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Abstract

Spatial location and molecular interactions have long been linked to the connec-
tivity patterns of neural circuits. Yet, at the macroscale of human brain networks,
the interplay between spatial position, gene expression, and connectivity remains
incompletely understood. Recent efforts to map the human transcriptome and
connectome have yielded spatially resolved brain atlases, however modeling the
relationship between high-dimensional transcriptomic data and connectivity while
accounting for inherent spatial confounds presents a significant challenge. In this
paper, we present the first deep learning approaches for predicting whole-brain
functional connectivity from gene expression and regional spatial coordinates, in-
cluding our proposed Spatiomolecular Transformer (SMT). SMT explicitly models
biological context by tokenizing genes based on their transcription start site (TSS)
order to capture multi-scale genomic organization, and incorporating regional
3D spatial location via a dedicated context [CLS] token within its multi-head
self-attention mechanism. We rigorously benchmark context-aware neural net-
works, including SMT and a single-gene resolution Multilayer-Perceptron (MLP),
to established rules-based and bilinear methods. Crucially, to ensure that learned
relationships in any model are not mere artifacts of spatial proximity, we intro-
duce novel spatiomolecular null maps, preserving both spatial and transcriptomic
autocorrelation. Context-aware neural networks outperform linear methods, sig-
nificantly exceed our stringent null shuffle maps, and generalize across diverse
connectomic datasets and parcellation resolutions. Together, these findings demon-
strate a strong, predictable link between the spatial distributions of gene expression
and functional brain network architecture, and establish a rigorously validated deep
learning framework for decoding this relationship. Code to reproduce our results is
available at: github. com/neuroinfolab/GeneEx2Conn.

1 Introduction

Throughout development and into adulthood, the coordinated expression of thousands of genes shapes
the molecular and structural scaffold of the brain [1, 2]. Functional brain networks emerge from
this scaffold through the synchronous activity of multiscale neural components [3] . This emergent
organization is central to cognition, supporting processes such as vision, language, and memory with
disruptions to these networks linked to a range of neuropsychiatric and neurodegenerative disorders
[4]. Understanding the spatiomolecular landscape that gives rise to functional brain networks is a
critical step towards uncovering the genetic basis of brain function and dysfunction. Thus, we set
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out to address the fundamental hypothesis that the biological richness of gene expression is highly
predictive of functional connectivity [SH8].

Recent advances in brain-wide gene expression atlases and large neuroimaging datasets have made it
possible to connect spatial variations in gene expression with the organization of functional brain
networks [9, [10]. However, the path to robust predictive models has several key obstacles. First,
the scale of transcriptomic data, involving thousands of genes with complex co-expression patterns,
demands models with high expressive capacity. Conventional approaches, often favoring bilinear
factor models for their perceived explainability, may not adequately capture inherent non-linearities
[L1L 20 124150 [7]. Second, a major confound in neurogenomic studies is spatial autocorrelation:
nearby brain regions often share similar gene expression and connectivity patterns due to shared
developmental trajectories, vascularization, or signal bleed, potentially inflating statistical associations
if not rigorously controlled. Third, obtaining directly paired brain-wide gene expression and in-vivo
functional connectivity data from the same human individual is challenging due to postmortem
collection of gene expression, motivating the use of carefully aggregated population atlases from
multiple connectomic data sources. Lastly, effectively integrating biological context—such as the
genomic organization of genes or the precise 3D spatial embedding of brain regions—into predictive
models in a meaningful way, beyond simple feature engineering, remains an open question.

To address these challenges, we introduce context-aware neural network architectures including the
Spatiomolecular Transformer (SMT) designed specifically for predicting functional connectivity
from regional gene expression and spatial coordinates (Figure [T, evaluated through a rigorous
experimental setup. Inspired by single-cell approaches such as spaClI [[16] and scBERT [17]] that
use multimodal contextual information to improve performance on downstream tasks, SMT derives
brain region embeddings by tokenizing gene expression sequences based on their reference genome
position (transcription start site, TSS) and employs a multi-head self-attention mechanism. Critically,
it incorporates regional spatial location information via a dedicated [CLS] token and utilizes Attention
with Linear Biases (ALiBi) [18] to encourage hierarchical transcriptomic representations of the input
sequence. Furthermore, to counteract the limited sample size of human gene expression data, we
leverage the large corpus of individual connectomes in our fMRI datasets [19H21] through a target-
side distributional augmentation approach during training [22]. All methods are evaluated under
brain-wide and spatially constrained train-test splits alongside a novel spatiomolecular null mapping
technique to assess if performance is inflated by spatial autocorrelation.

As such, we claim the following main contributions in this paper:

* We introduce the first deep learning approaches for predicting functional connectivity from
regional gene expression in humans[23]], featuring an attention-based architecture (SMT)
with biologically-informed components for targeted hypothesis testing.

* We introduce and validate a novel spatiomolecular null mapping evaluation technique that
generates surrogate gene expression maps preserving not only spatial autocorrelation but
also key transcriptomic correlation structures, providing a highly stringent benchmark for
assessing genuine predictive signal.

» Context-aware neural networks, including SMT and a single-gene resolution Multilayer-
Perceptron, achieve significant performance gains in predicting functional connectivity as
compared to rules-based and bilinear methods. Crucially, this performance significantly
exceeds that of our rigorous null models and is shown to generalize across multiple connec-
tomic datasets (UK Biobank [19], Human Connectome Project [20], MPI-LEMON [21]])
and parcellation resolutions.

Our findings highlight that the complex, multimodal architecture of functional brain networks can
be predicted from spatiomolecular features using context-aware neural networks, well beyond what
chance or spatial proximity would dictate. Context-aware neural networks represent a robust path
forward for multimodal modeling of brain function in health and disease.

2 Preliminaries

RNA-sequencing (RNA-seq) provides a snapshot of transcriptomic activity across single-cell or bulk
tissue samples, typically summarized in a gene expression matrix as in Figure[T} Gene expression
has recently been integrated with noninvasive neuroimaging to uncover molecular correlates of
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Figure 1: Spatiomolecular context-aware deep modeling for connectivity prediction. Gene
expression from the Allen Human Brain Atlas is sampled across the entire brain. The Spatiomolecular
Transformer (SMT) uses a reference genome based tokenization strategy and multi-head self attention
(MHSA) to encode gene expression profiles for region-of-interest (ROI) 7 and j. A learnable [CLS]
token, initialized based on 3D coordinates of sampled ROIs, is optionally passed as a token to the
SMT. Concatenated embeddings are used to decode population average connectivity. Alternatively, a
fully connected Multilayer-Perceptron can be trained using concatenated gene expression vectors.

brain organization [24, 2} 25| [7]]. Resting-state functional MRI (fMRI), collected during task-free
windows, characterizes spontaneous brain activity by computing functional connectivity as the
Pearson correlation of BOLD signals between brain regions [4]. Letting X € R"*9 represent a
population-average transcriptome and Y € R™*” a symmetric connectome, the goal is to learn a
predictive mapping f: X — Y, or equivalently f(z;,z;) =Y; ;, testing the fundamental hypothesis
that the biological richness of gene expression is predictive of whole brain functional connectivity at
the atlas-level. Our study leverages high resolution brain maps carefully aggregated from population
datasets to learn a predictive mapping between the transcriptome and connectome.

2.1 Datasets

Allen Human Brain Atlas (AHBA). With approximately 500 spatial locations sampled in each
hemisphere across the cortex, subcortex, and cerebellum, the Allen Human Brain Atlas is the most
spatially-resolved human gene expression dataset to date. Microarray data was collected from six
neurotypical donors (mean age=42.5, sex ratio=5:1 (M:F)) using whole-genome Agilent microarrays
[7]]. Data is processed using recommendations from the abagen package ensuring stable measurements
through a differential stability threshold, filtering genes based on background noise and consistent
inter-regional coexpression patterns across donors. Since we are relating gene expression across
populations, we use the most stringent differential stability threshold retaining a final set of 7,380
genes averaged per region across donors [323]. Detailed processing steps are outlined in Section[A-T]
Raw data is available at https://portal.brain-map.org/.

UK Biobank (UKBB). The primary connectivity dataset in our study is a subset of n = 1814
healthy participants from the UK Biobank (mean age = 63.3 years; age range = 45-82; 55% female)
with available resting-state functional MRI (rs-fMRI) [19]]. Scanning protocols and preprocessing
steps are outlined in Section [A.T] Functional timeseries were extracted using the 7-network Schaefer
400 parcel cortical atlas [26], extended to 456 regions with the inclusion of the Tian subcortical atlas
[27] (S456 parcellation). Pairwise Pearson correlation of parcel-level BOLD signals was used to
compute functional connectivity matrices. The population averaged 456 region UKBB dataset yields
103,740 edge-level targets and corresponding region-pair inputs from AHBA for model optimization

(see Figure[ZA).
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Alongside UKBB, the Human-Connectome-Project Young-Adult (HCP-YA) [20]] and Max Planck
Institute Leipzig Mind-Brain-Body Dataset (MPI-LEMON) [21] are used as validation connectomic
datasets. Despite substantial age shift between these datasets and UKBB, we observe a consistent
backbone connectivity structure in the population average functional connectomes across datasets
(Figure ). Processing details for HCP-YA and MPI-LEMON are outlined in Section[A.T]

2.2 Baselines and related works

To rigorously evaluate our context-aware deep neural networks, we compare them against three
classes of established models from the neuroimaging and connectomics literature.

Rules-based methods. We first include simple, interpretable models that test foundational hy-
potheses of brain organization. These include an exponential decay model [28, 29], assuming
connectivity strength decreases with Euclidean distance. A related model uses a Gaussian kernel,
Y = exp(—d?j /20?), which decays symmetrically with squared distance to reflect spatial decay.
We also include a Correlated Gene Expression (CGE) model, which tests for molecular homophily
by correlating PCA-reduced gene expression profiles between regions [4}30]. While interpretable,
these methods are constrained by their fixed, predefined feature sets.

Connectome Model. Second, we implement learned bilinear models prominent in connectomics
[L1, 12]. The Connectome Model (CM), introduced by Kovécs et al. [11], instead formulates
synaptic connectivity prediction as a learned bilinear regression problem, modeling the connectome
asY = XOX T, where X is a single neuron gene expression matrix and O is an unknown gene-gene
interaction matrix. Qiao [12] extends the Connectome Model by introducing a Bilinear Low-rank
decomposition of O. Implementation details for the Connectome Model and its low-rank counterpart
can be found in Section[A3]

Partial Least Squares Regression. Finally, we include Partial Least Squares (PLS) regression,
the predominant multivariate method in imaging transcriptomics for linking multiple data modalities
(54171182413, 9]. PLS identifies latent variables that maximize the covariance between gene expression
and connectivity profiles. To adapt PLS for our edge-wise prediction task, we reformulate it into an
encoder-decoder model: we use its learned shared projections to create region-level embeddings and
then predict connection strength via a bilinear decoder . Details can be found in Section[A.3]

This comprehensive suite of baselines allows us to benchmark the performance gains offered by our
more expressive, non-linear architectures.

3 Methods

Spatiomolecular Transformer (SMT). Transformers have been adapted for numerous biological
tasks due to the sequential nature of gene expression data [31] with key advances in single-cell
perturbation modeling, disease classification, and cell type annotation [[17} 132} 33]]. Similar methods
remain largely unexplored for understanding the spatiomolecular foundations of brain connectivity.
Motivated by successes in single-cell modeling, we formulate a transformer-based architecture for
the transcriptome-connectome prediction task. Despite the scarcity of spatially-resolved human brain
gene expression data, we leverage the abundant amount of connectomics data to train a context-aware
transformer end-to-end.

Here, we adopt a BERT-style multi-head self-attention (MHSA) based transformer architecture [34],
requiring tokenization of the gene expression input. Given the dimensionality of the gene space,
g = 7380, we partition the gene expression vector of each region z; € RY into contiguous non-
overlapping bins of k£ genes sorted by transcription start site (T'SS) on the human reference (see
Section[A.2] for details). Setting k = 60 yields ¢ = g/k = 123 tokens per region, each represented
as a length-£ scalar vector. These are projected into a learned embedding space via a linear map,
forming input X € R**9, with embedding dimension d = 128. This value projection encoding
strategy is effectively leveraged by models like TOSICA [32] and scBERT [17].

Each token embedding sequence is passed through 4 layers of MHSA with 4 attention heads, where
the input X is linearly projected into queries, keys, and values as @@ = XWg, K = XWg, and
V = XWy, with Wg, Wi, Wy, € R¥4n and dj, = d/h. To incorporate positional priors without
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Figure 2: Population connectome reconstruction. [A] Average population connectome, Y, with
delineated subnetworks of Schaefer 7-network 400 region parcellation [26] (LH=left hemisphere,
RH=right hemisphere, SCTX=subcortex). KDEs are plotted for a subset of cortical regions with
vertical blue lines representing mean. Connectome edges from the underlying population (e.g.
UK Biobank, n=1814) are probabilistically sampled when training under our distributional target
augmentation protocol. [B] Connectomes are stratified into 10 four-fold train-test splits based on a
random or spatial split strategy. Edges connecting train and test set are omitted. [C] For each split,
models are evaluated on both the true brain and a spatiomolecular null brain. Reconstructed Y;.s: for
select models are displayed with comparison to null reconstructions for an example random split.

learned embeddings, we add ALiBi (Attention with Linear Biases) slopes to the scaled attention
logits, implemented using FlashAttention [35] enabling scaling to hundreds of tokens per region. The
fixed head-specific penalties bias each head toward different ranges of token interactions:

T
Attention(Q, K, V') = softmax <W> V,
e

where B encodes relative-position biases. Steep slopes prioritize local interactions while shallow
slopes attend globally. This inductive bias allows the model to co-embed genomically related genes
at multiple scales—motivated by the bidirectional organization of functional gene groups within
and across chromosomes [36}, [37]. While these transcriptomic relationships may be coarse at the
macroscale of brain networks, value-based token projection to a higher dimensional embedding space
may retain nuanced single-gene signal in the output of the transformer. Furthermore, chromosomally
organized tokens can be compared post-hoc with known functional gene groups or Genome-Wide
Association Studies for deeper model understanding.

Following transformer layers, the final output is flattened and linearly projected to form a region
embedding z; € RP, where p = £ - dyy and dy, < 10. For a given region pair, the concatenated
embedding [z || z;] is passed through a 2 or 3-layer MLP decoder to predict the connectivity Y;;.

Single-gene resolution Multilayer Perceptron (MLP). In parallel, we implement a fully connected
multilayer perceptron (MLP) with up to four hidden layers. The input to the model is the concatenated
single-gene resolution gene expression vector from a pair of regions, with shape 2 x7380. Architecture
and optimization details can be found in Section[A3]



Incorporating spatial context awareness. Spatial position is another form of biological context
that can be introduced to our non-linear models, with well documented links to connectivity strength
[25117) 138} 28]]. Here, we extend the input sequence with spatial information by concatenation of MNI
(Montreal Neurological Institute) 3D coordinates for the MLP, and for the SMT through a dedicated
[CLS] token initialized by the coordinates of each brain region. This token is linearly projected into
the same embedding dimension as the gene expression tokens and participates fully in multi-head
self-attention as in Temporal Fusion Transformer [39]. Unlike BERT, the full sequence including the
[CLS] token is used as the output representation of the sequence, instead of using the [CLS] token
exclusively. For both the MLP and SMT, we interpret spatial coordinates as context carriers that
condition the non-linear molecular modeling based on anatomical location in the brain.

Target-side distributional augmentation. To improve model robustness and generalization beyond
the population-averaged connectome, we introduce a target-side distributional augmentation strategy.
Rather than training exclusively on the mean connectivity matrix Y € R"*", we leverage the
full distribution of individual-level connectomes Y’ € R"*"*"_ Inspired by curriculum learning
principles [40] and imbalanced data sampling [41]], we expose the model to a subset of subject-specific
targets at different stages of training. By replacing static supervision with a set of n - r2 dynamic
targets, this strategy injects meaningful variance into the loss landscape without altering evaluation,
which remains based on mean squared error against Y. We apply this augmentation exclusively to
our SMT model across all datasets in an effort to improve test-set generalization. Algorithmic details
and alternate strategy experiments are outlined in Algorithm [2]and Section[A3]

4 Evaluation

Train-test split. To rigorously evaluate model performance, we employ two train-test split protocols:
random and spatial. Each protocol is repeated across 10 rounds of 4-fold cross-validation, resulting
in 40 total splits per model. For both settings, model specific hyperparameters are tuned using a
nested cross-validation procedure on mean-squared error described in Section[A.3]

For each random split, 75% of brain regions are used for training and 25% for testing, with models
trained on the (r‘;“") training-region edges and evaluated on the disjoint (T‘e“) test edges (Flgure ).
This split tests a model’s ability to generalize across regions that may be sampled from the same
underlying distribution, allowing it to leverage the full diversity of functional connections across
the brain. To more stringently test spatially invariant generalization, we implement a spatial split
protocol adapted from Hansen et al. [1]]. For each fold, we select a source region and define the test
set as the 25% of brain regions that are spatially closest based on Euclidean distance in Montreal
Neurological Institute (MNI) space. The remaining 75% of regions comprise the training set. This
is repeated across four folds, ensuring full brain coverage. This more challenging protocol tests
a model’s ability to generalize to regions that are both unseen and spatially distinct from those in
training. Both splits are visualized in Figure [T}
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Figure 3: Spatiomolecular null brain maps. Example null brain maps generated from Algorithm

Parcel color represents the second principal component score of gene expression matrix, X, at
each ROI. Polynomial and exponential decay curves are fit using Smm bins to model correlated
gene-expression vs. distance. Curve parameters are compared between true and null brains to measure
how well each null brain map preserves realistic transcriptomic autocorrelation.



Spatiomolecular null mapping. Our train-test split setup evaluates generalization to unseen brain
regions by using common splits across all models, but it does not fully account for a critical confound
in neurogenomic data - spatial autocorrelation. Adjacent brain regions often share similar gene
expression and connectivity patterns, which can inflate statistical associations [42]. To disentangle
these effects, we implement spatially constrained null models that preserve realistic autocorrelation
structure between brain regions while shuffling expression-to-region assignments.

We adopt the procedure of Viasa et al. [43], performing 10,000 spatial rotations of the gene expression
matrix and selecting null brains that best match the empirical correlated gene expression (CGE)
vs. distance curve (for details see[A.4|and Algorithm I]). Traditional spin tests preserve geometric
features like distance decay but do not account for transcriptomic structure [44]; our CGE-matched
nulls address both. This approach aligns with recent trends using null brain map rejection sampling
to minimize false positive inflation [45]. Figure [3|shows the second principal component of the gene
expression matrix projected onto the cortical surface for the true brain and three possible null brain
maps. The low-error null spin highlights the global smoothness preserved by a null brain matching the
true CGE vs. distance relationship. Conversely, a randomly shuffled brain map completely destroys
the CGE vs. distance trend.

For each four-fold train-test split, models are retrained and evaluated using one of 10 lowest er-
ror spatially shuffled gene expression inputs while keeping the original connectome target the
same. This enables us to test whether models trained on true data are genuinely capturing tran-
scriptomic—connectomic relationships rather than relying on mere spatial autocorrelation or genetic
similarity.

Performance metrics. True and null model performance is evaluated using a range of global
metrics: Pearson correlation, 22, mean squared error (MSE), and geodesic distance computed on the
Riemannian manifold of symmetric positive semidefinite correlation matrices [46]]. Geodesic distance
serves as a complementary measure of similarity in global correlation structure, potentially capturing
topological properties missed by elementwise metrics. We also report stratified correlations: (i) by
connection distance using uniform bins up to 180 mm, (ii) by subnetwork, based on whether a test
connection is, for example, intra- or inter-Visual (iii) by edge strength where |r| > 0.3 . Tables
and Figure [5]present a subset of these metrics; the full 32 metric sets for all experiments are available
in our repository, |github.com/neuroinfolab/GeneEx2Conn/ in /notebooks/NeurIPS.

5 Results

Overall performance. A primary finding of our study is that non-linear architectures as a class
consistently outperform linear and rules-based methods. Both the SMT and MLP, trained only
on gene expression, achieve the highest global performance for both random and spatial train-test
splits (Table[I). Performance gains are especially pronounced under the stringent spatial split, with

Table 1: Global metric test-set performance on UKBB dataset for random and spatial splits (mean+SD
over 10 four-fold splits respectively. Best metric-wise performance per section is bolded)

Random Split \ Spatial Split
Model Pearson-r (True/Null) MSE Geodesic \ Pearson-r (True/Null) MSE Geodesic
CGE (PCA) .23+.03/.17+£.04 158+.011  15.1+0.8 31+.09/.23+£.07 191+£.042  13.5+24
Dist. Gauss. Kernel 30+£.02/--%-- .031£.002  18.3%1.7 A41£.05/--%-- .039+.009 14.4+1.9
Dist. Exp. Decay 35£.03/--%-- .030+£.003  15.7+0.7 A44+.06/- -+ - - 036+.009 14.0£1.3
Bilinear CM (PCA) 51+.04 /.32+.06 .025+£.003  15.3+0.6 A42+.15/.25+.13 .080+.110  16.3%2.1
Bilinear CM .62+.10/.21+.08 .030+£.012  16.1x1.4 44+25/ .15+.12 .076+£.077 16.8+2.3
Bilinear CM (PLS) 72+.08 / .33+.08 016+.004 12.0+1.9 S58+.17/.26+.12 .029+.010 14.5%4.1
Low-Rank Bilinear 77+.03 /1 .42+.07 .014+£.001  11.2+1.1 .66+.13/.34+.13 .025+£.009 12.9+2.2
MLP 78+.03 / .29+.09 .014£.001  10.3%1.1 J2+.13/.26+.12 .023+£.012  10.5+1.9
SMT .79+.03 / .34+.09 .013+.001  10.2+1.0 72+.13/.30+.12 .022+.010 10.8+1.7
MLP w/ coords .83+.03 / .48+.09 .011+£.001  9.6+0.8 74+.13 /7 .42+.11 021+£.011  10.3£2.1
SMT w/ [CLS] .84+.02/.73+.05 [010+£.001  9.8+1.0 7012/ .49+.13 .025+.012  11.1£2.0

Null reflects model performance when trained on spatiomolecularly shuffled brains. Models sectioned by
rules-based, learning-based with gene expression, learning-based with gene expression and spatial information.
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Table 2: Stratified metric test-set performance on UKBB dataset for random and spatial splits
(mean+SD over 10 four-fold splits respectively. Best metric-wise performance per section is bolded)

Random Split | Spatial Split
Model Short-r  Long-r Inter-hemi-r  Strong-pos-r | Short-r ~ Long-r  Inter-hemi-r  Strong-pos-r
CGE 25+.04  .19+.08 20+.04 31+.05 30+.08  .07+.26 31+.12 .30+.08
Dist. Gauss. Kernel .40+.04 .07+.05 17+.03 .32+.05 43+.06 .01+.08 29+.10 .35+.09
Dist. Exp. Decay 41+.04  .10+.07 24+.04 .34+.05 45+.06 -.01+.13 37+.13 .36+.09
Bilinear CM (PCA) .57+.05 .35+.07 .50+.04 31+.08 A2+.17  20+.24 39+.18 22+.12
Bilinear CM .63+.12  .55+.09 S58+.11 22+.10 A3+27  25+.20 27+£.24 15+.19
Bilinear CM (PLS)  .75+.08 .63+.11 72+.08 37+.10 .60+.18  .38+.25 52+.19 .32£.10
Low-Rank Bilinear  .80+.03 .70+.06 77+.03 A40+.07 67+.15  .40+.28 S57+.16 .35£.10
MLP 82+.03 .67+.06 77+.03 48+.08 J3+£.14 .50+.26 62+.17 A43+.11
SMT 82+.03  .69+.07 78+.03 A48+.07 T2+.15  .49+.27 .62+.17 40+.11
MLP w/ coords .85+.03 .75+.06 .84+.03 .53+.07 J4+.15  58+.22 .66+.16 46+.12
SMT w/ [CLS] 86+.02 .78+.06 .84+.02 .55+.06 70+£.13  .53+.26 .62+.20 41+.13

improvement gains exceeding 0.08 Pearson-r for long-range and strong positive connections (>0.3)
as compared to the best linear method (Table [2)).

Figure [5|quantifies non-linear gains across cortical subnetworks, with the strongest improvements
observed in unimodal cortex (e.g., Somatomotor, Visual). In complement, Figure [2] shows that
linear models underperform in reconstructing distributed, strongly positive connections within the
Visual system and Default Mode Network. These patterns suggest that non-linear architectures
are better equipped to capture the inherent complexity of such connections. Notably, the low-rank
bilinear model from Qiao [12] performs competitively and offers greater flexibility than the standard
Connectome Model, regardless of single-gene or PLS-reduced inputs, potentially highlighting the
utility of learning embeddings directly for this task.

Performance above spatiomolecular null shuffle. Crucially, both linear and non-linear models
significantly outperform their respective spatiomolecular null evaluations, indicating that learned
representations capture molecular interactions beyond spatial autocorrelation and gene co-expression.
Null performance varies somewhat by model type but generally falls in the range of rules-based
methods, which explicitly capture properties of spatial and molecular similarity.

Spatial context effects. A performance boost is observed when spatial context is introduced to
non-linear methods in the random split setting. This gain is less pronounced under the spatial
split, where the SMT with [CLS] token exhibits stronger overfitting effects than the MLP. This is
accompanied by high null performance (r = 0.73) highlighting that spatial coordinates alone are
powerful predictors of connectivity, a signal the SMT with [CLS] architecture effectively leverages
(Figure[I3B). However, our stringent spatial split evaluation decisively shows that the model learns
more than just this spatial signal. In that setting, the null model performance drops substantially
while the true model’s performance remains high, doubling the performance gap over the null and
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Figure 4: Cross-dataset population connectome reconstruction. [A] Multi-resolution population
average connectomes sorted by posterior-anterior axis. [B] Chord plot representing Pearson-r
reconstruction when training SMT w/ [CLS] models on a full source dataset and predicting on a full
target dataset. Cross-dataset arrows are visualized when exceeding the null, and within-dataset if a
coarser resolution generalizes to a higher resolution (e.g. 391—729). See Section[I2]for experimental
details on cross-dataset generalization experiments.



confirming the capture of genuine, spatially generalizable molecular information. Future architectural
modifications could consider gating or regularization strategies to maximally leverage spatial context.

Multi-dataset replication. SMT results are replicated using the HCP-YA and MPI-LEMON
datasets by repeating the same random and spatial split protocols used in Table|l} Results are shown
in Tables[SH8 Performance trends are consistent across datasets and parcellation resolutions, with all
models exceeding their respective spatiomolecular null baselines. The SMT tends to produce more
accurate predictions at higher resolutions, which may be a byproduct of increased pairwise training
data at higher resolutions. Global performance is somewhat attenuated in these datasets, particularly
for MPI-LEMON, likely due to differences in preprocessing rather than biological signal—supported
by similar cohort demographics between the validation datasets but differing ranges in connectivity
strength.

Cross-dataset generalization. To test whether transcriptome-connectome mappings generalize
across datasets, we evaluate whether a model trained on one dataset can predict another dataset’s
connectome above a spatiomolecular null brain map. For each connectomic dataset, we train the
SMT with [CLS] using both a true and null brain at its native resolution. We then assess, for example,
whether an SMT model trained on UKBB can predict the MPI-LEMON 183 connectome better
than a null model trained on spatially shuffled gene expression in the native MPI-LEMON 183
resolution. This approach isolates cross-dataset generalizable transcriptomic patterns beyond spatial
autocorrelation and the influence of spatial coordinates. As shown in Figure d, SMT with [CLS]
models trained on UKBB and HCP significantly outperform nulls when predicting MPI-LEMON 183
(r=0.78, r =0.73 respectively), and MPI-LEMON 391 generalizes strongly to the finer MPI-729
resolution (r = 0.86). Full experimental details are provided in Section@

Embedding evaluation. The SMT’s dedicated encoder enables direct visualization of low-
dimensional token-level embeddings across the brain (Figure [5). Each region of interest (ROI)
is represented by an embedding matrix of dimensionality 123 x 10 for 60 gene bins, obtained from a
model trained on the full UKBB dataset using default hyperparameters. The most salient pattern is the
structured representation of the Visual system by the SMT, which, unlike the bifurcated organization
observed in raw gene expression space, forms a coherent transcriptomic subspace more aligned
with functional connectivity. This suggests that the SMT captures a connectivity-relevant axis of
transcriptomic variation that may be distinct from purely transcriptomic gradients. Other systems,
such as the Somatomotor and Default Mode networks, also exhibit densely clustered, anatomically
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Figure 5: Model embeddings, non-linear gain, and parameter count analysis. [A] Anatomical
coordinates visualized alongside raw gene expression, Bilinear Low-rank and SMT embeddings
using UMAP (subcortex and cerebellum omitted). [B] Gain in Pearson-r for subnetwork specific
test metrics for SMT vs. Bilinear Low-rank model. [C] Spatial split test performance plotted as a
function of parameter count (log-10 scale) for select linear and non-linear methods.



consistent embeddings. In contrast, the bilinear low-rank model produces hub-like clusters that
appear less aligned with cortical anatomy.

Ablation and hyperparameter experiments. Validation set hyperparameter experiments and
post-hoc ablations of the SMT architecture are detailed in Section[A.5] These analyses reveal that
SMT performance is broadly robust to the choice of tokenization strategy, however, the addition
of ALiBi positional slopes consistently improves performance across tokenization variants. We
also evaluate eight target augmentation protocols and find that introducing distributional batches
of population-level edges during training—particularly those with strong positive or negative edge
targets—enhances generalization under both random and spatial splits, with gains of up to Pearson-r
0.05 in strong connectivity ranges (Figure[I0). Sorting strategies and improved target augmentation
protocols are core areas of future development and may facilitate the comparable performance of the
SMT with MLP despite SMT’s reduced parameter count.

Parameter count analysis. Figure|5C depicts test set generalization performance under the spatial
split protocol as a function of the total number of learnable parameters. Increasing model capacity
generally yields a monotonic improvement in performance, with a plateau observed among non-
linear architectures at approximately 107 parameters. Notably, the binning strategy employed
by the SMT reduces the parameter count from roughly 7M in the MLP baseline to about 2M
with 60 gene bins. At just 80K parameters, the bilinear low-rank model remains competitive,
suggesting a potential intermediate regime for compact non-linear transformer-based architectures
with preserved performance. In contrast, the bilinear CM model trained on the full gene set contains
approximately 55M parameters with massively reduced accuracy, indicating that performance is not
solely attributable to parameter count scaling.

6 Discussion

A central finding of this work is the significant performance leap achieved by non-linear models
(both MLP and SMT) over traditional linear approaches in the genomics-to-connectomics decoding
problem. While the absolute performance difference between SMT and MLP is modest, we present
them not as competitors but as exemplars of two distinct deep learning strategies for this novel
problem. The MLP establishes a powerful, high-performance baseline, confirming the value of
non-linear modeling. The SMT, in contrast, serves as a biologically-informed framework whose
modular architecture offers unique advantages for scientific inquiry. Its sequential design allows for
direct hypothesis testing of biological priors, such as genomic organization via TSS-sorting. Finally,
SMT’s architecture is naturally suited for future integration with large-scale genomic foundation
models [31}147,[17], offering a clear path for advancing the field.

While this work establishes a new framework, we acknowledge several key limitations. First, the
AHBA dataset, despite being the field’s gold standard, is derived from only six donors, which may
not fully capture population-level transcriptomic diversity. Second, while our non-linear models
significantly outperform linear baselines, the modest performance gap between the MLP and SMT
highlights that further architectural innovation is needed to fully leverage biological priors. Our
qualitative analysis of SMT’s embeddings (Fig[5) and attention weights (Fig[I3)) offers a promising but
preliminary step toward interpretability; a systematic validation of these learned gene-set contributions
is a critical future direction. Looking ahead, this framework opens several exciting avenues: applying
these models to larger and more diverse transcriptomic datasets, integrating individual genetic
variations such as polygenic risk scores [48]], and extending the models to predict patient-specific
connectome alterations [49H51]]. Ultimately, moving from population-level mapping to individualized
prediction [52]] will be the key to unlocking the clinical potential of this approach for understanding
the molecular basis of brain disorders.
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A Technical Appendices and Supplementary Material

A.1 Dataset Processing

Allen Human Brain Atlas. Transcriptomic data is preprocessed from the Allen Human Brain
Atlas (AHBA) using the abagen toolbox [53], following a set of best-practice steps to standardize
expression across donors and reduce noise from technical and biological sources. Unless otherwise
specified, all processing steps follow established workflows [24} 3] 23]].

Within-Donor Normalization. Gene expression values for all tissue samples are normalized within
each donor to account for individual differences in signal scale or distribution. A scaled robust
sigmoid transformation is applied to each gene expression vector x4, defined across regions for a

given donor:
1

_ zg—median(zg)

L+ exp ( TQR(z,) )

This transformation preserves rank while being robust to outliers. A subsequent min-max rescaling
step standardizes the values to the unit interval:

Tnorm =

Tnorm — Inin($n0rm)
max(Znorm) — Min(Znorm)

Lscaled =

This two-step procedure is distribution-free and avoids assumptions of normality, unlike traditional
Z-scoring.

Sample-to-Region Assignment. Tissue samples are assigned to regions in a reference parcellation using
their MNI coordinates, constrained by hemisphere and cortical/subcortical classification. Expression
values for samples mapping to the same region are averaged, resulting in a subject-specific region-by-
gene matrix of shape r X g.

Gene Selection and Filtering. To reduce noise and retain biologically informative genes, we follow a
multi-stage filtering process. First, genes expressed below background noise are excluded. Next, we
quantify spatial reproducibility via differential stability, defined as:

| N1
As(g) = m Z Z r(Bi(9), Bi(9))

i=1 j=i+1

where B;(g) is the regional expression profile of gene g for donor i, and N = 6 is the number of
AHBA donors. Genes with high Ag(g) show consistent regional variation across brains. We use the
strictest threshold recommended for the Schaefer-400 parcellation, retaining a final set of 7,380 genes
per region.

Cross-Donor Aggregation. After normalization and filtering, gene expression values are averaged
across donors to produce a population-level matrix. To address incomplete sampling across hemi-
spheres, we employ abagen’s mirror-and-interpolate strategy: missing regions are imputed using
their contralateral counterparts and smoothed via weighted averaging over the 10 nearest neighbors in
the source hemisphere. This yields a complete r x g matrix aligned to the target parcellation, suitable
for downstream modeling.

See [53] for licensing.

UK Biobank. rs-fMRI scans were acquired on a Siemens Skyra 3T scanner (TR = 735 ms, TE = 39
ms, multiband factor = 8, 2.4 mm isotropic resolution, scan duration = 6:10 min) [19]]. Preprocessing
followed the UKBB minimal pipeline [19] and was further refined using XCP-D [354], implemented in
Nipype [S5]]. This included the removal of non-steady-state volumes, notch filtering of motion regres-
sors, global signal regression, despiking via 3dDespike, and bandpass filtering (0.01-0.1 Hz) applied
to both data and confounds [56} 57]. Population averaging followed the parcellation of individual
rs-fMRI scans into connectivity matrices. The S456 atlas used can be found at https://github,
com/PennLINC/AtlasPack/blob/main/tpl-fsLR_atlas-4S456Parcels_dseg. json,

Human-Connectome-Project Young Adult (HCP-YA). The HCP-YA dataset contains rs-fMRI

data processed identically to the UKBB dataset in the S456 parcellation. Despite substantial de-
mographic shift (n=1065; mean age = 29; age range = 22-35; 54% female) between cohorts, we
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observe a stable backbone connectivity structure in the population average connectomes between
UKBB and HCP (Pearson-r = 0.90, Figure[d). Further details for the HCP-YA cohort can be found at
https://pennlinc.github.io/AI2D/docs/datasets/HCP-YA/ [20, 158, 159] .

Max Planck Institut Leipzig Mind-Brain-Body Dataset (MPI-LEMON). MPI-LEMON is a
comprehensive neuroimaging dataset (n = 136; age range = 20-30; 72% male). The MPI dataset uses
an unsupervised voxel-level clustering approach to generate parcellations at various scales including
183, 391, and 729 region resolutions from which functional connectivity can be computed. MPI-
LEMON comes with paired, minimally processed AHBA gene expression data at each resolution.
Processing was done with the recommended abagen [S3]] parameters. Bi-hemispheric imputation was
not done for missing regions in this dataset, which differs from the paired AHBA dataset used for
UKBB. See Jimenez-Marin et al. [21] for further details, licensing, and data access.

A.2 Experimental Details

Human reference genome ordering. Genes are sorted by their transcription start site (TSS) in the
SMT tokenization procedure. For each protein-coding gene, the earliest TSS is selected across all tran-
scripts, regardless of strand orientation. Genes are then ordered globally—first across chromosomes,
then within each chromosome—yielding a biologically grounded input sequence. This ordering is
intended to enhance interpretability and biological plausibility for SMT. The reference genome used
is available atncbi.nlm.nih.gov/datasets/genome/GCF_000001405.40. Implementation details are
provided in GeneEx2Conn/data/enigma/gene_lists/human_refgenome_README.md.

Parcel centroids. Spatial coordinates for brain regions are used throughout our analyses.
For each parcellation, we determine the centroid of each anatomical region using provided
metadata files. Coordinates are defined in the Montreal Neurological Institute (MNI) stan-
dard space. For the MPI-LEMON dataset, these centroids are available via the original
release [21]. For the UKBB dataset, we provide a reformatted metadata file directly at
/data/UKBB/atlas-4S456Parcels_dseg_reformatted.csv. Centroids for this custom par-
cellation were computed usingnilearn.plotting.find_parcellation_cut_coords!

Stratified metrics ranges. Brain region centroids serve two main purposes in our analyses: (1) as
input features for models incorporating spatial information, such as the SMT with [CLS] token, and
(2) to stratify model performance by inter-regional distance. We define short-, mid-, and long-range
Pearson correlations by dividing the brain’s maximum inter-regional distance (180 mm) into three
equal intervals: short-range (< 60 mm), mid-range (60-120 mm), and long-range (120-180 mm).
In addition to these distance-stratified metrics, we also compute performance over connection
strength categories: strong positive (r > 0.3), strong negative (r < —0.3), and weak connections
(-0.3 <r <0.3).

A.3 Model Optimization

Hyperparameter selection. To select the optimal hyperparameter configurations for each model
in Table [T] and Table [2] we perform nested inner cross-validation using random sampling from a
hyperparameter grid defined from wider grid searches and manual fine-tuning. For each model, 3-6
hyperparameter combinations are sampled, with the exact number depending on the model’s complex-
ity and the size of the grid. Each model also contains a best default parameters configuration, which
is guaranteed to be sampled in addition to the randomly sampled configurations. The combination
yielding the lowest validation loss on a dedicated subset of validation nodes, is then used for full
training and performance evaluation on the test set. Full hyperparameter grids for all models are
available in our repo at /GeneEx2Conn/models/configs. All experiments are run on A100 or
H100 NVIDIA GPUs on a high-performance compute cluster, taking no more than 1 hour per fold.

Optimization details. All gradient-based models, including both linear baselines and MLP archi-
tectures, are trained using the AdamW optimizer. The mean squared error (MSE) between predicted
and ground-truth connectivity values are used as the training loss. We perform model selection based
on validation-set performance across cross-validation folds. All model architectures and hyperparam-
eter configurations can be found in our repo, github.com/neuroinfolab/GeneEx2Conn, under
/models/configs.
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Rules-based baselines. We adopt several simple rules-based baselines for predicting inter-regional
connectivity Y;; from spatiomolecular properties. The exponential decay model assumes decay of
connectivity strength with Euclidean distance d;;, given by Y;; = SAo+(1—SA) exp(—d;;/SAx),
where SA , and SA ) control the asymptotic offset and decay rate [28]].

Bilinear Connectome Model. Optimizing gene-gene interaction weights O is challenging due to
its quadratic scaling with the number of genes and the large combinatorial space it spans. Kovacs
et al. [11] restrict their analysis to a subset of 19 innexin genes and estimate O by minimizing
[vec(Y) — (X & X)vec(O)|3 + af|vec(O)||3. We adopt a more scalable formulation that minimizes
ming ||Y — XOX T||% + A|O]|%, using a closed-form solution described in Section enabling
efficient learning of interaction matrices on the full gene set or on dimensionality-reduced features.

Bilinear Low-rank Model. To reduce parameter count and enforce symmetry in the predicted
connectome, we further simplify the bilinear model by exploiting the symmetry of Y, and optimizing
a shared projection matrix £/ € R9*. This yields the objective min, ||Y — X EET X 7|34\ || E|%,
which preserves representational power while significantly lowering computational complexity.

Partial Least Squares (PLS). PLS simultaneously learns projections for inputs X and outputs Y’
to maximize covariance in a shared latent space, providing a powerful framework for decomposing
high-dimensional, collinear data into low-dimensional latent components [60]. The general form
of the PLS model can be written as X = TPT + FandY = UQ' + E, where P € R9*F and
Q € R™** are projection matrices, T, U € R"** are the corresponding score matrices, and E, F
are error terms. Each latent component k of P and @ is learned by maximizing max, ,(Xp) " (Yq),

followed by solving the regression 73 = U, yielding the overall model Y = X PT3Q .

PLS-based encoder-decoder adaptation. To adapt PLS for our edge-wise prediction task, we
reformulate it into an encoder-decoder framework. We first use its learned projections to create
region-level embeddings ¢; = X PT from P learned on a training set (Xiwin, Yirain). Connection
strength is then predicted via a bilinear decoder by minimizing the mean squared error between
predicted and observed connectivities, ming % -7 je1(Yij — t] Ot;)?. The latent dimensionality
k and regularization parameter \ are selected via cross-validation.

Multilayer Perceptron. The input to the fully-connected MLP is of shape 2 x 7380 with 2-4 hidden
layers. Each hidden layer includes batch normalization, dropout, and ReLLU activations. The model
is trained using the AdamW optimizer with weight decay for regularization. All hyperparameters,
including network depth, hidden layer size, dropout rate, and learning rate, are selected via cross-
validation to mitigate overfitting given the high-dimensional input and large parameter space.
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A.4 Spatiomolecular Null Shuffle Details

Implementation. Null brain maps were developed to address inflated false-positive rates that
arise when comparing spatially structured brain data. Instead of naive permutations, spatially
informed spin methods generate surrogate maps that preserve spatial autocorrelation while disrupting
correspondence with true data, enabling statistical null distributions that isolate the contribution of
spatial structure.

We adopt the spin-based procedure of Vasa et al. [43], which projects cortical parcel centroids onto
a sphere, applies a random rotation, and reassigns each parcel’s data to the region it lands on. This
method preserves inter-hemispheric contiguity and has been shown to be robust across parcellation
resolutions [42]. For subcortical structures, we instead apply the spin directly in coordinate space for
the subcortex and cerebellum, ensuring bilateral symmetry, to overcome the non-spherical topology
of the subcortex.

Even with modifications for subcortical structures, a naive spatial spin, though preserving distance-
based spatial autocorrelation, may disrupt the genetic autocorrelation structure of the transcriptome.
Genetic autocorrelation reflects the principle that regions with similar gene expression profiles tend
to exhibit stronger functional connectivity. This pattern partially overlaps with spatial proximity, but
may include more complex distance-based molecular relationships.

To quantify transcriptomic autocorrelation, we examine how correlated gene expression (CGE) decays
with distance. We bin all region pairs into Smm intervals based on Euclidean distances and compute
the mean CGE within each bin, yielding a CGE—distance decay curve. The canonical curve observed
in human data [61] and across species [6] typically follows an exponential decline. Notably, we
observe a secondary rise in CGE around 120mm, likely driven by long-range associations between
cytoarchitectonically similar regions. Negative CGE values at larger distances often correspond to
cortico-subcortical interactions [23]].

Algorithm 1 CGE-Matched Spatial Null Brain Map Generation

1: Input: True transcriptome X" € R">9, region coordinates C' € R"*3, number of spins N,
number of top spins to return K

2: Define: Exponential CGE curve f(d) = SA + (1 — SA,)e~ 4/
3: Define: 3rd-order polynomial CGE curve g(d) = a1d® + asd® + azd + a4
4: Compute true CGE parameters (SA'®, SA™® {afve ... a*}) from X e
5: fori=1to N do
6: (a) Cortical Spin: Project cortical coordinates C to the unit sphere
7: Generate rotation matrix R; € SO(3) and compute C!** = Co R;
8: Construct bijective mapping 7§ : {1,...,7ax} — {1,...,7ax} based on Vasa et al. [43]:
* Initialize unassigned set i = {1,...,7rex}
» While U # 0
1. Select the most distant pair (p, q) € U
2. Assign: 7$%(p) = argmin; ||CI*[p] — Cex[7]]|2, likewise for ¢
3. Remove p, g from U
9: (b) Subcortical Spin: Define 7$"® by applying a symmetric spin on subcortical coordinates
10: Construct null matrix: X™! = concat (X [75%], Xoub[75])

11: Compute CGE vs. distance from X™! and C
12: Fit f;(d) to extract (SA}, SAL,)

13: Fit g;(d) to obtain (a%, a%, a%, a}) ,
14: Compute total reassignment cost ¢; = Z;“‘:‘l
15: end for

16: Standardize each CGE parameter and cost across null spins using z-scores
17: Compute total standardized error for each spin i:

|Cex[5] = Co [T ()] 12

4
ei = |2(SAY) — 2(SAT)[+]2(SAL) — 2(SAT) [+ > [2(a)) — 2(a*)|+|2(ci) — (™)
j=1
18: Rank spins by ascending e;
19: Return: Top K lowest-error null transcriptomes { X[}, ..., X[t}
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Figure 6: Null distributions of Connectome Model and Partial Least Squares. Each histogram
shows the distribution of Pearson correlation between predicted and observed connectomes across
10,000 spatially spun/shuffled gene expression matrices. Left: Connectome Model (CM). Right:
Partial Least Squares (PLS). Bars are colored by the average mean error rank across 25 bins (darker
= better rank). Red dashed lines mark empirical performance on the true gene expression matrix;
blue dashed lines indicate the mean performance using the 10 lowest error nulls.

Figure 3| illustrates that spin-based nulls generated by Algorithm (1| produce highly variable
CGE-distance curves, ranging from biologically realistic exponential decays to distorted, spatially
disordered profiles. To address this, we implement a rejection sampling procedure that selects null
transcriptomes best preserving both spatial and transcriptomic autocorrelation, enabling stringent null
testing without requiring full null distributions. The left panel of Figure 3| shows the empirical CGE
decay from the true brain, while representative outcomes of our procedure are labeled as “Low-error
null spin” and “High-error null spin”.

In our experiments, we set N = 10,000 spatial spins and select the top K = 10 based on Al-
gorithm 1. The full implementation is provided in our repository at /sim/null.py within the
generate_null_spins () function. The procedure for fitting the exponential decay and polynomial
parameters are also outlined in this Python file.

Effect of mean error rank. Despite the mismatch between features and targets introduced by
spatial spinning, we hypothesize that gene expression inputs preserving realistic spatial and genetic
structure will yield more realistic connectome predictions. If autocorrelation is indeed predictive
of connectivity, null brain transcriptome datasets with more realistic CGE profiles should result in
predictions closer to the true value.

We test this by fitting two linear models—the Connectome Model (CM) and Partial Least Squares
(PLS)—using 10,000 spatiomolecular null spun/shuffled brains. For each spin, we fit the models using
the null gene expression matrix X’ and evaluate the Pearson correlation between predicted Y and
observed Y. For PLS, we use 10 latent components (selected via grid search over 0-25 dimensions
selecting the elbow point based on Pearson r); for CM, we use PCA-reduced gene expression with 27
components (capturing 95% of the variance), enabling efficient training via the closed-form solution
outlined below. We train and test on the full dataset as is standard for generating null distributions
under null spin tests [42].

Figure[6]indeed confirms that model performance across spins is sensitive to the quality of the CGE
profile. Histograms of prediction accuracy (Pearson-r) reveal that the top 10 most CGE-consistent
nulls produce better fits than the bulk of nulls. This effect is consistent across both models, and
supports the idea that realistic gene-distance relationships are a critical determinant of null predictive
accuracy.

Closed form solution for the Connectome Model. We solve the ridge-regularized bilinear regression
problem:
min [[Y = XOXT[|% + AOlI%,

where X € R"*4 Y € R™*" O € R?™? and X > 0. X is set following Kovics et al. [I1]. Using
| Al|% = Tr(AT A), we expand the objective:

LO)=Tr(YTY)-2Tr(OX"YX)+ Tr(OT X XOXTX) + ATr (0T O).
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Letting A = X "X and M = X 'Y X, we simplify:
L(0) = const — 2Tr(OM) + Tr(OTAOA) + A Tr (07 0).

Taking the gradient with respect to O gives:
VoLl = —-2M +2A0A + 2)0.

Setting the gradient to zero and rearranging:
AOA+ )0 =M.

Assuming A is symmetric and positive definite (e.g., after PCA), we pre- and post-multiply by
(A + XI)~! to obtain:
O* = (A+ M) 'M(A+ M),
or equivalently,
O =(X"X +AD)'XTYX(XTX + )7L

This formulation enables vast speedups over [[L1]]’s original Kronecker based formulation, enabling
fitting of the Connectome Model for many iterations (e.g. 10,000 spins) and for larger dimension, d.

Train-test split with spatiomolecular null comparison. As described in4] each model in Table
[ is tested across 10 random or spatial four-fold splits. For each split, a corresponding unique
spatiomolecular null gene expression matrix (from the top 10 out of 10,000) is used to refit the model
and predict held out test set. This results in 40 test performance metrics for the true gene expression
and 40 test performance metrics for the null gene expression. Aggregate metrics are computed to
compare the true vs null model performance. This procedure circumvents the need to refit the model
thousands of times using many, potentially suboptimal, null spins.

MLP/SMT performance with coordinates & null gene expression. In Table [l| we observe a
substantial true vs. null gap in Pearson-r, however, this gap is markedly smaller for the SMT w/
[CLS] under the random split. We posit that this trend is due to the fact that the MLP w/ coords and
the SMT w/ [CLS] have access to the true coordinates in both the true and null case. Thus, Euclidean
coordinates alone might be predictive of connectivity even without molecular information. To deduce
the effect of spatial position alone, we fit several variations of null models in Table[3]

Table 3: Null model performance comparison with varying feature access on UKBB dataset (mean
and standard deviation over 10 random 4-fold splits)

Model Features Pearson-r  Short r Mid r Longr R? MSE Geodesic

MLP coords J2+.06 76+x.06 .67+£.07 .63+.10 .52+.09 .016+.003 13.12+1.01
MLP permuted + coords .29+.07 28%.08 .20+.06 .16+.09 -05+.11 .035+.004 16.45+.80
MLP SM + coords A7+£.08 48+.08 .39+.08 36+.11 .11+.13 .030+.005 1431+1.2
SMT w/CLS permuted + coords .68+.06 .70+.07 .64+.06 .61+.10 41+.11 .020£.004 11.79+.92
SMT w/ CLS  SM + coords J1+05 73+x.05 .67+£.05 .65+.08 47+.09 .018+.003 11.52+.84

SM indicates gene expression has been permuted under the spatiomolecular null procedure. Permuted indicates the gene expression is a purely
random permutation reassignment.

The MLP trained with coordinates alone demonstrates that spatial position is a strong predictor
of functional connectivity, achieving Pearson-r > 0.7. This likely accounts for the similarly high
performance of the SMT w/ [CLS] model under the random split spatiomolecular null. Aside from
architectural differences, the only distinction between these models is that the SMT receives additional
(but spatially spun) gene expression input. Still, the SMT w/ [CLS] matches the performance of MLP
w/ coords across all metrics. The difference observed between the permuted gene expression and
spun gene expression highlights the stringency of the spatiomolecular null as argued in[A.4] Overall,
an MLP trained just on coordinates is effective at connectome reconstruction.

These results reinforce that any model exceeding the SMT with [CLS] null reflects learning of true
transcriptomic patterns, rather than spatially autocorrelated structure. Notably, the SMT w/ [CLS]
architecture appears to leverage spatial information more explicitly than the MLP, which has reduced
ability to isolate positional cues from the high-dimensional input. Attention heads in Figure [T3]
support strong emphasis of the [CLS] token during learning. In the UKBB dataset, all learned models
surpass this stringent null baseline, underscoring their capacity to extract meaningful molecular
information beyond what is encoded by Euclidean distance.
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A.5 Additional Experiments

Hyperparameter experiments. To isolate the effect of key design choices in the SMT architecture,
we conduct a series of hyperparameter experiments using 10 fixed inner cross-validation splits
with the UKBB dataset under our random train-test split. These experiments apply each setting
independently to the default SMT configuration. Figure[/|summarizes the effects of four components:
token encoder dimension, token encoder output dimension, ALiBI slopes, and target augmentation
probability. Table 4| displays the hyperparameter grid for the Spatiomolecular Transformer with

default parameters bolded.

Inner-CV Experiments

Token encoder dimension performs best at 60,
grouping larger gene chunks into fewer tokens.
This improves speed (reducing quadratic atten-
tion cost) with minimal performance trade-off.
Advances in efficient attention may eventually
allow single-gene tokenization at scale.

Fixing the token encoder dimension to 60 di-
mension gene chunk bins and varying the output
dimensionality after the transformer shows rel-
ative stability up to an output dimensionality of
3 per token. A token encoder output dimension-

ality of 10 is optimal on the validation set.

Table 4: Hyperparameter search space for the Spa-
tiomolecular Transformer. Default values are in

bold.

Hyperparameter

Values

token_encoder_dim
d_model
encoder_output_dim
use_alibi

nhead

num_layers
deep_hidden_dims
transformer_dropout
dropout_rate
learning_rate
weight_decay
batch_size

aug_prob

aug_style

epochs
num_workers
prefetch_factor

[20, 60, 180]

[64, 128]

[5,10]

[True, False]

[2,4]

[2,4]

[[256,128], [512,256,128]]

[0.1,0.2]

[0.1, 0.2, 0.3]

[0.00009, 0.0001]

[0.0001, 0.001]

[512, 1024]

[0, 0.1, 0.3]

[linear_decay, linear_peak, curriculum_swap_constant,
curriculum_swap_linear_decay]

[90, 110]

12]

(4]

ALIiBi slopes show a simple and clear trend im-
proving both Pearson-r and MSE when incorporated into the MHSA mechanism, pointing towards
the utility of multi-head representations of the input sequence. In the next section we explore the
effect of alternate sorting strategies under the random and spatial split. Modest amounts of target
augmentation probability 0.1-0.3 are optimal over more aggressive strategies. This is tested for the
standard linear decay setting. We explore target-side augmentation strategies further in the subsequent
sections.

In general it is worth noting that differences between hyperparameters are nominal indicating nuanced
effects of each on overall learning, as well as potential combinatorial effects.
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To evaluate the effect of our TSS 7 Joone & o
based tokenization strategy we con-
duct a post-hoc experiment, where all
hyperparameters are fixed to default.
We then systematically vary the gene
bin ordering and the size of the bins.
For each gene bin size, k, genes are
binned together randomly, by TSS, or
by mean global expression patterns.
The mean expression based setup may
facilitate the co-embedding of genes
based on coexpression and is com-
monly used in single-cell transformer
based methods [31]]. Figure [8|shows
changes in performance when varying
the token size and tokenization strat-
egy. The first notable effect is that the
SMT performs best on both splits with gene groups of 60. There is no clear added benefit to smaller
gene bins, which aligns with the inner-CV experiments in[7] Interestingly, even when genes are
sorted and binned completely randomly, with no biological prior information, SMT performance
does not drop. Performance only drops when ALiBi slopes is removed from the model. This points
towards a robustness of the value projection transformer style model and that there are likely alternate
architectural modifications that would introduce biological priors more strongly into the SMT. ALiBi
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Figure 7: Validation set hyperparameter experiments for
SMT. Performance varies with token dimensionalities, ALiBi
slopes, and augmentation probabilities.
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Figure 8: Test set tokenization strategy analysis. TSS-based, mean global expression-based, and
randomly sorted tokenization with and without ALiBi slopes are evaluated on the test set.

slopes, however, seems to have a positive effect on model performance likely due to its enforced
hierarchical representation of the gene expression sequence agnostic of tokenization sorting strategy.

Target-side augmentation strategy

Given the data-scarce regime of population-level transcriptome-to-connectome prediction, we in-
troduce a distributional target-side augmentation strategy to improve generalization. Our approach
combines ideas from curriculum learning [40, [22] and synthetic minority oversampling techniques
[41], modifying training batches throughout the learning process while injecting signal from the full
population distribution.

Algorithm [2) outlines this procedure, which defines three possible augmentation paths: (i) using
targets from the population-average connectome Y (i.e., no augmentation), (ii) randomly replacing
targets in the current batch with individual-level values from the population, and (iii) replacing targets
only if their original population value satisfies |y| > 6, where we fix # = 0.3. This threshold ensures
that only strong positive or negative connections are overrepresented during training—corresponding
to a minority class in typical connectome distributions (see the density function in the bottom right of

Fig.[I).

Algorithm 2 Distributional Target-Side Augmentation Protocol

Require: Current mini-batch B = {(X;,v:)}2.,, epoch e, total epochs F, augmentation style
aug_style, probability schedule p(e), population matrix Vyop

1: Draw r ~ U(0,1)

2: if r < p(e) then

3: if aug_style = curriculum_swap then

4: Identify indices in Dy, Where |y| > 6

5: Sample new batch B from strong edges

6: Replace all ; in B with subject-level values from Ypp
7: else

8: for each target y; in B do

9: Replace y; with a subject-level value from YVyop
10: end for
11: end if
12: else
13: No augmentation is applied; original batch is used
14: end if

15: Compute loss: Lysg = & Zf;l 1 fo(X5) — wil)?
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The augmentation schedule p(e) determines the
probability of performing target-side augmen-
tation at epoch e. Various scheduling strate-
gies—such as linear increase, decrease, constant,
and peak—are visualized in Fig.[9] This mecha-
nism allows us to inject task-relevant population
signal at different stages of training. In our main
experiments, we select the augmentation strategy
using cross-validation, and Fig. |10 analyzes per-
formance differences across augmentation proto-
cols. For all styles, the maximum augmentation
probability is fixed at p = 0.3, based on inner
cross-validation results using linear decay.

Nearly all augmentation strategies improve model
performance with respect to Pearson correlation
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Figure 9: Augmentation schedules defining
p(e) over training epochs.

and mean squared error (MSE). Gains are especially pronounced when evaluating Pearson-r restricted
to strong positive edges (y > 0.3), where both constant and linearly decaying augmentation schedules
yield an improvement of ~0.05. This effect is intuitive, as curriculum-based sampling emphasizes
edges with strong signal, which are otherwise underrepresented. Overall, our findings suggest
that curriculum-guided target-side augmentation improves model robustness across both random
and spatial data splits, and should be considered as a general-purpose regularization strategy in
transcriptome-connectome modeling tasks in future work.
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Figure 10: Distributional target-side augmentation analysis. Augmentation style test-set perfor-
mance for Pearson-r, MSE, and strong-positive Pearson-r (>0.3) for [A] random split and [B] spatial

split.
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A.6 Replication Analysis

Intra-resolution replication analysis. For all resolutions of the MPI-LEMON and HCP dataset,
the SMT outperforms its corresponding null (Table [5] and [7)) under both the random and spatial
split setting. The raw performance values are lower than those reported for UKBB, which could be
attributed to a variety of fundamental differences between the datasets such as data quality, processing
steps, parcellation style, or weaker signal between the AHBA population and the HCP and MPI-
LEMON populations. Alternatively, despite using cross-validated hyperparameter searching strategy,
a more optimal search space may exist for the MPI-LEMON dataset as compared to UKBB. Another
primary difference between the datasets is that the MPI-LEMON dataset contains more positively
skewed values whereas UKBB contains strong signal in both the positive and negative direction.

Tables[6]and Table[§]similarly illustrates performance above the spatiomolecular null, but at a smaller
margin for MPI-LEMON. Strong spatial effects are present at all resolutions. This gap is in line
with our SMT w/ [CLS] results from [I] which shows a much smaller gap when true coordinates are
introduced to the null model. In sum, Tables 5 through 8 confirm a robust relationship between gene
expression and functional connectivity in the HCP-YA and MPI-LEMON dataset, but there may be
more weakly aligned genetic signal in the MPI-LEMON dataset.

Cross-dataset and cross-resolution analysis. We use a full dataset framework to test cross-dataset
and cross-resolution generalization simultaneously. Here, we train an SMT w/ [CLS] model on a
source dataset-resolution pair (e.g., UKBB S456) and reconstruct the full connectome of a different
dataset-resolution pair (e.g., MPI-LEMON 729). To evaluate whether performance exceeds chance,
we benchmark against an SMT model trained on one of the top 10 spatiomolecular spins for the
source dataset, keeping spatial coordinates fixed. This model represents the baseline explained by
spatial proximity and transcriptomic autocorrelation.

For example, we first train the SMT w/ [CLS] model on the true data and a top K null spin of the
UKBB S456. If a model trained on MPI-LEMON 729 reconstructs the UKBB S456 connectome more
accurately than the UKBB-based null model, it implies generalization beyond spatial and genetic
autocorrelation. Default model hyperparameters are selected prior to application on the target dataset.
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Table 5: Multi-resolution test set performance for SMT with random CV on MPI-LEMON and
HCP-YA dataset (mean and standard deviation over 10 4-fold splits). (null) indicates model trained
on 10 lowest-error spatiomolecular nulls at each resolution.

Model Resolution ~ Pearson-r Short r Mid r Long r R? MSE Geodesic

SMT (null) 183 0.26+£0.10 0.16£0.12 0.17+£0.10 024+0.13 —0.11+£0.23 0.030+0.005 6.62+ 0.87
SMT 183 0.50+0.09 043+0.11 041+0.11 045+0.09 0.174+0.16 0.022+0.005 5.62+0.98
SMT (null) 391 0.284+0.06 0.224+0.06 0.20+£0.05 0.20+£0.10 —0.06=+0.07 0.025+0.002 9.19+0.63
SMT 391 0.57+0.05 0.56+0.06 0.49+0.06 048+0.08 0.284+0.08 0.017+0.002 8.17+0.92
SMT (null) 729 0.304+0.05 0.24+0.05 0.21+£0.05 0.25+0.07 —0.08+0.08 0.022+0.002 11.90+0.77
SMT 729 0.544+0.04 0.53+0.04 045+0.04 045+0.06 0.23+0.06 0.016+0.001 10.67+£0.77
SMT (null) HCP 0.27+£0.07 0.284+0.08 0.21+0.07 0.20£0.10 —0.224+0.11 0.030+0.004 14.41 +0.87
SMT HCP 0.714+0.04 0.75+0.04 0.68+0.04 0.58+0.08 047+0.08 0.0134+0.002 10.89+0.77

Table 6: Multi-resolution test set performance for SMT w/ [CLS] on random split (mean and standard
deviation over 10 4-fold splits).

Model Resolution ~ Pearson-r Short Mid r Long r R? MSE Geodesic

SMT w/ CLS (null) 183 0.50£0.09 044+0.12 0.39+0.11 045+£0.12 0.04+£0.18 0.026 £0.004 6.18 £0.93
SMT w/ CLS 183 0.57+0.09 0.50+0.14 0.48+0.12 0.50+0.12 0.14+0.24 0.023+0.007 5.80 +1.11
SMT w/ CLS (null) 391 0.61£0.06 0.60+0.06 0.54+0.06 0.54+0.09 0.30+0.10 0.016+0.002 7.76 & 0.80
SMT w/ CLS 391 0.68+0.04 0.68+0.04 0.61+0.05 0.61+0.06 0.42+0.07 0.013+0.001 7.61=+0.81
SMT w/ CLS (null) 729 0.66 £0.04 0.65+0.04 0.59+0.05 0.59+0.06 0.38+0.07 0.013+0.002 9.63+0.71
SMT w/ CLS 729 0.70£0.04 0.70+0.03 0.63+0.03 0.64+0.06 0.45+0.07 0.0114+0.001 9.67+1.03
SMT w/ CLS (null) HCP 0.59+£0.05 0.63+0.05 0.53+0.06 0.53+0.10 0.26+0.09 0.0184+0.003 12.59+0.72
SMT w/ CLS HCP 0.74+0.05 0.77+0.04 0.70+0.05 0.66+0.10 0.524+0.08 0.0124+0.002 11.27+0.81

Table 7: Multi-resolution test set performance for SMT on spatial split (mean and standard deviation
over 10 4-fold splits).

Model Resolution ~ Pearson-r Short Mid r Long r R? MSE Geodesic

SMT (null) 183 0.13+£0.10 0.09+£0.08 0.08£0.10 0.11+£0.14 —-0.25+£0.41 0.041£0.013 7.02+£0.84
SMT 183 0.38+0.15 0.35+0.16 0.31+£0.12 0.27+£0.18 0.024+0.28 0.032+£0.008 6.27+£0.81
SMT (null) 391 0.194+0.08 0.15+0.07 0.11+£0.09 0.08+0.16 —0.15+0.11 0.034+0.006 9.34+0.94
SMT 391 0.494+0.10 047+0.11 0.36+£0.09 028+021 0.18+0.17 0.024+0.006 8.09+0.84
SMT (null) 729 0.224+0.09 0.18+0.07 0.09+£0.07 0.10+£0.09 —0.16+0.12 0.031+0.005 11.98+0.78
SMT 729 0.48+0.09 0.45+0.06 0.34+0.09 028+0.14 0.17+£0.11 0.022+0.004 10.73+0.83
SMT (null) HCP 0.254+0.09 0.25+0.10 0.15+0.08 0.09+0.10 —-0.20+£0.18 0.038+0.011 13.91+1.18
SMT HCP 0.63+0.15 0.63+0.17 0.55+0.14 044+0.22 0.20+0.81 0.024+0.014 11.13+1.80

Table 8: Multi-resolution test set performance for SMT w/ [CLS] on spatial split (mean and standard
deviation over 10 4-fold splits).

Model Resolution ~ Pearson-r Short r Mid r Long r R? MSE Geodesic

SMT w/ CLS (null) 183 0294013 024+0.13 014+0.14 0.224+0.13 -0.354+0.59 0.044+£0.019 7.28+2.47
SMT w/ CLS 183 0.32+0.12 0.27+0.14 0.194+0.14 0.34+0.16 —-0.284+0.39 0.042+0.015 7.01+1.43
SMT w/ CLS (null) 391 0434+0.10 040+0.10 0.28+0.13 0.35+0.15 0.00£0.19  0.030+0.006 8.02+0.81
SMT w/ CLS 391 0.50+0.09 048+0.10 0.34+£0.10 0.35+0.17 0.15+0.15 0.024+0.006 7.95+0.83
SMT w/ CLS (null) 729 0444011 0414010 0.25+0.12 0.23+0.16 —0.08+0.27 0.028+0.007 10.19+0.72
SMT w/ CLS 729 0.524+0.09 049+0.07 0.36+0.12 0314022 0.08+0.21 0.025+0.007 9.87+0.88
SMT w/ CLS (null) HCP 0.37+0.11 0.37+0.12 021+£0.12 0.18+0.13 —0.27+0.58 0.040+0.017 13.14+1.56
SMT w/ CLS HCP 0.57+0.13 0.57+0.14 045+£0.14 047+0.23 0.17+030 0.026+0.012 12.05+2.21
Random split  Tain Regions %ndom Fold 1{— Connectorr Spatial split . Trainegions  SRatial Fold 1 — Reordered Connectom

Test Regions

1‘ é‘i Test Regions
\id

oo
\i
{

i

(jlenuaA-|esioq) Z
(jenuap-esiod) Z

Train

Test | Test

Figure 11: Example connectome random and spatial splits.
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Figure 12: Cross-dataset generalization of SMT with CLS. The diagonal shows population-average
functional connectomes from UK Biobank (S456), Human Connectome Project (S456), and MPI-
LEMON (183, 391, 729 resolutions). Connectomes are sorted by the anterior-posterior axis across
datasets and resolutions. Each row shows reconstructions from SMT w/ [CLS] models trained on a
source dataset (highlighted with a blue border) and tested on external datasets or resolutions. Pearson
correlation r between predicted and true connectomes is shown below each matrix, with the source
dataset spatiomolecular null performance in parentheses. Null performance is based on SMT w/
[CLS] models fit on a low-error spatiomolecular null gene expression matrix with true coordinates.
Connectomes highlighted with a green border indicate generalization above native SMT [CLS] null
chance. (Non-parenthesized Pearson correlations along the diagonal correspond to training fit and
thus do not indicate significance over the null. See intra-resolution effects in Tables |§|—|§[)

As shown in Figure[T2] across all experiments we observe consistently high reconstruction perfor-
mance an a backbone connectome structure at all resolutions. Meaningful generalization above
the null is observed in a few cases. Both the UKBB and HCP trained models are able to predict
MPI-LEMON 183 beyond the spatiomolecular null baseline, suggesting a possible conserved molec-
ular—connectomic relationship across adult populations. Notably, UKBB participants are older on
average than those in MPI-LEMON (see Section[AT)), supporting the hypothesis that shared tran-
scriptomic gradients contribute to functional brain organization across the adult lifespan. This is
further supported by the fact that the HCP trained model significantly predicts MPI-LEMON 183,
at a value slightly worse than UKBB. Differences in acquisition and population demographics may
further influence our generalization results. HCP to UKBB generalization exceeds null chance, which
is expected given the targets of UKBB are highly similar.
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We also find that while UKBB and HCP connectomes contain both positive and negative values,
MPI-LEMON matrices are strictly positive. This discrepancy may limit the model’s ability to
capture absolute connectivity values across datasets (as reflected in MSE), though relative connection
strengths remain well preserved (as reflected in Pearson-r). Parcellation differences likely also play
arole: the UKBB parcellation is functionally defined based on resting-state networks, whereas the
MPI-LEMON atlas is derived from unsupervised voxel-level clustering.

Within the MPI-LEMON dataset, we find strong generalization across parcellation resolutions. Five
cross-resolution reconstructions exceed the null baseline, including one case where a model trained
at lower resolution (391) generalizes successfully to a higher resolution (729). These results suggest
that while spatial position explains much of the variance, gene expression captures complementary
structure. As resolution increases and more training data becomes available, models are better able to
learn complex molecular—connectomic relationships.

In sum, our cross-dataset generalization analysis demonstrates that our predictive accuracy on UKBB
is not an artifact of the particular dataset properties. There are common properties preserved across
datasets, demographics, and parcellation resolutions that the SMT captures.

A.7 Attention Weights Analysis

To interpret how the SMT attends to gene tokens, we extract and average attention weights from
the final layer of the trained transformer encoder. For a given region, the input is a sequence
of tokenized gene expression values X € R‘*9, where £ is the number of tokens and d is the
embedding dimension. In each layer, X is linearly projected to queries, keys, and values: Q = X Wy,
K = XWgk,V = XWy, where Wo, Wi, Wy € R¥4 and dj, = d/h is the head dimension for
h heads. Each head computes scaled dot-product attention with ALiBi biases B:

K'+B
Attention(Q, K, V') = softmax (%) v,
QKT+

where softmax (T) € R’ defines the attention weights.

After model training (on the full dataset using the default hyperparameters identified via cross-
validation), we pass in the full training data to compute these attention weights. For each sample, we
extract the self-attention matrix from the final transformer layer for each head. We then average these
matrices across all samples and all heads to obtain a global attention score matrix:

o1 XN
A== > AP,

n=1 j=1

where AY) € Rf** is the attention matrix for the j-th head on the n-th region, and N is the total

number of regions.

For subnetwork-level analysis, we instead compute attention weights restricted to samples belonging
to canonical functional subnetworks defined by our UK Biobank 456 region, 9 network parcellation.
We compute the attention weights for each network k € {1,...,9} by passing in its regions to
the encoder individually. These attention matrices are aggregated in the same way, producing a
network-specific average attention map Ay. This procedure allows us to characterize how attention
is distributed over gene tokens in general, and how different brain networks emphasize distinct
transcriptomic features during embedding.

Figure|[13A shows that, in the absence of the [CLS] token, self-attention patterns differ across heads,
with specific gene tokens receiving higher attention in some heads more than others. These variations
also exhibit different spatial frequencies, possibly reflecting local versus global transcriptomic
interactions. Such diversity may be encouraged by the ALiBi slope mechanism.

Figure presents the mean attention scores for the SMT w/ [CLS] model. The first token
(expanded for visibility) is the [CLS] token, which consistently receives the highest attention across
all heads, indicating strong influence from spatial coordinates. Interestingly, the 54™ gene token also
receives high attention in all heads, suggesting despite the strong emphasis on spatial position, some
gene modules such as those related to white matter microstructure, neurodevelopment, or metabolic
activity, may selectively co-embed with spatial information to improve prediction. The stability of
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Figure 13: SMT multi-head self-attention weights. [A] Attention scores for the Spatiomolecular
Transformer (SMT). Tick marks on both Query and Key axes denote token positions at chromosome
boundaries. [B] Attention scores for SMT with [CLS] token. The CLS token key column is artificially
expanded for visualization. [C] Subnetwork-specific attention weights for SMT, averaged over all
heads for a subset of six functional subnetworks.

these attention heads must be further validated to link the gene sets highlighted by the SMT with
biologically relevant processes.

Figure [T3C shows average attention distributions when regions from specific functional subnetworks
are input into the SMT model. Across a subset of six functional networks, we observe the subcor-
tex and cerebellum show similar profiles as compared to cortical networks. Certain gene tokens
consistently receive elevated attention across all subnetworks. Further evaluation of global and
subnetwork-specific gene tokens may inform if distinct transcriptomic modules underlie functional
connectivity across the brain.
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Table 9: Author contributions.

AR SG JW CD EV

Study concept or design

Data acquisition or processing

Data analysis or interpretation
Drafting/revision of manuscript for content

Funding acquisition

Note: Bolded initials indicate the primary contributor. Black cells indicate a documented contribution to the
corresponding activity.
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NeurlIPS Paper Checklist

1.

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction lay out the context of the problem and list the
contributions made to solve the problem in the results section.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The assumptions and limitations of the described method are described in the
discussion section.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The work is mostly empirical, not theoretical, building on pre-existing methods.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides details on the datasets, preprocessing pipelines, train/test
split methodology, model architecture, and evaluation metrics. These are sufficient to
reproduce the claims even without code provided, however our code will be made publicly
available.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The AHBA and MPI-LEMON datasets are publicly available as described in
the datasets section. The HCP-YA and UK Biobank dataset are available through application.
We will provide anonymized code zip file in supplementary materials and publicly release
code.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All details of the experimental setup (data split, hyperparameters, etc.) are
specified in the main body or appendix of the paper.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper covers statistical significance of the experiments in the sections
describing the null model method, covered in the results and technical appendix.
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10.

11.

12.

13.

14.

15.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: These details are covered in the supplementary material.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: The authors adhere to all standards described in the NeurIPS Code of Ethics.
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: This is not applicable as it is foundational basic research.
Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The models described in this paper pose no such risks.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All uses of data or code are appropriately cited in the references section. The
licenses are detailed in the supplementary materials.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: New assets (namely trained model checkpoints) will be included in the code
repository provided in the supplementary material.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper relies on previously collected, public neuroimaging and transcrip-
tomic datasets. No new data gathering was conducted.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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16.

Answer: [NA]

Justification: This paper relies on previously collected, public neuroimaging and transcrip-
tomic datasets. No new data gathering was conducted. Approval licenses can be made
available upon publication.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The method described in this paper does not involve LLMs in any capacity.
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