
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HASHMARK: WATERMARKING TABULAR/SYNTHETIC
DATA FOR MACHINE LEARNING VIA CRYPTOGRAPHIC
HASH FUNCTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

As enterprises increasingly rely on data for decision-making and machine learning
pipelines, ensuring data provenance, ownership, and responsible use has become
essential. Data watermarking offers a promising solution by embedding impercep-
tible markers into datasets, enabling traceability and accountability. While prior
work has primarily focused on perceptual domains such as images, audio, and text,
watermarking for tabular data remains underexplored despite its central role in
enterprise systems. Tabular data presents unique challenges due to its heterogeneity,
lack of redundancy, and susceptibility to structural modifications.
We introduce HashMark, a suite of cryptographic watermarking protocols explicitly
designed for tabular datasets. Our methods embed bits into table cells using seeded
hash functions, achieving data-type agnostic, high-fidelity watermarking with
minimal distortion. We present two complementary schemes: (i) HashMark1, a
sparse embedding mechanism that modifies only Θ(1) cells, and (ii) HashMark2,
a dense embedding mechanism that enforces uniform statistical properties across
the dataset while supporting categorical and alphanumeric domains. Both schemes
feature low detection cost, broad applicability, and formal fidelity guarantees.
Extensive experiments across various settings demonstrate that HashMark main-
tains downstream model performance while significantly improving the quality of
the watermarking scheme, when compared to prior work. Our results establish
hash-based watermarking as a simple, efficient, and general solution for securing
tabular data against unauthorized use, while also enabling scalable data governance.

1 INTRODUCTION

As data-driven applications grow in significance, ensuring data integrity, provenance, and ownership
is increasingly critical. Data watermarking—the practice of embedding imperceptible markers into
datasets—has emerged as a valuable tool for protecting intellectual property, preventing unauthorized
use, and verifying authenticity. This is especially relevant when data is shared, sold, or used to train
machine learning models, as it provides mechanisms for tracing data lineage and safeguarding against
misuse. With the rise of generative models and synthetic data, watermarking also ensures traceability
of AI-generated content.

Prior Work Previous research on watermarking has largely focused on image, audio, or text
data (Ahmadi et al., 2021; Tan et al., 2023; Yamni et al., 2022; Zhang et al., 2022; Zhong et al.,
2021), while tabular data—one of the most common formats in machine learning—has received less
attention. Watermarking tabular data is challenging due to (i) the lack of perceptual redundancy,
where small changes can be impactful, (ii) mixed data types requiring tailored strategies, and (iii)
the need for resilience against insertions, deletions, and foreign key modifications. Existing tabular
watermarking methods (Agrawal & Kiernan, 2002; Hu et al., 2018; Hwang et al., 2020; Kamran
et al., 2013; Li et al., 2022; Lin et al., 2021; Shehab et al., 2008; Sion et al., 2003) often focus on
relational databases and either modify specific data points or embed statistical identifiers. More recent
approaches (He et al., 2024; Zheng et al., 2024; Ngo et al., 2024) have targeted general tabular data,
yet challenges remain regarding computational complexity, scalability, and storage requirements.
More information pertaining to related work is deferred to Section A.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Comparison of HashMark with prior works (transposed). Detection Cost refers to the
information needed to detect the watermark efficiently. “# Modification” refers to the number of cells
that need to be modified to embed the watermark.

Ngo et al. Zheng et al. HashMark1 HashMark2

Modification All All Θ(1) All
Fidelity High High Very High High
Deletions Allowed Allowed Limited Allowed
Permutations Allowed Allowed Limited Allowed
Data Types Numerical Any∗ Any Any
Detection Cost High Very High Very Low Low

Our Motivation We focus on watermarking in non-adversarial enterprise settings, where data
flows across multiple departments and systems. In such contexts, employees typically do not attempt
to remove watermarks, which enables effective tracking of data lineage, ensures integrity, and
facilitates compliance with internal policies and regulations. Embedded markers enable organizations
to monitor data movement, quickly identify discrepancies, and maintain accountability throughout
the data lifecycle.

The rise of synthetic data further motivates the use of watermarking, as organizations must distin-
guish between synthetic datasets and originals while preserving both privacy and utility. While no
watermarking scheme is entirely immune to removal (Zhang et al., 2024b), its practical value lies in
raising the cost of misuse and enabling accountability. Our work enhances the applicability of tabular
data, thereby strengthening enterprise data governance in realistic, non-adversarial scenarios.

Figure 1: HashMark2: On the left is the source input table, to be watermarked, containing cells of
two columns - one text and the other numerical. After applying the hash function to each cell, the
hashed values are shown next. In the middle, we show how values are adjusted to hash to 0. For text
data, we replace it with a new value, and for numerical data, we add in the smallest decimal place.
On the right is the watermark embedded table where all cells hash to 0.

1.1 OUR CONTRIBUTIONS

We introduce HashMark, a suite of simple yet powerful watermarking protocols for tabular datasets.
Our approach embeds bits into selected table cells using a cryptographic, seeded hash function,
ensuring that the output looks uniformly random without the knowledge of the seed. A hash
function is versatile in its agnosticism regarding the input data type, working with both numeric and
alphanumeric inputs.

We present two variants, HashMark1 and HashMark2, each offering unique properties. In both
schemes, we map cell contents to a target bit (0 or 1) via the seeded hash function. If the cell content
does not map to the target bit, we carefully modify the cell values while preserving the dataset’s
fidelity. For numerical values, we make minimal perturbations (e.g., incrementing by 10−c). For

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

alphanumeric values, we apply rejection sampling from the original distribution. The rejection
sampling technique can also be extended to numerical values, as we describe later.

HashMark1. For static datasets (e.g., unique IDs, timestamps, categorical labels), HashMark1
modifies only a constant ℓ≪ N cells, ensuring high fidelity. HashMark1 employs two pseudorandom
generators (PRGs). A PRG uses a seed, ensuring that the output appears random without knowledge
of this seed. We use the first PRG G1 to derive ℓ bits. We then use the second PRG G2 to identify
the dataset’s ℓ cell locations. Each chosen cell is adjusted until it hashes to the selected bit. Here,
ℓ ≪ N where N is the number of cells in the datasets, which guarantees very high fidelity. For
detection, we first use G2 to identify the ℓ cell locations. Then, employing the hash function, we
retrieve the bits embedded at these positions. Finally, using G1, we verify whether the retrieved bits
match the embedded information. HashMark1 requires the knowledge of the seeds for watermark
detection. Note that the security and correctness of its detection algorithm stem from the security of
the underlying cryptographic constructions. Minor permutations or deletions of rows compromise
detection since they disrupt cell positioning. On the other hand, if permutations aren’t allowed, then
removing the watermark is difficult as the embedding locations are pseudorandom.

HashMark2. Figure 1 pictorially represents HashMark2, where the same target bit (say 0) is em-
bedded in all (or, O(N) cells as relaxed later). It uses the hash function for the binary mapping and
then applies the above-outlined "adjustment" procedure to ensure that every cell maps to 0 under the
seeded hash function. This approach, though appearing similar to the red-green paradigm of Ngo
et al. (2024) and Zheng et al. (2024), is vastly simpler and more secure. Indeed, while Ngo et al.
(2024) relied on an insecure seed for mapping to red or green, Zheng et al. (2024) required the source
dataset for detection. Instead, our detection algorithm relies on a statistical test, and the embedding
algorithm can be instantiated with several approaches, such as perturbing the values by adding 10−c

for some constant c or simply rejection sampling until a certain threshold number of the entries in a
row map to the desired bit. Looking ahead, we employ both techniques for numerical values in the
experiments section.

However, critically, our reliance on the seeded hash function ensures that it supports any data type (a
feature missing from the work of Ngo et al. (2024)) and does not require the source dataset to identify
the watermarking (a feature of Zheng et al. (2024)). Like HashMark1, we adjust the cell content to
obtain the mapping to the target bit of 0, at every cell position. Unlike HashMark1, HashMark2 will
rely on a statistical test to determine if the dataset was watermarked.

In conclusion, our suite of protocols HashMark satisfies:

• High Fidelity: The dataset changes are minimal when values are perturbed by adding 10−c,
and nonexistent when using rejection sampling, since samples are drawn from the same
distribution.

• Low Detection Cost: Detection in HashMark requires only the hash (and PRG for
HashMark1) seeds due to its simpler design, whereas Ngo et al. (2024) needs column
pairings and Zheng et al. (2024) requires the full source dataset.

• Support for Any Data Type: HashMark can support any data, as explained above. In
contrast, Ngo et al. (2024) cannot handle categorical data, and although Zheng et al. (2024)
claims broad support, it is unclear how their method applies to textual data.1 Hence, in
Table 1, we mark their support as Any∗.

2 PRELIMINARIES

Notations. For n ∈ N+, we denote by [n] the set {1, . . . , n}. For a set X , we denote by x
$← X

that a value x is sampled uniformly at random from X .

1Zheng et al. (2024) focuses on categorical data (e.g., education level, marital status). Their watermarking
distorts integer distributions by adding floating-point perturbations, which harms utility. Restricting to integer
perturbations could leave gaps in the column range, so we argue that such columns should not be watermarked.
Moreover, they neither support unrestricted alphanumeric data (e.g., ASINs) nor evaluate such cases.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Seeded Hash Function. A function H : S × X → Y is a hash function, modeled as a random
oracle, if the computation of H(S,X) for a random S

$← S and any X ∈ X is indistinguishable

from Y
$← Y . In our application, we will suppress the presence of the seed distribution S and we

will set Y := {0, 1}.

3 PROBLEM FORMULATION

Our dataset is a matrix X ∈ Rm×n containing numerical, alphabetical, and alphanumeric values. The
goal is to construct a watermarked dataset Xw with the following properties:

Fidelity: Xw remains close to X. For numerical data, we show closeness in L∞ distance (Theorem 1)
and for categorical data, we show closeness by Jensen-Shannon Divergence (Theorem 2).

Detectability: The watermark can be efficiently and reliably detected—cryptographically in the first
variant, and statistically in the second.

Robustness: Xw withstands common perturbations, such as row/column removal, permutations, and
cell modifications.

Utility: Xw supports downstream tasks (e.g., machine learning) with negligible accuracy loss, as
confirmed empirically.

4 HashMark: ELEMENT WISE TABULAR WATERMARKING

At its core, any watermarking approach needs to ensure that the utility of the data is preserved
even after embedding the watermark. Furthermore, the detectability of the watermark is pre-
served even after modification by both adversarial and honest actions. We have two constructions
HashMark1,HashMark2 with various properties and an implicit trade-off.

However, before examining the constructions, it is instructive to consider the commonalities. Both
the constructions will rely on applying a seeded hash functionH that can take any inputs and produce
an output bit. Such a binary hash function enables us to map any cell (numerical, textual, categorical,
etc.) to either 0 or 1, depending on the function’s description. They will also rely on modifying a
cell’s contents through invoking the function Generate (until it satisfies someH-based property). The
question remains of how to instantiate this function.

4.1 DEFINING Generate

The crux of our construction lies in instantiating the function Generate, which modifies dataset
content to satisfy the hashing requirement. In this section, we define this function and present some
optimizations. Before proceeding, we would like to highlight an essential caveat in our approach
to watermarking. Consider a column C with a fixed range (e.g., marital status, education level,
designation, or salary tiers). Applying a hash function that maps values to bits (0 or 1) can force
certain elements to hash to an undesired bit. This would remove those elements from the range in
the watermarked dataset, skewing the distribution and harming utility. Note that Zheng et al. (2024)
suggests embedding in these columns by first mapping these entries into distinct integers and then
reverting to their numerical-based approach. However, this skews the distribution and can harm
correlations. To avoid this, we do not embed watermarks in such columns; instead, we treat every
element in the range as “valid,” i.e., as hashing to the desired bit.

In the ensuing discussion, we focus solely on generating values for the remaining attributes/columns.
We will focus on embedding the watermark and later define fidelity, i.e., how closely the watermarked
distribution resembles the un-watermarked one. The proofs of the following are deferred to Section E
in the appendix.

Numerical Values. Suppose a column C consists of numerical data, specifically floating-point
values. In that case, the generate function can take the old value and add 10−c for some constant c
that is a scheme parameter. This ensures that the perturbation does not adversely impact the fidelity.
Formally, we have the following theoretical guarantee, as measured by the expected difference in L∞
between the unwatermarked and watermarked distributions.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Theorem 1. Let X be the original dataset and Xw be the watermarked dataset of size N where
x′
i ∈ Xw is generated as follows:

x′
i = xi + ki · 10−c,

where ki = min{k ≥ 0 | H(xi + k · 10−c) = 0,H is a seeded hash function as defined before, and
c ≥ 0 is some integer. Then,

E[||X− Xw||∞] ≤ (lnN + 2) · 10−c

Our approach can be easily extended to support truncation up to b decimal places if only the value
until the first b decimal places is included in the input toH.

Alphanumeric/Textual Data. In the case of textual data, the generate function can reject and
resample from the underlying distribution for the feature ρi. Then, one can measure the fidelity
of the watermarked dataset by measuring the Jensen-Shannon Divergence (Lin, 1991) between the
watermarked and the un-watermarked dataset. Formally, we get the following theoretical guarantee:

Theorem 2. Let ρ be the distribution of an alphanumeric column where we embed the watermark.
Let ρ′ be the modified distribution consisting only of those values that hash to 0. Then, the Jensen-
Shannon Divergence is:

JSD(ρ||ρ′) = 3

4
log(

4

3
) ≈ 0.215

Preserving Correlations. Datasets often contain correlations between various features or attributes.
Any watermarking approach should ensure that these correlations are preserved. Rejection sampling
column-wise can often lead to a loss of such correlations. We now detail how to preserve correlations.

• Let ρ be a probability distribution that defines the underlying dataset. This can contain both
categorical (aka alphanumeric values) and numerical values. For example, a synthetic data
generation algorithm (such as the ones employed in our experiments) is trained on a source
(i.e., original dataset), which yields such a distribution ρ from which one can sample as many
rows as needed. These synthetic data algorithms have been experimentally demonstrated to
be closely aligned with the original dataset for various machine learning tasks, providing a
heuristic proof of correlation preservation.

• Let R $← ρ be a row sampled from this distribution. Further, let this row R be such that
there exist cells that do not map to the desired bit.

• We can now reject R and resample from ρ until the sampled row satisfies the required
constraint. However, such rejection and resampling until every cell maps to the desired
bit can be computationally expensive. For n columns, this can take 2n time. Instead, one
can choose a threshold t such that if t of the n cells in a row R map to the desired bit, it
is marked as accepted. The detectability threshold can be suitably set to account for this
modification.

The remainder of this section will focus on HashMark2, deferring HashMark1 to Section C. In brief,
HashMark1 is intended for static datasets where no modification of rows, columns, or their relative
ordering is anticipated. Then, one can embed a pseudorandom number of bits in pseudorandom
locations using a seeded hash function.

4.2 HashMark2: GLOBAL EMBEDDING

Unlike HashMark1, HashMark2 is more resilient to various perturbations and cell modification. The
embedding approach is visually represented in Figure 1 and described in Algorithm 1. The crux of
the strategy is to embed a global bit (say 0) in every cell of the dataset X using a binary hash function
H—consequently, a watermarked table to have more values that hash to 0 than an unwatermarked
table. Detection is performed by using the secret description of the hash function to hash the data
and count the number of cells that map to zero. Additional methods can allow the user to check only
a subset of locations, making a slight skew more pronounced. This approach has the versatility of
embedding a watermark in an existing dataset or generating a watermarked dataset at the source. The
latter is a setting suitable for synthetic data.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Detecting HashMark2. To detect HashMark2, we use a one-proportion z-test (Fleiss et al., 2013),
which is a statistical test used to determine whether the single sample rate, for example, the success
rate in the number of entries that map to 0, is significantly different from a hypothesized population
rate. We define the null hypothesis as:

H0 : Dataset X is not watermarked

However, we note that if the null hypothesis holds, then so does a hypothesis H0,i :
The i-th column is not watermarked also hold. This reduces the problem of rejecting H0 to sim-
ply rejecting H0,i for each column i.

Let Ti represent the number of elements in the i-th value column that hash to 0. Under the i-th
null hypothesis, H0,i should follow the Bernoulli Distribution B with probability 1/2 as an ideal
hash function H will output 0 or 1 with probability 1/2. Let m be the total number of rows, i.e.,
Ti ∼ B(m, 1/2) for a sufficiently large number of rows m. By the Central Limit Theorem (CLT),
for large m, we obtain that:

2
√
m

(
Ti

m
− 1

2

)
∼ N (0, 1)

where N (0, 1) is the normal distribution. Thus, the test statistic for a one-proportion z-test is:

z = 2
√
m

(
Ti

m
− 1

2

)
(1)

For each column, the detection algorithm computes a z-score by counting the number of values that
hash to 0. To account for multiple hypothesis testing (e.g., five columns at α = 0.05), per-column
thresholds αi are adjusted (e.g., αi = 0.01). If a column’s z-score exceeds its threshold, the null
hypothesis is rejected, indicating a watermark. Otherwise, no conclusion is made.

To prevent spoofing (where forgers combine valid watermarked datasets), we use a secret seed in the
hash function (Algorithm 1). Each dataset’s watermark uses a unique seed, making concatenated
forgeries detectable as inconsistent.

Robustness to Deletion, Permutation. It is clear that the permutation of rows does not impact the
count Ti. H0,i is evaluated for every column i. This implies that the permutation of the column from
position i to some j will still have its corresponding null hypothesis H0,j and will be evaluated. Note
that the detection algorithm performs multiple hypothesis tests simultaneously. Therefore, removing
columns implies that one has to compute αi as a function of α and the number of remaining columns.
This guarantees robustness to column deletion. Removal of rows implies a smaller m. This results in
an increase in the error in the CLT approximation. However, in practice, a rule of thumb for applying
the Z-test has been m > 50 (Contributions, 2025). However, if m < 50, one could apply the Z-test
on H0 and not individual H0,i.

Finally, as remarked before, one can also modify the application ofH to ensure support for truncation.

4.3 ANALYSIS ON REMOVAL OF HashMark

Before we look at the mathematical analysis, we discuss the modes of attack to remove the watermark.
The property of the ideal hash function H implies that the perturbation of a cell content initially
mapping to 0 can flip to 1, with a probability of 0.5. Further, a secret seed (of the seeded hash
function) implies that an adversary, without knowledge of this seed, cannot determine the actual
mapping of the bit.

This section will study the effort required for the perturbation to remove the watermark. Specifically,
an adversary can only modify r cells by adding noise to them. We will analyze the expected number
of r. Note that an adversary, adding noise to every cell in a column, can remove the watermark. This
is true for every scheme (He et al., 2024; Ngo et al., 2024; Zheng et al., 2024). Experimentally, we
present the results for comparison with Ngo et al. (2024) in Section 5.

In the analysis below, we assume there are a total of M values. Of this, N is the number of values
that have the property of hashing to a desired bit. In HashMark1, we have N = ℓ while M = mn. In
HashMark2, we have N = M = m as described above. The proof of the following two results is
deferred to Section E in the appendix.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 1 Embedding Algorithm
Input: Sampling Algorithm for Dataset D Generate
Secret Seed seed
Number of Rows: ℓ
Associated Distribution: ρ
Column column of dataset X
seed

$← S //S is the seed space of the hash function.

for i = 1 to ℓ do
whileH(seed,D[i]) ̸= 0 do
new_value ← Generate(ρ,D[i]) //Additional parameters could include t for threshold-constrained
sampling.
D[i]← new_value

end while
end for

Proposition 1. Given values val1, . . . , valM . Then, the minimum number of values needed to ensure
that the Z-score remains α is given by: α ·

√
M
2 + M

2

Theorem 3. Let r be the number of cells an adversary can modify. This modification is done by

sampling noises ϵ1, . . . , ϵr
$← D. Then, we have: E[r] := 2 · (N −Tα) · MN , for any error distribution

D.

Note that in HashMark1 where N < M , the number of tries needed for the adversary is inversely pro-
portional to N , making HashMark1 more robust to noise addition attacks. Meanwhile, in HashMark2,
since M = N , the number of tries needed is much smaller. Consequently, one can envision
HashMark2 where only a specific subset of cells (chosen at random) is embedded with the bit. While
this makes it more resilient to modification attacks, the problem of efficiently identifying this subset
of cells becomes paramount.

Other Attacks. We also consider two additional attack vectors:

• Data augmentation: Adding rows lowers the z-score. Since the secret is unknown, about
half of the added rows will map to 0 on average. For instance, doubling m valid rows
reduces the z-score by a factor of

√
2 in expectation.

• Feature selection: The z-score threshold depends on the number of columns (Section 5.1.1).
Removing columns thus requires raising the detection threshold.

HashMark and Applications. Watermarking tabular data enables verifiable integrity in organiza-
tional settings where datasets are routinely shared. With HashMark2, two guarantees hold when a
watermark is detected in a dataset D: (1) Theorem 3 bounds the expected number of undetectable
cell modifications, and (2) if an attacker injects γm rows into an m-row dataset, the z-score degrades
predictably, scaling as

√
1 + γ. These properties define a measurable trust boundary, supporting

provenance tracking while tolerating benign changes. By formalizing this robustness–utility tradeoff,
our work advances watermarking for practical data governance.

5 EXPERIMENTAL RESULTS

In this section, we focus on experimentation for embedding watermarks in numerical data, specifically
floating-point values. Our experiments were performed on an Apple MacBook M1 Pro with 16GB
of memory running Sonoma 14.3. We used Python 3.11. We instantiated the hash function using
SHA-256 from the hashlib module. We select a random seed for evaluating the hash function. We
implemented Generate by adding 10−c to the value until it hashes to 0. Our choice of c is specified
for each context separately. Due to space constraints, we will focus on HashMark2 in this section.
We defer the experiments pertaining to HashMark1 to the appendix in Section D.1

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) (b) (c)

(d) (e)

Figure 2: Plot of various experiments on Gaussian dataset. Figures 2a and 2b show the distribution of
the data, before and after watermarking. Value refers to the actual value in the dataset. Figure 2c
shows the variation of the z-score with the number of rows sampled. Figure 2d plots the variation of
the mean-squared error (MSE) for different choices of c. Figure 2e plots the change in z-score when
compared with the choice of c for various Gaussian noises.

5.1 EVALUATION OF HashMark2

In this section, we evaluate the performance of HashMark2 along the following dimensions with
additional details on the experimental setup found in Section D.2.1:

Performance (vs the work of Ngo et al. (2024)) on Gaussian Datasets. Following Ngo et al.
(2024), we evaluate HashMark2 on Gaussian data (1 column, 2000 rows). With c = 10, HashMark2
achieves comparable robustness and fidelity while being significantly simpler, showing that complex
watermarking is unnecessary.

• Fidelity: KDE plots (Figs.2a–2b) show near-identical distributions pre- and post-
watermarking. Figure 2d confirms that smaller c values (larger perturbations) increase
MSE, as expected.

• Robustness: Figure 2c shows z-scores increase with more rows, strengthening detection.
Under added Gaussian noise (Fig.2e), smaller c values lower z-scores, indicating higher
sensitivity. Importantly, our z-scores consistently exceed those of Ngo et al. (Fig.6).
Extended results (Figs.8a, 8b) in the appendix confirm these trends.
For completeness, Figure7 reproduces Ngo et al.’s plots, while Figures 8a–8b provide
additional HashMark2 results, all consistent with the conclusions above.

Utility for Real-Life Datasets. Following prior work (He et al., 2024; Ngo et al., 2024), we evaluate
HashMark2 on four real-world datasets (Section B), training CTGAN (Xu et al., 2019), Gaussian
Copula (Masarotto & Varin, 2012), and TVAE (Xu et al., 2019) via the Synthetic Data Vault (Patki
et al., 2016). Table 2b shows that watermarking minimally affects accuracy, even for multi-class
tasks. We also study constrained sampling, where rows are retained only if at least a fraction t of
columns hash to 0. Tables 4–6 show that larger t increases generation time but preserves accuracy,
with z-scores rising as expected; similar trends hold for regression (R2).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Fidelity for Alphanumeric Synthetic Data. We assess HashMark2 on alphanumeric attributes by
computing the Jensen–Shannon divergence (JSD) between watermarked synthetic data (all values
hash to 0) and real datasets, using SciPy’s implementation Virtanen et al. (2020) over 30 trials:

• ASINs (10-character alphanumeric): 0.1090 ± 0.0016 JSD vs. Amazon Product
Dataset PromptCloud (2020)

• Git commit hashes (40-character hex): 0.002176 ± 0.0003 JSD vs. GitHub Commit
Messages Dave (2023)

The consistently low JSD values show that HashMark2 preserves the underlying distributions, even
for alphanumeric data.

Simpler Classifiers and Datasets. To assess HashMark2 in a simpler setting, we evaluate it on
single-attribute, two-class datasets using linear regression, logistic regression, and decision trees.
Results in Table 2a show that while the perturbation parameter (10−c) governs the deviation from the
original values, even small c values lead to only negligible changes in model performance.

Table 2: Performance of HashMark2 with Generate instantiated by incrementing with 10−c.

(a) Performance with Simple Regression Models.
W/M = Watermarked dataset. For Logistic/Decision
Tree, we report accuracy; for Linear Regression, we
report R2 values.

c = 2 c = 4 c = 6

Logistic Reg. (Orig.) 99.98% 99.98% 99.98%
Logistic Reg. (W/M) 99.64% 99.98% 99.98%

Linear Reg. (Orig. R2) 1.000000 1.000000 1.000000
Linear Reg. (W/M R2) 0.999899 1.000000 1.000000

Decision Tree (Orig.) 100% 100% 100%
Decision Tree (W/M) 100% 99.995% 99.961%

(b) Accuracy comparison of different classifiers and
synthesizers across four datasets on synthetic and wa-
termarked synthetic data. Standard deviations are in-
cluded for each record. W/M = Watermarked synthetic
dataset, while Non-W/M refers to an unwatermarked
but synthetic dataset. Here, c = 6.

Dataset Classifier Synth. Non-W/M (%) W/M (%)

Wilt

XGB
CTGAN 83.63 ± 4.63 83.31 ± 5.01
Copula 94.38 ± 0.53 94.40 ± 0.52
TVAE 94.87 ± 0.37 94.89 ± 0.39

RF
CTGAN 84.45 ± 5.74 84.30 ± 5.70
Copula 94.39 ± 0.52 94.40 ± 0.52
TVAE 94.34 ± 0.37 94.34 ± 0.38

Housing

XGB
CTGAN 49.26 ± 2.38 49.11 ± 2.68
Copula 55.15 ± 5.12 55.66 ± 4.77
TVAE 61.55 ± 2.39 61.13 ± 2.46

RF
CTGAN 48.31 ± 1.90 48.14 ± 2.00
Copula 52.97 ± 5.83 53.04 ± 5.93
TVAE 62.30 ± 1.92 62.40 ± 1.77

HOG
XGB CTGAN 77.65 ± 2.07 77.62 ± 2.08

TVAE 89.77 ± 1.59 89.34 ± 1.76

RF CTGAN 74.40 ± 4.41 74.39 ± 4.48
TVAE 91.20 ± 2.16 91.28 ± 2.16

Shoppers

XGB
CTGAN 86.43 ± 0.79 85.28 ± 1.95
Copula 86.01 ± 1.38 86.56 ± 1.41
TVAE 87.94 ± 0.61 87.85 ± 0.54

RF
CTGAN 87.77 ± 0.82 86.00 ± 2.74
Copula 86.05 ± 1.40 85.78 ± 1.38
TVAE 88.71 ± 1.00 88.10 ± 1.23

6 CONCLUSION

We present HashMark, a hash-based framework for watermarking tabular datasets, enhancing data
integrity, provenance, and accountability in machine learning pipelines. HashMark supports both
numerical and categorical features, improving upon prior approaches (He et al., 2024; Ngo et al.,
2024; Zheng et al., 2024) while maintaining downstream utility. Our method naturally extends to
synthetic data, enabling the verifiable and responsible use of generative models in applications such
as stress testing, privacy-preserving data sharing, and benchmark creation. By providing rigorous
fidelity guarantees and addressing challenges in correlation preservation, HashMark contributes to
ongoing efforts in secure data management, trustworthy machine learning, and the development of
robust datasets and benchmarks for future research.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Scott Aaronson. ‘reform’ ai alignment with scott aaronson. AXRP - The AI X-
risk Research Podcast, 2023. URL https://axrp.net/episode/2023/04/11/
episode-20-reform-ai-alignment-scott-aaronson.html.

Rakesh Agrawal and Jerry Kiernan. Watermarking relational databases. In Proceedings of the 28th
International Conference on Very Large Data Bases, VLDB ’02, pp. 155–166. VLDB Endowment,
2002.

Sajjad Bagheri Baba Ahmadi, Gongxuan Zhang, Mahdi Rabbani, Lynda Boukela, and Hamed
Jelodar. An intelligent and blind dual color image watermarking for authentication and copyright
protection. Applied Intelligence, 51(3):1701–1732, March 2021. ISSN 0924-669X. doi: 10.1007/
s10489-020-01903-0. URL https://doi.org/10.1007/s10489-020-01903-0.

E. Alpaydin and Fevzi. Alimoglu. Pen-Based Recognition of Handwritten Digits. UCI Machine
Learning Repository, 1996. DOI: https://doi.org/10.24432/C5MG6K.

Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. Journal of
Cryptology, 17(4):297–319, September 2004. doi: 10.1007/s00145-004-0314-9.

David Byrd, Vaikkunth Mugunthan, Antigoni Polychroniadou, and Tucker Balch. Collusion resistant
federated learning with oblivious distributed differential privacy. In Proceedings of the Third ACM
International Conference on AI in Finance, ICAIF ’22, pp. 114–122, New York, NY, USA, 2022.
Association for Computing Machinery. ISBN 9781450393768. doi: 10.1145/3533271.3561754.
URL https://doi.org/10.1145/3533271.3561754.

Miranda Christ and Sam Gunn. Pseudorandom error-correcting codes. In Leonid Reyzin and Douglas
Stebila (eds.), Advances in Cryptology – CRYPTO 2024, pp. 325–347, Cham, 2024. Springer
Nature Switzerland. ISBN 978-3-031-68391-6.

Miranda Christ, Sam Gunn, and Or Zamir. Undetectable watermarks for language models. In ICLR,
2024.

Wikipedia Contributions. Z-test, 2025. URL https://en.wikipedia.org/wiki/Z-test.
Accessed: 2025-01-30.

Dhruvil Dave. Github commit messages dataset. Kaggle Dataset, 2023. URL https://www.
kaggle.com/datasets/dhruvildave/github-commit-messages-dataset.

Jaiden Fairoze, Sanjam Garg, Somesh Jha, Saeed Mahloujifar, Mohammad Mahmoody, and Mingyuan
Wang. Publicly-detectable watermarking for language models. IACR Communications in Cryptol-
ogy, 1(4), 2025. ISSN 3006-5496. doi: 10.62056/ahmpdkp10.

J.L. Fleiss, B. Levin, and M.C. Paik. Statistical Methods for Rates and Proportions. Wiley Series
in Probability and Statistics. Wiley, 2013. ISBN 9781118625613. URL https://books.
google.com/books?id=9VefO7a8GeAC.

Eva Giboulot and Teddy Furon. Watermax: breaking the LLM watermark detectability-robustness-
quality trade-off. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024. URL https://openreview.net/forum?id=HjeKHxK2VH.

Aurélien Géron. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow.
O’Reilly Media, 2nd edition, 2019. URL https://www.oreilly.com/library/view/
hands-on-machine-learning/9781492032632/.

A. Hamadou, X. Sun, S. A. Shah, and L. Gao. A weight-based semi-fragile watermarking scheme
for integrity verification of relational data. International Journal of Digital Content Technology
and Its Applications, 5:148–157, 2011. URL https://api.semanticscholar.org/
CorpusID:58278938.

harlfoxem. House sales in king county, usa. Kaggle dataset, 2016. URL https://www.kaggle.
com/datasets/harlfoxem/housesalesprediction.

10

https://axrp.net/episode/2023/04/11/episode-20-reform-ai-alignment-scott-aaronson.html
https://axrp.net/episode/2023/04/11/episode-20-reform-ai-alignment-scott-aaronson.html
https://doi.org/10.1007/s10489-020-01903-0
https://doi.org/10.1145/3533271.3561754
https://en.wikipedia.org/wiki/Z-test
https://www.kaggle.com/datasets/dhruvildave/github-commit-messages-dataset
https://www.kaggle.com/datasets/dhruvildave/github-commit-messages-dataset
https://books.google.com/books?id=9VefO7a8GeAC
https://books.google.com/books?id=9VefO7a8GeAC
https://openreview.net/forum?id=HjeKHxK2VH
https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/
https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/
https://api.semanticscholar.org/CorpusID:58278938
https://api.semanticscholar.org/CorpusID:58278938
https://www.kaggle.com/datasets/harlfoxem/housesalesprediction
https://www.kaggle.com/datasets/harlfoxem/housesalesprediction

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Hengzhi He, Peiyu Yu, Junpeng Ren, Ying Nian Wu, and Guang Cheng. Watermarking generative
tabular data, 2024. URL https://arxiv.org/abs/2405.14018.

Donghui Hu, Dan Zhao, and Shuli Zheng. A new robust approach for reversible database water-
marking with distortion control. IEEE Transactions on Knowledge and Data Engineering, 31(6):
1024–1037, 2018.

Min-Shiang Hwang, Ming-Ru Xie, and Chia-Chun Wu. A reversible hiding technique using lsb
matching for relational databases. Informatica, 31(3):481–497, 2020.

Bargav Jayaraman, Lingxiao Wang, David Evans, and Quanquan Gu. Distributed learning without
distress: privacy-preserving empirical risk minimization. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems, NIPS’18, pp. 6346–6357, Red Hook, NY,
USA, 2018. Curran Associates Inc.

Brian Johnson. Wilt. UCI Machine Learning Repository, 2013. DOI:
https://doi.org/10.24432/C5KS4M.

Nurul Shamimi Kamaruddin, Amirrudin Kamsin, Lip Yee Por, and Hameedur Rahman. A review of
text watermarking: Theory, methods, and applications. IEEE Access, 6:8011–8028, 2018. doi:
10.1109/ACCESS.2018.2796585.

Muhammad Kamran, Sabah Suhail, and Muddassar Farooq. A robust, distortion minimizing technique
for watermarking relational databases using once-for-all usability constraints. IEEE Transactions
on Knowledge and Data Engineering, 25(12):2694–2707, 2013.

R. Kelley Pace and Ronald Barry. Sparse spatial autoregressions. Statistics and
Probability Letters, 33(3):291–297, 1997. ISSN 0167-7152. doi: https://doi.org/10.
1016/S0167-7152(96)00140-X. URL https://www.sciencedirect.com/science/
article/pii/S016771529600140X.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein.
A watermark for large language models. In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th
International Conference on Machine Learning, volume 202 of Proceedings of Machine Learning
Research, pp. 17061–17084. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.
press/v202/kirchenbauer23a.html.

Wenling Li, Ning Li, Jianen Yan, Zhaoxin Zhang, Ping Yu, and Gang Long. Secure and high-
quality watermarking algorithms for relational database based on semantic. IEEE Transactions on
Knowledge and Data Engineering, 2022.

Chia-Chen Lin, Thai-Son Nguyen, and Chin-Chen Chang. Lrw-crdb: Lossless robust watermarking
scheme for categorical relational databases. Symmetry, 13(11):2191, 2021.

J. Lin. Divergence measures based on the shannon entropy. IEEE Transactions on Information
Theory, 37(1):145–151, 1991. doi: 10.1109/18.61115.

Guido Masarotto and Cristiano Varin. Gaussian copula marginal regression. Electronic Journal of
Statistics, 6(none):1517 – 1549, 2012. doi: 10.1214/12-EJS721. URL https://doi.org/10.
1214/12-EJS721.

Dung Daniel Ngo, Daniel Scott, Saheed Obitayo, Vamsi K. Potluru, and Manuela Veloso. Adaptive
and robust watermark for generative tabular data. Statistical Frontiers in LLMs and Foundation
Models at NeurIPS’24, abs/2409.14700, 2024.

Neha Patki, Roy Wedge, and Kalyan Veeramachaneni. The synthetic data vault. In 2016 IEEE
International Conference on Data Science and Advanced Analytics (DSAA), pp. 399–410, 2016.
doi: 10.1109/DSAA.2016.49.

PromptCloud. Amazon product dataset 2020. Kaggle Dataset, 2020. URL https://
www.kaggle.com/datasets/promptcloud/amazon-product-dataset-2020/
data.

11

https://arxiv.org/abs/2405.14018
https://www.sciencedirect.com/science/article/pii/S016771529600140X
https://www.sciencedirect.com/science/article/pii/S016771529600140X
https://proceedings.mlr.press/v202/kirchenbauer23a.html
https://proceedings.mlr.press/v202/kirchenbauer23a.html
https://doi.org/10.1214/12-EJS721
https://doi.org/10.1214/12-EJS721
https://www.kaggle.com/datasets/promptcloud/amazon-product-dataset-2020/data
https://www.kaggle.com/datasets/promptcloud/amazon-product-dataset-2020/data
https://www.kaggle.com/datasets/promptcloud/amazon-product-dataset-2020/data

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Cemal Okan Sakar, Suleyman Olcay Polat, Mete Katircioglu, and Yomi Kastro. Real-time prediction
of online shoppers’ purchasing intention using multilayer perceptron and lstm recurrent neural
networks. Neural Computing and Applications, 31:6893 – 6908, 2018. URL https://api.
semanticscholar.org/CorpusID:13682776.

Mohamed Shehab, Elisa Bertino, and Arif Ghafoor. Watermarking relational databases using
optimization-based techniques. IEEE Transactions on Knowledge and Data Engineering, 20(1):
116–129, 2008. doi: 10.1109/TKDE.2007.190668.

R. Sion, M. Atallah, and S. Prabhakar. Rights protection for relational data. In Proceedings of
the 2003 ACM SIGMOD International Conference on Management of Data (SIGMOD ’03), pp.
98–109, New York, NY, USA, 2003. Association for Computing Machinery. ISBN 158113634X.
doi: 10.1145/872757.872772. URL https://doi.org/10.1145/872757.872772.

Mingtian Tan, Tianhao Wang, and Somesh Jha. A somewhat robust image watermark against
diffusion-based editing models, 2023. URL https://arxiv.org/abs/2311.13713.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cour-
napeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J.
van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, An-
drew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng,
Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Hen-
riksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian
Pedregosa, and Paul van Mulbregt. SciPy 1.0: Fundamental algorithms for scientific com-
puting in python, 2020. URL https://docs.scipy.org/doc/scipy/reference/
generated/scipy.spatial.distance.jensenshannon.html.

X. Xiao, X. Sun, and M. Chen. Second-lsb-dependent robust watermarking for relational database. In
Third International Symposium on Information Assurance and Security (IAS), pp. 292–300, 2007.
doi: 10.1109/IAS.2007.25.

Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling tabular
data using conditional GAN. Curran Associates Inc., Red Hook, NY, USA, 2019.

M. Yamni, H. Karmouni, M. Sayyouri, and H. Qjidaa. Efficient watermarking algorithm for digital
audio/speech signal. Digital Signal Processing, 120:103251, 2022. ISSN 1051-2004. doi:
https://doi.org/10.1016/j.dsp.2021.103251. URL https://www.sciencedirect.com/
science/article/pii/S1051200421002906.

Hanlin Zhang, Benjamin L. Edelman, Danilo Francati, Daniele Venturi, Giuseppe Ateniese, and Boaz
Barak. Watermarks in the sand: impossibility of strong watermarking for language models. In
Proceedings of the 41st International Conference on Machine Learning, ICML’24. JMLR.org,
2024a.

Hanlin Zhang, Benjamin L. Edelman, Danilo Francati, Daniele Venturi, Giuseppe Ateniese, and Boaz
Barak. Watermarks in the sand: impossibility of strong watermarking for language models. In
Proceedings of the 41st International Conference on Machine Learning, ICML’24. JMLR.org,
2024b.

Xiaorui Zhang, Xun Sun, Xingming Sun, Wei Sun, and Sunil Kumar Jha. Robust reversible audio
watermarking scheme for telemedicine and privacy protection. Computers, Materials & Continua,
71(2):3035–3050, 2022. ISSN 1546-2226. doi: 10.32604/cmc.2022.022304. URL http:
//www.techscience.com/cmc/v71n2/45815.

Yihao Zheng, Haocheng Xia, Junyuan Pang, Jinfei Liu, Kui Ren, Lingyang Chu, Yang Cao, and
Li Xiong. Tabularmark: Watermarking tabular datasets for machine learning. In Proceedings
of the 2024 on ACM SIGSAC Conference on Computer and Communications Security, CCS ’24,
pp. 3570–3584, New York, NY, USA, 2024. Association for Computing Machinery. ISBN
9798400706363. doi: 10.1145/3658644.3690373. URL https://doi.org/10.1145/
3658644.3690373.

Xin Zhong, Pei-Chi Huang, Spyridon Mastorakis, and Frank Y. Shih. An automated and robust
image watermarking scheme based on deep neural networks. IEEE Transactions on Multimedia,
23:1951–1961, 2021. doi: 10.1109/TMM.2020.3006415.

12

https://api.semanticscholar.org/CorpusID:13682776
https://api.semanticscholar.org/CorpusID:13682776
https://doi.org/10.1145/872757.872772
https://arxiv.org/abs/2311.13713
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.jensenshannon.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.jensenshannon.html
https://www.sciencedirect.com/science/article/pii/S1051200421002906
https://www.sciencedirect.com/science/article/pii/S1051200421002906
http://www.techscience.com/cmc/v71n2/45815
http://www.techscience.com/cmc/v71n2/45815
https://doi.org/10.1145/3658644.3690373
https://doi.org/10.1145/3658644.3690373

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A RELATED WORK

Watermarking Tabular Data. Watermarking tabular data has been extensively studied. Agrawal
& Kiernan (2002) pioneered a scheme embedding watermarks in the least significant bit of specific
cells using hash values based on primary and private keys. Subsequent works by Xiao et al. (2007)
and Hamadou et al. (2011) improved this by embedding multiple bits. Another approach embeds
watermarks in statistical properties. Sion et al. (2003) introduced a method that partitions dataset rows
and modifies subset statistics, later refined by Shehab et al. Shehab et al. (2008) to resist insertion and
deletion attacks using optimized partitioning and hash-based embedding. Their approach, however,
relies on assumptions about data distribution and primary keys.

Inspired by watermarking techniques in large language models Aaronson (2023); Kamaruddin et al.
(2018); Kirchenbauer et al. (2023), He et al. (2024), Ngo et al. (2024), and Zheng et al. (2024)
proposed watermarking schemes for generative tabular data using red-green interval partitioning.

He et al. (2024) introduced a data binning approach, ensuring values lie near green intervals and
using statistical hypothesis testing for detection. However, assuming continuous distributions makes
it vulnerable to feature selection and truncation attacks. Ngo et al. (2024) paired columns into
key-value sets, deriving a seed from the key column to generate bins for the value column. Entries
falling in red bins were resampled from green bins. While novel, this method suffers from two key
weaknesses: (i) detection requires prior knowledge of the column pairing or an exhaustive search
across all pairs, and (ii) relying on key column-derived seeds introduces low entropy, weakening
the pseudorandomness of bin assignments and potentially compromising security. It is important to
note that even with knowledge of column pairing, any deletion of rows will trigger an error when
calculating the key column-derived seed, which is not explored or discussed in the paper. Zheng
et al. (2024) took a similar approach, embedding watermarks as additive noise within predefined
bins. They assumed noise follows a bounded range [−p, p], partitioned into red and green bins, with
watermarking achieved by sampling noise only from green bins. Despite robustness claims and
categorical feature support, their method has several limitations. First, detection requires access to
the original dataset, making watermark verification infeasible in practical scenarios where datasets
are modified or shuffled. Second, row-matching under permutation increases detection complexity.
Finally, their claimed support for categorical data is unclear and lacks empirical validation - (a) Their
protocol description focuses only on categorical data, i.e., those with a fixed range (e.g., education
level, employee designation, marital status, etc.). They suggest encoding it first as integers and then
applying their embedding techniques. However, this method is flawed because these differences
often result in floating-point values, distorting the expected integer-based distribution. Restricting
differences to integers could also leave gaps in the data (by omitting particular values from the range),
harming its utility. Instead, we argue against watermarking such columns altogether, and (b) it does
not address unrestricted categorical data (e.g., alphanumeric ASINs) or provide experiments for such
cases. The above is summarized in Table 1.

Watermarking for LLMs. Many watermarking schemes for LLMs take advantage of the sampling
algorithm that generates each token of an LLM output. Christ et al. (2024) observed that these LLM
output tokens correlate with the randomness used in the token sampling algorithm. This correlation is
efficiently communicable for many LLM outputs by replacing this randomness with cryptographic
pseudorandomness. Subsequent works Fairoze et al. (2025); Christ & Gunn (2024) have built upon
this idea by incorporating error correction and public identifiability into these watermarks. However,
robustness remains a persistent issue for this line of work, and a recent impossibility result Zhang
et al. (2024a) demonstrated that an adversary that can efficiently perturb or resample the output can
always remove a watermark. Another line of work, which has been the source of inspiration for
more recent watermarking schemes for tabular data, include Aaronson (2023); Kamaruddin et al.
(2018); Kirchenbauer et al. (2023). Kirchenbauer et al. (2023) introduced the red-green list paradigm,
forming the basis of several works He et al. (2024); Zheng et al. (2024); Ngo et al. (2024). More
recently, Giboulot & Furon (2024) improved on the works employing the red-green list paradigm.

B DATASET DETAILS

Wilt. Wilt (Johnson, 2013) is the public dataset from the UCI Machine Learning Repository
from a remote sensing study on detecting diseased trees in satellite imagery. It comprises 4,839

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

image segments with spectral and texture features from Quickbird multispectral and panchromatic
bands. The dataset includes six numerical and categorical attributes and a binary classification task:
identifying trees as wilted or healthy. We generate synthetic datasets. There are 4839 records with
6 features (including the target) and 2 classes. This dataset is licensed under a Creative Commons
Attribution 4.0 International (CC BY 4.0) license.

California Housing Prices. The California Housing Prices dataset (Kelley Pace & Barry, 1997;
Géron, 2019), sourced from the 1990 U.S. Census, contains 20,640 records with 10 socio-economic
and geographical attributes influencing housing prices. It has a multi-target label indicating proximity
to the ocean, making it a multi-class classification problem. It has 5 classes. This dataset is licensed
under Apache License Version 2.0.

HOG. The HOG feature dataset (Alpaydin & Alimoglu, 1996) is generated with the histogram of
oriented gradients (HOG) features extracted from the digits dataset, combined with their categories.
There are 16 features, 10992 records, and 10 classes. This dataset is licensed under a Creative
Commons Attribution 4.0 International (CC BY 4.0) license.

Shoppers Dataset. The shoppers dataset (Sakar et al., 2018) aimed to capture the shoppers pur-
chasing intent. There are 12,330 records with 18 attributes with two classes. The dataset is licensed
under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.

King Dataset. The King dataset (harlfoxem, 2016) aimed to capture the prices of house sales for
King County, which includes Seattle. It includes homes sold between May 2014 and May 2015. It is
useful for regression-based price prediction. There are 21,613 rows records with 12 columns2with
the price column being the regression data target. The dataset is licensed under a CC0 license.

Amazon ASINs. We used the Amazon Product Details Dataset ?. For our experiments, we parsed
the dataset only to extract the unique identifiers for Amazon products, generating 30,000 actual
ASINs. This dataset is licensed under CC0.

Gitcommit Hashes. We used the Gitcommit Messages dataset (Dave, 2023). It contains 4.3 million
records, from which we only extracted the hashes for the gitcommit messages. The dataset is licensed
under the Open Data Commons Attribution License (ODC-By) v1.0.

C HashMark1: EMBEDDING PSEUDORANDOM BITS

We begin by describing our first approach to watermarking. This approach ensures high fidelity
and detectability but suffers from issues when it comes to robustness. The embedding algorithm is
formally defined in Algorithm 2. We start with an original dataset X of dimension m×n. The idea is to
sample ℓ pseudorandom bits. Let us call it bit1, . . . , bitℓ. Additionally, we also sample ℓ cells defined
by (rowi, coli) in X. By modifying the cell content suitably, we ensure thatH(X[rowi, coli]) = biti.

C.1 DETECTING HashMark1

To detect, the algorithm needs:

• Knowledge of X1 to retrieve the original binary string of bit1, . . . , bitℓ.
• Knowledge of X2 to first identify the target cells (rowi, coli), and then usingH to retrieve
bit′1, . . . , bit

′
ℓ.

• The watermark detection is successful iff (bit1, . . . , bitℓ) = (bit′1, . . . , bit
′
ℓ)

However, this scheme is low-robust because the detection algorithm critically relies on extracting
the cell where the watermark was embedded. This would be meaningless if the first row (or the first
column) were removed. The benefit of this approach is that only ℓ of the spots are touched, which is

2We used only 12 columns for our experiments. These are "floors", "waterfront","lat" ,"bedrooms"
,"sqft_basement" ,"view" ,"bathrooms","sqft_living15","sqft_above","grade","sqft_living","price".

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 2 HashMark1 Embedding Algorithm

Input: Original Dataset X of dimension m× n
Probability Distributions ρ1, . . . , ρn.
PRG G1 : X1 → {0, 1}ℓ
PRG G2 : X2 → [m]ℓ × [n]ℓ

X1
$← X1, X2

$← X2

{biti}ℓi=1
$← G1(X1)

{(rowi, coli)}ℓi=1 ← G2(X2)

seed
$← S //S is the seed space ofH

for i = 1 to ℓ do
whileH(seed,X[rowi, coli]) ̸= biti do
new_value $← Generate(ρi,X[rowi, coli])
X[rowi, coli]← new_value

end while
end for

a tunable parameter. This ensures very high fidelity and utility. The detectability is also reducible to
the hardness of the underlying cryptographic primitives (and does not rely on a statistical measure).

D EXPERIMENTS FOR HashMark

D.1 EVALUATION OF HashMark1

We begin by benchmarking the performance of HashMark1 along the following axes:

• Varying ℓ, we wish to study the running time of the watermarking process. We break down
the running time of watermarking as (a) the cost of identifying locations to embed the
watermark and (b) the time taken to run Generate to embed the desired bits.

• The utility of the watermarked dataset vs. the original dataset for downstream machine
learning tasks.

• The role of ℓ in accuracy, i.e., how does the accuracy change when more bits are embedded?

Performance of Embedding Process. In Figure 3, we plot the time, in seconds, against the number
of bits being embedded. We split the cost as follows: to generate locations for embedding (dubbed
pair generation time) and then modify the cell content until it hashes to the desired bit. Recall that the
pair generation time requires using a seed to produce ℓ cell positions, which only contain floating
point values. We then use the same seed to generate ℓ bits additionally. As one can observe, the
embedding time is much smaller than the pair generation time, and it takes less than 10 milliseconds
to embed as many as 1000 bits.

Dataset. We study the above for a specific dataset - the adult census income dataset from (Byrd
et al., 2022; Jayaraman et al., 2018) to predict if an individual earns over $50,000 per year. The
preprocessed dataset has 105 features and 45,222 records with a 25% positive class (i.e., 25% of the
records have class 1 while the rest are in class 0) We randomly split into training and testing datasets.
We observed that the dataset consisted of integers or floating-point values with at least eight decimal
places. This leads us to choose c = 6 and embed it only in the floating-point values.

Downstream Utility. We embed ℓ = 384 bits 3 They are:

• Logistic Regression Classifier with maximum iterations as 1000
3Choice of ℓ is set to be 384 because it is the number of bits in a standard hash-based watermarking scheme,

albeit for messaging applications (i.e., signatures) known as BLS Signature Boneh et al. (2004). Note that this
corresponds to less than 1% of the number of cells in the dataset.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 3: Embedding Time as a function of ℓ for HashMark1. Here, the blue column refers to the
cost of generating valid cells to embed in the dataset, while the green column is the cost of modifying
the content to make it hash to the desired bit.

Table 3: Classification accuracy (%) with and without watermarking. In addition to this, we add the
standard deviation of each record.

Model Logistic Regression Random Forest MLP Classifier

Original 84.021 ± 0.3 85.186 ± 0.27 83.504 ± 0.44
Watermarked 84.021 ± 0.3 85.188 ± 0.28 83.508 ± 0.446

• Random Forest Classifier with 100 estimators
• MLP Classifier with hidden layer sizes 100, 50; maximum iterations=1000, and learning

rate 0.0001

We plotted the difference in accuracy when run on the original versus the watermarked dataset in
Figures 4 and 5 for each of the 1000 runs. Meanwhile, in Table 3, we present the average accuracy of
the 1000 runs. Identical behavior was observed in the Logistic Regression classifier with less than
0.005% difference observed in the accuracy of the other two classifiers. This shows that HashMark1’s
embedding has a negligible impact on the accuracy of the classifier. For completeness, we also plot
the difference in accuracy between the original and watermarked dataset in Figures 4 and 5, in each
of the 1000 runs. As can be observed, the most significant difference in accuracy is less than 0.005%.

Finally, in Figure 5b, we plot the impact of increasing ℓ on the accuracy of the logistic regression
classifier. As expected, larger ℓ does cause an impact in accuracy, though the degradation is minimal.

D.2 EVALUATION OF HashMark2

D.2.1 EXPERIMENTAL SETUP

We now present additional details about the experimental setup for the various experiments described
in Section 5.1. In all cases, default hyperparameters were selected unless otherwise specified.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

(a) Plot of the difference in accuracy between the original and the watermarked dataset in
each of the 1000 iterations for the Logistic Regression Classifier

(b) Plot of the difference in accuracy between the original and the watermarked dataset in
each of the 1000 iterations for the Random Forest Classifier

Figure 4: Experiments pertaining to HashMark1 for the Adult Census Dataset (Part 1).

• Gaussian Datasets: We follow the same experimental setup as described by Ngo et al. (2024),
with the only exception that we rely on 1 column (as opposed to 2 in their work, which
is necessitated by their protocol description). The Generate function is defined by adding
10−c until it hashes to 0. We conduct various studies, as documented in Figure 2, with
additional experiments described below in Figure 6 and Figure 8.

• Utility for Real-Life Datasets: We evaluate our approach on four classification datasets
and one regression dataset, following prior work. Each dataset is split 75/25 into training
and test sets. Using the Synthetic Data Vault (SDV), we train three generative models with
default hyperparameters: CTGAN (GAN-based), Gaussian Copula (copula-based), and
TVAE (VAE-based). Once synthetic data is generated, we train machine learning models
on it—two classifiers for the classification datasets and three regressors for the regression
dataset—and measure performance using classification accuracy (for classification) or R2

(for regression). Performance was measured with respect to the original test data.
We then embed watermarks into the generated synthetic datasets. For classification datasets,
we evaluate two watermarking strategies:

1. Perturbation-based Generate: adding a small perturbation of 10−6.
2. Constrained sampling-based Generate: rows are drawn i.i.d. from the learned distribu-

tion ρ and retained only if at least a fraction t of the n columns hash to 0; otherwise,
the row is resampled until the dataset reaches the target size.

For the regression dataset, we only apply the constrained sampling approach. After wa-
termarking, we retrain the downstream ML models and measure accuracy/R2, compute
z-scores to assess watermark detectability, and record the average watermarking time for

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

(a) Plot of the difference in accuracy between the original and the watermarked dataset in
each of the 1000 iterations for the MLP Classifier

(b) Average Difference in the accuracy of the logistic regression classifier as the number
of bits embedded (ℓ) increases.

Figure 5: Experiments pertaining to HashMark1 for the Adult Census Dataset (Part 2).

the rejection-sampling method. Performance was measured with respect to the original test
data.

• Fidelity of Alphanumeric Synthetic Data: We generate random 10-character of alphanumeric
for ASINs and 40-characters of hexadecimal values such that they all hash to 0. We then
take an average of the 30 trials, measuring the Jensen-Shannon Divergence.

We also present additional experiments studying the variation of MSE with respect to the choice of c
for further values of c. Similarly, we also show how the Z-score varies for larger sampled rows. This
is done in Figure 8.

In Figure 7, we reproduce Figure 2 from Ngo et al. Ngo et al. (2024). This shows that the performance
of HashMark2, as seen in Figure 2, matches (or surpasses) similar experiments from Ngo et al.
This is especially important, considering that HashMark2 is conceptually simpler, offers support for
categorical data, and is more secure. Recall that HashMark2 uses a truly random value as a seed,
while Ngo et al. opt for a heuristic approach to obtain a seed via a pairing algorithm, which are often
poor sources of entropy.

E DEFERRED PROOFS

Proof of Theorem 1. For each element xi in X, let x′
i be the corresponding element in Xw. As defined

above:
x′
i = xi + ki · 10−c,

where ki = min{k ≥ 0 | H(xi + k · 10−c) = 0. In other words, |xi − x′
i| = ki · 10−c.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 4: Effect of constraint threshold t on synthetic data quality across two datasets. We report
the average z-scores, sampling time (in seconds), and classification accuracy (in %) using different
classifiers and synthesizers. This is with respect to HashMark2. Accuracy is shown for both the
non-W/M and W/M settings.

Dataset t z-score Sampling Time (s) Classifier Synthesizer Non-W/M (%) W/M (%)

Wilt
3629 samples

5 columns

1/4 1.74 ± 0.22 64.08 ± 6.68

XGB
TVAE 95.24 ± 0.57 95.07 ± 0.84

GC 94.33 ± 0.31 94.53 ± 0.24
CTGAN 83.65 ± 3.24 81.79 ± 6.76

RF
TVAE 94.78 ± 0.30 94.86 ± 0.42

GC 94.43 ± 0.31 94.45 ± 0.30
CTGAN 84.31 ± 1.93 84.76 ± 1.54

1/3 1.92 ± 0.24 65.45 ± 4.90

XGB
TVAE 94.86 ± 0.44 95.19 ± 0.43

GC 94.33 ± 0.31 94.53 ± 0.24
CTGAN 84.07 ± 4.94 85.62 ± 6.19

RF
TVAE 94.84 ± 0.45 94.76 ± 0.66

GC 94.43 ± 0.31 94.45 ± 0.30
CTGAN 86.08 ± 6.52 86.60 ± 6.82

1/2 9.43 ± 0.44 65.05 ± 1.26

XGB
TVAE 95.02 ± 0.44 95.31 ± 0.48

GC 94.33 ± 0.31 94.43 ± 0.33
CTGAN 82.55 ± 7.06 84.23 ± 6.56

RF
TVAE 94.73 ± 0.43 94.68 ± 0.45

GC 94.43 ± 0.31 94.43 ± 0.30
CTGAN 80.46 ± 7.11 80.50 ± 6.03

2/3 22.73 ± 0.30 108.95 ± 4.59

XGB
TVAE 95.22 ± 0.32 95.17 ± 0.65

GC 94.33 ± 0.31 94.26 ± 0.46
CTGAN 78.83 ± 9.36 78.86 ± 9.80

RF
TVAE 94.83 ± 0.66 94.83 ± 0.25

GC 94.43 ± 0.31 94.41 ± 0.34
CTGAN 82.12 ± 5.57 84.21 ± 5.18

3/4 23.20 ± 0.16 116.91 ± 9.98

XGB
TVAE 95.21 ± 0.32 95.32 ± 0.53

GC 94.33 ± 0.31 94.26 ± 0.46
CTGAN 78.38 ± 6.28 77.47 ± 6.41

RF
TVAE 94.93 ± 0.41 94.84 ± 0.29

GC 94.43 ± 0.31 94.41 ± 0.34
CTGAN 79.87 ± 6.53 80.74 ± 5.64

Housing
15480 samples

9 columns

1/4 2.84 ± 0.72 449.17 ± 40.27

XGB
TVAE 63.35 ± 0.76 63.43 ± 0.79

GC 52.82 ± 3.99 52.27 ± 3.24
CTGAN 47.07 ± 2.58 46.59 ± 2.15

RF
TVAE 62.79 ± 0.59 62.93 ± 0.43

GC 53.60 ± 2.02 53.71 ± 3.27
CTGAN 45.72 ± 2.02 46.50 ± 2.31

1/3 2.63 ± 0.64 415.68 ± 7.37

XGB
TVAE 62.75 ± 1.54 62.86 ± 1.42

GC 52.82 ± 3.99 52.27 ± 3.24
CTGAN 46.48 ± 1.73 46.63 ± 2.89

RF
TVAE 61.91 ± 2.63 61.93 ± 2.29

GC 53.60 ± 2.02 53.71 ± 3.27
CTGAN 48.99 ± 1.39 48.69 ± 1.20

1/2 18.27 ± 0.20 552.12 ± 12.20

XGB
TVAE 60.95 ± 3.12 61.02 ± 3.05

GC 52.82 ± 3.99 52.76 ± 2.63
CTGAN 47.70 ± 1.95 48.75 ± 3.12

RF
TVAE 63.38 ± 0.16 63.30 ± 0.45

GC 53.60 ± 2.02 53.45 ± 2.90
CTGAN 49.81 ± 2.78 47.59 ± 3.02

2/3 34.43 ± 0.29 848.09 ± 17.84

XGB
TVAE 61.75 ± 2.03 61.88 ± 1.73

GC 53.60 ± 4.82 52.91 ± 2.85
CTGAN 47.77 ± 2.52 46.29 ± 3.79

RF
TVAE 62.24 ± 1.30 62.24 ± 1.55

GC 54.06 ± 2.88 53.74 ± 3.21
CTGAN 48.81 ± 2.08 48.13 ± 2.04

3/4 53.74 ± 0.29 1632.13 ± 79.29

XGB
TVAE 62.13 ± 1.85 62.83 ± 1.97

GC 52.82 ± 3.99 53.91 ± 3.73
CTGAN 46.84 ± 3.37 48.00 ± 2.20

RF
TVAE 60.86 ± 2.19 60.87 ± 2.20

GC 53.60 ± 2.02 53.75 ± 2.66
CTGAN 49.89 ± 2.68 48.56 ± 1.73

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 5: Effect of constraint threshold t on synthetic data quality across two datasets. We report
the average z-scores, sampling time (in seconds), and classification accuracy (in %) using different
classifiers and synthesizers. This is with respect to HashMark2. Accuracy is shown for both the
non-W/M and W/M settings.

Dataset t z-score Sampling Time (s) Classifier Synthesizer Non-W/M (%) W/M (%)

HOG
8244 samples
18 columns

1/4 -5.77 ± 0.78 373.24 ± 105.90
XGB TVAE 88.52 ± 4.74 87.53 ± 4.89

CTGAN 73.74 ± 3.15 72.92 ± 3.75

RF TVAE 92.48 ± 1.33 93.03 ± 1.22
CTGAN 74.56 ± 3.28 74.24 ± 2.90

1/3 -4.89 ± 1.15 511.61 ± 8.76
XGB TVAE 88.84 ± 1.90 90.64 ± 1.19

CTGAN 70.44 ± 6.26 70.87 ± 5.59

RF TVAE 91.36 ± 0.94 91.92 ± 1.00
CTGAN 73.29 ± 3.81 73.25 ± 4.12

1/2 7.46 ± 0.18 797.56 ± 12.58
XGB TVAE 91.43 ± 1.27 91.49 ± 0.85

CTGAN 75.44 ± 3.19 75.82 ± 3.40

RF TVAE 92.43 ± 1.01 91.86 ± 0.89
CTGAN 74.32 ± 3.27 74.00 ± 3.09

2/3 31.40 ± 0.21 9868.32 ± 8790.14
XGB TVAE 88.80 ± 2.53 87.78 ± 2.71

CTGAN 72.71 ± 2.93 73.34 ± 3.31

RF TVAE 91.78 ± 1.63 91.47 ± 2.50
CTGAN 72.31 ± 3.75 72.71 ± 4.08

3/4 40.77 ± 0.16 35088.75 ± 30542.58
XGB TVAE 90.83 ± 1.00 90.74 ± 1.09

CTGAN 75.26 ± 4.04 74.95 ± 4.00

RF TVAE 88.92 ± 3.03 88.08 ± 3.70
CTGAN 70.71 ± 5.23 70.20 ± 5.15

Shopper
9247 samples
12 columns

1/4 -2.11 ± 1.38 438.51 ± 5.14

XGB
TVAE 87.78 ± 0.78 87.78 ± 0.76

GC 85.51 ± 0.63 85.80 ± 0.76
CTGAN 87.35 ± 0.35 87.06 ± 0.95

RF
TVAE 88.74 ± 0.32 88.74 ± 0.45

GC 85.62 ± 0.43 85.99 ± 0.98
CTGAN 87.95 ± 0.49 87.91 ± 0.28

1/3 -3.37 ± 1.26 639.55 ± 64.59

XGB
TVAE 88.13 ± 0.63 87.86 ± 0.86

GC 85.51 ± 0.63 85.28 ± 1.17
CTGAN 84.76 ± 1.05 84.94 ± 1.31

RF
TVAE 88.18 ± 0.53 88.06 ± 0.81

GC 85.62 ± 0.43 85.70 ± 0.68
CTGAN 88.01 ± 0.62 87.80 ± 0.69

1/2 9.22 ± 1.27 939.33 ± 107.06

XGB
TVAE 87.27 ± 1.33 87.54 ± 0.94

GC 85.51 ± 0.63 86.10 ± 0.94
CTGAN 85.27 ± 1.54 85.59 ± 1.64

RF
TVAE 88.61 ± 0.56 88.28 ± 0.54

GC 85.62 ± 0.43 85.65 ± 0.71
CTGAN 87.80 ± 0.25 87.57 ± 0.69

2/3 34.14 ± 0.28 3690.59 ± 252.79

XGB
TVAE 87.46 ± 0.69 88.01 ± 0.20

GC 85.51 ± 0.63 85.74 ± 0.61
CTGAN 85.89 ± 0.57 85.59 ± 1.70

RF
TVAE 88.48 ± 0.32 88.30 ± 0.64

GC 85.62 ± 0.43 86.49 ± 0.56
CTGAN 87.89 ± 0.88 87.82 ± 0.59

3/4 43.50 ± 0.42 9276.41 ± 1742.76

XGB
TVAE 88.10 ± 0.92 88.39 ± 0.78

GC 85.51 ± 0.63 86.06 ± 1.24
CTGAN 86.75 ± 0.81 86.44 ± 0.43

RF
TVAE 88.52 ± 0.55 88.17 ± 0.88

GC 85.62 ± 0.43 86.77 ± 0.74
CTGAN 87.80 ± 0.58 87.63 ± 0.74

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 6: Effect of constraint threshold t on synthetic data quality for the King dataset (11 cols
and 16209 samples). We report the average z-scores, sampling time (in seconds), and classification
accuracy (as R2 values) using different classifiers and synthesizers. This is with respect to HashMark2.
Accuracy is shown for both the non-W/M and W/M settings.

t z-score Sampling Time (s) Classifier Synthesizer Non-W/M W/M

1/4 1.04 ± 3.72 518.84 ± 10.49

Ridge
TVAE 0.524 ± 0.067 0.518 ± 0.074

CTGAN 0.524 ± 0.067 0.511 ± 0.039
GC 0.576 ± 0.018 0.576 ± 0.014

RF
TVAE 0.625 ± 0.024 0.614 ± 0.011

CTGAN 0.590 ± 0.018 0.586 ± 0.028
GC 0.543 ± 0.017 0.530 ± 0.021

XGB
TVAE 0.600 ± 0.040 0.582 ± 0.055

CTGAN 0.575 ± 0.019 0.567 ± 0.017
GC 0.543 ± 0.017 0.541 ± 0.013

1/3 -0.01 ± 3.91 638.89 ± 26.21

Ridge
TVAE 0.480 ± 0.128 0.526 ± 0.083

CTGAN 0.507 ± 0.083 0.511 ± 0.079
GC 0.576 ± 0.018 0.576 ± 0.015

RF
TVAE 0.617 ± 0.035 0.630 ± 0.020

CTGAN 0.558 ± 0.047 0.571 ± 0.029
GC 0.543 ± 0.017 0.530 ± 0.017

XGB
TVAE 0.576 ± 0.063 0.572 ± 0.063

CTGAN 0.581 ± 0.019 0.573 ± 0.017
GC 0.543 ± 0.017 0.532 ± 0.013

1/2 16.09 ± 1.79 783.76 ± 46.10

Ridge
TVAE 0.528 ± 0.063 0.534 ± 0.043

CTGAN 0.471 ± 0.080 0.458 ± 0.099
GC 0.576 ± 0.018 0.579 ± 0.017

RF
TVAE 0.626 ± 0.028 0.631 ± 0.024

CTGAN 0.576 ± 0.020 0.583 ± 0.017
GC 0.543 ± 0.017 0.534 ± 0.011

XGB
TVAE 0.603 ± 0.054 0.606 ± 0.040

CTGAN 0.547 ± 0.038 0.559 ± 0.019
GC 0.543 ± 0.017 0.531 ± 0.025

2/3 46.67 ± 1.11 3021.49 ± 478.42

Ridge
TVAE 0.523 ± 0.031 0.464 ± 0.130

CTGAN 0.511 ± 0.049 0.412 ± 0.078
GC 0.576 ± 0.018 0.580 ± 0.018

RF
TVAE 0.634 ± 0.023 0.578 ± 0.094

CTGAN 0.573 ± 0.030 0.557 ± 0.038
GC 0.543 ± 0.017 0.534 ± 0.020

XGB
TVAE 0.615 ± 0.042 0.625 ± 0.031

CTGAN 0.549 ± 0.036 0.494 ± 0.059
GC 0.543 ± 0.017 0.533 ± 0.033

3/4 64.98 ± 0.53 8208.15 ± 778.51

Ridge
TVAE 0.464 ± 0.009 49.12 ± 0.067

CTGAN 0.548 ± 0.044 0.423 ± 0.095
GC 0.576 ± 0.018 0.582 ± 0.018

RF
TVAE 0.6587 ± 0.032 0.5924 ± 0.045

CTGAN 0.578 ± 0.028 0.544 ± 0.04
GC 0.542 ± 0.017 0.537 ± 0.016

XGB
TVAE 0.656 ± 0.041 0.0.643 ± 0.031

CTGAN 0.563 ± 0.038 0.515 ± 0.029
GC 0.542 ± 0.017 0.519 ± 0.038

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

(a) (b)

Figure 6: This figure shows the evaluation of the robustness of Gaussian noise by studying the z-score
across various choices of standard deviation. To the left, we show the results from Ngo et al. (2024),
and to the right, we show the results from our own experiment. Observe similar behavior across both
works.

Figure 7: This is a reproduction of Figure 2 from Ngo et al. Ngo et al. (2024).

Recall thatH maps to 0 and 1 with equal probability. Therefore, for a given x′
i = xi + ki · 10−c, the

hash function should have mapped to 1 for every choice from 0 to ki − 1 and succeed in time ki. In
other words, Pr[Ki = k] =

(
1
2

)k+1
, i.e., it follows a geometric distribution.

Now, ||X− Xw||∞ = maxi |xi − x′
i| = maxi ki · 10−c. We can use the well-known approximation

for the maximum of n i.i.d geometric variables to get E[maxi ki] = 0.5 +HN/ ln 2 where HN is
the N -th harmonic number. Further lnN ≤ HN ≤ 1 + lnN or HN ≤ lnN + 1. This gives us that:

E[||X− Xw||∞] ≤
(
0.5 +

ln(N) + 1

ln 2

)
· 10−c

≤ (lnN + 2) · 10−c

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

(a) (b)

Figure 8: Plot of additional experiments on Gaussian dataset. Figure 8a plots MSE for more values
of c. Figure 8b shows how the z-score changes when more rows are involved in the computation.

Proof of Theorem 2. The Jensen-Shannon Divergence (JSD) measures the similarity between two
probability distributions. It is defined as:

JSD(P ||Q) =
1

2
D(P ||M) +

1

2
D(Q||M) (2)

where M = 1
2 (P +Q) is the midpoint distribution, and D(P ||Q) is the Kullback-Leibler Divergence,

defined as: D(P ||Q) =
∑

x P (x) log(P (x)
Q(x)).

Let us find: JSD(ρ||ρ′). Partition the set of all values X into X0 and X1 where Xb consists of those
values in X that hashes to bit b. Note that ρ′ is only defined on X0 giving:

ρ′(x) =

{
ρ(x)
Z x ∈ X0

0 otherwise

Here, Z is a normalization term needed to ensure that the sum of probabilities in ρ′ is 1. Since
the hash function is ideal, i.e., maps to 0 and 1 with equal probability, Z is approximately 0.5 or
ρ′(x) = 2 · ρ(x) for x ∈ X0.

Now, let’s find the midpoint distribution M(x) = 1
2 (ρ(x) + ρ′(x)). We get:

M(x) =

{
3
2ρ(x) x ∈ X0
1
2ρ(x) otherwise

Now, we can compute the Kullback-Leibler divergences:

D(ρ||M) =
∑
x∈X

ρ(x) log(
ρ(x)

M(x)
)

=
∑
x∈X0

ρ(x) log(
ρ(x)
3
2ρ(x)

) +
∑
x∈X1

ρ(x) log(
ρ(x)
1
2ρ(x)

)

Simplifying, we get D(ρ||M) = 0.5(log(2) + log(2/3)) = 0.5 log(4/3). Similarly, we get:
D(ρ′||M) = log(4/3). Plugging this in Equation 2, we get:

JSD(ρ||ρ′) = 3

4
log(

4

3
) ≈ 0.215

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Proof of Proposition 1. Of the m values, we need to compute Ti that ensures that the score is α. We
use Equation 1 as:

α =
2(Ti − 0.5M)√

M

Then, Ti = 0.5M + α
√
M/2. In other words, we need at least 0.5M + α

√
M/2 values to ensure a

Z-score of α. Call this value Tα.

Proof of Theorem 3. First, observe that for any value vali such thatH(vali) = 0:

Pr[H(vali + ϵi) = 1] =
1

2

for any ϵi
$← D. We already know that one needs at least Tα = 0.5M + α

√
M/2 cells to be

unmodified to get a score of α (from Proposition 1). To achieve the watermark removal, we need to
add noise to the remaining N − Tα cells. Observe that this follows a hypergeometric distribution - in
a sample of size M , N successes exist (i.e., mapping to 0). Then, the expected number of tries to
pick at least (N − Tα) successfully is given by: ≈ (N − Tα) ·M/N . Therefore, we get:

E[r] := 2 · (N − Tα) ·
M

N

24

	Introduction
	Our Contributions

	Preliminaries
	Problem Formulation
	HashMark: Element Wise Tabular Watermarking
	Defining Generate
	HashMark2: Global Embedding
	Analysis on Removal of HashMark

	Experimental Results
	Evaluation of HashMark2

	Conclusion
	Related Work
	Dataset Details
	HashMark1: Embedding Pseudorandom Bits
	Detecting HashMark1

	Experiments for HashMark
	Evaluation of HashMark1
	Evaluation of HashMark2
	Experimental Setup

	Deferred Proofs

