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Geography

Which most accurately describes the 

structural characteristics of the rock 

layers in the area?

A.  Undulating & faulted

B.  Continuous & noticeably tilted

C.  Horizontal & continuous

D.  Radially arranged

Type: Physical Geography

Economy

This graph shows the cost curves & 

marginal revenue curves for a firm. 

How much is the firm’s short-run profit?

A.  -$600,000

B.  -$124,000

C. $0

D. -$284,000

Social Science

Look at four people & determine 

which one is most likely to have done 

something helpful? (left→ right)

A.  Undulating & faulted

B.  Continuous & noticeably tilted

C.  horizontal & continuous

D.  Radially arranged

History

What cultural significance are 

performers' props & costumes 

most likely symbolizing?

A. Protection & royal power

B.  Entertainment & Festivals

C.  Farming & harvest

D.  Business & Communication

Type:  African History 

Culture

This cultural relic is most suitable for 

studying ancient China's ( ) ?

A.  official selection system

B.  supervision system

C.  taxation system

D.  military

Type: Asian History

Art

Type：Economy - Operating RevenueType: Psychology, Sociology 

Type: Microeconomics

What contributes to the naturalism 

in the figure? 

A. The addition of black details

B. The relaxed body posture

C. The forward moving stance

D. The diminished scale of Artemis

Type: Western Art

Figure 1: We propose HSSBench, a large-scale benchmark spanning six diverse categories and 45
types, comprising 13,152 samples collected in the six official languages of the United Nations.

ABSTRACT

Multimodal Large Language Models (MLLMs) have demonstrated significant
potential to advance a broad range of domains. However, current benchmarks for
evaluating MLLMs primarily emphasize general knowledge and vertical step-by-
step reasoning typical of STEM disciplines, while overlooking the distinct needs
and potential of the Humanities and Social Sciences (HSS). Tasks in the HSS
domain require more horizontal, interdisciplinary thinking and a deep integration
of knowledge across related fields, which presents unique challenges for MLLMs,
particularly in linking abstract concepts with corresponding visual representations.
Addressing this gap, we present HSSBench, a dedicated benchmark designed to
assess the capabilities of MLLMs on HSS tasks in multiple languages, including
the six official languages of the United Nations. We also introduce a novel data
generation pipeline tailored for HSS scenarios, in which multiple domain experts
and automated agents collaborate to generate and iteratively refine each sample.
HSSBench contains over 13,000 meticulously designed samples, covering six key
categories. We benchmark more than 20 mainstream MLLMs on HSSBench and
demonstrate that it poses significant challenges even for state-of-the-art models.
We hope that this benchmark will inspire further research into enhancing the cross-
disciplinary reasoning abilities of MLLMs, especially their capacity to internalize
and connect knowledge across fields.

1 INTRODUCTION

Multimodal large language models (MLLMs) Achiam et al. (2023); Team et al. (2024) have demon-
strated remarkable performance across a wide range of tasks, recently achieving or even exceeding
human-level capabilities in many of them. As the performance of MLLMs continues to improve,
conducting a comprehensive evaluation of their capabilities has become increasingly essential. In
recent times, numerous benchmarks for evaluating MLLMs have emerged Hendrycks et al. (2020);
Yue et al. (2024); Liu et al. (2024b); Saikh et al. (2022); Zhang et al. (2024). These tasks are designed
to assess the models’ ability to jointly understand and reason across multiple modalities, such as
images and text, from various perspectives.

1
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(Hello, world. Hello, friend.)

( From: Palmer's The Palmer Method of Business Writing (1901). )

The manuscript closely resembles Spencerian Script due 

to its graceful, flowing style and balanced letterforms 

without heavy ornamentation or thick strokes typical of 

Copperplate. Answer: B. Spencerian Script

Deepseek: In terms of font, this calligraphy style belongs to the 

"Diwani script" in Arabic calligraphy, which is known for its 

fluency, elegance, and strong decorative qualities. It is commonly 

used for writing in artistic and formal occasions.

Deepseek: In terms of font, this calligraphy style belongs to the "Diwani script" in 

Arabic calligraphy, which is known for its fluency, elegance, and strong decorative 

qualities. It is commonly used for writing in artistic and formal occasions.

Q: What is the font of this manuscript?

O: A. Business Penmanship  B. Spencerian Script 

        C. Ornamental Penmanship   D. Copperplate

Business Penmanship refers to a style of handwriting used in professional correspondence, characterized by clarity, formality, and legibility.

C. Spencerian Script

D. Copperplate

The font in the manuscript resembles Copperplate script. 

Copperplate is known for its uniformity, elegance, and 

legibility, with rounded letters and smooth, flowing lines. 

Therefore, the correct answer is: D. Copperplate

Figure 2: An example of cross-modal knowledge transfer issues in MLLMs within the HSS domain.
They struggle to associate "Business Penmanship" font knowledge with relevant images or recognize
fonts in image text.

Specifically, most multimodal benchmarks are designed either from a general perspective Liu et al.
(2024b; 2023); Meng et al. (2024); Han et al. (2024); Qian et al. (2024) or with a focus on scien-
tific disciplines such as mathematics Wang et al. (2024a); Lu et al. (2024) science Li & Tajbakhsh
(2023); Liang et al. (2024), and programming Song et al. (2025). Unlike STEM fields that employ
"vertical reasoning": a focused sequential process using logical deduction and experimental analysis
to arrive at singular correct answers, the Humanities and Social Sciences (HSS) emphasize "hor-
izontal reasoning," requiring connections across different contexts and generating multiple valid
interpretations rather than single solutions. This fundamental difference stems from the inherent
attributes of these disciplines: While STEM fields utilize relatively fixed symbolic systems with
standardized reading sequences, HSS disciplines feature symbol systems deeply rooted in regional
cultures with meanings that require historical-cultural context interpretation. Furthermore, STEM
knowledge can be iteratively developed through logical deduction and experimental analysis, whereas
HSS knowledge verification relies on more complex pathways involving cross-referencing literature
and expert consensus, with strong dependencies on real-world information.

Although some efforts have been made to explore aspects of the HSS, these attempts lack depth and
do not provide a comprehensive and thoughtful examination of MLLMs within the context of these
fields. In the study of HSS-related problems, achieving cross-modal knowledge transfer is crucial.
Take the scenario illustrated in Figure 2 as an example: humans with basic knowledge can accurately
infer "Business Penmanship" from the image content. When directly asked about knowledge points
related to "Business Penmanship", the MLLM provides correct answers. However, when queried
indirectly through an image, the model fails to recognize the font features in the text, preventing
it from associating the relevant knowledge points with the image. This reveals a problem: most
models struggle to establish meaningful mapping relationships between HSS-related images and
the abstract concepts they represent. Although these models may recognize abstract concepts in
isolation, they fail to effectively connect these concepts with the corresponding visual content. From
a long-term perspective, a model skilled at solving mathematical problems but unable to interpret
historical contexts or understand ethical principles offers an incomplete and potentially harmful form
of intelligence.

To address this challenge, we introduce HSSBench, an innovative and comprehensive multilingual
benchmark specifically crafted to thoroughly assess the performance of MLLMs in the HSS domain.
Comprising around 13k carefully curated test items, HSSBench is structured into 45 types and covers
6 key categories within the field. HSSBench utilizes the visual question answering (VQA) format
for this purpose, as shown in Figure 1. Given the involvement of numerous key domains, our work
requires interdisciplinary collaboration. To this end, we have engaged experts from various fields to
design the data framework and ensure quality control, thereby maximizing the representativeness and
credibility of HSS-related issues. In addition to domain experts contributing data, we leveraged the
expertise of both specialists and MLLMs to develop a VQA generation pipeline, which produced a
portion of the high-quality data. Finally, through evaluations supporting English, Chinese, French,
Russian, Spanish, and Arabic, HSSBench enables the assessment of the capabilities of MLLMs in
addressing HSS challenges across a wide range of linguistic contexts.

In this study, we evaluate the performance of HSSBench across a range of MLLMs and find that it
presents a significant challenge for these models, as their accuracy often falls below 60%. We con-
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Q: Based on the image, it can be inferred...? 
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通过观察专家标注过程及其产出的高质量问题，我们受到启发，设计了一套基于多智能体的自动化问题构造流程，旨在提升数据生成效率、节约人力资源。该智能体架构包含摘要者、抽

取者、出题者、配图者等角色。首先，摘要者和抽取者分别读取文档中的文本数据，提取全文摘要和若干高质量文本片段。全文摘要用于呈现文档所含知识点的整体信息，而文本片段则

提供可直接用于出题的详细信息。LLM会从信息密度、独特性和逻辑完整性等方面对文本片段进行打分，并按分数高低选取前 top n 个文本片段。随后，出题者依据全文摘要和文本片段生

成 n 个题目。出题者设定了详细规则，同时提供若干人类专家撰写题目的示例（包含题干、选项、答案及解析），以辅助模型理解出题要求。最后，配图者根据问题内容和图片信息，通

过两种方式将图片与问题进行配对：直接使用图片与问题匹配，或使用图片描述与问题匹配。基于上述方法，我们能够大规模生成高质量问题数据。
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Figure 3: Our pipeline to build HSSBench.

ducted several comparative experiments to analyze the performance of the models. Our contributions
can be summarized as follows:

• First, we introduced HSSBench, a novel dataset specifically designed for the HSS domain,
which encompasses 6 distinct categories and 45 major types of HSS tasks.

• Second, we offered a practical data construction method. It utilizes a multi-agent framework
tailored for the HSS domain, allowing batch generation of high-quality, novel datasets.

• Finally, we conducted detailed evaluations of over 20 MLLMs on HSSBench across six
languages, verifying that HSS tasks still pose significant challenges for MLLMs. This
work establishes a foundation for future MLLM research focusing on HSS and serves as a
benchmark for future studies in this field.

2 HSSBENCH

The worldview within the HSS is expansive and lacks unified definitions. Our dataset focuses on
six high-interest categories within the HSS domain: geography, art, culture, social sciences, history,
and economics. Textual data remain the primary medium for disseminating knowledge in the HSS
domain, while pictorial data, though less abundant and more challenging to collect, provide valuable
complementary information. This presents significant challenges for experts in the construction of
datasets. For this purpose, we designed and developed a VQA Generation Pipeline (VGP) to generate
the dataset. After engaging experts for annotation, we designed a data construction agent based on
their annotation logic, enabling us to generate a sufficient volume of data.

In this section, we will outline the details of the VGP. We have divided this process into three main
stages: Dataset Preparation, Dataset Construction, and Validation. The three stages are summarized
in Figure 3. 1) During the Dataset Preparation stage, both experts and a networked agent participate
in obtaining the raw materials necessary for data construction. Either source is sufficient to provide
the foundational content for the subsequent stage. 2) In the Dataset Construction stage, data can be
constructed using two methods: expert-constructed and agents-constructed approach. 3) Within the
Validation stage, both experts and agent filtration work jointly to identify high-quality data. The
screened data passes through the second stage again until it meets the required standards. Data that
do not conform to the construction logic are removed.

2.1 DATASET PREPARATION, STAGE I

At this stage, we focus on collecting data on target disciplines, covering texts and illustrations.
Through systematic organization and strict screening, we lay a solid data foundation for the subsequent
development of high-quality questions and answers.

3
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Data Selection and Collection with Experts. During the data preparation for HSSBench, ensuring
data diversity is crucial. For image and text selection, we adopt a combined approach involving
experts and a multi-agent framework.

For images, to avoid data leakage, we initially encourage experts from various fields to use their
private images. When acquisition is difficult, the dataset also incorporates images drawn by experts
and licensed ones from open-source communities obtained by both experts and the multi-agent
framework. Experts and agents collaborate to screen image content, choosing those related to subject
areas and targeted knowledge points for constructing high-quality questions.

Regarding text, as experts may face challenges like unfamiliarity with domain-specific knowledge,
we recommend they acquire high-quality textual materials from multiple sources, such as academic
resource repositories of universities and open-source communities. This enriches information sources
and mitigates bias. In the early stages, domain experts obtain credible resources like textbooks, past
papers, and digital course materials from various disciplines. Since these resources are proofread dur-
ing compilation, they possess high reliability and dense knowledge content, making them trustworthy
sources for constructing questions. Each expert reviews materials in their field, extracting relevant
text passages and images, eliminating redundant information and standardizing the data format.

Networked Information-Aggregation Agent. Inspired by the expert-led data collection process,
we designed the Networked Information-Aggregation Agent to mimic their workflow. This agent
broadens data sources by filtering Internet data while maintaining quality. For each discipline, it first
compiles relevant keywords as knowledge point indices. Then, it retrieves online data, classifies it
into text and images, and matches data against the keywords to assess relevance. For text, it evaluates
aspects like professionalism, uniqueness, logical structure, and the need for cross-validation with
images. If the text meets criteria, related images are extracted. Through this process, we obtain
high-quality multimodal data at a controlled cost. Finally, domain experts review the curated data to
ensure professionalism and reliability.

2.2 DATASET CONSTRUCTION, STAGE II

At this stage, we developed a multidisciplinary visual-question generation pipeline comprising two
key phases: Experts Construction and Multi-Agent Construction. These phases are designed to ensure
that the questions produced offer a comprehensive assessment of the model’s effectiveness.

Dataset Construction with experts. At this stage, experts have two main responsibilities: revising
existing questions and creating entirely new ones. 1) When revising existing questions, experts
optimize multiple-choice items, encompassing both the original ones provided in the materials and
those requiring revision after failing validation tests. Experts carefully review the relevant textual and
visual content, adjusting the question stems and answer choices by integrating real-world knowledge.
The goal is to strengthen the connection between the questions and the accompanying images while
improving the plausibility of the incorrect options. 2) For creating new questions, experts generate
items based on the given high-quality texts and images. These new questions are expected to demand
identification of knowledge points from the images and complex reasoning based on real-world
understanding to arrive at the correct answers. Following these principles, experts produce a set of
high-quality questions that fully utilize the provided multimodal materials to meet the demands of
model performance evaluation.

Dataset Construction with Multi-Agent. Inspired by the expert annotation process and the high-
quality questions it produces, we designed a multi-agent automated construction framework aimed at
improving data generation efficiency and reducing human labor. This agent architecture comprises
several roles, including summarizer, extractor, question generator, and image matcher.

Initially, the summarizer and extractor independently analyze the document text to produce a com-
prehensive summary and a set of high-quality text segments, respectively. The summary provides
an overview of the key knowledge points within the document, while the extracted segments offer
detailed information suitable for direct question formulation. LLM then scores these text segments
based on information density, uniqueness, and logical coherence, selecting the top N segments
according to their scores.
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The question generator then formulates N questions by leveraging both the full summary and the
selected text segments. It operates under detailed guidelines and is supported by multiple examples of
human-authored questions, including stems, options, answers, and explanations, to ensure adherence
to question design standards. Finally, the image matcher pairs images with questions by leveraging
either direct image-question matching or matching based on image descriptions, depending on the
available data. This Multi-Agent approach enables large-scale generation of high-quality question
datasets efficiently and with minimal human intervention.

2.3 VALIDATION, STAGE III

This subsection outlines the stringent validation procedures implemented to ensure the quality and
relevance of the data used in model evaluation. Two critical types of validation are performed: Agent
Validation and Expert Validation.

Agent Validation. This stage aims to eliminate duplicate questions and verify the strength of
the correlation between the visual content and the corresponding text. First, the Validation Agent
calculates the textual similarity between questions and filters out highly redundant ones based on
predefined criteria to ensure the diversity of the dataset. Next, for all constructed data, it is necessary
to ensure that 1) without providing an image, the question cannot be correctly answered based
solely on the text, and 2) without providing a question, the image alone cannot lead to the correct
answer. This requirement stems from our aim to scrutinize the model’s capabilities from a multimodal
perspective. If a single modality, text or images, suffices to answer a question, it compromises the
quality of the dataset and its ability to comprehensively evaluate the performance of MLLMs. To meet
these two requirements, the Validation Agent assesses the extent to which the question depends on
the image. If the image is deemed unnecessary, the question is sent back to the Stage II for revision;
if it still fails to meet the requirements after multiple iterations, the question is discarded.

Expert Validation. This stage focuses on expert evaluation of the data. For data annotated by
experts, each entry must be 1) validated by other domain experts to confirm its appropriateness and
lack of ambiguity, and 2) confirmed by all experts to ensure that it is free from sensitive issues. In the
case of data generated by models, a rigorous evaluation by experts specializing in data generation is
required to verify its accuracy and absence of ambiguity.

Furthermore, it requires the collective consent of all experts to confirm that the data are free of
sensitive issues.

2.4 IMPLEMENTATION DETAILS

Figure 4: Overview of HSS-
Bench.
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In our VGP, we leverage GPT-4o and GPT-4.1 due to their out-
standing capabilities. Throughout all stages of LLM, we employed
the Chain-of-Thought(COT) prompting strategy. For more detailed
information on VGP, please refer to Appendix A.

2.5 DATA STATISTICS

HSSBench consists of 13,152 multiple-choice questions distributed
across six major categories—Economy, Art, Culture, Social Sci-
ences, History, and Geography—and further divided into 45 specialized subtypes.

We require each question to be presented in a multiple-choice format with one correct answer and
several distractors that are plausible but ultimately incorrect. Although some original questions in
the HSS domain naturally have multiple correct answers, these multi-answer questions have been
reformulated into single-answer questions for consistency. This was achieved by combining the
multiple correct options into a single choice. This approach preserves the original content and
complexity of the questions while conforming to a uniform single-answer multiple-choice format.

It supports evaluation in six different languages. Our initial data came from multiple countries and
languages, with questions originally created by domain experts in their source languages (examples
in Appendix D). We then used LLM-based translation models to translate the questions into five
other languages. All translations were carefully reviewed and validated by bilingual experts to ensure
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linguistic accuracy and cultural appropriateness, maintaining semantic consistency while respecting
cultural nuances.

The statistical data of HSSBench is illustrated in Figure 4, with a detailed description of the dataset
provided in Appendix B. Appendix B.1 reports human expert accuracy across all categories. Ap-
pendix B.2 provides an in-depth taxonomy of categories and subtypes. Appendix B.3 also includes
an analysis of the most frequent content words per category. Appendix B.4 details the composition of
the dataset in terms of contributions of human experts versus automated agents, together with quality
validation through model accuracy comparisons.

3 EXPERIMENT

3.1 EXPERIMENTAL SETUP

Models. For open-source models, we selected Qwen2.5-VL-3B/7B/32B/72B Bai et al. (2025),
Qwen2-VL-72B Wang et al. (2024c), QVQ-72B-Preview Wang et al. (2024b), Deepseek-VL2-
Tiny Wu et al. (2024b), MiniCPM-o-2.6 Yao et al. (2024), mPLUG-Owl3-2B/7B Ye et al. (2024),
Llava-onevision-7B Li et al. (2024b), Llama3-llava-next-8b Li et al. (2024a), InternVL3-8B Zhu
et al. (2025), InternVL2.5-8B-MPO Chen et al. (2024b), Phi-3.5-Vision-Instruct Abdin et al. (2024),
Janus-Pro Chen et al. (2025), Llava1.5 Liu et al. (2024a). For closed-source commercial models, we
utilized GPT-4o/4.1/4.1-mini/4.1-nano OpenAI et al. (2024).

Evaluation Settings. 1) We conducted evaluations using two types of prompts to examine the
MLLMs performance under different prompting strategies. One approach involved prompting the
model to directly output the answer without any intermediate reasoning, while the other required
the model to generate a COT before providing the final answer. 2) Additionally, we tested each
question in six different language versions to investigate how the MLLMs’ performance varies across
languages for the same question. 3) Furthermore, we optimized the question formats by designing
two types of prompts for each item: multiple-choice and open-ended questions. This allowed us
to assess whether the model can correctly answer questions without any explicit hints. Detailed
prompt settings are provided in Appendix C.8. 4) For the HSSBench evaluation, we employed two
assessment methods and selected GPT-4o as a representative closed-source model and Qwen2.5-7B
as a representative open-source model. A detailed comparative analysis of both models is provided in
Appendix C.9.

3.2 RESULTS

Overall Results. Table 1 presents the overall results of various open-source and closed-source
MLLMs evaluated on HSSBench in the context of English language tests. Ct. and Dt. represent
two types of prompts: COT prompts and direct response prompts. C. and O. denote question types:
multiple-choice and open-ended questions. "Human" refers to the average final scores achieved by
experts in various fields. Detailed experimental results for Dt. and are presented in Appendix C.1.

All of our initial generated data consisted of multiple-choice questions. Since some questions cannot
be reasonably converted to open-ended formats, changing all of them into open-ended questions
would lead to poor-quality data. This approach would be unfair for evaluating the model and would
fail to accurately reflect differences in model performance. Therefore, we chose to modify only those
questions that can still be answered meaningfully as open-ended questions to serve as the evaluation
data for open-ended question performance.

The experimental results highlight the performance differences between the various models. Of the
open-source models, Qwen2.5-VL-72B-Instruct delivers the highest performance, although it still
falls short of surpassing closed-source models in open-ended question tests. The GPT-4.1 series
achieves state-of-the-art performance in most tasks, with a particularly impressive accuracy of 39.97%
in open questions, almost double that of other closed-source models. In contrast, some open-source
models show considerably lower performance. We also observe that model performance varies by
language. Multilingual evaluation results are provided in the Appendix C.2.
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Model Geography Economy Culture Social Sciences History Art All

Ct.C. Ct.O. Ct.C. Ct.O. Ct.C. Ct.O. Ct.C. Ct.O. Ct.C. Ct.O. Ct.C. Ct.O. Dr.C. Dr.O. Ct.C. Ct.O.

Random 24.93 0.00 21.92 0.00 25.00 0.00 24.90 0.00 24.91 0.00 25.00 0.00 24.62 0.00 24.62 0.00
Human 94.14 - 93.06 - 92.99 - 94.44 - 93.84 - 95.53 - 93.83 - 93.83 -

Open-source LLM (Scale < 10B)

Qwen2.5-VL-3B-Instruct 35.25 11.74 28.56 16.36 34.61 1.85 39.46 11.50 36.23 11.07 34.55 3.62 29.01 9.94 34.99 9.33
Qwen2.5-VL-7B-Instruct 40.69 21.60 41.19 31.31 30.19 4.63 42.86 19.00 40.62 19.67 33.42 11.31 37.88 15.21 38.19 17.89

Llava-onevision-7b 32.05 7.04 32.23 11.68 31.02 1.85 36.63 3.00 27.07 4.51 32.92 3.17 36.20 5.73 31.56 5.20
Llama3-llava-next-8b 27.59 4.23 19.82 6.54 30.53 3.24 32.89 6.50 26.87 8.61 29.26 5.43 31.20 6.50 27.93 5.81

InternVL3-8B 42.12 10.80 33.70 16.36 38.69 7.41 48.30 13.00 45.09 12.70 38.61 13.57 42.14 12.27 41.42 12.31
InternVL2.5-8B-MPO 37.24 17.37 34.07 20.09 35.00 8.33 43.35 15.50 40.54 16.39 35.99 13.57 39.30 11.77 37.68 15.21
Phi-3.5-Vision-Instruct 25.55 9.39 26.80 13.55 29.01 3.70 28.78 3.00 20.31 7.79 28.81 4.07 35.89 10.32 26.04 6.96

Janus-Pro 29.11 8.45 22.54 6.07 41.00 6.02 34.65 12.00 29.75 10.25 33.22 7.69 30.03 8.49 31.66 8.41
Deepseek-VL2-Tiny 5.78 3.29 3.77 4.95 14.12 0.00 6.35 3.00 6.37 2.46 13.03 16.74 29.86 3.42 8.23 5.09
mPLUG-Owl3-2B 25.83 4.69 24.63 1.35 31.83 3.69 29.99 3.00 25.96 4.51 29.43 4.07 28.73 4.02 27.71 3.57
mPLUG-Owl3-7B 30.60 7.04 33.15 9.91 13.73 2.30 36.40 7.00 27.64 4.10 25.69 2.30 33.01 6.68 27.52 6.23
MiniCPM-o-2.6 26.02 5.98 19.08 7.22 22.22 3.57 26.83 8.59 25.96 4.03 22.25 5.38 3.70 5.71 24.11 5.71

Llava1.5 12.75 4.03 7.38 2.68 10.74 3.36 7.38 5.37 10.74 4.03 10.74 6.04 8.06 4.03 9.96 4.25

Open-source LLM (Scale > 10B)

Qwen2.5-VL-32B-Instruct 52.48 21.33 52.79 6.67 38.94 8.00 53.87 24.00 57.03 26.67 39.20 3.33 48.38 15.89 50.75 15.00
Qwen2-VL-72B-Instruct 50.74 17.86 52.55 32.65 45.91 8.62 50.19 16.07 55.53 16.36 41.34 16.36 54.22 20.43 49.39 17.21

Qwen2.5-VL-72B-Instruct 55.59 13.33 53.83 37.33 41.49 7.33 57.77 17.57 60.30 28.19 40.84 14.67 54.17 18.17 51.87 19.73
QVQ-72B-Preview 19.93 3.33 21.87 17.33 29.67 3.33 26.54 7.43 28.86 18.79 23.80 9.33 25.60 10.37 24.69 9.92

Closed-source LLM

GPT-4o 46.88 22.07 52.97 35.14 45.61 14.29 45.26 16.00 48.36 15.98 43.42 12.67 46.09 20.05 46.88 19.36
GPT-4.1 39.81 40.38 48.08 52.70 48.95 24.88 35.36 49.25 41.91 48.77 43.51 23.53 45.02 25.38 42.66 39.97

GPT-4.1-mini 47.67 34.27 58.27 49.10 48.26 20.74 45.05 36.68 47.84 36.89 43.88 23.53 45.75 24.32 48.03 33.59
GPT-4.1-nano 33.21 30.74 39.71 41.44 38.70 7.83 37.52 28.14 34.01 30.74 35.83 20.36 36.33 21.12 35.83 26.22

Table 1: Scores (%) of MLLMs on HSSBench (EN-I). The highest and second highest scores are
marked in blue and green, respectively.

Model performance on different categories. Among the six categories evaluated on HSSBench
(EN-I), the economic-related tasks consistently emerge as the most challenging for the models.
The average score of all models in this category is the lowest, indicating that addressing economic
problems requires a deep understanding of various economic theories and the ability to apply them in
complex reasoning. However, current open-source MLLMs still exhibit significant deficiencies in
these aspects. In contrast, closed-source models perform exceptionally well in economically related
tasks, and this advantage may stem from their exposure to large amounts of high-quality training data
in the economic domain.

On the other hand, the Geography category appears to be the easiest task for the models, with the
highest average scores observed across the board. This trend implies that geographic knowledge,
which is often more factual and less abstract compared to other humanities and social sciences
domains, is better captured by the training data and reasoning capabilities of the models.

Interestingly, in certain categories of multiple-choice tasks, such as Culture and Social Sciences, some
open-source models outperform their closed-source counterparts. For example, larger open-source
models like Qwen2.5-VL-32B and Qwen2.5-VL-72B demonstrate competitive or even superior
results compared to closed-source models like GPT-4o in these domains. This phenomenon may be
partially attributed to the fact that most of the data experts we invited are Chinese. Although the
evaluation was conducted in English, it is possible that Qwen benefits from a training data advantage
related to Chinese content, which could have influenced its superior performance in these tasks. It
also indicates that the gap between open-source and closed-source models is narrowing in specific
HSS tasks.

3.3 QUALITATIVE ANALYSIS

Comparison between Direct Answer and COT Prompting. Table 1 shows subtle differences in
MLLMs’ performance on HSSBench when using direct answer versus COT prompting. Notably,
COT does not always help; some models perform better with direct answers, indicating that longer
reasoning can mislead them.

Specifically, COT prompts exacerbate hallucination issues in certain models, where reasoning flaws in
textual analysis and misinterpretation of visual inputs lead to the generation of incorrect background
knowledge during step-by-step analysis. This causes reasoning to deviate from the correct answer.
For example, when tackling geographic questions, models often struggle to accurately interpret spatial
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elements such as location markers and contour lines—visual features primarily composed of points
and lines—resulting in analytical outcomes that contradict the actual image content.

Even when notable errors do not occur in intermediate reasoning steps, the final summarization
phase can suffer due to excessive information generation, which exceeds the model’s ability to
effectively weigh the importance of answer options, leading to prediction mistakes. This highlights
the importance of integrating reasoning steps cohesively. Further detailed analysis in Appendix D
reveals that many models fail to internalize visual knowledge during the divergent thinking process
of HSS tasks.

Comparison between Multiple-choices and Open-ended. We reformulated some questions as
open-ended to test models without answer options. Results reveal that HSS tasks remain very
challenging: only a few models exceed 15% accuracy. This matches expectations, as even experts
find these questions difficult without options or background cues.

Answer choices provide prior knowledge that narrows the answer space. Without them, models’
reasoning becomes highly divergent, often drifting far from correct answers. This suggests models
mainly rely on shallow visual features (e.g., size, type, motion) but miss deeper symbolic information
like cultural context or spatiotemporal cues.

These findings highlight two key limitations: insufficient real-world knowledge and weak integration
of visual and textual modalities. The performance drop with COT further reflects models’ struggles
to internalize and retrieve complex knowledge. Improving model capabilities on HSS tasks remains a
critical challenge.

The role of accurate answers. To test if models truly understand questions rather than exploiting
options, we added confusing choices like “None of the above” while keeping the correct answer
unchanged, sampling 150 questions per category (results in Table 11, Appendix C.3).

Lower-performing models’ accuracy dropped noticeably. Analysis revealed two patterns: some
models were misled to select the confusing option; others, though not choosing it, showed incoherent
reasoning, failing to filter out wrong choices and sometimes excluding the correct answer altogether.
This indicates models struggle to assess the relative credibility of options and make reliable judgments,
exposing their vulnerability to distractors and raising concerns about robustness.

Visual Information Extraction. To investigate the impact of visual information loss on the perfor-
mance of MLLMs, we designed two complementary experiments. In the first experiment, we used
GPT-4.1 to generate detailed textual descriptions of the images. In the second experiment, we invited
domain experts to produce comprehensive and precise annotations for each image (results in Table 12,
Appendix C.4).

Most models’ accuracy dropped when images were replaced by GPT-generated texts, showing that
direct visual input contains critical details lost in conversion. However, with expert annotations,
accuracy improved noticeably despite no image access. Some models even surpassed previous
performance ceilings in Culture and Social Sciences, as expert texts helped focus on crucial visual
cues and better link to domain knowledge.

These results confirm earlier observations that current MLLMs have inherent limitations in retrieving
and understanding visual information fully. They underscore the importance of improving models’
abilities to extract and integrate key visual features for HSS tasks.

Comparative Analysis of HSSBench with Related Benchmarks. We compared HSSBench with
other benchmarks that include some HSS data, such as CMMMU, MME, and MMMU, as well as
with STEM benchmarks (details in Appendix C.5 and C.6).

Across HSS benchmarks, relative model performance trends are consistent, but HSSBench yields
lower accuracy, indicating it is more challenging and better captures HSS complexity. Compared
to STEM benchmarks, models perform much better on STEM tasks, highlighting the unique diffi-
culties of HSS domains that require nuanced cultural and social understanding. These comparisons
demonstrate HSSBench’s value in driving progress on underexplored HSS challenges.

8
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Evaluation of Retrieval-Augmented Generation on HSSBench. We tested Retrieval-Augmented
Generation (RAG) by integrating external knowledge from Wikipedia and HSS documents with
several smaller MLLMs under direct and COT prompting (results in Tables 15 and 16, Appendix C.7).

Contrary to expectations, RAG did not consistently improve accuracy. Some modest gains appeared in
specific domains or models, but overall performance was often similar or worse than direct prompting
alone. This suggests that general retrieval corpora and simple integration methods are insufficient for
the nuanced knowledge HSS tasks demand.

The limited effectiveness of RAG in supporting MLLMs for complex multi-hop HSS tasks stems
from misalignment between general-purpose corpora and HSS knowledge, as well as deficiencies
in current retrieval and integration methods. Moreover, MLLMs struggle to internalize and transfer
newly retrieved domain knowledge. These challenges highlight the need for specialized HSS retrieval
resources, RAG techniques tailored to HSS, and enhanced mechanisms for MLLMs to acquire,
transfer, and apply HSS-specific knowledge.

4 RELATED WORK

In recent years, significant progress has been made in the development of multimodal benchmarks
and methodologies. Numerous datasets have emerged that assess models from various perspectives,
which can be broadly categorized into Generation Benchmarks Liu et al. (2024b; 2023); Meng et al.
(2024); Han et al. (2024); Qian et al. (2024); Xu et al. (2023); Yin et al. (2023); Zeng et al. (2023);
Wu et al. (2024a); Luo et al. (2024), Reasoning Benchmarks Wang et al. (2024a); Lu et al. (2024);
Li & Tajbakhsh (2023); Liang et al. (2024); Song et al. (2025), and Application Benchmarks Fan
et al. (2022); Rawles et al. (2023); Chen et al. (2023); Sermanet et al. (2023); Chen et al. (2024a);
Koh et al. (2024); You et al. (2024). Generation benchmarks cover a wide range of tasks, with the
core objective of comprehensively evaluating the multi-dimensional performance of MLLMs. In
contrast, reasoning benchmarks are designed primarily around mathematical and scientific problems,
seeking to rigorously assess the capabilities of MLLM in logical and analytical reasoning. Among the
various evaluation formats, multiple-choice datasets are the most prevalent, owing to their simplicity
in evaluation and ease of comparison Zeng et al. (2023).

The proliferation of these data sets has significantly accelerated research progress, serving both
as training resources and as tools for assessing the multifaceted competencies of MLLMs. Ad-
vances in data set construction are particularly exciting, ranging from human-annotated high-quality
datasets Romero et al. (2024) to those generated through pipelines built in LLM Chandrasegaran et al.
(2024). Despite these achievements, several critical limitations remain. 1) Most multimodal datasets
cover a wide range of categories, but suffer from issues such as limited data sources, relatively simple
questions, and insufficient image information. 2) Many large-scale datasets are collected through
web crawling without thorough manual annotation and verification, which can introduce biases in
evaluation results. 3) Current reasoning datasets predominantly focus on STEM tasks, relying heavily
on scientific and mathematical data to assess reasoning capabilities. In contrast, the benchmark we
propose focuses on the HSS domain, emphasizing tasks that analyze and understand the abstract
concepts embedded in images.

5 CONCLUSION

We present HSSBench, a novel benchmark dataset constructed through a multi-agent pipeline
involving experts from diverse fields. HSSBench is designed to rigorously evaluate the true mastery
of tasks by models within the HSS domain. The dataset comprises six categories, each derived
from raw data collected from repositories in the six official languages of the United Nations and
subsequently processed to generate task-specific data.

We then carried out comprehensive benchmarking of various MLLMs using HSSBench. Our results
reveal that HSSBench poses significant challenges to all tested models, which exhibit poor perfor-
mance on reasoning tasks in the HSS domain. In particular, the accuracy of the model decreases
substantially when answer choices are not provided as prompts. We hope that releasing HSSBench
will encourage the AI community to place greater emphasis on reasoning over non-STEM data,
thereby advancing research on MLLMs from this important perspective.
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A MORE VGP DETAILS

A.1 ANNOTATION PLATFORM

Figure 5: The interface for data construction and validation, allowing experts to use a visual interface
to assist their work.

We use a simple visual interface as our annotation platform. For question input, experts can upload or
write questions in the form. The interface is shown in Figure 5. During the validation process, experts
can see all the data submitted by other experts. They can select entries to view detailed previews of
the entries.

A.2 INFORMATION ABOUT EXPERTS

Name Languages Professional Background
Expert 1 Chinese, English Computer Science, Art, Economy
Expert 2 Chinese, Japanese, English Computer Science, Culture
Expert 3 English, Chinese Computer Science, Geography
Expert 4 Chinese, English Economy, History
Expert 5 Chinese, English, Japanese Language and Linguistics, History, Culture
Expert 6 Chinese, English, Russian Language and Linguistics, Social Science
Expert 7 Chinese, English, Arabic Language and Linguistics, Social Science
Expert 8 Chinese, English, Arabic Economy, Social Science
Expert 9 Chinese, English Geography
Expert 10 Chinese, English, French Economy, Art
Expert 11 English, Chinese, Japanese Art, Culture
Expert 12 Chinese, English Computer Science, Geography
Expert 13 Chinese, English Geography, History
Expert 14 Chinese, English, Spanish Computer Science, Geography

Table 2: Information about the experts involved in dataset construction.

The team of experts who contributed to the creation of HSSBench comes from a variety of cultural
and linguistic backgrounds, as well as interdisciplinary academic fields spanning the humanities
and social sciences. This diversity is reflected in their linguistic fluency, professional expertise, and

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

international academic experiences. Table 2 summarizes the profiles of the experts involved in the
dataset construction.

Many of the experts have international academic experiences and interdisciplinary training across
various humanities and social science domains. While individual cultural perspectives may naturally
influence the emphasis or framing of certain questions, we consider this diversity a strength rather
than a limitation. It enriches the dataset by incorporating multiple viewpoints and insights, which is
essential for a benchmark designed to be multilingual and cross-cultural.

To mitigate potential cultural bias, we carefully curated the source materials provided to the experts
during the initial stage of dataset construction. These reference materials originate from multiple
countries and languages, ensuring that the constructed questions and answers reflect widely accepted,
global knowledge rather than culturally subjective viewpoints. Furthermore, during the data validation
and filtering stages, we rigorously excluded content that could be culturally biased or inconsistent
with universal values.

In summary, our approach balances the preservation of valuable cultural diversity with the need to
maintain fairness and universality in the dataset. This careful design ensures that HSSBench serves
as a robust and inclusive benchmark for evaluating multilingual large language models (MLLMs)
across different languages and cultural contexts.

B DATASET DETAILS

This section provides detailed information about our benchmark designed to evaluate MLLMs’
visual comprehension abilities through multiple-choice questions. The benchmark spans six major
categories: Economy, Art, Culture, Social sciences, History, and Geography, each containing various
specialized subtypes.

B.1 HUMAN PERFORMANCE

To establish a performance baseline, we asked three relevant experts in each domain to spend a
significant amount of time answering the entire dataset. Table 3 summarizes their performance across
the six categories.

Category Expert 1 Expert 2 Expert 3 Overall

Economy 96.02 91.70 94.70 94.14
Art 93.12 92.61 93.44 93.06

Culture 92.50 90.83 95.64 92.99
Social sciences 94.49 91.77 97.07 94.44

History 95.91 91.86 93.75 93.84
Geography 94.99 92.78 95.81 94.53

Average 94.84 91.76 95.40 93.83

Table 3: Scores (%) of Experts.

Human experts demonstrated high proficiency across all categories, with overall accuracy ranging
from 92.99% to 94.53%. The highest individual performance was observed in Social sciences by
Expert 3 (97.07%), while the lowest was in Culture by Expert 2 (90.83%). This high level of human
performance establishes a challenging benchmark for evaluating large language models.

B.2 THE DETAILS OF TYPES

Our dataset is organized into six major categories with various subtypes in each category. Table 4
presents the detailed breakdown of the dataset structure and the count of questions in each type. We
allow each data entry to have multiple types because the intersection of knowledge across disciplines
is essential.
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The dataset exhibits varying distributions across categories, with Geography containing the largest
number of questions and Economy the smallest. Within categories, there are also significant variations
in subtype representation, reflecting the natural distribution of content within these domains.

B.3 MOST-FREQUENT WORDS IN THE QUESTIONS

We analyzed the most frequent content words in the questions in all categories to understand the
linguistic characteristics and tasksur dataset. Figure 6 shows the word clouds for the most frequent
words in HSSBench per category, excluding common stop words. The word frequency analysis
reveals distinct patterns across categories:

1) Visual observation terms dominate in Art and Culture categories ("observe", "picture", "shown",
"scene"), indicating a focus on visual analysis tasks.

2) Economy questions frequently use technical terms ("price", "firm", "cost", "demand", "market",
"marginal"), reflecting domain-specific concepts.

3) Geography questions heavily employ spatial and diverse visual comprehension capabilities ("dia-
gram", "map", "area", "distribution"), emphasizing spatial reasoning.

observe
picture

details
observing

infer

descriptions

matches

scene

characteristics

cultural

traditional

determine

depicted

painting

type style

based

performance

main

clothing

decorative

activity

instrument

reflected
locationspattern

pa
tte

rn
s

people

br
on

ze

reflects

technique

color

historicalarrangement

decorations
shape

features

parade

work

items

costumesdance

describes

image

surrounding

design

material
belongs

location

art

area

pa
rt
ic
ip
an
tsperson

form

background

belong

held

mirror

period

festival

accurately

ev
en
t

structural

performers

le
ft

fits

activities

music
scenes

visual

instruments

surface

decoration

ce
le
br
at
io
ndistributionvessel

w
or
nte
xt
ur
e

figure characters

musical

actions

group

combined

elements
structure

site

stage

participating

sacrificial
body

theme

layout

marked

carpet

method

production

content

ceremony

combine

dynasty

carefully

options

wooden

building

symbolic

environment

m
ea
ni
ng

in
sc
rip

tio
n

ancient

architectural

process

function

characteristic

expression

seal

spatial

artwork
author

movements

ar
ea
s

artifact

craftsmanship

red

object

pottery

kind horse

social

relationship

materials

purpose

character

upper

reflect

combination

jade

ar
tis
tic

figurine

corner

costume

styles

closely

ink

st
at
ue

position

natural
customs

displayed

situation

category

sp
ec
ifi
c

item

core

fig
ur
es

posture

number

religious

option
techniques

he
ad

silver

tim
e

or
ig
in
al
ly

co
m
pa
ris
on

ca
lli
gr
ap
hy

m
as
k

animal symbols

co
m
po

si
tio

n

region

ac
cu
ra
te

performer

masks

lace

te
am

movement

venue

ce
nt
er

id
en
tit
y

table

groups

street

handmade

craft

wearing

element

co
rr
es
po

nd
s

ha
nd

or
ig
in
at
ed

singing

statements

mountain

co
lo
rs

members

at
m
os
ph

er
e

tang

artist

carried

knob

(a) Art

infer
observing

details observe

descriptions
matches

traditional

scene

picture

cu
ltu

ra
l

characteristics

performance

clothing
activity

in
st
ru
m
en
ts

instrument

performers

costumes

type

items worn

dance

held

participants

people

form

decorative

musical

activities

fits

reflected

m
ov
em

en
ts

belongs

decorations

celebration

arrangement

music

main

ceremony

traditioncostume

background

structure

participating

style

festival

parade

production

artscenes

performer

material

historical

reflects

group

masks

dancers

sy
m
bo

lic

environment

displayed

based

patterns

structural

function

re
lig
io
us

surrounding

meaning

fabric

site

food

event

materials

method

process

sh
ap
e

techniquecombined

surface

mask

equipment

social

stage

soup

handmade

or
ig
in
at
ed

craft

color

elements

movement

tools

building
characters

table

props

region
animal

hold

he
rit
ag
e

venue

pu
pp

et

usage

customs

attire

sacrificial

time

dining

ancient

origin

de
co
ra
tio

nmembers

actions

ritual

accompanying

la
rg
e

features
situation

wooden

role

characteristic

identity engaged

language

preparation

plant

weaving

cr
af
ts
m
an
sh
ip

martial

pattern

singing

writing

de
si
gn

action

in
gr
ed
ie
nt
s

item

making

embroidery

work

person

holding

street actual

co
m
m
un

ity

co
rr
es
po

nd
s

playing

depicted

culture

co
m
pe
tit
io
n

belong

natural

young

festive

handicraft

women

interaction

pottery

si
gn

ifi
ca
nc
e

ca
rr
ie
d

symbol

content

wearing

theme

ha
nd

ic
ra
fts

number

ch
ar
ac
te
r

stone

church

division

image

ac
cu
ra
te
ly

horse

dancer

ar
ch
ite
ct
ur
al

kind

describes

place

local

symbols

roles

men

hand

texture

rider

in
gr
ed
ie
nt

pr
ac
tic
e

en
vi
ro
nm

en
ta
l

element

pr
oc
es
si
ng

arts

sauna

ex
pr
es
si
on

s

setup

opera

period

band

female

family

teammethods

ty
pe
s

hat

(b) Culture

refer

figure
pricetable

firm

cost
demand

market

marginal

total

output
producing

curves

point
suppose

production

curve

diagram

su
rp
lu
s

supply
graph

consumer

government

game

quantity

scenario

units

labour
revenue

competitive

level

assume

change

co
st
s

perfectly

equilibrium

unit

good

economy

average

product

number

capital

utilitylabor

represents

based

describes

wage
possibilities

sc
he
du

le
s

pr
od

uc
er

data

true

income

produce

schedule

monopolist

rate

tax

firms

country

illustrates

loss

statements

amounts

correctly

hypothetical

in
cr
ea
se

deadweight

imposed

fixed

area

individual

result

monopoly

policy

prices

social

ch
ar
t

yearprofit

im
pa
ct

elasticity

represent

produces

points
produced

economic demanded

combined

shirtslong

ceiling

tee

cu
rr
en
t

base

exchange
false bu

dg
et

goods

illustrated

floor

profits

benefit

variable

quota

maximize

golf

shortshift

payoffs

combination

consumers

op
po

rt
un

ity

substitution

lines

re
pr
es
en
te
d

bars

moves

decrease expected

company

small

money

equal

set

caused

minimum

movement

establishes

slope

isocost

maxistan

maximizing

excess

quantities

trade

private

m
on

th

natural

meals

maximum

job
plant

choose

monthly

imposes

outcomes

outcome

payoff

industry

areas

boundary

soft

aggregate

consumption

choices

facing

pay

domestic

increasing

exports

chocolate

ag
ric
ul
tu
ra
l

time

ph
ar
m
ac
eu
tic
al

college

expenditure years

optimal

sold

buy

ho
ur
s

united

coffee

increases
weekly

or
de
r

additional
earned

single

w
at
er

entry

faces

gold

nickel

bags

fiscal

map

hi
gh

es
t

investment

isoquant

power

st
ra
te
gi
es

period

sally

oil

w
ee
k

inflation

(c) Economy

based
complete

diagram
figure

re
ad

area

map
determineanswer

distribution
main

river

population

schematic

w
at
er

location

im
ag
e

areas

observe

correct

picture
characteristics

china

w
in
d

region

marked

locatedcity

direction

time

temperature

combine

development

point

urban

descriptions

illustrates

locations

chart
questions

statements

lake

natural

regions

type

solar

sea

land
surface

structure

sp
at
ia
l

climate

co
nt
ou

r

reason

precipitation

mountain

lines

annual

left

period

represents

features

geographical

northern

growth

country

matches

change

reflects

variation

industrial

terrain

number

ocean

pr
od

uc
tio

n

represent

ge
ol
og

ic
al

average

data

statement

weather

pressure

rate

levelagricultural

total

day

types

process

po
in
ts

refers

economic

island

surrounding

soil

major

large

group

formation

lo
ca
l

factor

formed

southern

difference

north

co
nd

iti
on

s

impact

flow

ve
ge
ta
tio

n

high

to
po

gr
ap
hi
c

ta
bl
e

south

chinese

ci
tie
sen

vi
ro
nm

en
ta
l

latitude

largest

compared

re
la
tio

ns
hi
p

arrows

rock

en
er
gy

air

national

year

po
si
tio

n

curves

relative

ur
ba
ni
za
tio

n

co
un

tr
ie
s

visual

beijing

range

situation

curve

factors

trend

eastern

al
tit
ud

e

refer

united

hi
gh

es
t

atmospheric

layer

western

pattern

coastal

shape

positions

east

route

cu
rr
en
t

accurately

forest

railway

transportation

regional

ecological

ye
ar
s vertical

shaded

center

zone

reflected

order

station

profile
layout

power

landscape

season

maps

construction

suitable

proportion

environment

erosion

basin

phenomenon

people

corresponds

pl
ac
e

diagrams

historical

differences

hemisphere

movement

winter

study

middle

causing

industry

belongs

human

belts

coast

summershowing pr
ov
in
ce

(d) Geography

determine
observe

based

imagepi
ct
ur
e reflects

diagramhi
st
or
ic
al figure

correct
china

chinese

main

ca
rt
oo

n

period

ta
bl
e

chart

characteristicsancient

map

war

development

dynasty

reflected schematic

descriptions

visual

time

economic

modern

united

marked

si
tu
at
io
n

distribution

number

reflect

details

carefully

matches

national

characters

people
interpretation

text

le
ft

co
nt
en
t

theme

statements

history

area

areas

titled

political

reason

person

ev
en
t han

structure

western

data

qing

early
change

trend

pr
op

or
tio

n

events

ac
cu
ra
te
ly

combine

major

work

social

trade

government

pr
od

uc
tio

n

clothing

published

central

pi
ct
ur
es

soviet

fe
at
ur
es

industrial

battle

un
de
rs
ta
nd

in
g

images

order

total

cultural

countries

in
du

st
ry

ar
ra
ng

em
en
t

growth

common

actions

style

ph
en
om

en
on

tang

in
fe
rr
ed

created

agricultural

international

options
layout

scene

shape

po
pu

la
tio

n

describes

depicted

illustrate

revolution

qin

combined

refer

located

read

statement

items

established

re
la
tio

ns
hi
p

po
st
er

process

positions

held
group

figures

st
ud

y

re
gi
on

s

color

ch
ro
no

lo
gi
ca
l

years

song

point
army

comic

route

periods

ad
m
in
is
tr
at
iv
e

fo
un

di
ng

corresponds

region

ce
nt
ur
y

republic

foreign

po
si
tio

n

ch
ar
ac
te
ris
tic

export

incorrect

party

location

propaganda

eastern

surrounding

elements

expressions

spatial

military

statistical

pa
tte

rn

type

bo
ok

late

capital

emperor

building

painting

communist

accurate

patterns

background

pl
ac
e

bronze

dynasties

materials

german

city

knowledge

filled

issued

an
al
ys
is

showing

tools

labeled

direction

drawn

american

year

option

democratic

power

student

lo
ca
tio

ns

re
pr
es
en
ts

design

northern
blank

ca
pi
ta
lis
t

rate

curve

relations

europe

un
de
rs
to
od

(e) History

determine
based

demand

pictureobserve

price
comic

reflects

figure

correct

development
economic curve

change
diagram

marketchina group

point
trendsupply

chart

descriptions

cartoon

st
at
em

en
ts

ch
in
es
e combine

image

consumption

people

impact

income

social

options

pr
od

uc
t

characteristics

curves

m
ai
n

areas

correctly

marked

ac
cu
ra
te
ly

represents map

economy

na
tio

na
l

good

person

philosophical

increase

relationshipparty

pricesgoods

visual

distribution

ac
tio

ns

conditions

production

left

quantity

content

characters

matches

pr
es
id
en
tia
l

reflected

carefully

growth

government

reflect

political
election

rate

positions

investment

points

enterprises

color

expressions

phenomenon

ph
ilo
so
ph

y

total

represent

area

structure

life

support

pr
od

uc
ts

co
rr
es
po

nd
s

meaning

data

residents

graph

table

tax

text

factors

inferred

elements

po
si
tio

n

situation

co
m
m
od

ity

behavior

process

power

work

character

industrial

country

measures

details

structural

lines

democratic

shape

analyze

real

ex
ch
an
ge

time

judge

di
re
ct
io
n

ob
je
ct
iv
e

ca
us
in
g

number

de
sc
rib

es

pr
om

ot
e

in
te
rn
at
io
na
l

sp
ec
ifi
c

rural

energy

understanding

subjective

laborcentral

consistent

relationships

correspond

reason

ancient

urban

continuously

foreign

sales

sides

contradictions

cultural

historical

remain

relative

role

reasonable

order

unity

railway

fully

industry

major

phenomena

law

initiative

level

eq
ui
lib
riu

m

policy

capita

pe
rs
pe
ct
iv
e

im
pr
ov
e

high

culture

condition

ps
yc
ho

lo
gi
ca
l

set

business
green

type

items

consumer

pr
op

or
tio

n

public

concept

contradiction

belongs

trade

increased

read

administrative

pr
ac
tic
e

pr
in
ci
pl
e

regions

re
pr
es
en
te
d

differences

compared

trends

ar
ra
ng

em
en
t

volume

keypolicies

school

choose

teaches

types

(f) Social sciences

Figure 6: Word Cloud in HSSBench per category.

B.4 COMPOSITION AND QUALITY COMPARISON BETWEEN HUMAN AND AUTOMATED
AGENTS

We provide a detailed breakdown of the data sources across the six domains in HSSBench, as shown
in Table 5.

To further validate the quality of data generated by both human experts and automated agents, we
evaluated the performance of GPT4.1-mini on the respective subsets. The accuracy results are
summarized in Table 6.

The comparable accuracy results indicate that data generated by automated agents, after undergoing
multi-round expert verification, maintain a quality level consistent with that of human expert con-
tributions. These clarifications and statistics have been incorporated into the revised manuscript to
enhance transparency regarding dataset construction and quality assurance.

C EXPERIMENTAL DETAILS

C.1 DETAILS OF RESULTS

Table 7 provides additional details on the experimental results presented in Table 1. The table
below reports the overall accuracy of the models under the DIRECT prompt and presents a detailed
breakdown of the performance for each category under the same prompt.
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Under review as a conference paper at ICLR 2026

Category Type Count

Economy

Microeconomics 1,193
Macroeconomics 163
Labor Economics 105
Environmental Economics 63
International Trade 63
Resource Economics 44
International Finance 32

Art

Folk Art 1,051
Eastern Art 1,041
Western Art 672
Spiritual Art 630
Applied Art 452
Entertainment Art 298
Elite Art 303

Culture

Regional Culture 1,790
Material Culture 1,382
Intangible Culture 1,218
Indigenous Culture 733
Institutional Culture 266
World Culture 228

Social sciences

Sociology 950
Political Science 550
Psychology 339
Anthropology 190
Economics 147
Education 135
Philosophy 127
Law 99
Ethics 61
Journalism 24
History 18

History

Asian History 1,586
World Modern History 885
World Ancient History 754
European History 602
World Contemporary History 346
American History 295
African History 147
Oceanian History 82

Geography

Physical Geography 2,361
Regional Geography 1,694
Descriptive Geography 1,682
Explanatory Geography 1,348
Human Geography 1,319
Predictive Geography 75

Table 4: Dataset Taxonomy and Question Distribution.
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Under review as a conference paper at ICLR 2026

Category Human Expert Automated Agent Total Samples
Art 984 1,204 2,188
Geography 2,671 891 3,562
History 1,946 550 2,496
Economy 974 459 1,433
Social Science 487 947 1,434
Culture 652 1,387 2,039

Table 5: Distribution of samples constructed by human experts and automated agents across different
domains in HSSBench.

Category Human Expert Acc. Automated Agent Acc.
Art 42.32 45.43
Geography 48.82 46.52
History 45.59 49.12
Economy 58.87 57.67
Social Science 43.15 46.95
Culture 49.11 47.41

Table 6: Model accuracy (%) of GPT4.1-mini on human-expert-generated and automated-agent-
generated subsets across different domains.
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Figure 7: Partial MLLMs’ results under CoT prompt settings.
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1063
1064
1065
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1067
1068
1069
1070
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Under review as a conference paper at ICLR 2026

Model Geography Economics Culture Social Sciences History Art All

Dr.C. Dr.O. Dr.C. Dr.O. Dr.C. Dr.O. Dr.C. Dr.O. Dr.C. Dr.O. Dr.C. Dr.O. Dr.C. Dr.O. Ct.C. Ct.O.

Random 24.93 0.00 21.92 0.00 25.00 0.00 24.90 0.00 24.91 0.00 25.00 0.00 24.62 0.00 24.62 0.00
Human 94.14 - 93.06 - 92.99 - 94.44 - 93.84 - 95.53 - 93.83 - 93.83 -

Open-source LLM (Scale < 10B)

Qwen2.5-VL-3B 29.84 11.27 29.44 17.76 27.83 5.09 35.22 10.00 26.91 8.61 26.78 7.24 29.01 9.94 34.99 9.33
Qwen2.5-VL-7B 40.07 19.25 38.18 30.37 30.29 7.87 44.91 11.00 41.20 14.75 32.33 8.14 37.88 15.21 38.19 17.89

Llava-onevision-7b 37.46 6.10 31.20 10.75 38.64 1.39 40.95 7.00 31.65 4.51 37.33 4.98 36.20 5.73 31.56 5.20
Llama3-llava-next-8b 29.98 6.10 21.81 5.61 35.69 6.48 35.36 6.00 29.48 9.02 34.46 5.43 31.20 6.50 27.93 5.81

InternVL3-8B 42.88 13.62 37.08 17.97 37.71 6.91 48.94 12.00 47.22 14.34 37.48 8.60 42.14 12.27 41.42 12.31
InternVL2.5-8B-MPO 38.08 14.08 34.73 16.36 39.13 6.94 45.69 10.50 40.82 11.07 38.27 11.76 39.30 11.77 37.68 15.21
Phi-3.5-Vision-Instruct 29.84 10.33 29.44 11.21 27.83 10.65 35.22 7.00 26.91 11.48 26.78 10.86 29.01 10.32 26.04 6.96

Janus-Pro 27.57 8.92 16.01 7.01 42.38 6.02 31.26 9.00 28.62 12.30 32.33 7.24 30.03 8.49 31.66 8.41
Deepseek-VL2-tiny 25.44 5.16 17.38 3.15 40.17 0.46 30.33 2.50 29.97 4.51 35.19 4.52 29.86 3.42 8.23 5.09
mPLUG-Owl3-2B 25.27 4.23 30.48 2.70 32.56 2.30 34.17 4.50 26.88 6.15 30.48 4.07 28.73 4.02 27.71 3.57
mPLUG-Owl3-7B 32.71 7.04 33.08 6.31 33.45 4.61 37.31 5.50 29.97 8.20 33.73 8.14 33.01 6.68 27.52 6.23
MiniCPM-o-2.6 3.48 1.67 3.90 14.16 2.06 3.70 5.75 3.03 4.72 2.27 3.02 8.70 3.70 5.71 24.11 5.71

Llava1.5 3.36 2.68 10.07 5.37 3.36 2.01 8.05 4.70 8.05 1.34 15.44 8.05 8.06 4.03 9.96 4.25

Open-source LLM (Scale > 10B)

Qwen2.5-VL-32B 52.54 16.00 39.38 8.00 39.87 10.00 53.09 26.67 57.52 24.67 44.92 10.00 48.38 15.89 50.75 15.00
Qwen2.5-VL-72B 56.71 16.00 51.67 32.00 57.77 5.33 47.43 16.89 59.26 24.16 63.12 14.67 54.17 18.17 51.87 19.73
QVQ-72B-Preview 21.53 3.33 18.38 22.00 29.57 2.67 26.26 10.14 29.58 12.75 23.85 11.33 25.60 10.37 24.69 9.92

Qwen2-VL-72B 54.22 19.30 41.06 24.07 55.33 5.66 58.85 12.96 62.17 32.08 50.00 18.87 54.22 17.79 49.39 18.82

Closed-source LLM

GPT-4o 45.68 23.47 48.92 35.14 48.16 15.67 46.72 18.00 47.24 14.75 46.66 13.57 46.99 20.05 46.88 19.36
GPT-4.1 43.80 26.29 52.34 42.34 52.77 18.89 40.86 26.13 38.86 22.13 44.74 16.74 45.02 25.38 42.66 39.97

GPT-4.1-mini 45.14 26.29 54.92 45.95 52.08 15.21 41.84 22.11 39.34 18.85 44.70 17.65 45.75 24.32 48.03 33.59
GPT-4.1-nano 33.18 20.66 34.96 36.04 45.61 14.75 38.42 15.58 32.69 20.49 36.47 18.55 36.33 21.12 35.83 26.22

Table 7: Scores (%) of MLLMs on HSSBench (EN-II).

C.2 RESULTS IN DIFFERENT LANGUAGES

Table 1 and Table 7 present the test results on English-language data. To analyze the impact of
different languages on the model, we also conducted large-scale experiments using Chinese-language
data. The final experimental results are shown in Table 8 and Table 9 below.

Model Geography Economics Culture Social Sciences History Art All

Ct.C. Ct.O. Ct.C. Ct.O. Ct.C. Ct.O. Ct.C. Ct.O. Ct.C. Ct.O. Ct.C. Ct.O. Dr.C. Dr.O. Ct.C. Ct.O.

Random 24.93 0.00 21.92 0.00 25.00 0.00 24.90 0.00 24.91 0.00 25.00 0.00 24.62 0.00 24.62 0.00
Human 94.14 - 93.06 - 92.99 - 94.44 - 93.84 - 95.53 - 93.83 - 93.83 -

Open-source LLM (Scale < 10B)

Qwen2.5-VL-3B 40.49 10.80 28.89 19.81 36.30 0.93 42.43 9.50 43.91 11.89 33.85 4.98 35.45 11.79 35.45 9.65
Qwen2.5-VL-7B 48.43 15.96 35.00 25.00 27.60 2.78 49.36 19.50 50.54 15.98 32.90 6.79 43.12 13.17 41.86 14.24

Llava-onevision-7b 39.68 4.69 30.80 10.38 32.96 1.85 39.46 7.00 32.97 4.51 35.03 2.71 37.89 4.98 35.62 5.13
Llama3-llava-next-8b 27.29 3.29 19.82 3.77 33.55 0.93 32.89 2.50 26.84 3.28 29.48 2.26 31.18 5.21 28.35 2.68

InternVL3-8B 47.45 11.74 35.37 17.92 38.21 9.26 53.47 14.00 50.97 18.44 39.94 10.41 44.81 14.70 44.92 13.71
InternVL2.5-8B-MPO 41.14 11.74 36.11 23.58 36.20 6.94 48.09 16.50 47.63 6.94 38.35 10.86 42.72 14.01 41.45 14.55
Phi-3.5-vision-instruct 22.29 6.10 25.64 4.25 30.16 2.31 23.55 1.00 23.35 4.92 28.30 1.81 34.08 6.74 25.35 3.45

Janus-Pro 28.10 11.27 21.67 8.49 44.16 6.48 34.79 8.50 29.13 14.34 40.49 14.48 33.50 11.94 32.81 10.72
mPLUG-Owl3-2B 27.20 1.88 29.43 0.90 33.74 2.30 29.78 3.00 26.76 2.87 29.43 4.52 32.25 1.90 28.25 2.58
mPLUG-Owl3-7B 35.01 5.63 34.23 3.15 26.39 1.84 39.26 2.50 26.08 2.46 34.23 5.43 34.22 4.71 31.77 3.49
MiniCPM-o-2.6 26.97 7.69 19.50 4.88 35.21 6.25 31.23 3.90 30.27 6.76 30.20 5.98 1.29 6.83 29.04 5.94

Open-source LLM (Scale > 10B)

Qwen2.5-VL-32B 58.45 19.33 49.86 7.33 40.90 5.33 56.49 22.67 64.33 24.67 41.62 14.67 51.60 14.22 52.86 15.67
Qwen2.5-VL-72B 61.65 12.67 52.02 33.33 43.60 10.67 61.04 14.19 68.08 18.12 43.76 16.00 60.04 21.96 55.94 17.51
QVQ-72B-Preview 19.82 8.00 21.10 18.00 30.80 3.33 25.41 6.76 27.85 10.74 25.90 6.67 22.95 9.14 24.82 8.92

Qwen2-VL-72B 21.28 19.30 38.25 24.07 21.25 5.66 27.79 12.96 25.69 32.08 27.65 18.87 59.11 17.79 25.59 18.82

Closed-source LLM

GPT-4.1mini 47.53 35.21 55.55 55.41 44.43 18.43 44.07 34.17 47.92 43.03 42.50 30.32 44.19 24.54 46.78 36.32

Table 8: Scores (%) of MLLMs on HSSBench (ZH-I).

Figure 8 illustrates the performance of various models under four different prompt configurations.

Table 10 and Figure 9 shows the performance of the model on datasets in different languages. Our
dataset includes data organized in six languages. The table below presents the experimental results
on a stratified sample of 900 instances.
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Model Geography Economics Culture Social Sciences History Art All

Dr.C.g Dr.O.g Dr.C.g Dr.O.g Dr.C.g Dr.O. Dr.C.g Dr.O.g Dr.C.g Dr.O.g Dr.C.g Dr.O.g Dr.C.g Dr.O.g Ct.C.g Ct.O.g

Random 24.93 0.00 21.92 0.00 25.00 0.00 24.90 0.00 24.91 0.00 25.00 0.00 24.62 0.00 24.62 0.00
Human 94.14 - 93.06 - 92.99 - 94.44 - 93.84 - 95.53 - 93.83 - 93.83 -

Open-source LLM (Scale < 10B)

Qwen2.5-VL-3B 39.51 12.21 29.26 13.21 30.94 7.87 40.03 14.50 38.36 11.48 30.03 11.76 35.45 11.79 35.45 9.65
Qwen2.5-VL-7B 52.52 17.84 33.97 20.75 27.60 4.63 51.13 15.00 52.13 11.48 31.17 9.95 43.12 13.17 41.86 14.24

Llava-onevision-7b 42.20 6.57 30.21 7.55 36.59 1.39 42.93 5.00 35.61 4.10 36.12 5.43 37.89 4.98 35.62 5.13
Llama3-llava-next-8b 29.61 4.69 19.97 6.60 38.80 5.09 34.37 5.00 28.86 3.28 34.54 6.33 31.18 5.21 28.35 2.68

InternVL3-8B 46.44 18.78 34.27 20.75 40.08 6.94 52.90 18.00 51.05 14.34 40.19 9.95 44.81 14.70 44.92 13.71
InternVL2.5-8B-MPO 42.26 18.78 31.32 14.15 40.72 7.87 48.87 17.50 49.11 12.30 40.78 14.03 42.72 14.01 41.45 14.55
Phi-3.5-vision-instruct 29.92 6.57 27.49 7.08 45.58 7.87 32.89 4.50 29.71 6.56 40.68 7.69 34.08 6.74 25.35 3.45

Janus-Pro 27.29 9.86 18.50 12.74 50.83 14.35 32.18 8.50 29.44 10.25 43.21 15.84 33.50 11.94 32.81 10.72
mPLUG-Owl3-2B 31.25 0.94 23.73 2.71 35.95 0.46 37.17 3.00 31.89 2.46 33.18 2.71 32.25 1.90 28.25 2.58
mPLUG-Owl3-7B 35.85 7.51 35.65 6.79 35.70 1.38 40.59 3.00 28.17 4.10 35.65 6.79 34.22 4.71 31.77 3.49
MiniCPM-o-2.6 0.93 7.55 0.77 8.06 1.42 1.61 1.99 5.41 0.60 20.00 2.42 2.27 1.29 6.83 29.04 5.94

Open-source LLM (Scale > 10B)

Qwen2.5-VL-32B 56.29 20.67 42.83 6.00 41.83 4.00 57.42 18.00 63.00 25.33 42.21 11.33 51.60 14.22 52.86 15.67
Qwen2.5-VL-72B 68.15 22.67 48.40 30.00 50.07 12.00 63.73 20.27 71.02 31.54 49.02 15.33 60.04 21.96 55.94 17.51
QVQ-72B-Preview 19.40 6.67 17.90 20.00 29.72 4.00 24.34 11.49 28.13 8.05 23.44 4.67 22.95 9.14 24.82 8.92

Qwen2-VL-72B 64.42 28.07 41.83 16.67 55.98 7.55 62.00 14.81 68.77 22.64 51.49 16.98 59.11 17.79 25.59 18.82

Closed-source LLM

GPT-4.1mini 45.93 26.76 53.31 43.69 46.25 14.29 39.61 20.10 39.26 24.18 42.09 17.65 44.19 24.54 46.78 36.32

Table 9: Scores (%) of MLLMs on HSSBench (ZH-II).
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Figure 8: Comparison of Model Performances Across Four Prompt Settings.

Model Arabic Chinese English French Russian Spanish

InternVL3-8B 35.20 49.37 42.38 39.37 38.70 39.21
Qwen2.5-VL-7B-Instruct 33.74 40.21 38.37 34.08 35.55 34.83
Qwen2.5-VL-32B-Instruct 46.94 54.79 50.24 47.57 48.51 50.24
Qwen2.5-VL-72B-Instruct 49.72 55.41 51.28 51.28 48.27 48.83

QVQ-72B-Preview 33.98 36.89 39.80 37.86 40.77 38.83
GPT-4.1-mini 41.33 44.89 41.67 41.78 41.44 46.89

Average 40.82 46.93 43.96 41.99 42.87 43.47

Table 10: Contrast Scores (%) of MLLMs on HSSBench for six UN languages and six models.
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Figure 9: Contrast Scores (%) of MLLMs on HSSBench for six UN languages and six models.
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Model Geography Art Culture Social Sciences History Economy Total

Ct.C. Ct.C.Conf. Ct.C. Ct.C.Conf. Ct.C. Ct.C.Conf. Ct.C. Ct.C.Conf. Ct.C. Ct.C.Conf. Ct.C. Ct.C.Conf. Ct.C. Ct.C.Conf.

Qwen2.5-VL-7B 48.00 44.67 32.12 31.69 29.33 26.67 39.86 34.00 55.33 49.33 35.51 36.05 40.21 37.12
InternVL3-8B 50.67 46.00 41.55 34.01 45.33 49.33 53.38 48.67 60.00 56.00 39.86 45.99 49.37 46.01
MiniCPM-o 27.51 21.47 39.33 34.67 49.33 50.67 35.81 29.73 38.26 26.85 27.33 23.33 36.34 31.22

Qwen2.5-VL-32 50.83 49.83 46.10 40.90 41.55 30.99 59.61 51.92 61.98 56.77 50.94 53.77 51.85 47.74
QvQ-72B-Preview 16.67 16.67 29.33 28.00 35.78 29.67 26.35 18.91 28.18 27.51 25.33 24.66 26.98 24.41
Qwen2.5-VL-72 60.67 55.33 45.33 42.05 49.33 44.67 56.76 55.40 65.77 67.11 54.67 55.33 55.41 53.29

GPT-4.1-mini 46.67 47.33 56.67 54.67 52.67 47.33 40.00 42.67 54.67 44.00 45.33 42.00 49.33 46.33

Table 11: Contrast Scores (%) with confounding option of MLLMs on HSSBench.

C.3 MULTIPLE-CHOICE CONFOUNDING OPTION EXPERIMENT DETAILS

Table 11 and Figure 10 provides a detailed presentation of the experimental results after adding a
confounding option. We sampled 900 data points. "Conf." indicates that, in addition to the given
options, an extra option—"None of the above answers is correct"—was added. The model’s output
performance was then compared under these conditions.
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Figure 10: Contrast Scores (%) with confounding option of MLLMs on HSSBench.

C.4 VISUAL INFORMATION EXTRACTION EXPERIMENT DETAILS

Table 12 and Figure 11 presents the extraction of image information into text (where "De." indicates
a detailed description of the image generated directly by GPT-4.1, and "De-H." indicates a detailed
explanation provided by a domain expert for each image). The table below shows the detailed results
of comparative experiments in which only the extracted image information, rather than the images
themselves, was provided to the model.

Model
Geography Art Culture Social Sciences History Economy

Ct.C. De.C. De-H.C. Ct.C. De.C. De-H.C. Ct.C. De.C. De-H.C. Ct.C. De.C. De-H.C. Ct.C. De.C. De-H.C. Ct.C. De.C. De-H.C.

Qwen2.5-VL-7B 39.33 40.67 41.33 43.48 37.41 40.14 30.67 30.00 36.00 37.16 39.33 42.67 44.00 46.00 51.33 35.77 35.21 38.73
InternVL3-8B 42.00 43.33 43.33 33.33 34.69 36.05 42.00 32.00 42.00 47.30 41.33 45.33 48.00 48.00 50.00 40.88 35.92 39.44

Qwen2.5-VL-32B-Instruct 46.00 44.67 52.00 35.33 44.00 43.33 42.67 34.00 47.33 48.67 44.67 52.67 44.00 52.67 62.67 26.67 52.00 55.33
QvQ-72B-Preview 31.33 36.67 42.00 26.67 30.67 38.00 28.67 27.33 36.00 34.67 34.00 36.00 29.33 40.67 38.67 19.33 37.33 33.33

Qwen2.5-VL-72B-Instruct 54.67 54.67 58.67 42.00 48.67 41.33 34.67 32.67 42.67 47.33 50.00 47.33 56.67 64.67 66.67 35.33 56.00 57.33
GPT-4.1-mini 52.00 50.00 56.00 43.33 42.67 52.67 50.00 40.67 54.00 42.67 40.00 48.67 48.67 46.67 54.67 55.33 53.33 60.00

Table 12: Contrast Scores (%) about Visual Information Extraction of MLLMs on HSSBench.

C.5 COMPARISON WITH HSS-RELATED BENCHMARKS

We acknowledge that some existing benchmarks, such as MME, include HSS-related test data,
particularly within the Art domain. To better understand the relationship between these datasets and
our proposed HSSBench, we conducted a detailed comparative analysis focusing on the overlapping
Art category. The evaluation was performed under identical prompt settings, including both Direct
and Chain-of-Thought (CoT) prompting. The combined results are presented in Table 13.
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Figure 11: Contrast Scores (%) about Visual Information Extraction of MLLMs on HSSBench.

Model Benchmark (% Accuracy) Prompting

CMMMU MME MMMU HSSBench Direct CoT

Qwen2.5-VL-3B-Instruct 47.73 77.32 57.76 29.01 47.73 48.86
Qwen2.5-VL-7B-Instruct 43.18 71.21 61.21 37.88 43.18 46.59
InternVL3-8B 65.91 85.28 68.10 42.14 65.91 55.68
llava-onevision-qwen2-7b 53.41 77.21 49.14 36.20 53.41 52.27

Table 13: Performance comparison on the Art category across HSS-related benchmarks under Direct
and CoT prompting.

As shown, the relative performance trends across these benchmarks are broadly consistent, indicating
that the challenges within the Art domain are similar across datasets. Notably, HSSBench presents
a more challenging evaluation, reflected by generally lower accuracy scores, which underscores its
value in pushing forward research on Humanities and Social Sciences tasks.

C.6 COMPARISON WITH STEM BENCHMARKS

While our primary focus is on Humanities and Social Sciences (HSS), we also recognize the im-
portance of situating HSSBench within the broader landscape of STEM benchmarks. To this end,
we provide a comparative overview of model performance on several representative STEM bench-
marks alongside HSSBench under the Chain-of-Thought (CoT) prompting setting. The results are
summarized in Table 14.

Model MMLU
Pro

GPQA
Diamond

SWE-bench
Verified

MATH-
500

AIME
2024

LiveCode
Bench

OpenCompass-
Reasoning HSSBench

Qwen2.5-VL-72B 71.2 — — — — — 50.2 51.87
GPT-4.1 mini — 65.00 23.60 — 49.60 — 46.0 48.03
GPT-4o 79.80 66.90 — — — 35.80 54.8 46.88
GPT-4.1 81.80 66.30 54.6 92.80 48.10 40.50 54.0 42.66
InternVL3-8B — — — — — — 41.4 41.42
GPT-4.1 nano — 50.30 — — 29.40 — 34.2 35.83
Janus-Pro-7B — — — — — — 19.1 31.66

Table 14: Model performance comparison on STEM benchmarks and HSSBench (CoT prompting).

Notes: All STEM benchmark and OpenCompass results are sourced from official publications or
model release notes. A dash (—) indicates that the model did not publicly report results for that
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benchmark. Minor discrepancies may exist due to testing variability but do not affect the overall
trend.

This comparison reveals that while models generally achieve higher accuracy on STEM benchmarks
(e.g., MMLU Pro, MATH-500), their performance on HSSBench is comparatively lower. This gap
highlights the unique challenges posed by HSS tasks and the necessity of dedicated benchmarks like
HSSBench to drive progress in this domain.

C.7 RETRIEVAL-AUGMENTED GENERATION EVALUATION

We conducted additional experiments integrating Retrieval-Augmented Generation (RAG) with
several smaller MLLMs. The retrieval database was constructed from a general knowledge corpus
comprising Wikipedia and publicly available documents related to HSS. Model performance was
evaluated under two prompting strategies: direct prompting and CoT prompting.

Table 15: Performance of models under direct prompting.

Model Geography Art Culture Social
Science History Economy Overall

Without RAG

Qwen2.5-VL-7B-Instruct 60.09 28.05 27.19 53.50 54.51 40.09 43.89
Qwen2.5-VL-3B-Instruct 55.40 33.48 44.24 54.50 50.82 35.59 45.56
InternVL3-8B 54.93 37.56 43.78 62.00 51.64 44.14 48.82
llava-onevision-qwen2-7b 46.01 30.77 34.10 46.50 38.93 29.28 37.43

With RAG

Qwen2.5-VL-7B-Instruct 47.42 29.86 29.95 51.00 45.08 38.74 40.24
Qwen2.5-VL-3B-Instruct 49.77 33.03 35.48 48.50 43.44 33.78 40.55
InternVL3-8B 53.52 35.75 35.94 59.50 49.59 37.39 45.10
llava-onevision-qwen2-7b 43.19 32.13 26.73 41.00 32.38 21.17 32.57

Table 16: Performance of models under COT prompting.

Model Geography Art Culture Social
Science History Economy Overall

Without RAG

Qwen2.5-VL-7B-Instruct 55.40 25.79 27.65 51.00 47.54 39.64 41.08
Qwen2.5-VL-3B-Instruct 51.17 30.32 35.48 49.00 46.31 32.43 40.70
InternVL3-8B 53.52 34.39 40.55 57.00 51.64 38.74 45.86
llava-onevision-qwen2-7b 43.66 31.22 28.57 43.00 33.61 29.73 34.78

With RAG

Qwen2.5-VL-7B-Instruct 47.89 27.15 27.19 46.50 42.62 36.49 37.89
Qwen2.5-VL-3B-Instruct 41.78 31.22 29.95 44.00 40.57 36.04 37.21
InternVL3-8B 57.75 30.77 34.10 55.50 50.41 39.19 44.50
llava-onevision-qwen2-7b 42.25 29.86 28.11 42.50 31.56 23.42 32.73

The results indicate that, although RAG occasionally yields modest improvements in specific domains
or models, it does not consistently outperform direct prompting without retrieval augmentation. This
suggests that augmenting MLLMs with a general retrieval corpus and straightforward prompting
strategies may be insufficient to fully exploit the complex and nuanced knowledge required for HSS
tasks.

These findings highlight the challenges inherent in applying RAG to Humanities and Social Sciences
benchmarks such as HSSBench. We hypothesize that more specialized, domain-specific retrieval
corpora, combined with advanced retrieval and integration techniques, are necessary to unlock the
full potential of RAG in this context.
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C.8 PROMPT FOR MODEL INFERENCE

Table 17 details the configurations of the four prompts employed in our experiments, specifying
the presence or absence of a CoT prompt and indicating whether the questions were open-ended or
multiple-choice.

Prompt for Model Inference

w/ MC
w/ CoT

Question: [question]
Options: [options]
Think step by step to determine the correct answer.
End your response with [[X]] where X is your final answer (A, B, C, D or E).

w/ MC
w/o CoT

Question: [question]
Options: [options]
Give the correct answer directly.
End your response with [[X]] where X is your final answer (A, B, C, D or E).

w/o MC
w/ CoT

Question: [question]
Think step by step to determine the correct answer.
End your response with [[X]] where X is your final answer.

w/o MC
w/o CoT

Question: [question]
Give the correct answer directly.
End your response with [[X]] where X is your final answer.

Table 17: Prompt for model inference.

C.9 EVALUATION FOR MODEL’S OUTPUT

Table 18 presents the evaluation prompts employed to assess the accuracy of the model’s responses.

Prompt for Model Evaluation

w/ MC

You are an evaluation assistant.
Please determine whether the answers output by the model below are correct.
Question: [question]
Options: [options]
Correct answer: [correct answer]
Model output content: [model output]
Please extract its final answer from the model output and determine whether it is consistent with
the content of the correct answer.
If the answer is correct, reply with "1". Otherwise, reply with "0".
Only reply with numbers and no superfluous content.

w/o MC

You are an evaluation assistant.
Please determine whether the answers output by the model below are correct.
Question: [question]
Correct answer: [correct answer]
Model output content: [model output]
Please extract its final answer from the model output and determine whether it is consistent with
the content of the correct answer. Attention! If the meanings are roughly consistent, it can be
regarded as correct. It is not necessary to be strictly and completely consistent. One needs to
carefully consider whether the model’s response is reasonable and correct.
If the answer is correct, reply with "1". Otherwise, reply with "0".
Only reply with numbers and no superfluous content.

Table 18: Prompt for model evaluation.

In our evaluation process, we employed both expert sampling and automated assessment using GPT
models. To verify the consistency of the evaluation results produced by the models, we randomly
sampled 2,000 data points from the overall experiment, including 1,000 multiple-choice questions and
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1,000 open-ended questions. These samples were independently evaluated by three human experts, as
well as by Qwen2.5-7B and GPT-4.1.

For both multiple-choice and open-ended questions, the overall agreement among the two models and
the three experts, measured by Fleiss’ Kappa, was 96.82% and 94.79%, respectively. The agreement
between the two models alone, measured by Cohen’s Kappa, was 97.32% for multiple-choice
questions and 94.79% for open-ended questions.

These results demonstrate that the consistency between the three experts and the two models remains
at a reliable level. This indicates that either evaluation method yields results that are largely consistent
with those reported in the paper, thereby ensuring the reproducibility of our findings.

D MORE CASES
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