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ABSTRACT

We propose a new “bi-metric” framework for designing nearest neighbor data
structures. Our framework assumes two dissimilarity functions: a ground-truth
metric that is accurate but expensive to compute, and a proxy metric that is cheaper
but less accurate. In both theory and practice, we show how to construct data
structures using only the proxy metric such that the query procedure achieves the
accuracy of the expensive metric, while only using a limited number of calls to
both metrics. Our theoretical results instantiate this framework for two popular
nearest neighbor search algorithms: DiskANN and Cover Tree. In both cases
we show that, as long as the proxy metric used to construct the data structure
approximates the ground-truth metric up to a bounded factor, our data structure
achieves arbitrarily good approximation guarantees with respect to the ground-
truth metric. On the empirical side, we apply the framework to the text retrieval
problem with two dissimilarity functions evaluated by ML models with vastly
different computational costs. We observe that for almost all data sets in the
MTEB benchmark, our approach achieves a considerably better accuracy-efficiency
tradeoff than the alternatives, such as re-ranking.

1 INTRODUCTION

Similarity search is a versatile and popular approach to data retrieval. It assumes that the data items
of interest (text passages, images, etc.) are equipped with a distance function, which for any pair of
items estimates their similarity or dissimilarity]'| Then, given a “query” item, the goal is to return
the data item that is most similar to the query. From the algorithmic perspective, this approach is
formalized as the nearest neighbor search (NN) problem: given a set of n points P in a metric space
(X, D), build a data structure that, given any query point ¢ € X, returns p € P that minimizes
D(p,q) . In many cases, the items are represented by high-dimensional feature vectors and D is
induced by the Euclidean distance between the vectors. In other cases, D(p, q) is computed by a
dedicated procedure given p and q (e.g., by a cross-encoder).

Over the last decade, mapping data items to feature vectors, or estimation of similarity between
pairs of data items, is often done using ML models. (In the context of text retrieval, the first task
is achieved by constructing bi-encoders [Karpukhin et al.| (2020); Neelakantan et al.| (2022); |Gao
et al.| (2021b); [Wang et al.| (2024), while the second task uses cross-encoders |Gao et al.[(2021a);
Nogueira et al.|(2020); Nogueira & Cho|(2020)). This creates efficiency bottlenecks, as high-accuracy
models are often larger and slower, while cheaper models do not achieve the state-of-the-art accuracy.
Furthermore, high-accuracy models are often proprietary and accessible only through a limited
interface at a monetary cost. This motivates studying “the best of both worlds” solutions which utilize
many types of models to achieve favorable tradeoffs between efficiency, accuracy and flexibility.

One popular method for combining multiple models is based on “re-ranking” [Liu et al.| (2009).
It assumes two models: one model evaluating the metric D, which has high accuracy but is less
efficient; and another model computing a “proxy” metric d, which is cheap but less accurate. The
algorithm uses the second model (d) to retrieve a large (say, £ = 1000) number of data items with
the highest similarity to the query, and then uses the first model (D) to select the most similar items.
The hyperparameter k£ controls the tradeoff between the accuracy and efficiency. To improve the

'To simplify the presentation, throughout this paper we assume a dissimilarity function.
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efficiency further, the retrieval of the top-k items is typically accomplished using approximate nearest
neighbor data structures. Such data structures are constructed for the proxy metric d, so they remain
stable even if the high-accuracy metric D undergoes frequent updates.

Despite its popularity, the re-ranking approach suffers from several issues:

1. The overall accuracy is limited by the accuracy of the cheaper model. To illustrate this phenomenon,
suppose that D defines the “true” distance, while d only provides a “C-approximate” distance,
i.e., that the values of d and D for the same pairs of items differ by at most a factor of C' > 1.
Then the re-ranking approach can only guarantee that the top reported item is a C'-approximation,
namely that its distance to the query is at most C' times the distance from the query to its true
nearest neighbor according to D. This occurs because the first stage of the process, using the
proxy d, might not retain the most relevant items.

2. Since the set of the top-% items with respect to the more accurate model depends on the query,
one needs to perform at least a linear scan over all k data items retrieved using the proxy metric d.
This computational cost can be reduced by decreasing k, but at the price of reducing the accuracy.

Our results We show that, in both theory and practice, it is possible to combine cheap and expensive
models to achieve approximate nearest neighbor data structures that inherit the accuracy of expensive
models while significantly reducing the overall computational cost. Specifically, we propose a
bi-metric framework for designing nearest neighbor data structures with the following properties:

* The algorithm for creating the data structure uses only the proxy metric d, making it efficient to
construct,

* The algorithm for answering the nearest neighbor query leverages both models, but performs only
a sub-linear number of evaluations of d and D,

* The data structure achieves the accuracy of the expensive model.

For a more formal description of the framework, see Preliminaries (Section E])

The simplest approach to constructing algorithms that conform to our framework is to construct the
data structure using the proxy metric d, but answer queries using the accurate metric D; we also
propose more complex solutions that have better practical performance. We note our approach is
quite general, and is applicable to any approximate nearest neighbor data structure that works for
general metrics. Our theoretical study analyzes the simple approach when applied to two popular
algorithms: DiskANN Jayaram Subramanya et al.|(2019) and Cover Tree Beygelzimer et al.[(2006),
under natural assumptions about the intrinsic dimensionality of the data, as in|Indyk & Xu|(2023)).
Perhaps surprisingly, we show that despite the fact that only the proxy d is used in the indexing stage,
the query answering procedure essentially retains the accuracy of the ground truth metric D.

Formally, we show the following theorem statement. We use A4 to refer to the doubling dimension
with respect to metric d (a measure of intrinsic dimensionality, see Definition [2.2]).

Theorem 1.1 (Summary, see Theorems [3.4] and [C.3). Given a dataset X of n points, Alg €
{DiskANN, Cover Tree}, and a fixed metric d, let Sy1¢(n, €, Aq) and Qpi¢(e, Aa) denote the space
and query complexity respectively of the standard datastructure for A1g which reports a 1 + € nearest
neighbor in X for any query (all for a fixed metric d).

Consider two metrics d and D satisfying Equation Then for any Alg € {DiskANN, Cover Tree},
we can build a corresponding datastructure Dyyg on X with the following properties:

1. When constructing D14, we only access metric d,
2. The space used by Dy can be bounded by O(SAlg(n, e/C, /\d)

3. Given any query q, Dyg invokes D at most O(QAlg(e/C, Ad)) times,

4. Dpg returns a 1 + € approximate nearest neighbor of q in X under metric D.

20 hides logarithm dependencies in the aspect ratio.
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The proof of the theorem crucially uses the properties of the underlying data structures. It is an
interesting open direction to determine if our bi-metric framework can be theoretically instantiated
for other popular nearest neighbor algorithms, such as those based on locality sensitive hashing.

To demonstrate the practical applicability of the bi-metric framework, we apply it to the text retrieval
problem. Here, the data items are text passages, and the goal is to retrieve a passage from a large
collection that is most relevant to a query passage. We instantiated our framework with the Disk ANN
algorithm, using a high-quality “SFR-Embedding-Mistral” model Meng et al.|(2024) to define D, and
a lower-quality “bge-micro-v2” model |AI|(2023) to define d. Both metrics d(p, q) and D(p, q) are
induced by the Euclidean distance between the embeddings of p and ¢ using the respective models.
The sizes of the two models differ by 3 orders of magnitude, making D much more expensive to
evaluate than d. Specifically, in our experiments, embedding a single passage takes 0.00043 seconds
when using bge-micro-v2 and 0.13 seconds when using SFR-Embedding-Mistral, making the second
model >300 times slower.

We evaluated the retrieval quality of our approach on a benchmark collection of 15 MTEB retrieval
data sets|Thakur et al.|(2021)), comparing it to the re-ranking approach, which retrieves the closest data
items to the query with respect to d and re-ranks using D. We observe that for almost all data sets, our
approach achieves a considerably better accuracy-efficiency tradeoff than re-ranking. In particular,
for several data sets, such at HotpotQA |Yang et al.| (2018)), our approach achieves state-of-the-art
retrieval accuracy using up to 4x fewer evaluations of the expensive model.

1.1 RELATED WORK

As described in the introduction, a popular method for utilizing a cheap metric d and expensive
metric D in similarity search is based on "filtering" or “re-ranking”. The idea is to use d to construct
a (long) list of candidate answers, which is then filtered using D. It is a popular approach in many
applications, including recommendation systems [Liu et al.|(2022) and computer vision|Zhong et al.
(2017). Due to the popularity of this method, we use it as a baseline in our experiments.

In addition to the re-ranking method, multiple other papers proposed different methods for combining
accurate and cheap metrics to improve similarity search and related problems. We discuss those
papers in more detail below. We note that, with the exception of Moseley et al.| (2021); [Silwal et al.
(2023)); Bateni et al.| (2024), those methods do not appear to come with provable correctness or
efficiency guarantees, or generally applicable frameworks (in contrast to the proposal in this paper).
Furthermore, the three aforementioned papers Moseley et al.| (2021); Silwal et al.|(2023); Bateni et al.
(2024)) focus on various forms of clustering, not on similarity search. The paper [Moseley et al.| (2021)
is closest to our work, as it uses approximate nearest neighbor as a subroutine when computing the
clustering. However, their algorithm only achieves the (lower) accuracy of the cheaper model, while
our algorithms retains the (higher) accuracy of the expensive one.

There are also several other empirical works on similarity search that combine cheap and expensive
metrics, none of which fully capture our framework to the best of our knowledge. The aforementioned
paper Jayaram Subramanya et al.|(2023) describes (in section 3.1) an optimization which uses the
ground truth metric D during the indexing phase, and proxy metric d during the search phase. In
contrast, our framework uses D during the search phase and d during indexing. This difference
seems crucial to our ability of providing strong approximation guarantees for the reported points,
which are not limited by the distortion C' between d and D. In another paper (Chen et al.| (2023)), the
authors use the proxy metric d obtained by “sketching” D during the query answering phase, in order
to prune some points from the search queue without resorting to computing D. However, the data
structure index is still constructed using the expensive metric D, as opposed the proxy metric d as
in our framework, which makes preprocessing more expensive in terms of space and time. Finally,
Morozov & Babenko| (2019) present a method for constructing a similarity graph with respect to
an approximate distance function derived from a complex one; during the query phase the graph is
explored using a more complex relevance function. However, their algorithm uses specific proxy
metric derived from the expensive one; in contrast, our framework allows arbitrary distance functions
d and D, as long as the distortion C between them is bounded.

Graph-based algorithms for similarity search The algorithms studied in this paper rely on
graph-based data structures for (approximate) nearest neighbor search. Such data structures work
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for general metrics, which, during the pre-processing, are approximated by carefully constructed
graphs. Given the graph and the query point, the query answering procedure greedily searches the
graph to identify the nearest neighbors. Graph-based algorithms have been extensively studied both
in theory Krauthgamer & Lee| (2004); Beygelzimer et al.| (2006) and in practice |Fu et al.|(2019b);
Jayaram Subramanya et al.| (2019); Malkov & Yashunin| (2018); [Harwood & Drummond| (2016).
See |Clarkson et al.| (2006)); Wang et al.|(2021)) for an overview of these lines of research.

2 PRELIMINARIES

Nearest neighbor search We first consider the standard formulation of exact nearest neighbor
search. Here, we are given a set of points P, which is a subset of the set of all points X (e.g.,
X = R%). In addition, we are given access to a metric function D that, for any pair of points p, ¢ € X
returns the dissimilarity between p and q. The goal of the problem is to build an index structure that,
given a query point ¢ € X, returns p* € P such that

p* = arg min,c pD(q,p)-
The formulation is naturally extended to more general settings, such as:

* (1 + e)-approximate nearest neighbor search, where the goal is to find any p* € P such that
D(q,p") < (1 +¢) min D(g, p).
peP

* k-nearest neighbor search, where the goal is to find the set of k nearest neighbors of ¢ in P with
respect to D. If the algorithm returns a set S’ of k points that is different than the set S of true k
nearest neighbor, the quality of the answer is measured by computing the Recall rate or NDCG
score Jarvelin & Kekéldinen| (2002).

Bi-metric framework: In our framework, we assume that we are given two metrics over X:

* The ground truth metric D, which for any pair of points p, ¢ € X returns the “true” dissimilarity
between p and q. The metric D plays the same role as in the standard nearest neighbor search
problem.

* The proxy metric d, which provides a cheap approximation to the ground truth metric.

Throughout the paper, we think of D as being ‘expensive’ to evaluate, while d as the cheaper, but
noisy, proxy.

We assume that the algorithm for constructing the data structure has access to the proxy metric d, but
not to the ground truth metric D. The algorithm for answering a query ¢ has access to both metrics.
However, the complexity of the query-answering procedure is measured by counting only the number
of evaluations of the expensive metric D.

As described in the introduction, the above formulation is motivated by the following considerations:

* Computing all embeddings using the expensive model D (e.g. SFR-Embedding-Mistral (Meng
et al.| 2024)) requires lots of time and space. For example, it takes an A100 gpu around 196 hours
to compute all embeddings of 5 million passages from the HotpotQA dataset and these embeddings
occupy 83GB of disk storage. Meanwhile, using the cheap model d (e.g. bge-micro (Al [2023)),
computing these embeddings only takes 0.62 hours and 7GB of disk storage. As a comparison, the
graph index size of 5 million points occupies roughly 1GB of disk storage.

* Evaluating ground truth metric D during query answering time is also very expensive, due to factors
such as model size or monetary costs associated with querying proprietary models. Therefore, our
cost model for the query answering procedure only accounts for the number of such evaluations.

* In applications that use similarity search data structures in model training, the metric D can change
after each model update, necessitating re-computing embeddings and the search index over the
entire database. Since this is expensive, some works (e.g., (Borgeaud et al 2022)) freeze the
parts of the model that compute embeddings to avoid the computational cost of updating the data
structure. Our framework offers an alternative approach, where one constructs a stable index for
a proxy d using frozen embeddings, but uses the up-to-date model to compute the ground-truth
metric D when answering nearest neighbor queries.
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Assumptions about metrics: Clearly, if the metrics d and D are not related to each other, the data
structure constructed using d alone does not help with the query retrieval. Therefore, we assume that
the two metrics are related through the following definition.

Definition 2.1. Given a set of n points P in a metric space X and its distance function D, we say the
distance function d is a C—approximatiorﬂ of Difforall z,y € X,

d(x,y) < D(x,y) < C-d(z,y). (1)

For a fixed metric d and any point p € X, radius r > 0, we use B(p, r') to denote the ball with radius
r centered at p, i.e. B(p, ) = {q € X : d(p,q) < r}. In our paper, the notion of doubling-dimension
is central. It is a measure of intrinsic dimensionality of datasets which is popular in analyzing high
dimensional datasets, especially in the context of nearest neighbor search algorithms |Gupta et al.
(2003); Krauthgamer & Lee|(2004); Beygelzimer et al.| (2000); Indyk & Naor| (2007)); Har-Peled &
Kumar| (2013)); Narayanan et al.| (2021)); Indyk & Xu|(2023).

Definition 2.2 (Doubling Dimension). X has doubling dimension A4 with respect to metric d if for
any p € X, and radius 7 > 0, X N B(p, 2r) can be covered by at most 2*¢ balls with radius 7.

Finally, for a metric d, A, is the aspect ratio of the input set X, i.e., the ratio between the diameter
and the distance of the closest pair.

3 THEORETICAL ANALYSIS

We instantiate our bi-metric framework for two popular nearest neighbor search algorithms: Disk ANN
and Cover Tree. The goal of our bi-metric framework is to first create a data structure using the
proxy (cheap) metric d, but solve nearest neighbor to 1 + ¢ accuracy for the expensive metric D.
Furthermore, the query step should invoke the metric D judiciously, as the number of calls to D is
the measure of efficiency. Our theoretical query answering algorithms do not use calls to d at all.

We note that, if we treat the proxy data structure as a black box, we can only guarantee that it returns
a C-approximate nearest neighbor with respect to D. Our theoretical analysis overcomes this, and
shows that calling D a sublinear number of times in the query phase (for Disk ANN and Cover Tree)
allows us to obtain arbitrarily accurate neighbors for D.

At a high level, the unifying theme of the algorithms that we analyze (DiskANN and Cover Tree)
is that they both crucially use the concept of a net: given a parameter 7, a r-net is a small subset
of the dataset guaranteeing that every data point is within distance r to the subset in the net. Both
algorithms (implicitly or explicitly), construct nets of various scales » which help route queries to
their nearest neighbors in the dataset. The key insight is that a net of scale r for metric d is also a net
under metric D, but with the larger scale C'r. Thus, if we construct smaller nets for metric d, they
can also function as nets for the expensive metric D (which we don’t access during our data structure
construction). Care must be taken to formalize this intuition and we present the details below.

We remark that the intuition we gave clearly does not generalize for nearest neighbor algorithms
which are fundamentally different, such as locality sensitive hashing. For such algorithms, it is not
clear if any semblance of a bi-metric framework is algorithmically possible, and this is an interesting
open direction.

In the main body, we present the (simpler) analysis of Disk ANN and defer the analysis of Cover Tree
to Appendix [C|

3.1 DISKANN

Preliminaries for DiskANN. First, some helpful background is given. In this section, we only deal
with a single metric d. We first need the notion of an a-shortcut reachability graph. Intuitively, it
is an unweighted graph G where the vertices correspond to points of a dataset X such that nearby
points (geometrically) are close in graph distance.

Definition 3.1 (a-shortcut reachability Indyk & Xu (2023)). Let o« > 1. We say a graph G = (X, E)
is a-shortcut reachable from a vertex p under a given metric d if for any other vertex g, either

3Please see Section4|and Figure for empirical estimates of C' = D/d.



Under review as a conference paper at ICLR 2025

(p,q) € E, or there exists p’ s.t. (p,p’) € E and d(p’,q) - « < d(p,q). We say a graph G is
a-shortcut reachable under metric d if G is a-shortcut reachable from any vertex v € X.

The main analysis of [Indyk & Xu| (2023) shows that (the ‘slow preprocessing version’ of ) Disk ANN
outputs an a-shortcut reachability graph.

Theorem 3.2 (Indyk & Xu|(2023)). Given a dataset X, o > 1, and fixed metric d the slow preprocess-
ing DiskANN algorithm (Algorithm 4 in|lIndyk & Xu|(2023)) outputs a a-shortcut reachibility graph G
on X as defined in Deﬁnition (under metric d). The space complexity of G is n - a©*a) log(Ag).

Given an a-reachability graph on a dataset X and a query point ¢, |Indyk & Xu|(2023)) additionally
show that the greedy search procedure of Algorithm|[I]finds an accurate nearest neighbor of ¢ in X.
Theorem 3.3 (Theorem 3.4 in|Indyk & Xu[(2023)). Fore € (0, 1), there exists an §)(1/¢)-shortcut

reachable graph index for a metric d with max degree Deg < (1/¢)°4) log(Ay) (via Theorem .
For any query q, Algorithmon this graph index finds a (1 + €) nearest neighbor of q in X (under
metric d) in S < O(log(Ag)) steps and makes at most S - Deg < (1/£)°4) log(Ay)? calls to d.

We are now ready to state the main theorem of Section [3.1]

Theorem 3.4. Let Qpisxann (€, Ag, A\g) = (1/5)0()‘"’) log(Ag)? denote the query complexity of the
standard DiskANN data structurd’| where we build and search using the same metric d. Consider
two metrics d and D satisfying Equation Suppose we build an C'/e-shortcut reachability graph G
using Theorem[3.2]for metric d, but search using metric D in Algorithm[I|for a query q. Then:

1. The space used by G is at most n. - (C'/e)° ) log(Ay).
2. Running Algorithm[I|using D finds a 1 + ¢ nearest neighbor of q in the dataset X (under D).
3. On any query q, Algorithminvokes D at most Qpiskann (€/C, C Ay, Aa).

To prove the theorem, we first show that a shortcut reachability graph of d is also a shortcut reachability
graph of D, albeit with slightly different parameters. See Section [B|for the lemma’s proof.

Lemma 3.5. Suppose metrics d and D satisfy relation (I). Suppose G = (X, E) is a-shortcut
reachable under d for o > C. Then G = (X, E) is an «/C-shortcut reachable under D.

Proof of Theorem[3.4] By Lemma the graph G = (X, E) constructed for metric d is also
a O(1/¢) reachable for the other metric D. Then we simply invoke Theorem for a (1/¢)-
reachable graph index for metric D with degree limit Deg < (C/)?(*@) log(A4) and the number
of greedy search steps S < O(log(CAy)). Thus the total number of D distance call bounded by
(C/e)PP) log(CA4)? < Qpiskann(€/C, CAg, Ag). This proves the accuracy bound as well as the
number of calls we make to metric D during the greedy search procedure of Algorithm|I] The space
bound follows from Theorem since G is a C'/e-reachability graph for metric d.

4 EXPERIMENTS

We present an experimental evaluation of our approach. The starting point of our implementation is
the DiskANN based algorithm from Theorem which we engineer to optimize performanceﬂ We
compare it to two other methods on all 15 MTEB retrieval tasks|Thakur et al.| (2021)).

4.1 EXPERIMENT SETUP

Methods We evaluate the following methods. O denotes the query budget, i.e., the maximum
number of calls an algorithm can make to D during a query. We vary Q in our experiments.

* Bi-metric (our method): We build a graph index with the cheap distance function d (we discuss
our choice of graph indices in the experiments shortly). Given a query ¢, we first search for ¢’s

*Ie., the upper bound on the number of calls made to d on any query
5Our experiments are run on 56 AMD EPYC-Rome processors with 400GB of memory and 4 NVIDIA RTX
6000 GPUs. Our experiment in FigureE]takes roughly 3 days.
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top-Q/2 nearest neighbor under metric d. Then, we start a second-stage search from the Q/2
returned vertices using distance function D on the same graph index until we reach the quota Q.
We report the 10 closest neighbors seen so far by distance function D.

* Bi-metric (baseline): This is the standard retrieve + rerank method that is widely popular. We build
a graph index with the cheap distance function d. Given a query ¢, we first search for ¢’s top-Q
nearest neighbor under metric d. As explained below, we can assume that empirically the first step
returns the frue top-Q nearest neighbors under d. Then, we calculate distance using D for all the Q
returned vertices and report the top-10.

* Single metric: This is the standard nearest neighbor search with a single distance function D. We
build the graph index directly with the expensive distance function D. Given a query ¢, we do a
standard greedy search to get the top-10 closest vertices to ¢ with respect to distance D until we
reach quota Q. We help this method and ignore the large number of D distance calls in the indexing
phase and only count towards the quota in the search phase. Note that this method doesn’t satisfy
our “bi-metric” formulation as it uses an extensive number of D distance calls (€2(n) calls) in index
construction. However, we implement it for comparison since it represents a natural baseline, if
one does not care about the prohibitively large number of calls made to D during index building.

For both Bi-metric methods (ours and baseline), in the first-stage search under distance d, we initialize
the parameters of the graph index so that empirically, it returns the true nearest neighbors under
distance d. This is done by setting the ‘query length’ parameter L to be 30000 for dataset with corpus
size > 10 (Climate-FEVER Diggelmann et al.|(2020), FEVER [Thorne et al.[(2018), HotpotQA |Yang
et al.[(2018)), MSMARCO Bajaj et al.| (2018), NQ [Kwiatkowski et al.|(2019), DBPedia|Hasibi et al.
(2017)) and 5000 for the other datasets. Our choice of L is large enough to ensure that the returned
vertices are almost true nearest neighbors under distance d. For example, the standard parameters
used are a factor of 10 smaller. We also empirically verified that the nearest neighbors returned for d
with such large values of L corroborated with published MTEB benchmark values ]

Datasets We experiment with all of the following 15 MTEB retrieval datasets: Arguana/Wachsmuth
et al.[ (2018)), ClimateFEVERDiggelmann et al.| (2020), CQADupstackRetrievalHoogeveen et al.
(2015), DBPediaHasibi et al.| (2017), FEVERThorne et al.| (2018), FiQA2018Maia et al.| (2018)),
HotpotQAYang et al.| (2018), MSMARCOBajaj et al.| (2018)), NFCorpusBoteva et al. (2016),
NQKwiatkowski et al.|(2019), QuoraRetrievalThakur et al.[(2021) SCIDOCSCohan et al.| (2020), Sci-
FactWadden et al.| (2020), Touche2020Bondarenko et al.| (2020), TRECCOVID Voorhees et al. (2021).
As a standard practice, we report the results on these dataests’ test split, except for MSMARCO
where we report the results on its dev split.

Embedding Models We select a highly ranked model “SFR-Embedding-Mistral” as our expensive
model to provide groundtruth metric D. Meanwhile, we select three models on the pareto curve of
the MTEB retrieval size-average score plot to test how our method performs under different model
scale combinations. These three small models are “bge-micro-v2”, “gte-small”, “bge-base-en-v1.5”.
Please refer to Table [l for details.

As described earlier, both metrics d(p, ¢) and D(p, ¢) are induced by the Euclidean distance between
the embeddings of p and ¢ using the respective models. The embeddings defining the proxy metric
d are pre-computed and stored during the pre-processing, and then used to construct the data
structure. The embeddings defining the accurate metric D are computed on the fly during the query
processing stage. Specifically, to answer a query ¢, the algorithm first computes the embedding f(q)
of g. Then, whenever the value of D(q,p) is needed, the algorithm computes f(p) and evaluates
D(p,q) = |f(q) — f(p)||. Thus, the cost of evaluating D(p, ¢) is equal to the cost of embedding p.
(In other scenarios where D(p, ¢) is evaluated using a proprietary system over the Internet, the cost is
determined by the vendor’s prices and/or the network speed.).

Nearest Neighbor Search Algorithms The nearest neighbor search algorithms we employ in our
experiments are DiskANN (Jayaram Subramanya et al.|[2019) and NSG (Fu et al.,[2019a). We use
standard parameter choices for both; see Section@}

fromhttps://huggingface.co/spaces/mteb/leaderboard
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Model Name Embedding Dimension Model Size MTEB Retrieval Score
SFR-Embedding-Mistral [Meng et al.[(2024)) 4096 7111M 59
bge-base-en-v1.5 Xiao et al.|(2023) 768 109M 53.25
gte-small |Li et al.| (2023) 384 33M 49.46
bge-micro-v2 |All (2023) 384 17" 42.56

Table 1: Different models used in our experiments

Metric Given a fixed expensive distance function quota Q, we report the accuracy of retrieved
results for different methods. We always insure that all algorithms never use more than Q expensive
distance computations. Following the MTEB retrieval benchmark, we report the NDCG@ 10 score.
Following the standard nearest neighbor search algorithm benchmark metric, we also report the
Recall@10 score compared to the true nearest neighbor according to the expensive metric D.

4.2 EXPERIMENT RESULTS AND ANALYSIS

Please refer to Figure 1| for our results with d distance function set to “bge-micro-v2” and D set
to “SFR-Embedding-Mistral”, with the underlying graph index being DiskANN. To better focus on
the convergence speed of different methods, we cut off the y-axis at a relatively high accuracy, so
some curves may not start from x equals 0 if their accuracy doesn’t reach the threshold. We observe
that our method converges to the optimal accuracy much faster than bi-metric (baseline) and single
metric in most cases. For example for HotpotQA, the NDCG@ 10 score achieved by the baselines for
8000 calls to D is comparable to our method, using less than 2000 calls to D, leading to >4x fewer
evaluations of the expensive model. This leads to substantial time savings. For example, consider our
largest data set HotpotQA. The first stage of the query answering procedure (using d) takes only 0.37s
per query ¢, while each evaluation of D(p, ¢) during the second stage takes 0.13s; this translates
into roughly 260s per query when 2000 evaluations of D are used. In contrast, the baseline method
requires 8000 calls to D, which translates into a cost of roughly 1040s per query.

This means that utilizing the graph index built for the distance function proxy to perform a greedy
search using D is more efficient than naively iterating the returned vertex list to re-rank using D
(baseline). It is also noteworthy to see that our method converges faster than “Single metric” in all
the datasets except FIQA2018 and TRECCOVID, especially in the earlier stages. This phenomenon
happens even if “Single metric” is allowed infinite expensive distance function calls in its indexing
phase to build the ground truth graph index. This suggests that the quality of the underlying graph
index is not as important, and the early routing steps in the searching algorithm can be guided with a
cheap distance proxy functions to save expensive distance function calls.

Similar conclusion holds for the recall plot (see Figure ) as well, where our method has an even
larger advantage over Bi-metric (baseline) and is also better than the Single metric in most cases,
except for FEVER, FiQA2018, and HotpotQA. We report the results of using different model pairs,
using the NSG algorithm as our graph index, and measuring Recall@ 10 in Appendix D] Please see
their ablation studies in Section 4.3l

Lastly, we measure the empirical value of C' (the relationship between d& D from (T)). For simplicity,
we assumed that d < D < C - d for C > 1 in (I)) in our theoretical bounds. This is without loss of
generality by scaling, and we could have alternatively written our theorem statements by substituting
(max, , D(z,y)/d(x,y))/(ming , D(x,y)/d(z,y)) for C. In practice, we observe that the ratio
of distances C' := D/d is always clustered around one. For example, if we use “SFR-Embedding-
Mistral” to provide the distance D, and “bge-micro-v2” to provide the distance d, then for HotpotQA,
we empirically found that 99.9% of 10° randomly sampled pairs satisfy 0.6 < C' < 1.5. We observed
the same qualitative behaviour for our other datasets; see Figure[TT]in the appendix for more details.

4.3 ABLATION STUDIES

We investigate the impact of different components of our method. All ablation studies are run on
HotpotQA dataset as it is one of the largest and most difficult retrieval dataset where the performance
gaps between different methods are substantial.
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Figure 1: Results for 15 MTEB Retrieval datasets. The x-axis is the number of expensive distance
function calls. The y-axis is the NDCG @10 score. The cheap model is “bge-micro-v2”, the expensive
model is “SFR-Embedding-Mistral”, and the nearest neighbor search algorithm used is Disk ANN.

Different model pairs Fixing the expensive model as “SFR-Embedding-mistral” (Meng et al.,
2024), we experiment with 2 other cheap models from the MTEB retrieval benchmark: “gte-small”
L1 et al.[(2023) and “bge-base” X1ao et al.| (2023). These models have different sizes/capabilities,
summarized in Table[T] For complete results on all 15 MTEB Retrieval datasets for different cheap
models, we refer to Figures[5] [} [7] and[8]in Appendix [D} Here, we only focus on HotpotQA.

From Figure[2] we can observe that the improvement of our method is most substantial when there is
a large gap between the qualities of the cheap and expensive models. This is not surprising: If the
cheap model has already provided enough accurate distances, simple re-ranking can easily get to the
optimal retrieval results with only a few expensive distance calls. Note that even in the latter case,
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our second-stage search method still performs at least as good as re-ranking. Therefore, we believe
that the ideal scenario for our method is a small and efficient model deployed locally, paired with a
remote large model accessed online through API calls to maximize the advantages of our method.

Varying neighbor search algorithms We implement our method with another popular empirical
nearest neighbor search algorithm called NSG (Fu et al.| 2019b). We obtain the same qualitative
behavior as DiskANN, with details given in Section

HotpotQA HotpotQA
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Figure 2: HotpotQA test results for different mod- Figure 3: HotpotQA test results for different
els as the distance proxy. Blue / skyblue / cyan search initializations for the second-stage search
curves represent Bi-metric (our method) with bge- of Bi-metric (our method). Blue / purple / brown
micro / gte-small / bge-base models. Red / rose / green curves represent initializing our second-
/ magenta curves represent Bi-metric (baseline) stage search with top-Q/2, top-100, top-1, or the
with bge-micro / gte-small / bge-base models default vertex.

Impact of the first stage search In the second-stage search of our method, we start from multiple
points returned by the first-stage search via the cheap distance metric. We investigate how varying
the starting points for the second-stage search impact the final results. We try four different setups:

* Default: We start a standard nearest neighbor search using metric D from the default entry point of
the graph index, which means that we don’t use the first stage search.

» Top-K points retrieved by the first stage search: Suppose our expensive distance calls quota is Q.
We start our second search from the top K points retrieved by the first stage search. We experiment
with the following different choices of K: K; = 1, K190 = 100, K¢/ = max(100, Q/2) (note
K g5 is the choice we use in Figure I).

From Figure[3] we observe that utilizing results from the first-stage search helps the second-stage
search to find the nearest neighbor quicker. For comparison, we experiment with initializing the
second-stage search from the default starting point (green), which means that we don’t need the
first-stage search and only use the graph index built from d (cheap distance function). The DiskANN
algorithm still manages to improve as the allowed number of D distance calls increases, but it
converges the slowest compared to all the other methods.

Using multiple starting points further speeds up the second stage search. If we only start with the
top-1 point from the first stage search (brown), its NDCG curve is still worse than Bi-metric (baseline,
red) and Single metric (orange). As we switch to top-100 (purple) or top-Q/2 (blue) starting points,
the NDCG curves increase evidently.

We provide two intuitive explanations for these phenomena. First, the approximation error of the
cheap distance function doesn’t matter that much in the earlier stage of the search, so the first stage
search with the cheap distance function can quickly get to the true ‘local’ neighborhood without
any expensive distance calls, thus saving resource for the second stage search. Second, the ranking
provided by the cheap distance function is not accurate because of its approximation error, so starting
from multiple points should give better results than solely starting from the top few, which also
justifies the advantage of our second-stage search over re-ranking.

10
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A QUERY ALGORITHM OF DISKANN

Algorithm 1 DiskANN-GreedySearch(q, d)

Input: Graph index G = (X, E), distance function d, starting point s, query point ¢
Output: visited vertex list U
s <— an arbitrary starting point in X
A+ {s}
U+—o
while A\ U # @ do
v < argminge 4\ p d(zo, q)
A + AU Neighbors(v) > Neighbors in G
U+~UUv
if |A| > 1 then
A + closest vertex to ¢ in A
: sort U in increasing distance from ¢
: return U

A S ol

_
Wy 220

B OMITTED DISKANN PROOFS

Proof of Lemma[3.5] Let (p, ¢) be a pair of distinct vertices such that (p, ¢) ¢ E. Then we know that
there exists a (p,p’) € F such that d(p’, q)-a < d(p, ¢). From relation (IJ), we have % D(p',q)-a <
d(p',q) - a < d(p,q) < D(p,q), as desired. O

C ANALYSIS OF COVER TREE

We now analyze Cover Tree under the bi-metric framework. First, some helpful background is
presented below.

C.0.1 PRELIMINARIES FOR COVER TREE

The notion of a cover is central.

Definition C.1 (Cover). A r-cover C of a set X given a metric d is defined as follows. Initially C = §.
Run the following two steps until X is empty.

1. Pick an arbitrary point 2z € X and remove B(z,r) N X from X.

2. Add z to C.

Note that a cover with radius r satisfies the following two properties: every point in X is within
distance r to some point in C (under the same metric d’), and all points in C are at least distance
apart from each other.

We now introduce the cover tree datastructure of Beygelzimer et al.| (2006). For the data structure, we
create a sequence of covers C_1,Cy, . ... Every C; is a layer in the final Cover Tree 7.
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Algorithm 2 Cover Tree Data structure

1: Input: A set X of n points, metric d, real number 7" > 1.
2: Qutput: A tree on X
3. procedure COVER-TREE(d,T)

4: WLOG,; all dlstances between points in X under d are in (1, A] by scaling.

5: C.1=C =

6: C;isa 2i/T—cover of C;_1 for i > 0 under metric d

7: C; CCij_qfori>0.

8: = O(log(AT)) > ¢ is the number of levels of T
9: fori=—1totdo
10: C; corresponds to tree nodes of 7 on level ¢
11: Each p € C;_; \ C; is connected to exactly one p € C; such that d(p, p') < 2¢/T

12: Return tree 7

Lemma C.2 (Theorem 1 in/Beygelzimer et al.| (2006)). T rakes O(n) space, regardless of the value
of T.

Proof. We use the explicit representation of 7 (as done in [Beygelzimer et al.| (2000)), where we
coalesce all nodes in which the only child is a self-child. Thus, every node either has a parent other
than the self-parent or a child other than the self-child. This gives an O(n) space bound, independent
of all other parameters. O

We note that it is possible to construct the cover tree data structure of Algorithm [2| in time
20(X\a)p1og n, but it is not important to our discussion Beygelzimer et al.| (2006).

Now we describe the query procedure. Here, we can query with a metric D that is possibly different
than the metric d used to create 7 in Algorithm 2]

Algorithm 3 Cover Tree Search

1: Input: Cover tree 7 associated with point set X , query point ¢, metric D, accuracy ¢ € (0, 1).
2: Qutput: A pointp € X
3: procedure COVER-TREE-SEARCH

4: t < number of levels of 7

5: Q: + Cy > We use the covers that define 7
6: 14t

7: while i # —1 do

8: Q={pe€Ci_y:phasaparentin Q;}

9: Qi-1=1{p€Q:D(q,p) < D(q,Q) +2'}

10: ifD(q,Ql_l) Z 21(1+1/5) then

11: Exit the while loop.

12: 141—1

13: Return point p € ;1 that is closest to g under D

C.0.2 THE MAIN THEOREM

We construct a cover tree 7 using metric d and T from Equation [I)in Algorithm[2] Upon a query ¢,
we search for an approximate nearest neighbor in 7 in Algorithm [3 using metric D instead. Our
main theorem is the following.

Theorem C.3. Let Qcovertree(€; Ad, Ad) = 20(Xa) log(Ag) + (1/6) ) denote the query com-
plexity of the standard cover tree datastructure, where we set T = 1 in Algorzthm@]and build and
search using the same metric d. Now consider two metrics d and D satisfying Equation[I] Suppose
we build a cover tree T with metric d by setting T = C'in Algorithm[2} but search using metric D in
Algorithm[B] Then the following holds:

1. The space used by T is O(n).
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2. Running Algorithm[3|using D finds a 1 + € approximate nearest neighbor of q in the dataset
X (under metric D).

3. On any query, Algorithm[3|invokes D at most
CO()\d) IOg(Ad) + (C/&‘)O()\d) = O(QCoverTree(Q(a/C)v Ada /\d))

times.

Two prove Theorem [C.3] we need to: (a) argue correctness and (b) bound the number of times
Algorithm [3] calls its input metric D. While both follow from similar analysis as in [Beygelzimer
et al.| (2006), it is not in a black-box manner since the metric we used to search 7 in AlgorithmE] is
different than the metric used to build 7" in Algorithm

We begin with a helpful lemma.

Lemma C.4. Forany p € C;_1, the distance between p and any of its descendants in T is bounded
by 2" under D.

Proof. The proof of the lemma follows from Theorem 2 in |[Beygelzimer et al.| (2006). There,
it is shown that for any p € C;_; the distance between p and any descendant p’ is bounded by

d(p,p’) < Z;;ioo 27 /T = 2¢/T, implying the lemma after we scale by C due to Equation(note
we set T' = (' in the construction of 7 in Theorem|[C.3). [

‘We now argue accuracy.

Theorem C.5. Algorithm[3|returns a 1 + e-approximate nearest neighbor to query q under D.

Proof. Let p* be the true nearest neighbor of query g. Consider the leaf to root path starting from p*.
We first claim that if (); contains an ancestor of p*, then (Q;_; also contains an ancestor g;_; of p*.
To show this, note that D(p*, ¢;_1) < 2* by Lemma so we always have

D(Qu qifl) S D(qap*) + D(p*vqifl) S D(Q? Q) + 2i7
meaning ¢;_; is included in Q;_.

When we terminate, either we end on a single node, in which case we return p* exactly (from the
above argument), or when D(q, Q;—1) > 2*(1 + 1/¢). In this latter case, we additionally know that

since an ancestor of p* is contained in ;1 (namely ¢;_; from above). But the exit condition implies
2'(141/e) < D(q,p") +2' = 2" <eD(q,p"),
which means

D(q,Qi—1) < D(q,p*) + 2" < D(q,p*) +€D(q,p*) = (1 + &) D(q, p*),

as desired. O

Finally, we bound the query complexity. The following follows from the arguments in [Beygelzimer
et al.| (2006).

Theorem C.6. The number of calls to D in Algorithm EI is bounded by COX4) . log(A4C) +
(C/e)P0a),

Proof Sketch. The bound follows from Beygelzimer et al.|(2006) but we briefly outline it here. The
query complexity is dominated by the size of the sets ();_1 in Line 9 as the algorithm proceeds. We
give two ways to bound );_;. Before that, note that the points p that make up @);_1 are in a cover
(under d) by the construction of T, so they are all separated by distance at least (2! /C') (under d).
Let p* be the closest point to ¢ in X.
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* Bound 1: In the iterations where D(q, p*) < O(2%), we have the diameter of ;1 under D is at
most 0(21 as well. This is because an ancestor ¢;_; € C;_1 of p* is in @) of line 8 (see proof of
Theorem , meaning D(q, Q) < O(2%) due to Lemma Thus, any point p € ();_1 satisfies
D(q,p) < D(q,Q) + 2¢ = O(2"). From Equation it follows that the diameter of ();_1 under
d is also at most O(2¢). We know the points in ();_; are separated by mutual distance at least
Q(2!/C) under d, implying that |Q;_;| < C?*4) in this case by a standard packing argument.
This case can occur at most O (log(AC)) times, since that is the number of different levels of 7.

 Bound 2: Now consider the case where D(q,p*) > (2). In this case, we have that the
points in ;1 have diameter at most O(2'/¢) from ¢ (under D), due to the condition of line
10. Thus, the diameter is also bounded by O(2¢/¢) under d. By a standard packing argument,
this means that |Q;_1| < (C /5)0()”1), since again ();_; are mutually separated by distance at
least 2(2¢/C) under d. However, our goal is to show that the number of iterations where this
bound is relevant is at most O(log(1/¢)). Indeed, we have D(q,Q;_1) < O(2¢/¢), meaning
2 > Q(eD(q,Qi-1)) > Q(eD(q,p*)) Since we are decrementing the index i and are in the case
where D(gq,p*) > Q(2%), this can only happen for O(log(1/¢)) different i’s.

Combining the two bounds proves the theorem. O

The proof of Theorem [C.3]follows from combining Lemmas [C.2]and Theorems [C.5]and [C.6]

D COMPLETE EXPERIMENTAL RESULTS

Parameter choices for Nearest Neighbor Search algorithms The parameter choices for Disk ANN
are a = 1.2, I_build = 125, max_outdegree = 64 (the standard choices used in ANN benchmarks
Aumdiiller et al.| (2020)). The parameter choices for NSG are the same as the authors’ choices for
GISTIM dataset (Jégou et al, 2011): K = 400, L = 400, iter = 12, S = 15, R = 100. NSG also
requires building a knn-graph with efanna, where we use the standard parameters: L = 60, R = 70,
C = 500.

Empirical Results We report the empirical results of using different embedding models as distance
proxy, using the NSG algorithm, and measuring Recall@10.

1. We report the results of using “bge-micro-v2” as the distance proxy d and using Disk ANN
for building the graph index. See Figure ] for Recall@ 10 metric plots.

2. We report the results of using “gte-small” as the distance proxy d and using Disk ANN
for building the graph index. See Figure [5|for NDCG @ 10 metric plots and Figure [6] for
Recall@ 10 metric plots.

3. We report the results of using “bge-base-en-v1,5” as the distance proxy d and using Disk ANN
for building the graph index. See Figure [7]for NDCG @ 10 metric plots and Figure [§] for
Recall@ 10 metric plots.

4. We report the results of using “bge-micro-v2" as the distance proxy d and using NSG for
building the graph index. See Figures 9] for NDCG @ 10 metric plots and [I0]for Recall@10
metric plots.

We can see that for all the different cheap distance proxies (‘“bge-micro-v2” Xiao et al.| (2023)),
“gte-small” |Li et al.[(2023), “bge-base-en-v1.5” |X1ao et al.|(2023)) and both nearest neighbor search
algorithms (DiskANN Jayaram Subramanya et al.|(2019) and NSG |Fu et al.|(2019b)), our method
has better NDCG and Recall results on most datasets. Moreover, naturally the advantage of our
method over Bi-metric (baseline) is larger when there is a large gap between the qualities of the cheap
distance proxy d and the ground truth distance metric D. This makes sense because as their qualities
converge, the cheap proxy alone is enough to retrieve the closest points to a query for the expensive
metric D.

We also report the histograms of empirical C' = d/D values using “bge-micro-v2’ as the distance
proxy d in Figure For all 15 datasets, the distance ratio C = d/D concentrates well around 1
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Different nearest neighbor search algorithms We implement our method with another popular
empirical nearest neighbor search algorithm called NSG [Fu et al.| (2019b). We obtain the same
qualitative behavior as DiskANN. Because the authors’ implementation of NSG only supports {5
distances, we first normalize all the embeddings and search via 5. This may cause some performance
drops. Therefore, we are not comparing the results between the Disk ANN and NSG algorithms, but
only results from different methods, fixing the graph index. In Figure[9]and [I0]in the appendix, we
observe that our method still performs the best compared to Bi-metric (baseline) and single metric in
most cases, demonstrating that our bi-metric framework can be applied to other graph-based nearest
neighbor search algorithms as well.
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Figure 4: Results for 15 MTEB Retrieval datasets. The x-axis is the number of expensive distance
function calls. The y-axis is the Recall@ 10 score. The cheap model is “bge-micro-v2”, the expensive
model is “SFR-Embedding-Mistral”, and the nearest neighbor search algorithm used is Disk ANN.
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Figure 5: Results for 15 MTEB Retrieval datasets. The x-axis is the number of expensive distance
function calls. The y-axis is the NDCG@ 10 score. The cheap model is “gte-small”, the expensive
model is “SFR-Embedding-Mistral”, and the nearest neighbor search algorithm used is Disk ANN.
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Figure 6: Results for 15 MTEB Retrieval datasets. The x-axis is the number of expensive distance
function calls. The y-axis is the Recall@10 score. The cheap model is “gte-small”, the expensive
model is “SFR-Embedding-Mistral”, and the nearest neighbor search algorithm used is Disk ANN.
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Figure 7: Results for 15 MTEB Retrieval datasets. The x-axis is the number of expensive distance
function calls. The y-axis is the NDCG@10 score. The cheap model is “bge-base-en-v1.5”, the
expensive model is “SFR-Embedding-Mistral”, and the nearest neighbor search algorithm used is
DiskANN.
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Figure 8: Results for 15 MTEB Retrieval datasets. The x-axis is the number of expensive distance
function calls. The y-axis is the Recall@10 score. The cheap model is “bge-base-en-v1.5”, the
expensive model is “SFR-Embedding-Mistral”, and the nearest neighbor search algorithm used is
DiskANN.
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Figure 9: Results for 15 MTEB Retrieval datasets. The x-axis is the number of expensive distance
function calls. The y-axis is the NDCG @ 10 score. The cheap model is “bge-micro-v2”, the expensive
model is “SFR-Embedding-Mistral”, and the nearest neighbor search algorithm used is NSG.
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Figure 10: Results for 15 MTEB Retrieval datasets. The x-axis is the number of expensive distance
function calls. The y-axis is the Recall@ 10 score. The cheap model is “bge-micro-v2”, the expensive
model is “SFR-Embedding-Mistral”, and the nearest neighbor search algorithm used is NSG.
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1393 Figure 11: Results for 15 MTEB Retrieval datasets. Histograms of C' = D/d values, where we use
1394 “pge-micro-v2” as the distance proxy d and “SFR-Embedding-Mistral” as the expensive distance D.
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