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Abstract

From the arrival of patients at a health facility
to their discharge, a vast amount of highly valu-
able medical data are collected and gathered
in Electronic Health Records (EHRs). How-
ever, current data management faces a certain
number of limitations, linked with the amount
and type of data used (tables, reports, images,
etc.), that could hinder the efficiency of med-
ical services. As a consequence, the analysis
of records could be long and laborious for a
medical personnel member, whereas the admis-
sion of patients in emergency situations calls
for efficiency.

This paper presents a flexible Generative Ar-
tificial Intelligence-based framework for the
processing of EHRs data. Through the use of
Large Language Models and Vision Language
Models, medical data are analyzed and aggre-
gated in a single document summarizing the
key information of a patient based on his/her
medical history. This multimodal framework
takes advantage of the strengths of language
models to process structured data, medical re-
ports, and medical images using text analy-
sis, images processing, and Optical Character
Recognition (OCR).

Experiments, conducted using hospital EHRs
data from the Medical Information Mart for
Intensive Care IV (compiling data from Beth
Israel Deaconess Medical Center, Boston). and
Language Models (including Mistal, Deepseek,
LLaMA, Gemma, and LLaVA models) exe-
cuted locally for medical data confidential-
ity, underscore promising results towards auto-
mated mutimodal processing of EHRs through
summarization of reports in summaries 11
times shorter (for best LLMs) and the genera-
tion of image description with an extraction of
texts with OCR.

1 Introduction

Medical data is at the center of the organization of
health facilities. The exploitation of such data, pro-

viding valuable information about patients’ current
situations and reflecting their medical histories, is
essential for decision-making and management of
medical assets. In order to exploit efficient and
easy-to-use solutions, Electronic Health Records
(EHRs) are used by many health facilities to com-
pile patient data. Such solutions are at the center of
the activities of medical staff members who consult
existing data and collect new information during
the care of a patient.

However, medical data processing faces a cer-
tain number of challenges related to the amount
and type of data used in health facilities. In fact,
because data from previous admissions are kept
in the patient history, the study of records of a pa-
tient with a lot of previous stays can be long for
a medical personnel member whereas it is essen-
tial to correctly understand the patient background.
The processing of medical data is also complicated
by the type of data collected, including numerical
data (such as vital signs) but also images (such as
CT scan results) and textual data (medical reports,
commentaries written by medical personnel, etc.).

This study focuses on processing the data present
in EHRSs to generate a summary of all the informa-
tion available about a patient. The purpose of the
developed framework is to aggregate all available
data about a patient into a global summary which
can be consulted by a member of the medical staff
before a future admission of the same patient. Data
processed include structured records, but also med-
ical reports and images.

This article is structured as follows. Section
2 analyzes studies focusing on the processing of
medical reports and the generation of medical sum-
maries. Section 3 presents the approach developed
by our team to generate medical summaries from
EHRs, including the preparation of data and the
processing of medical texts, images, and records.
Section 4 evaluates and compares the different solu-
tions . Section 5 draws a conclusion with prospects



and Section 6 discusses about the limitations of the
work.

2 Literature review

Many studies have focused on developing NLP
strategies to process EHRs data, extract interesting
features, and provide insights.

First, approaches, such as (Vashishth et al.,
2021), relying on Deep Learning models, were de-
veloped to process medical texts and provide data
extraction with semantic analysis.

The latest advances in Generative Artificial Intel-
ligence (Gen IA) and the advent of Large Language
Models (LLMs) have shed light on generation tech-
niques such as Retrieval-Augmented Generation
(RAG), exploiting the capabilities of LLMs to pro-
duce data insights from external knowledge bases
(Gao et al., 2023). Opportunities for data man-
agement, information retrieval were identified, but
studies also raised challenges related to models and
data management, such as (Yu et al., 2023) high-
lighting the necessity to develop inclusive solutions
while dealing with data privacy/security and ethi-
cal concerns. Concrete applications of RAG were
developed to process structured data and gener-
ate insights through Table-to-Text generation (Wu
et al., 2022). RAG was also adapted to the pro-
cessing of texts written in natural language (such
as medical reports) for the summarization of data
(Goswami et al., 2024) and the extraction of key
information (Alkhalaf et al., 2024). In an effort
to valorize the available data, generation solutions,
based on language models (Handa et al., 2023) and
transformer encoder—decoder architectures (Bazi
et al., 2023), were introduced to adapt EHR data
processing to image analysis.

Finally, the interactions between and users and
data were developed through the creation of query-
based generators (Zhao et al., 2023) leveraging
the capabilities of Language Models to respond to
users’ questions from provided data and instruc-
tions. Medical applications of such technologies
include chatbots that provide recommendations
from patients’ queries and information (Yang et al.,
2024).

In summary, the studies in this literature review
leverage RAG and Gen Al solutions to develop
Data-to-Text solutions. Data are processed using
various models in order to generate data descrip-
tions, insights and summaries. However, they usu-
ally focus on the processing of one type of data

whereas EHRs are made of heterogeneous data. A
lot of Language Models-based studies also relies on
the use of Open AI GPT models, raising questions
about data confidentiality and computation capabil-
ities required to run the solutions. In response to
these challenges, this paper tries to develop a frame-
work for multimodal processing of EHR data, sum-
marized in a report that can be quickly reviewed
by a member of the medical staff. The proposed
solutions rely on open-source Language Models
with few weights to process locally structured data,
medical reports (texts), and medical images.

3 Methodology

3.1 Data exploited

This study, focusing on the processing of EHRs
data, was carried out through the case of study
of medical data collected in hospitals. The study
was conducted using data from the Medical Infor-
mation Mart for Intensive Care IV (MIMIC IV) !
dataset (see (Johnson et al., 2023), (Johnson et al.,
2020), and (Goldberger et al., 2000)), a public
de-identified dataset that regroups data from the
EHRs of the Beth Israel Deaconess Medical Center
(Boston).

The experiments were conducted by filtering the
data from four successive stays of two selected
patients (based on the total number of stays reg-
istered in the database). In order to experiment
with the generation of summaries, a certain number
of parameters are kept, including patient-related
data, hospital stay-related data, diagnoses and pro-
cedures for which the patient was billed during
his/her hospital stays, and discharge reports pro-
duced after each hospital stay. All textual data are
written in English. The data used for the experi-
ment include both structured and unstructured data.

In addition, a medical image dataset was created
to complete the records using publicly available
images from an image bank?. Thus, a set composed
of scanner result images with different sizes (to
test the flexibility of the solutions) was created 3.
Additionally, vial pictures were taken and used to
evaluate models on images containing texts and
experiment OCR.

'MIMIC 1V: https://mimic.mit.edu/

2Image bank : https://pixabay.com/

*Note: As this study aims to build a flexible framework
and summarized data, the choice has been made to use vari-
ous images (such as scan results) although they may not be
related to the clinical condition of the patients studied in the
experiments.


https://mimic.mit.edu/
https://pixabay.com/

Data were filtered and aggregated to construct a
data architecture, presented in Figure 1, which was
used to simulate data management in hospitals and
carry out experiments.
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Figure 1: Architecture of the database used for experi-
mentation.

Table 1 summarizes the number of records used
for each type of data in the database.

Data number of records
Patients 2
Hospital stays 8 (4 for each patient)
Diagnoses billed 64
Procedures billed 7
Medical reports 6
Medical images 7

Table 1: Number of records for each data exploited for
experiments.

3.2 Processing of reports and texts

This section presents the approach developed to
process texts written in natural language. This ap-
proach is used to process discharge reports and
medical commentaries written by medical person-
nel to produce a brief textual summary of the main
information of each document.

The solution experimented relies on the use of a
Large Language Model (LLM) coupled with with
the EHR reports in order to produce short sum-
maries (50 to 80 words) of each document with
key information. The prompt sent to the LLM is
fueled by the content of each document in order to
generate a summary with patient data.

In order to ensure the traceability of information,
reports are processed one by one and summarized
individually (with a prompt sent for each report)
before all summaries are aggregated into a single

document. This approach allows an easy identifica-
tion of the document associated with each informa-
tion and an easy sorting of data (using the date of
each document) from the latest information to the
oldest. The global architecture of this processing is
summarized in Figure 2.
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Figure 2: LLM-based processing of texts.

This approach is tested in section 4.2 which eval-
uates different LLMs used for the generation of
summaries from reports.

3.3 Processing of images

Similarly to the previous section, this section de-
tails an approach used to summarize the content of
images stored in the EHR.

Such processing is enabled by the use of Vision
Language Model (VLM), a class of models able to
generate texts from images and instructions. Hence,
a VLM is fueled with each image of the EHR and
is prompted to briefly describe the content of each
image. This allows for a flexible processing of im-
ages (independent of the size of the image) and the
automated generation of a list of images with their
purpose. The OCR capabilities of VLM can also
be used to enhance the content of the description
(for example, to read the content of a label).

Similarly to the processing of texts, images are
processed one by one and summaries are aggre-
gated in a final result to provide a list of figures in
the report detailing the content of medical images
available.

This approach is tested in section 4.3 which eval-
uates different VLMs used for the generation of
descriptions from images.

3.4 Processing of structured data

Structured data (list of diagnoses, procedures, etc.)
are processed and summarized to complete the in-
formation provided by reports.

Similarly to the processing of text, Language
Models are used to generate a textual description of



structured data using a LLM prompted with patient
data. The use of LLM offers flexibility in final de-
scription produce and allows advanced processing
of data such as grouping of information, conver-
sion of units, or modification of the format of data
(such as dates, presented in the dataset with a for-
mat "YYYY-MM-DD" but processed by the LLM
to be presented with a format "Month date, Year").
The enhancement of the model with external data
could also allow more complex processing, such as
the processing of information encoded using spe-
cific standards (such as the Internal Classification
of Diseases).

3.5 Aggregation of data

Once the EHR data are processed with the different
methods presented in the previous sections, the
data can be further processed and aggregated into a
single document to summarize the key information
for each patient.

A final document aggregates the summaries in a
final document following the scheme of Figure 3.

Figure 3: Structure of the report summarizing patient
data.

4 Computational results

4.1 Experimental protocol

The summarization and aggregation of EHRs data
is evaluated using the data from the dataset (see
Section 3) processed using the Pandas* Python li-
brary. Based on the records of each admission,
summaries of data will be performed by different
Language Models.

In an effort to build medical solutions respectful
of the confidentiality of medical data and imple-
mentable in an architecture with limited compu-
tation capabilities, tests will be performed using

4Library : https://pandas.pydata.org/

LLMs > ©7 and VLMs 8 ? 10 executed locally using
Python and Ollama'!. Tables 2 and 3 present the
models used for evaluation.

LLM Year Weights * License
Deepseek R1 2025 14B mit
LLaMA 3.1 2024 8B llama 3.1
Mistral 2023 7B apache-2.0

Table 2: LLMs used for the summarization of reports
and structured data.
* Number of weights are expressed in billions.

VLM Year Weights * License
Gemma 3 2025 12B gemma
LLaMA 3.2 2024 11B llama3.2
vision

LLaVA 2023 13B  apache-2.0

Table 3: LLMs used for the summarization of reports
and structured data.
* Number of weights are expressed in billions.

Thus, the tests will be conducted using a laptop
equipped with 16 Go of Random-Access Mem-
ory (RAM), a Central Processing Unit (CPU) "In-
tel(R) Core(TM) i5-10300H CPU @ 2.50GHz",
and a dedicated Graphics Processing Unit (GPU)
"NVIDIA GeForce GTX 1650".

4.2 Evaluation of the performances of report
summarization

4.2.1 Computation time needed to process a
report

LLMs are first evaluated through a measurement of
the computation time needed to process a medical
report using the discharge reports of the dataset.
The reports studied have a length between 923 and
1550 words. LLMs are prompted to summarize
5 of the 6 reports in around 50 to 80 words. The
results are summarized in Figures 4 and 5.

5Deepseek R1 model card: https://huggingface.co/
deepseek-ai/DeepSeek-R1

®LLaMA 3.1 8B model card: https://huggingface.co/
meta-LLaMA/LLaMA-3.1-8B

"Mistral 7B v0.3 model card: https://huggingface.co/
mistralai/Mistral-7B-v@.3

8Gemma 3 model card:
google/gemma-3-12b-it

9LLaMA 3.2 Vision model card: https://huggingface.
co/meta-LLaMA/LLaMA-3.2-11B-Vision

ULLaVA model: https://github.com/haotian-1iu/
LLaVA

Ollama : https://ollama.com/ (MIT License)

https://huggingface.co/
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Figure 4: Computation times measured for the summa-
rization of a discharge report with each LLM.
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Figure 5: Average time needed by each LLM to summa-
rize a report.

Experiments on discharge reports show that the
evaluated models require 1mn to Smn45s (Figure
5) to prepare a custom prompt from medical data
and summarize a provided report. Figures under-
line that LLaMA 3.1 (8B) and Mistral (7B) tend to
globally have a lower computation time (with aver-
age computation times between 1mn and 1mn15s
per report) whereas Deepseek R1 needs more com-
putation time before generating a final summary (as
the generation is preceded by a "thinking" phase).

4.2.2 Evaluation of the summaries generated
by the LLMs

The summaries of reports are evaluated using the
metrics of the Recall-Oriented Understudy for Gist-
ing Evaluation (ROUGE), a set of metrics to evalu-
ate the quality of a summary comparing to a refer-
ence (Alkhalaf et al., 2024). The original report is
used as reference and calculations are made using
Paul Tardy’s Python implementation 2.

The average results, using the evaluation of met-
rics for each report, are summarized in Tables 4, 5,
and 6. The models are designated as follows: (1)
refers to LLaMA 3.1 8B, (2) designates Mistral 7B,

2ROUGE Python library:
pltrdy/rouge

https://github.com/

and (3) stands for Deepseek R1 14B.

ROUGE-1
LLM  recall precision F1-Score
(1) 10.61% 66.18% 17.85%
(2) 16.08% 67.18%  25.28%
3) 8.42% 52.89% 14.09%

Table 4: ROUGE-1 average metrics obtained by evalu-
ating the models on 5 reports.

ROUGE-2
LLM recall precision F1-Score
(1) 4.01% 34.43% 7.0%
) 6.8%  34.47% 11.04%
3) 202%  20.4% 3.62%

Table 5: ROUGE-2 average metrics obtained by evalu-
ating the models on 5 reports.

ROUGE-L
LLM recall precision F1-Score
(1) 10.17%  63.61% 17.13%
2) 1535% 64.09% 24.12%
3) 8.04%  50.56% 13.45%

Table 6: ROUGE-L average metrics obtained by evalu-
ating the models on 5 reports.

In addition, the lengths of generated summaries
are also evaluated using the spaces of the generated
text. An average ratio between the lengths of the
original reports and the lengths of the summaries
is also calculated to measure the compression of
information. The results are summarized in Figure
7.

The evaluation of the lengths of the summaries
(Table 7) underscores the advantages of using
LLMs to process reports and produce a shorter sum-
mary (with lengths divided by 6 to 12 on average).
However, we can also notice that the instruction of
summarizing each report in around 50 to 80 words
is often not respected (especially by Mistral 7B).

In addition, the evaluation of the ROUGE met-
rics provides information on the ability of LLMs
to summarize the original reports. The precision
values, between 50.56% and 67.18% for ROUGE-1
and ROUGE-L, quantifying the ability of models
to not generate false information, indicate that most
of the words present in the summaries can be found
in the original report. However, the value of recalls,
indicating the ability of LLMs to preserve all the


https://github.com/pltrdy/rouge
https://github.com/pltrdy/rouge

Report* (1) (2) @3

Report 1 1550 249 287 274
Report 2 1164 229 176 280
Report 3 1048 66 315 54
Report 4 925 49 90 67
Report 5 923 71 190 83
Average 1122 133 212 152
STD** 196 76 70 90
Average ratio 1.0 11.8 6.1 10.8

Table 7: Evaluation of the number of words of the sum-
maries generated by LLMs.

(* number of words of the original report).

(** standard deviation).

information from the original report, also sheds
light on the loss of information during the oper-
ation of summarization. Nevertheless, low recall
values should be qualified by the fact that computa-
tions were performed using the original report as
a reference instead of using a human-written sum-
mary (thus the difference of lengths between the
two texts compared lowers the recall).

A visualization of examples of LLM-generated
summaries (Figures 6 and Figures 7) sheds light on
strengths and weaknesses of the approach.

Figure 6: An example of summary computed by
Deepseek R1 1(14B).

Figure 7: An example of the same summary computed
by Mistral 7B.

The example presents two summaries that pro-
vide brief information from the discharge report
of a patient. As previously seen, the summary
produced by Mistral 7B is longer but provides

further information, whereas the one provided by
Deepseek R1 (14B) is more brief. We can also
notice that the second summary keeps a structure
with bullet points (similarly to the original report)
whereas the first summary rephrases information.
However, the processing of long reports by low-
weights models and a basic prompting strategy
faces limitations related to model hallucinations
that might lead to inaccurate data. For example, the
report of 7 mentions that the patient’s gender and
allergies were not specified while the original result
provided such information (although name and age
were removed during de-identification). Another
example is presented in Figure 8, which presents a
case where the LLM did not generate a summary.

=== Mistral (7B) ===

Document Summ.

Figure 8: An example of an error in the generation of a
summary by Mistral 7B.

4.3 Evaluation of the performances of images
description

4.3.1 Computation time needed to process an
image

Similarly to the previous evaluation, the computa-
tion time of VLMs is evaluated by measuring the
time needed by each model to generate the descrip-
tion of a medical image using test images. VLMs
are prompted to create a description with a length
between 50 and 80 words. The results are summa-
rized in Table 8.

Gemma3 LLaMA 3.2 LLaVA

average 119s 163s 29s
median 115s 161s 26s
min 113s 158s 22s
max 143s 180s 53s
STD* 10s 7s 10s

Table 8: Evaluation of the time needed by each VLM to
process a medical image.
* standard deviation

From all the VLMs tested, LLaVA (13B) stands
out for its capacity to process an image in around
30s, whereas the other models tested obtained im-

age computation times between 2mn (Gemma 3
13B) and 2mn45 (LLaMA 3.2 vision 11B).



4.3.2 Study of the descriptions generated by
the VLMs

The generated descriptions are analyses to evaluate
the performance of each VLM in the processing of
images. Figure 9 presents two examples of images
processed with the output generated by each model.

=> Gemma 3 (12B) : This is a pelvic x-ray.
=> Llama 3.2 (vision 11B) : The image shows an X-ray of a pelvis and hips.
=> LLaVA (13B) : Image of human x-ray, showing frontal view of pelvic and spinal column.

Figure 9: An example of image processed with the
description generated by each VLM.

In general, the models evaluated show promising
results in the generation of short descriptions from
images. The evaluation of models also underlines
that Gemma 3 tends to produce brief descriptions,
whereas LLaMA 3.2 Vision and LLaVA provided
longer descriptions. This is especially the case for
LLaVA which tends to produce longer descriptions
by adding assumptions (which are sometimes in-
correct).

OCR capabilities of VLM were also evaluated
through the generation of descriptions for images
containing texts. However, in an effort to build a
flexible system capable of processing images with
various styles, the prompt sent to each VLM was
not modified to mention the presence of text in the
image. Figures 10 and 10 present two examples of
images used to test OCR capabilities of VLMs.

—> Gemma 3 (128B) : This is a vial of Cefazoline.
=> Llama 3.2 (vision 11B) : This image depicts a bottle of Cefazoline viatris.

=> LLavA (13B) : Two vials of cephazoline vitamin, each with clear glass bodies and
green caps, sitting on a white surface against a gray background.

Figure 10: An example of image with texts processed.

The evaluations on images with texts underline
that LLaVA has limited capabilities when it comes
to reading label content without detailed instruc-
tions. For example, the model misspells the name
of the vial in the results presented in 10 and did

Figure 11: An example of image with texts processed.

not summarize the content of the label presented
in 11. LLaMA 3.2 Vision demonstrates the best
performance in summarizing the content of vial la-
bels with, for example, a description of the content
of the label of Figure 11. We can notice in this ex-
ample that the model used the name "Ceftazidime"
whereas the first line of the label indicates "Cef-
tazidim" because the name "Ceftazidim(e)" also
appears in the image.

Overall, the VLMs tested showed different
strengths and weaknesses, including a VLM with
low computation capabilities, summarizing the
global content of an image but inclined to add as-
sumptions (LLaVA), a VLM requiring more com-
putation time but providing more detailed descrip-
tions (LLaMA 3.2 Vision), and a VLM with in-
termediate computation times producing brief de-
scriptions (Gemma 3). Depending on the usage,
those solutions might be interesting and could be
improved with a more precise prompt indicating
information to describe/extract.

4.4 Evaluation of the performances of
structured data processing

4.4.1 Computation time needed to process the
structured data of an admission.

In this section, we measure the time needed by
LLaMA 3.1 8B (1) and Mistral 7B (2) to process all
procedures (billed) and diagnoses (billed) received
during a hospital stay using data from multiple
stays. The computation times are regrouped per
table and represent times needed to process the data
from the tables for one hospital stay. The average
numbers of records per stay are ~ 1 procedure per
stay and ~ 8 billed diagnoses per stay.

The average computation times are summarized
in Table 9.

The calculation times measurement underline
computation time of around 11s to 17s for the sum-
marization of the procedures or the diagnoses of a
hospital stay.



procedures diagnoses

(1) average 11.4s 16.8s
median 12.1s 16.4s
min 6.0s 12.0s

max 17.7s 23.3s
STD* 3.9s 3.5s

(2) average 12.7s 16.8s
median 9.0s 16.9s
min 6.5s 12.0s

max 31.9s 22.0s
STD* 8.8s 3.8s

Table 9: Evaluation of the time needed by each LLM to
process the data of a hospital stay.
* standard deviation

4.4.2 Study of the summaries of structured
data generated by the LLMs

A first analysis of the summaries of billed diag-
noses and procedures is performed. Some exam-
ples of structured data with the summaries gener-
ated by LLMs are provided in Figures 12 and 13.

Figure 12: An example of generated summary using the
list of diagnoses identified during a stay (data retrieved
from the database are framed in blue).

Figure 13: An example of generated summary for the
list of procedures during a stay (with dates).

Similarly to the observations made during the
summarization of reports (see Section 3.2), the tests
show that Mistral 7B and LLaMA 3.1 8B globally
succeed in generating a description from the di-
agnoses and procedures. A conversion of dates
was also performed by the LLMs to present dates
in a "Month Date, Year" format, while dates are
stored in the database following the ISO 8601 for-
mat ("YYYY-MM-DD").

However, LLM hallucinations were also identi-
fied in certain situations, such as when no proce-
dures are provided (see Figure 14), leading to a

summary of data with false information. Similarly,
models modified the years in each procedure date
(see the years framed in red). This might be linked
to the fact that the year was shifted to 2174 for
de-identification.

Figure 14: An example of hallucination from Mistral
7B when no procedures are provided.

In general, the use of LLM should be adapted
to perform an efficient text summarization pro-
viding brief and precise information. As using
a prompt with general instructions shows limited
performances, adapting a prompt for each type of
data could be an interesting approach for a more
accurate and customized description tables.

5 Conclusion

This works enables the creation of a framework
for the processing and summarization of EHR data.
It tackles the complexity of images and unstruc-
tured data through a transversal approach relying
on Language Models. Evaluations on hospital
EHRs data underscore the potential of LLMs and
VLMs in the processing of complex data, as mod-
els are able to produce synthetic summaries using
information from images, reports, and tables to
provide an overview on the medical history of a
patient. However, limited computation capabilities
of low-weights models (executed locally) induce
challenges in computation times and accuracy of
summaries.

Opportunities for the improvement of the pro-
posed architecture include the implementation of
more advanced prompt strategies to control and cor-
rect the data generated by language models. The
specialization of open-source language models in
collaboration with medical experts could also in-
crease the quality of summaries generated while
taking advantage of the confidentiality of data and
lower energy consumption provided by local low-
weights models.

6 Limitations

This study was conducted using a certain number
of assumptions implied by the data and models
manipulated. In fact, although the methodology



developed is thought to be transversal and adaptive,
tests were conducted on a limited number of data
from a few databases. This is especially the case
for medical reports that were taken from the same
database and thus have a similar structure and the
same language (English). More detailed tests with
more data and the evaluation of an expert could be
beneficial to enhance the proposed architecture.

The construction of an automated tool for EHR
data summarization could improve the work of
medical personnel by making the retrieval and anal-
ysis of information easier. However, such a tool
should be protected with rigorous control of data
accessibility to avoid leakage of patient data and re-
spect of medical secrecy. Generative models must
also be safeguarded to avoid the generation of unin-
tended content and rigorously evaluated to ensure
the veracity of the information provided. Ignor-
ing such controls could hinder the admission of
patients (because of incorrect information) and al-
low misuse of the solution to retrieve confidential
medical data.
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