is evaluated using the data from the dataset (see265

Section 3) processed using the Pandas4 Python li-266

brary. Based on the records of each admission,267

summaries of data will be performed by different268

Language Models.269

In an effort to build medical solutions respectful270

of the confidentiality of medical data and imple-271

mentable in an architecture with limited compu-272

tation capabilities, tests will be performed using273

4Library : https://pandas.pydata.org/

LLMs 5 6 7 and VLMs 8 9 10 executed locally using 274

Python and Ollama11. Tables 2 and 3 present the 275

models used for evaluation. 276

LLM Year Weights * License
Deepseek R1 2025 14B mit
LLaMA 3.1 2024 8B llama 3.1
Mistral 2023 7B apache-2.0

Table 2: LLMs used for the summarization of reports
and structured data.
* Number of weights are expressed in billions.

VLM Year Weights * License
Gemma 3 2025 12B gemma
LLaMA 3.2 2024 11B llama3.2
vision
LLaVA 2023 13B apache-2.0

Table 3: LLMs used for the summarization of reports
and structured data.
* Number of weights are expressed in billions.

Thus, the tests will be conducted using a laptop 277

equipped with 16 Go of Random-Access Mem- 278

ory (RAM), a Central Processing Unit (CPU) "In- 279

tel(R) Core(TM) i5-10300H CPU @ 2.50GHz", 280

and a dedicated Graphics Processing Unit (GPU) 281

"NVIDIA GeForce GTX 1650". 282

4.2 Evaluation of the performances of report 283

summarization 284

4.2.1 Computation time needed to process a 285

report 286

LLMs are first evaluated through a measurement of 287

the computation time needed to process a medical 288

report using the discharge reports of the dataset. 289

The reports studied have a length between 923 and 290

1550 words. LLMs are prompted to summarize 291

5 of the 6 reports in around 50 to 80 words. The 292

results are summarized in Figures 4 and 5. 293

5Deepseek R1 model card: https://huggingface.co/
deepseek-ai/DeepSeek-R1

6LLaMA 3.1 8B model card: https://huggingface.co/
meta-LLaMA/LLaMA-3.1-8B

7Mistral 7B v0.3 model card: https://huggingface.co/
mistralai/Mistral-7B-v0.3

8Gemma 3 model card: https://huggingface.co/
google/gemma-3-12b-it

9LLaMA 3.2 Vision model card: https://huggingface.
co/meta-LLaMA/LLaMA-3.2-11B-Vision

10LLaVA model: https://github.com/haotian-liu/
LLaVA

11Ollama : https://ollama.com/ (MIT License)
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Figure 4: Computation times measured for the summa-
rization of a discharge report with each LLM.

Figure 5: Average time needed by each LLM to summa-
rize a report.

Experiments on discharge reports show that the294

evaluated models require 1mn to 5mn45s (Figure295

5) to prepare a custom prompt from medical data296

and summarize a provided report. Figures under-297

line that LLaMA 3.1 (8B) and Mistral (7B) tend to298

globally have a lower computation time (with aver-299

age computation times between 1mn and 1mn15s300

per report) whereas Deepseek R1 needs more com-301

putation time before generating a final summary (as302

the generation is preceded by a "thinking" phase).303

4.2.2 Evaluation of the summaries generated304

by the LLMs305

The summaries of reports are evaluated using the306

metrics of the Recall-Oriented Understudy for Gist-307

ing Evaluation (ROUGE), a set of metrics to evalu-308

ate the quality of a summary comparing to a refer-309

ence (Alkhalaf et al., 2024). The original report is310

used as reference and calculations are made using311

Paul Tardy’s Python implementation 12.312

The average results, using the evaluation of met-313

rics for each report, are summarized in Tables 4, 5,314

and 6. The models are designated as follows: (1)315

refers to LLaMA 3.1 8B, (2) designates Mistral 7B,316

12ROUGE Python library: https://github.com/
pltrdy/rouge

and (3) stands for Deepseek R1 14B.

ROUGE-1
LLM recall precision F1-Score

(1) 10.61% 66.18% 17.85%
(2) 16.08% 67.18% 25.28%
(3) 8.42% 52.89% 14.09%

Table 4: ROUGE-1 average metrics obtained by evalu-
ating the models on 5 reports.

317

ROUGE-2
LLM recall precision F1-Score

(1) 4.01% 34.43% 7.0%
(2) 6.8% 34.47% 11.04%
(3) 2.02% 20.4% 3.62%

Table 5: ROUGE-2 average metrics obtained by evalu-
ating the models on 5 reports.

ROUGE-L
LLM recall precision F1-Score

(1) 10.17% 63.61% 17.13%
(2) 15.35% 64.09% 24.12%
(3) 8.04% 50.56% 13.45%

Table 6: ROUGE-L average metrics obtained by evalu-
ating the models on 5 reports.

In addition, the lengths of generated summaries 318

are also evaluated using the spaces of the generated 319

text. An average ratio between the lengths of the 320

original reports and the lengths of the summaries 321

is also calculated to measure the compression of 322

information. The results are summarized in Figure 323

7. 324

The evaluation of the lengths of the summaries 325

(Table 7) underscores the advantages of using 326

LLMs to process reports and produce a shorter sum- 327

mary (with lengths divided by 6 to 12 on average). 328

However, we can also notice that the instruction of 329

summarizing each report in around 50 to 80 words 330

is often not respected (especially by Mistral 7B). 331

In addition, the evaluation of the ROUGE met- 332

rics provides information on the ability of LLMs 333

to summarize the original reports. The precision 334

values, between 50.56% and 67.18% for ROUGE-1 335

and ROUGE-L, quantifying the ability of models 336

to not generate false information, indicate that most 337

of the words present in the summaries can be found 338

in the original report. However, the value of recalls, 339

indicating the ability of LLMs to preserve all the 340

5

https://github.com/pltrdy/rouge
https://github.com/pltrdy/rouge


Report∗ (1) (2) (3)
Report 1 1550 249 287 274
Report 2 1164 229 176 280
Report 3 1048 66 315 54
Report 4 925 49 90 67
Report 5 923 71 190 83
Average 1122 133 212 152
STD∗∗ 196 76 70 90

Average ratio 1.0 11.8 6.1 10.8

Table 7: Evaluation of the number of words of the sum-
maries generated by LLMs.
(* number of words of the original report).
(** standard deviation).

information from the original report, also sheds341

light on the loss of information during the oper-342

ation of summarization. Nevertheless, low recall343

values should be qualified by the fact that computa-344

tions were performed using the original report as345

a reference instead of using a human-written sum-346

mary (thus the difference of lengths between the347

two texts compared lowers the recall).348

A visualization of examples of LLM-generated349

summaries (Figures 6 and Figures 7) sheds light on350

strengths and weaknesses of the approach.351

Figure 6: An example of summary computed by
Deepseek R1 1(14B).

Figure 7: An example of the same summary computed
by Mistral 7B.

The example presents two summaries that pro-352

vide brief information from the discharge report353

of a patient. As previously seen, the summary354

produced by Mistral 7B is longer but provides355

further information, whereas the one provided by 356

Deepseek R1 (14B) is more brief. We can also 357

notice that the second summary keeps a structure 358

with bullet points (similarly to the original report) 359

whereas the first summary rephrases information. 360

However, the processing of long reports by low- 361

weights models and a basic prompting strategy 362

faces limitations related to model hallucinations 363

that might lead to inaccurate data. For example, the 364

report of 7 mentions that the patient’s gender and 365

allergies were not specified while the original result 366

provided such information (although name and age 367

were removed during de-identification). Another 368

example is presented in Figure 8, which presents a 369

case where the LLM did not generate a summary. 370

Figure 8: An example of an error in the generation of a
summary by Mistral 7B.

4.3 Evaluation of the performances of images 371

description 372

4.3.1 Computation time needed to process an 373

image 374

Similarly to the previous evaluation, the computa- 375

tion time of VLMs is evaluated by measuring the 376

time needed by each model to generate the descrip- 377

tion of a medical image using test images. VLMs 378

are prompted to create a description with a length 379

between 50 and 80 words. The results are summa- 380

rized in Table 8. 381

Gemma 3 LLaMA 3.2 LLaVA
average 119s 163s 29s
median 115s 161s 26s

min 113s 158s 22s
max 143s 180s 53s

STD∗ 10s 7s 10s

Table 8: Evaluation of the time needed by each VLM to
process a medical image.
* standard deviation

From all the VLMs tested, LLaVA (13B) stands 382

out for its capacity to process an image in around 383

30s, whereas the other models tested obtained im- 384

age computation times between 2mn (Gemma 3 385

13B) and 2mn45 (LLaMA 3.2 vision 11B). 386
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4.3.2 Study of the descriptions generated by387

the VLMs388

The generated descriptions are analyses to evaluate389

the performance of each VLM in the processing of390

images. Figure 9 presents two examples of images391

processed with the output generated by each model.392

Figure 9: An example of image processed with the
description generated by each VLM.

In general, the models evaluated show promising393

results in the generation of short descriptions from394

images. The evaluation of models also underlines395

that Gemma 3 tends to produce brief descriptions,396

whereas LLaMA 3.2 Vision and LLaVA provided397

longer descriptions. This is especially the case for398

LLaVA which tends to produce longer descriptions399

by adding assumptions (which are sometimes in-400

correct).401

OCR capabilities of VLM were also evaluated402

through the generation of descriptions for images403

containing texts. However, in an effort to build a404

flexible system capable of processing images with405

various styles, the prompt sent to each VLM was406

not modified to mention the presence of text in the407

image. Figures 10 and 10 present two examples of408

images used to test OCR capabilities of VLMs.409

Figure 10: An example of image with texts processed.

The evaluations on images with texts underline410

that LLaVA has limited capabilities when it comes411

to reading label content without detailed instruc-412

tions. For example, the model misspells the name413

of the vial in the results presented in 10 and did414

Figure 11: An example of image with texts processed.

not summarize the content of the label presented 415

in 11. LLaMA 3.2 Vision demonstrates the best 416

performance in summarizing the content of vial la- 417

bels with, for example, a description of the content 418

of the label of Figure 11. We can notice in this ex- 419

ample that the model used the name "Ceftazidime" 420

whereas the first line of the label indicates "Cef- 421

tazidim" because the name "Ceftazidim(e)" also 422

appears in the image. 423

Overall, the VLMs tested showed different 424

strengths and weaknesses, including a VLM with 425

low computation capabilities, summarizing the 426

global content of an image but inclined to add as- 427

sumptions (LLaVA), a VLM requiring more com- 428

putation time but providing more detailed descrip- 429

tions (LLaMA 3.2 Vision), and a VLM with in- 430

termediate computation times producing brief de- 431

scriptions (Gemma 3). Depending on the usage, 432

those solutions might be interesting and could be 433

improved with a more precise prompt indicating 434

information to describe/extract. 435

4.4 Evaluation of the performances of 436

structured data processing 437

4.4.1 Computation time needed to process the 438

structured data of an admission. 439

In this section, we measure the time needed by 440

LLaMA 3.1 8B (1) and Mistral 7B (2) to process all 441

procedures (billed) and diagnoses (billed) received 442

during a hospital stay using data from multiple 443

stays. The computation times are regrouped per 444

table and represent times needed to process the data 445

from the tables for one hospital stay. The average 446

numbers of records per stay are ≃ 1 procedure per 447

stay and ≃ 8 billed diagnoses per stay. 448

The average computation times are summarized 449

in Table 9. 450

The calculation times measurement underline 451

computation time of around 11s to 17s for the sum- 452

marization of the procedures or the diagnoses of a 453

hospital stay. 454
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procedures diagnoses
(1) average 11.4s 16.8s

median 12.1s 16.4s
min 6.0s 12.0s
max 17.7s 23.3s

STD∗ 3.9s 3.5s
(2) average 12.7s 16.8s

median 9.0s 16.9s
min 6.5s 12.0s
max 31.9s 22.0s

STD∗ 8.8s 3.8s

Table 9: Evaluation of the time needed by each LLM to
process the data of a hospital stay.
* standard deviation

4.4.2 Study of the summaries of structured455

data generated by the LLMs456

A first analysis of the summaries of billed diag-457

noses and procedures is performed. Some exam-458

ples of structured data with the summaries gener-459

ated by LLMs are provided in Figures 12 and 13.460

Figure 12: An example of generated summary using the
list of diagnoses identified during a stay (data retrieved
from the database are framed in blue).

Figure 13: An example of generated summary for the
list of procedures during a stay (with dates).

Similarly to the observations made during the461

summarization of reports (see Section 3.2), the tests462

show that Mistral 7B and LLaMA 3.1 8B globally463

succeed in generating a description from the di-464

agnoses and procedures. A conversion of dates465

was also performed by the LLMs to present dates466

in a "Month Date, Year" format, while dates are467

stored in the database following the ISO 8601 for-468

mat ("YYYY-MM-DD").469

However, LLM hallucinations were also identi-470

fied in certain situations, such as when no proce-471

dures are provided (see Figure 14), leading to a472

summary of data with false information. Similarly, 473

models modified the years in each procedure date 474

(see the years framed in red). This might be linked 475

to the fact that the year was shifted to 2174 for 476

de-identification. 477

Figure 14: An example of hallucination from Mistral
7B when no procedures are provided.

In general, the use of LLM should be adapted 478

to perform an efficient text summarization pro- 479

viding brief and precise information. As using 480

a prompt with general instructions shows limited 481

performances, adapting a prompt for each type of 482

data could be an interesting approach for a more 483

accurate and customized description tables. 484

5 Conclusion 485

This works enables the creation of a framework 486

for the processing and summarization of EHR data. 487

It tackles the complexity of images and unstruc- 488

tured data through a transversal approach relying 489

on Language Models. Evaluations on hospital 490

EHRs data underscore the potential of LLMs and 491

VLMs in the processing of complex data, as mod- 492

els are able to produce synthetic summaries using 493

information from images, reports, and tables to 494

provide an overview on the medical history of a 495

patient. However, limited computation capabilities 496

of low-weights models (executed locally) induce 497

challenges in computation times and accuracy of 498

summaries. 499

Opportunities for the improvement of the pro- 500

posed architecture include the implementation of 501

more advanced prompt strategies to control and cor- 502

rect the data generated by language models. The 503

specialization of open-source language models in 504

collaboration with medical experts could also in- 505

crease the quality of summaries generated while 506

taking advantage of the confidentiality of data and 507

lower energy consumption provided by local low- 508

weights models. 509

6 Limitations 510

This study was conducted using a certain number 511

of assumptions implied by the data and models 512

manipulated. In fact, although the methodology 513

8



developed is thought to be transversal and adaptive,514

tests were conducted on a limited number of data515

from a few databases. This is especially the case516

for medical reports that were taken from the same517

database and thus have a similar structure and the518

same language (English). More detailed tests with519

more data and the evaluation of an expert could be520

beneficial to enhance the proposed architecture.521

The construction of an automated tool for EHR522

data summarization could improve the work of523

medical personnel by making the retrieval and anal-524

ysis of information easier. However, such a tool525

should be protected with rigorous control of data526

accessibility to avoid leakage of patient data and re-527

spect of medical secrecy. Generative models must528

also be safeguarded to avoid the generation of unin-529

tended content and rigorously evaluated to ensure530

the veracity of the information provided. Ignor-531

ing such controls could hinder the admission of532

patients (because of incorrect information) and al-533

low misuse of the solution to retrieve confidential534

medical data.535
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