
Agents Explore the Environment Beyond Good Actions
to Improve Their Model for Better Decisions

Anonymous Author(s)
Affiliation
Address
email

Abstract

Improving the decision-making capabilities of agents is a key challenge on the1

road to artificial intelligence [25]. To improve the planning skills needed to make2

good decisions, MuZero’s agent [17, 10, 1, 18, 13, 7] combines prediction by a3

network model and planning by a tree search using the predictions. MuZero’s4

learning process can fail when predictions are poor but planning requires them5

[28]. We use this as an impetus to get the agent to explore parts of the decision6

tree in the environment that it otherwise would not explore. The agent achieves7

this, first by normal planning to come up with an improved policy [7]. Second, it8

randomly deviates from this policy at the beginning of each training episode. And9

third, it switches back to the improved policy at a random time step to experience10

the rewards from the environment associated with the improved policy, which is the11

basis for learning the correct value expectation. The simple board game Tic-Tac-12

Toe is used to illustrate how this approach can improve the agent’s decision-making13

ability. The source code, written entirely in Java, is available at «a github url».14

1 Introduction15

A reinforcement learning agent has a simple interface to its environment [26, 25]: It partially observes16

the environment, acts, and receives rewards (Figure 1).17

Despite this simplicity, it is hypothesised [23] that intelligence, and its associated abilities, can be18

understood as subserving the maximisation of reward.19

Following this idea, MuZero [17] achieved a new state-of-the-art, outperforming all previous algo-20

rithms on the Atari suite and matching the superhuman performance of its predecessor AlphaZero at21

Go, Chess and Shogi. The MuZero agent learned acting through self-play, without even knowing the22

rules of the game - strictly following the agent-environment interface.23

The agent’s mind combines fast predictions from a neural network model with slow algorithmic24

planning. This is similar to the way humans use fast intuitive and slow rational thinking [11].25

Despite MuZero’s successes, its learning procedure can fail if the value prediction is poor where26

planning needs it. It has recently been shown how an amateur-level agent can beat KataGo [29, 30],27

a state-of-the-art open-source Go implementation based on MuZero’s predecessor AlphaZero, by28

leading KataGo to parts of the decision tree that it would never visit in any self-play training29

games [28].30

We use this as an impetus to make the agent curious about parts of the decision tree for which it31

otherwise gains little or no experience in the environment. We do not claim to provide a solution that32

solves all related problems, especially not the motivation example.33

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



planning - "rationale"
finding an improved

policy for the next action

actiondecision making
deciding the next action

observation
reward

legal actions

environmentagent

experience
memory of episodes

such as games

model - "intuition"
state representation,

next state generation,
reward prediction,
value prediction,
policy prediction

black
box

decision making
uses the

improved policy

planning
is based

on the model

model learns
from

experience
Reanalyse

is an additional
learning option

Figure 1: The interaction between the agent and the environment: The agent makes observations
about the environment, is informed about the legal actions it can choose from, and potentially receives
a reward after taking an action. This is the experienced information about the otherwise black-box
environment. Together with internal information, such as actions taken, they form a memory of
episodes. The agent uses this experience to train a model. The model’s predictions include an in-mind
state representation for observations, the value and policy for a state representation, the reward and
the next state representation for an action. Based on the model’s predictions, the agent plans an
improved policy by partially unrolling the decision tree internally. Based on the improved policy
resulting from the planning, the agent decides which action to take, taking into account its desire
to explore the environment. The agent can also revisit states from its memory and re-analyse them
[17, 18, 31]. With Reanalyse, there are two model optimisation loops: one via the environment and
one entirely in the agent’s mind.

Since the agent in this approach is actively seeking new experiences to feed into its model, we call34

it curiosity. We distinguish two domains of this curiosity - one for known unknowns and one for35

unknown unknowns [12, 4]. Our approach falls into the category of curious about unknown unknowns,36

as the agent seeks new experiences regardless of confidence in existing knowledge.37

This active search consists of three parts: First, the agent performs normal planning at each time step,38

resulting in an improved policy. Second, in each training episode, the agent starts to act according39

to a policy that is steered by a temperature parameter T > 1 from the optimised policy received40

from planning (T = 1) towards a random action selection (T → ∞). Third, to still learn the value41

of following the optimised policy from the associated environmental rewards, the agent randomly42

switches back to following the improved policy from planning. Thus, the action policy for all actions43

is a hybrid policy.44

This makes the decision process a higher-level process that uses the tree search results from the45

planning process, but not necessarily on a one-to-one basis. So when we structure the agent, we46

add a decision making component that is responsible for deciding the next action, Figure 1. This47

responsibility includes, in particular, adding curiosity. With this structuring, we hope to contribute to48

the cross-disciplinary quest for a common model of the intelligent decision maker [25].49

We also investigate two other cases with small contributions from us, arriving at three cases where50

we contribute - all three about the role of randomness:51

Additional randomness after planning Use of the hybrid policy introduced here in the training52

context.53

Additional randomness before planning In AlphaZero and MuZero, a Dirichlet noise was added54

to the prior probabilities in the root node when entering the tree search to aid exploration.55

2



It was removed in Gumbel MuZero since it was not necessary to improve the policy with56

the model fixed. However, we use Dirichlet noise for the following heuristic reason: it adds57

a force toward choosing actions without unfair preference if the actions would not differ58

in value under a perfect strategy. If no force is added, one such action may be favoured59

by the agent, potentially preventing the agent from gaining experience from the parts of60

the decision tree after the unfavourable actions. This can lead to a worse model, a worse61

planning result, and therefore worse decisions. Another argument for avoiding unwarranted62

bias is to be stable against potential future changes in the environment that would favour an63

action other than the one the agent has learned to choose. We are aware that changing the64

policy with Dirichlet noise may cost some inference steps from the planning budget.65

Less randomness during planning in eager playout Gumbel MuZero enters the planning for train-66

ing playouts with the model’s policy and draws from this policy - technically introducing a67

Gumbel value to achieve drawing without replacement. For the training context, this ensures68

that all root actions are considered exactly according to the existing knowledge of the agent.69

For an eager playout context, the situation is different. When making a decision only once, it70

can be beneficial for the agent to decide eagerly - like changing the temperature from 1 to 0.71

With this in mind, we also examine the playout case T=0 by setting the Gumbel value to 0.72

We show for the simple board game Tic-Tac-Toe that these three contributions improve the decisions73

made by the agent. We use confidence intervals at the 99% confidence level. In addition, we provide74

experimental examples to support our interpretation of how the improvements through using the75

hybrid policy and through using the Dirichlet noise occur - in these cases without proving statistical76

significance.77

A limitation of this work is that we do not prove that we can reproduce all the results obtained by78

applying MuZero, in particular to the board games Go, Chess, Shogi and the Atari game suite.79

Another limitation is that we do not show the application to the Reanalyse [17, 18, 31] loop here.80

2 Recent Historical Background81

AlphaGo [20] was the first AI engine to beat the best human player in a full-sized game of Go in82

March 2016. It used value networks to evaluate board positions and policy networks to select moves.83

The networks were trained using a combination of supervised learning from human expert games,84

and reinforcement learning from self-play games. The reinforcement learning used a tree search,85

which combines Monte Carlo simulation with value and policy networks.86

AlphaGo Zero [21] eliminated the need to train with external input games. Thus, AlphaZero [22]87

generalised the AlphaGo algorithm and applied it to the games of Chess and Shogi. A major88

improvement to the algorithm was the continuous updating of the network.89

In 2020, MuZero [17] has eliminated the need for a resettable simulator. Instead, MuZero learns a90

model of the environment to the extent necessary for its in-mind planning. It extends AlphaZero’s91

successful application of the classic board games Go, Chess and Shogi to 57 Atari games. MuZero92

Unplugged [18] allows the agent to learn by re-analysing previously experienced episodes in mind.93

Sampled Muzero [10] extends MuZero to domains with arbitrarily complex action spaces by planning94

over sampled actions. Stochastic MuZero [1] extends MuZero’s deterministic model to a stochastic95

model that incorporates after states. It is demonstrated in the games 2048 and Backgammon.96

EfficientZero [31], based on MuZero Unplugged [18] and SPR [19] achieved above-average human97

performance on Atari games with only two hours of real-time gaming experience. This experience98

efficiency was a milestone. Main contributions are (1) Self-Supervised Consistency Loss, (2) End-To-99

End Prediction of the Value Prefix, (3) Model-Based Off-Policy Correction. EfficientZero’s source100

code is available on GitHub.101

While MuZero’s planning step produces an asymptotic policy improvement when many steps are102

used to unfold the decision tree, Gumbel MuZero [7, 6] introduced a planning algorithm that could103

improve the policy for any budget of unfolding steps - using a given model. The source code for the104

tree search is available on GitHub.105

3



As a commercially relevant use case, MuZero has been applied to video stream compression [13].106

And as the first extension of AlphaZero to mathematics, AlphaTensor [8] demonstrates the ability to107

accelerate the process of algorithmic discovery by finding faster matrix multiplication algorithms.108

The open-source community has applied the AlphaZero and MuZero algorithms to various projects.109

Notable examples in the field of board games are Leela Chess Zero [14] and KataGo [29, 30].110

The existence of open-source implementations encouraged the search for weaknesses in the agents. It111

was shown how adversarial policies could beat professional-level KataGo agents [28] using a strategy112

that an amateur player could follow. The main idea of the strategy is to lead the KataGo agent into113

areas of the decision tree where it has a poor value premise and therefore makes weak decisions.114

3 Related Work115

Finding an appropriate trade-off between exploration and exploitation is a core challenge in reinforce-116

ment learning [26]. By building a model that includes dynamics, as in MuZero [17], the magnitude117

of this challenge has increased because there are two worlds on stage: The environment as the real118

world and the model as an in-mind world. Gumbel MuZero [7] brought a planning algorithm that119

monotonically improves the policy with any budget of recurrent inference steps within MuZero’s120

given in-mind world.121

AlphaZero [22] and MuZero [17] add a Dirichlet noise to the model’s policy predictions before122

starting the tree search in their planning step to ensure exploration.123

The off-policy maximum entropy deep reinforcement learning algorithm SAC [9] uses the entropy124

of the policy times a temperature factor as an additional reward. Adding such an additional reward125

falls into the category of curious about known unknowns as this intrinsic reward is derived from the126

agent’s policy.127

After planning, MuZero [17] uses a temperature parameter T to vary between T = 1 for exploration128

and T = 0 for exploitation following AlphaZero’s [22] approach for board games. For Atari games,129

this is done for all moves, not just the first few moves as in board games. The temperature is lowered130

as a function of the number of training steps of the network, thereby shifting the planning policy from131

exploration to exploitation.132

Go-Exploit [27] based on AlphaZero samples the starting state of its self-play trajectories from an133

archive of states of interest. This approach can only be used if the environment interaction allows134

episodes to start from any state.135

4 What This Work Builds Upon136

This work builds on MuZero [17]. For our examples, we use the case of non-intermediate rewards137

from the environment. For the planning component and the model base we use Gumbel MuZero [7].138

The model is extended for Self-Supervised Consistency Loss from EfficientZero [31]. The resulting139

model is presented in Appendix A.140

5 Illustrating the Need for Improvement of the Agent141

The agent’s need to explore the decision tree beyond good actions can be illustrated by the simple142

game of Tic-Tac-Toe [3].143

In Tic-Tac-Toe, the optimal outcome for both players is a draw. Figure 2 shows such a game.144

time

Figure 2: An example of an optimally played game of Tic-Tac-Toe.

4



Suppose an agent takes the role of both players - self-play - and only makes perfect moves in the145

environment. Then he would never observe from the environment what could happen after a bad146

move, e.g. after the first bad move shown in Figure 3.147

time

after a bad action

Figure 3: A Tic-Tac-Toe game with two bad actions (red), one by player o and one by player x.

Suppose such an agent takes the role of player x and plays against another player o. If a player o148

makes a bad move, the agent may not be able to take advantage of it and win. Instead, the agent149

might make a bad move as in Figure 3 and lose.150

To observe more than the world of perfect actions, the agent must deviate from the perfect game151

when it acts in the environment during training. This could be achieved by separating the search for152

an optimised policy for the next action from the decision of what to do next. During training the153

decision component shown in Figure 1 could deviate from its optimised policy to get to novel parts154

of the decision tree and finish from there according to its optimised policy.155

6 Agent Improvements156

Two of the three contributions of the paper mentioned in the introduction are described here in more157

detail - supported by small proofs in the Appendix C.158

6.1 Exploring Using a Hybrid Policy159

Suppose we have a normal policy Pnormal and an exploring policy Pexplore. Also, suppose the160

model is to be trained using Pnormal. In a playout with Pexplore ̸= Pnormal there would be an161

off-policy-issue for the value target [18]. To avoid this problem, the playout could be done with a162

hybrid policy Phybrid, starting with Pexplore and switching to Pnormal at a random time tstartNormal163

before the expected end of the episode tend.164

Phybrid =

{
Pexploring if t < tstartNormal

Pnormal if t ≥ tstartNormal
(1)

tstartNormal = random(0, tend) (2)

... ...

Figure 4: Before tstartNormal the actions are chosen according to the exploring policy Pexploring.
From tstartNormal the actions are chosen according to the normal policy Pnormal.

The value target after tstartNormal could then be set up just as without exploration as the value165

information propagates backwards in time during training and is therefore not influenced by what166

happened before tstartNormal. But the value target before tstartNormal would be set to keep its167

existing value. Therefore, the value function would only learn from the normal policy.168

We concretise Phybrid in two steps. In the first step, we specify Pexploring as a drawing from a169

probability distribution170

pexploring = softmax (ln(pnormal)/T ) (3)

5



with a temperature of T > 1.1 pnormal is used for the models policy training target.171

In the second step, we concretise pnormal to be the improved policy of Gumbel MuZero derived from172

the completed Q-values in the notation of Gumbel MuZero [7]. Using equation 21 in Appendix C.1173

we get174

pexploring = softmax

(
logits+ σ(Qcompleted)

T

)
(4)

The value target for the non-intermediate reward case is then given by175

vtargett =

{
vinitialInference,t if t < tstartNormal

rmeasured
tend

if t ≥ tstartNormal
(5)

where rmeasured
tend

is the reward returned by the environment and vinitialInference is the value v0t176

produced by the model version that is used when acting in the environment. This ensures that the177

value for this model version is not forced but later model versions taken from a buffer are forced178

towards vinitialInference. See Appendix D.5 for why we did not use the improved value from179

planning as the target value.180

6.2 Eager Playout without Gumbel noise181

When planning according to Gumbel MuZero [7] in an eager playout, we can enter planning with a182

temperature 0 ≤ T ≤ 1 and still improve the decision by planning as shown in Appendix C.4. This is183

especially true for T → 0 which we achieve by setting the Gumbel value to 0 (see Appendix C.3).184

7 Experiments - Game Tic-Tac-Toe185

The paper’s three contributions are tested on the game Tic-Tac-Toe. Appendix D informs about186

experimental details, Appendix E about the open source implementation used to run the experiments.187

7.1 Training With and Without Exploring - All Games188

0

500

1000

1500

2000

2500

3000

3500

4000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

0

2

4

6

8

10

12

14

16

18

20

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Figure 5: Number of bad decisions as a function of the training epoch - mean value over 10 samples
with 99% confidence intervals. For details on the counting of the bad decisions see Appendix D.

In Tic-Tac-Toe, the agent shows a large difference in the quality of decisions depending on whether189

the exploration introduced in the previous section is turned on or off. While without this exploration190

1Note that the temperature parameter T in MuZero [17] varies between T = 1 for exploration and T = 0 for
exploitation, whereas here we explore with a temperature of T > 1.

6



the average of bad decisions for a trained model applied to all possible game decisions is 340± 80191

after 1000 epochs, with exploration, it is 0, 8 ± 0, 3 (see Figure 5). This is an improvement by a192

factor 435± 190.193

7.2 Training With and Without Exploring - One Game194

To gain insight into the cause of the effect seen in Figure 5, we now restrict our investigation to the195

particular game shown in Figure 3. Note that the second move in this particular game is already a bad196

move, so all the states behind that move would not occur in perfect play.197

From the model versions trained without exploration, we look for a model version with which the198

agent would make the second bad decision in the situation of Figure 3. To find out why it does so, and199

why the agent using a model trained with exploration would not, we look at the value expectation of200

the model vτt , since planning relies heavily on the quality of the value expectation. t denotes the time201

at which the initial inference starts and the in-mind time τ denotes the number of recurrent inference202

steps from that point. For a detailed definition of vτt , see Appendix A.1.203

When examining the value expectation of the model, it is not sufficient to consider the value expecta-204

tion v0t immediately after the initial inference. Since the unfolding of the decision tree happens at the205

in-mind time τ , we need to look for all relevant in-mind times τ .206

Therefore we examine207

vτt (t
′, tstart) =

{
v0t′ if t′ < tstart

vt
′−tstart
tstart

if t′ ≥ tstart
(6)

with 0 ≤ t′ ≤ 18 and 0 ≤ tstart ≤ 8.208

In Figure 6 we examine what the expectations of a particular model vτt look like.209

-1

-0,5

0

0,5

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-1

-0,5

0

0,5

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

exploration-on

exploration-off

Figure 6: model version epoch = 1028, tstart = 0 in light grey to tstart = 8 in dark grey - for the
exploration off case tstart = 6 in red. The red value expectation falsely pretends that player x’s bad
move would be good.

This is an example of a plausible cause - no statistical significance is claimed - that prevents agents210

trained without the additional exploration from making correct decisions: The value expectation of211

the model provides wrong values. The planning that uses them has no chance of leading to a correct212

decision.213

7



7.3 Playout With and Without Gumbel Noise - All Games214

The playouts during the test in Figure 5 were done with the same Gumbel value as during training.215

Playing out eagerly by setting the Gumbel value to 0 during planning reduces the number of bad216

decisions. Figure 7 plots the difference number of bad decisions with Gumbel minus the number of bad217

decisions without Gumbel. In the exploration-on case, we see an improvement by a factor 2.1± 0.3.218

0

20

40

60

80

100

120

140

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Figure 7: Number of bad decisions in playouts with Gumbel minus the number of bad decisions in
playouts without Gumbel - a rolling average of the last 50 epochs, mean value over 10 samples, 99%
confidence intervals.

7.4 Training With and Without Dirichlet Noise - All Games219

Figure 5 is based on models trained with Dirichlet noise added to the policy entering the tree search.220

We compare the decision performance of these models with models trained without Dirichlet noise,221

leaving all other hyperparameters unchanged. In the exploration-on case, we see an improvement by222

a factor 3.6± 1.2 using Dirichlet noise, see Figure 8 compared to Figure 5. Appendix D.7 speculates223

why this is the case.224

0

50

100

150

200

250

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

0

2

4

6

8

10

12

14

16

18

20

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Figure 8: Number of bad decisions for models trained without Dirichlet noise minus the number of
bad decisions for models trained with Dirichlet noise - rolling average of the last 100 epochs, 10
samples, 99% confidence intervals.

8



8 Discussion225

We have introduced a new exploration approach to learn more from the environment. The new226

idea is to use two separate policies in a combined hybrid policy Phybrid, starting episodes with one227

for exploration Pexploring - to take the agent to situations it would otherwise not experience - and228

randomly switching to the other policy Pnormal for finishing the episode with normal training. We229

derived Pexploring from Pnormal by using a softmax temperature to introduce noise, set Pnormal to230

be the improved policy from Gumbel MuZero [7] and applied it to the game Tic-Tac-Toe. In these231

experiments, at a statistical confidence level of 99%, we observe a reduction in bad decisions by232

a factor of 435 ± 190. A selective check suggests that the reason for the wrong decisions before233

introducing the new exploration approach lies in an incorrect value expectation of the agent’s model.234

In further experiments on the Tic-Tac-Toe game at a statistical confidence level of 99%, we observed235

that training with Dirichlet noise resulted in a network with better decision ability than training236

without Dirichlet noise and that playout of the trained network without Gumbel noise showed better237

decision ability than playout with Gumbel noise.238

Having found large improvement factors for Tic-Tac-Toe, we should ask ourselves: have we reached239

state-of-the-art? For all situations where we could fully unfold the decision tree in a classical manner,240

we should consider perfect decisions as state-of-the-art. Therefore we have not fully reached the241

state-of-the-art for Tic-Tac-Toe.242

It would be interesting to see how the approaches tested here for Tic-Tac-Toe pay off for Go, Chess,243

Shogi, and the Atari games on which MuZero was tested.244

What could be done to improve the approach presented here?245

Exploration Level When using the hybrid policy in the experiments, we used a fixed exploration246

temperature. In general, a higher temperature will distribute the agent’s starting points for247

normal policy actions more randomly, whereas a lower temperature would keep the starting248

points closer to the best action path the agent could take. A strategy needs to be found on249

how to best set the exploration level to improve decisions.250

Entropy reward Entropy as an intrinsic reward[9] could be added as a curiosity mechanism for251

known unknowns. We speculate that this - as one aspect - would remove the need for252

Dirichlet noise. The measurements from Appendix D.7 seem to point in this direction.253

Reanalyse learning cycle The use of the Reanalyse learning cycle is a key feature in reducing the254

need for interaction with the environment. Extending the use of the techniques presented255

here to the Reanalyse learning cycle would therefore be useful. It would be of particular256

interest to Reanalyse the states that lead to rewarded actions, as the reward is a direct input257

from the environment and the source of the derived value. We speculate that this could258

improve the model’s value predictions and thus the quality of decisions. A theoretically259

sound solution to the off-policy problem would be helpful in this regard.260

Adversarial Exploration If the agent randomly deviates from the optimised strategy during explo-261

ration, it is unlikely to get into the situations the adversarial player put it into in Go [28].262

Therefore, it may be necessary to devise an exploration strategy using an adversary as a263

counterpart in such games.264

We hope to provide a useful technique for better learning the value function of the model as a basis265

for better planning-based decisions by the agent. It could serve as a starting point to help the agent266

become more curious.267

References268

[1] Ioannis Antonoglou, Julian Schrittwieser, Sherjil Ozair, Thomas K Hubert, and David Silver. Planning in269

stochastic environments with a learned model. 2021.270

[2] Junjie Bai, Fang Lu, Ke Zhang, et al. Onnx: Open neural network exchange. https://github.com/271

onnx/onnx, 2019.272

[3] József Beck. Combinatorial games: tic-tac-toe theory, volume 114. Cambridge University Press Cam-273

bridge, 2008.274

9

https://github.com/onnx/onnx
https://github.com/onnx/onnx
https://github.com/onnx/onnx


[4] Tyson R Browning and Ranga V Ramasesh. Reducing unwelcome surprises in project management. MIT275

Sloan Management Review, 56(3):53–62, 2015.276

[5] Johannes Czech, Patrick Korus, and Kristian Kersting. Improving alphazero using monte-carlo graph277

search. In Proceedings of the International Conference on Automated Planning and Scheduling, volume 31,278

pages 103–111, 2021.279

[6] Ivo Danihelka. Planning and Policy Improvement. PhD thesis, UCL (University College London), 2023.280

[7] Ivo Danihelka, Arthur Guez, Julian Schrittwieser, and David Silver. Policy improvement by planning with281

gumbel. In International Conference on Learning Representations, 2021.282

[8] Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Mohammadamin283

Barekatain, Alexander Novikov, Francisco J R Ruiz, Julian Schrittwieser, Grzegorz Swirszcz, et al.284

Discovering faster matrix multiplication algorithms with reinforcement learning. Nature, 610(7930):47–53,285

2022.286

[9] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum287

entropy deep reinforcement learning with a stochastic actor. In International conference on machine288

learning, pages 1861–1870. PMLR, 2018.289

[10] Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Mohammadamin Barekatain, Simon Schmitt,290

and David Silver. Learning and planning in complex action spaces. pages 4476–4486, 2021.291

[11] Daniel Kahneman. Thinking, fast and slow. Macmillan, 2011.292

[12] Joseph Luft and Harry Ingham. The johari window. Human relations training news, 5(1):6–7, 1961.293

[13] Amol Mandhane, Anton Zhernov, Maribeth Rauh, Chenjie Gu, Miaosen Wang, Flora Xue, Wendy Shang,294

Derek Pang, Rene Claus, Ching-Han Chiang, et al. Muzero with self-competition for rate control in vp9295

video compression. arXiv preprint arXiv:2202.06626, 2022.296

[14] Pascutto, Gian-Carlo and Linscott, Gary. Leela chess zero. URL http://lczero.org/.297

[15] Mary Phuong and Marcus Hutter. Formal algorithms for transformers. arXiv preprint arXiv:2207.09238,298

2022.299

[16] Lutz Roeder. Netron, Visualizer for neural network, deep learning, and machine learning models, 12 2017.300

URL https://github.com/lutzroeder/netron.301

[17] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon Schmitt,302

Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari, go, chess and shogi303

by planning with a learned model. Nature, 588(7839):604–609, 2020.304

[18] Julian Schrittwieser, Thomas Hubert, Amol Mandhane, Mohammadamin Barekatain, Ioannis Antonoglou,305

and David Silver. Online and offline reinforcement learning by planning with a learned model. Advances306

in Neural Information Processing Systems, 34, 2021.307

[19] Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, and Philip Bachman.308

Data-efficient reinforcement learning with self-predictive representations. arXiv preprint arXiv:2007.05929,309

2020.310

[20] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian311

Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go312

with deep neural networks and tree search. nature, 529(7587):484–489, 2016.313

[21] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,314

Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without human315

knowledge. nature, 550(7676):354–359, 2017.316

[22] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,317

Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement learning318

algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):1140–1144, 2018.319

[23] David Silver, Satinder Singh, Doina Precup, and Richard S Sutton. Reward is enough. Artificial Intelligence,320

299:103535, 2021.321

[24] Student. The probable error of a mean. Biometrika, 6(1):1–25, 1908.322

10

http://lczero.org/
https://github.com/lutzroeder/netron


[25] Richard S Sutton. The quest for a common model of the intelligent decision maker. arXiv preprint323

arXiv:2202.13252, 2022.324

[26] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.325

[27] Alexandre Trudeau and Michael Bowling. Targeted search control in alphazero for effective policy326

improvement. arXiv preprint arXiv:2302.12359, 2023.327

[28] Tony Tong Wang, Adam Gleave, Nora Belrose, Tom Tseng, Joseph Miller, Michael D Dennis, Yawen328

Duan, Viktor Pogrebniak, Sergey Levine, and Stuart Russell. Adversarial policies beat professional-level329

go ais. arXiv preprint arXiv:2211.00241, 2022.330

[29] David J Wu. Katago. URL https://github.com/lightvector/KataGo/.331

[30] David J Wu. Accelerating self-play learning in go. arXiv preprint arXiv:1902.10565, 2019.332

[31] Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari games with333

limited data. Advances in Neural Information Processing Systems, 34:25476–25488, 2021.334

11

https://github.com/lightvector/KataGo/

	Introduction
	Recent Historical Background
	Related Work
	What This Work Builds Upon
	Illustrating the Need for Improvement of the Agent
	Agent Improvements
	Exploring Using a Hybrid Policy
	Eager Playout without Gumbel noise

	Experiments - Game Tic-Tac-Toe
	Training With and Without Exploring - All Games
	Training With and Without Exploring - One Game
	Playout With and Without Gumbel Noise - All Games
	Training With and Without Dirichlet Noise - All Games

	Discussion



