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ABSTRACT

As enterprises increasingly rely on data for decision-making and machine learning
pipelines, ensuring data provenance, ownership, and responsible use has become
essential. Data watermarking offers a promising solution by embedding impercep-
tible markers into datasets, enabling traceability and accountability. While prior
work has primarily focused on perceptual domains such as images, audio, and text,
watermarking for tabular data remains underexplored despite its central role in
enterprise systems. Tabular data presents unique challenges due to its heterogeneity,
lack of redundancy, and susceptibility to structural modifications.

We introduce HashMark, a suite of cryptographic watermarking protocols explicitly
designed for tabular datasets. Our methods embed bits into table cells using seeded
hash functions, achieving data-type agnostic, high-fidelity watermarking with
minimal distortion. We present two complementary schemes: (i) HashMarky, a
sparse embedding mechanism that modifies only ©(1) cells, and (ii) HashMarko,
a dense embedding mechanism that enforces uniform statistical properties across
the dataset while supporting categorical and alphanumeric domains. Both schemes
feature low detection cost, broad applicability, and formal fidelity guarantees.

Extensive experiments across various settings demonstrate that HashMark main-
tains downstream model performance while significantly improving the quality of
the watermarking scheme, when compared to prior work. Our results establish
hash-based watermarking as a simple, efficient, and general solution for securing
tabular data against unauthorized use, while also enabling scalable data governance.

1 INTRODUCTION

As data-driven applications grow in significance, ensuring data integrity, provenance, and ownership
is increasingly critical. Data watermarking—the practice of embedding imperceptible markers into
datasets—has emerged as a valuable tool for protecting intellectual property, preventing unauthorized
use, and verifying authenticity. This is especially relevant when data is shared, sold, or used to train
machine learning models, as it provides mechanisms for tracing data lineage and safeguarding against
misuse. With the rise of generative models and synthetic data, watermarking also ensures traceability
of Al-generated content.

Prior Work Previous research on watermarking has largely focused on image, audio, or text
data (Ahmadi et al., 2021} [Tan et al., 2023} [Yamni et al., 2022} Zhang et al., 2022} |[Zhong et al.,
2021), while tabular data—one of the most common formats in machine learning—has received less
attention. Watermarking tabular data is challenging due to (i) the lack of perceptual redundancy,
where small changes can be impactful, (ii) mixed data types requiring tailored strategies, and (iii)
the need for resilience against insertions, deletions, and foreign key modifications. Existing tabular
watermarking methods (Agrawal & Kiernan, 2002; [Hu et al., 2018; [Hwang et al.| [2020; [Kamran
et al.,2013; [Li et al.l [2022; [Lin et al.| 2021} |IShehab et al., 2008 [Sion et al., [2003)) often focus on
relational databases and either modify specific data points or embed statistical identifiers. More recent
approaches (He et al.| 2024; Zheng et al.| 2024; Ngo et al., |2024) have targeted general tabular data,
yet challenges remain regarding computational complexity, scalability, and storage requirements.
More information pertaining to related work is deferred to Section[A]
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Table 1: Comparison of HashMark with prior works (transposed). Detection Cost refers to the
information needed to detect the watermark efficiently. “# Modification” refers to the number of cells
that need to be modified to embed the watermark.

Ngoetal. Zhengetal. HashMark; HashMark,

# Modification All All O(1) All
Fidelity High High Very High High
Deletions Allowed Allowed Limited Allowed
Permutations Allowed Allowed Limited Allowed
Data Types Numerical Any* Any Any
Detection Cost High Very High  Very Low Low

Our Motivation We focus on watermarking in non-adversarial enterprise settings, where data
flows across multiple departments and systems. In such contexts, employees typically do not attempt
to remove watermarks, which enables effective tracking of data lineage, ensures integrity, and
facilitates compliance with internal policies and regulations. Embedded markers enable organizations
to monitor data movement, quickly identify discrepancies, and maintain accountability throughout
the data lifecycle.

The rise of synthetic data further motivates the use of watermarking, as organizations must distin-
guish between synthetic datasets and originals while preserving both privacy and utility. While no
watermarking scheme is entirely immune to removal (Zhang et al.| 2024b), its practical value lies in
raising the cost of misuse and enabling accountability. Our work enhances the applicability of tabular
data, thereby strengthening enterprise data governance in realistic, non-adversarial scenarios.
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Figure 1: HashMarks: On the left is the source input table, to be watermarked, containing cells of
two columns - one text and the other numerical. After applying the hash function to each cell, the
hashed values are shown next. In the middle, we show how values are adjusted to hash to 0. For text
data, we replace it with a new value, and for numerical data, we add in the smallest decimal place.
On the right is the watermark embedded table where all cells hash to 0.

1.1 OUR CONTRIBUTIONS

We introduce HashMark, a suite of simple yet powerful watermarking protocols for tabular datasets.
Our approach embeds bits into selected table cells using a cryptographic, seeded hash function,
ensuring that the output looks uniformly random without the knowledge of the seed. A hash
function is versatile in its agnosticism regarding the input data type, working with both numeric and
alphanumeric inputs.

We present two variants, HashMark; and HashMarks, each offering unique properties. In both
schemes, we map cell contents to a target bit (0 or 1) via the seeded hash function. If the cell content
does not map to the target bit, we carefully modify the cell values while preserving the dataset’s
fidelity. For numerical values, we make minimal perturbations (e.g., incrementing by 10~¢). For
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alphanumeric values, we apply rejection sampling from the original distribution. The rejection
sampling technique can also be extended to numerical values, as we describe later.

HashMark;. For static datasets (e.g., unique IDs, timestamps, categorical labels), HashMark;
modifies only a constant £ < N cells, ensuring high fidelity. HashMark; employs two pseudorandom
generators (PRGs). A PRG uses a seed, ensuring that the output appears random without knowledge
of this seed. We use the first PRG (G to derive ¢ bits. We then use the second PRG G5 to identify
the dataset’s ¢ cell locations. Each chosen cell is adjusted until it hashes to the selected bit. Here,
¢ < N where N is the number of cells in the datasets, which guarantees very high fidelity. For
detection, we first use G5 to identify the ¢ cell locations. Then, employing the hash function, we
retrieve the bits embedded at these positions. Finally, using G, we verify whether the retrieved bits
match the embedded information. HashMark; requires the knowledge of the seeds for watermark
detection. Note that the security and correctness of its detection algorithm stem from the security of
the underlying cryptographic constructions. Minor permutations or deletions of rows compromise
detection since they disrupt cell positioning. On the other hand, if permutations aren’t allowed, then
removing the watermark is difficult as the embedding locations are pseudorandom.

HashMark,. Figure[I] pictorially represents HashMarks, where the same target bit (say 0) is em-
bedded in all (or, O(N) cells as relaxed later). It uses the hash function for the binary mapping and
then applies the above-outlined "adjustment" procedure to ensure that every cell maps to 0 under the
seeded hash function. This approach, though appearing similar to the red-green paradigm of [Ngo
et al.| (2024) and Zheng et al.| (2024), is vastly simpler and more secure. Indeed, while Ngo et al.
(2024) relied on an insecure seed for mapping to red or green, |Zheng et al.| (2024) required the source
dataset for detection. Instead, our detection algorithm relies on a statistical test, and the embedding
algorithm can be instantiated with several approaches, such as perturbing the values by adding 10~°
for some constant ¢ or simply rejection sampling until a certain threshold number of the entries in a
row map to the desired bit. Looking ahead, we employ both techniques for numerical values in the
experiments section.

However, critically, our reliance on the seeded hash function ensures that it supports any data type (a
feature missing from the work of Ngo et al.|(2024)) and does not require the source dataset to identify
the watermarking (a feature of Zheng et al.|(2024)). Like HashMark;, we adjust the cell content to
obtain the mapping to the target bit of 0, at every cell position. Unlike HashMark;, HashMarks will
rely on a statistical test to determine if the dataset was watermarked.

In conclusion, our suite of protocols HashMark satisfies:

* High Fidelity: The dataset changes are minimal when values are perturbed by adding 10™°,
and nonexistent when using rejection sampling, since samples are drawn from the same
distribution.

* Low Detection Cost: Detection in HashMark requires only the hash (and PRG for
HashMark;) seeds due to its simpler design, whereas Ngo et al.| (2024) needs column
pairings and |Zheng et al.| (2024) requires the full source dataset.

* Support for Any Data Type: HashMark can support any data, as explained above. In
contrast, Ngo et al.|(2024) cannot handle categorical data, and although Zheng et al.| (2024
claims broad support, it is unclear how their method applies to textual data Hence, in
Table[T] we mark their support as Any*.

2 PRELIMINARIES

Notations. For n € NT, we denote by [n] the set {1,...,n}. For a set X, we denote by & x
that a value x is sampled uniformly at random from X.

1Zheng et al.| (2024) focuses on categorical data (e.g., education level, marital status). Their watermarking
distorts integer distributions by adding floating-point perturbations, which harms utility. Restricting to integer
perturbations could leave gaps in the column range, so we argue that such columns should not be watermarked.
Moreover, they neither support unrestricted alphanumeric data (e.g., ASINs) nor evaluate such cases.
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Seeded Hash Function. A function H : S x X — ) is a hash function, modeled as a random
oracle, if the computation of (S, X) for a random S & Sand any X € X is indistinguishable

from Y & Y. In our application, we will suppress the presence of the seed distribution S and we
will set Y := {0, 1}.

3  PROBLEM FORMULATION

Our dataset is a matrix X € R™*" containing numerical, alphabetical, and alphanumeric values. The
goal is to construct a watermarked dataset X,, with the following properties:

Fidelity: X, remains close to X. For numerical data, we show closeness in L., distance (Theorem
and for categorical data, we show closeness by Jensen-Shannon Divergence (Theorem 2)).

Detectability: The watermark can be efficiently and reliably detected—cryptographically in the first
variant, and statistically in the second.

Robustness: X,, withstands common perturbations, such as row/column removal, permutations, and
cell modifications.

Utility: X, supports downstream tasks (e.g., machine learning) with negligible accuracy loss, as
confirmed empirically.

4 HashMark: ELEMENT WISE TABULAR WATERMARKING

At its core, any watermarking approach needs to ensure that the utility of the data is preserved
even after embedding the watermark. Furthermore, the detectability of the watermark is pre-
served even after modification by both adversarial and honest actions. We have two constructions
HashMark;, HashMarky with various properties and an implicit trade-off.

However, before examining the constructions, it is instructive to consider the commonalities. Both
the constructions will rely on applying a seeded hash function 7 that can take any inputs and produce
an output bit. Such a binary hash function enables us to map any cell (numerical, textual, categorical,
etc.) to either O or 1, depending on the function’s description. They will also rely on modifying a
cell’s contents through invoking the function Generate (until it satisfies some H-based property). The
question remains of how to instantiate this function.

4.1 DEFINING Generate

The crux of our construction lies in instantiating the function Generate, which modifies dataset
content to satisfy the hashing requirement. In this section, we define this function and present some
optimizations. Before proceeding, we would like to highlight an essential caveat in our approach
to watermarking. Consider a column C' with a fixed range (e.g., marital status, education level,
designation, or salary tiers). Applying a hash function that maps values to bits (0 or 1) can force
certain elements to hash to an undesired bit. This would remove those elements from the range in
the watermarked dataset, skewing the distribution and harming utility. Note that|{Zheng et al.| (2024)
suggests embedding in these columns by first mapping these entries into distinct integers and then
reverting to their numerical-based approach. However, this skews the distribution and can harm
correlations. To avoid this, we do not embed watermarks in such columns; instead, we treat every
element in the range as “valid,” i.e., as hashing to the desired bit.

In the ensuing discussion, we focus solely on generating values for the remaining attributes/columns.
We will focus on embedding the watermark and later define fidelity, i.e., how closely the watermarked
distribution resembles the un-watermarked one. The proofs of the following are deferred to Section [E]
in the appendix.

Numerical Values. Suppose a column C consists of numerical data, specifically floating-point
values. In that case, the generate function can take the old value and add 10™° for some constant ¢
that is a scheme parameter. This ensures that the perturbation does not adversely impact the fidelity.
Formally, we have the following theoretical guarantee, as measured by the expected difference in Lo,
between the unwatermarked and watermarked distributions.
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Theorem 1. Let X be the original dataset and X, be the watermarked dataset of size N where
x} € Xy, is generated as follows:

l‘; =x;+ k; - 10_0,

where k; = min{k > 0 | H(z; + k- 107¢) = 0, H is a seeded hash function as defined before, and
c > 0 is some integer. Then,

E[||X — Xy |loo] < (InN +2)-10~¢

Our approach can be easily extended to support truncation up to b decimal places if only the value
until the first b decimal places is included in the input to H.

Alphanumeric/Textual Data. In the case of textual data, the generate function can reject and
resample from the underlying distribution for the feature p;. Then, one can measure the fidelity
of the watermarked dataset by measuring the Jensen-Shannon Divergence (Lin,|1991) between the
watermarked and the un-watermarked dataset. Formally, we get the following theoretical guarantee:

Theorem 2. Let p be the distribution of an alphanumeric column where we embed the watermark.
Let p' be the modified distribution consisting only of those values that hash to 0. Then, the Jensen-
Shannon Divergence is:

3 4
JSD(p||p') = 1 log(g) ~ 0.215

Preserving Correlations. Datasets often contain correlations between various features or attributes.
Any watermarking approach should ensure that these correlations are preserved. Rejection sampling
column-wise can often lead to a loss of such correlations. We now detail how to preserve correlations.

* Let p be a probability distribution that defines the underlying dataset. This can contain both
categorical (aka alphanumeric values) and numerical values. For example, a synthetic data
generation algorithm (such as the ones employed in our experiments) is trained on a source
(i.e., original dataset), which yields such a distribution p from which one can sample as many
rows as needed. These synthetic data algorithms have been experimentally demonstrated to
be closely aligned with the original dataset for various machine learning tasks, providing a
heuristic proof of correlation preservation.

«LetR & p be a row sampled from this distribution. Further, let this row R be such that
there exist cells that do not map to the desired bit.

* We can now reject R and resample from p until the sampled row satisfies the required
constraint. However, such rejection and resampling until every cell maps to the desired
bit can be computationally expensive. For n columns, this can take 2" time. Instead, one
can choose a threshold ¢ such that if ¢ of the n cells in a row R map to the desired bit, it
is marked as accepted. The detectability threshold can be suitably set to account for this
modification.

The remainder of this section will focus on HashMarks, deferring HashMark; to Section@ In brief,
HashMark; is intended for static datasets where no modification of rows, columns, or their relative
ordering is anticipated. Then, one can embed a pseudorandom number of bits in pseudorandom
locations using a seeded hash function.

4.2 HashMarks: GLOBAL EMBEDDING

Unlike HashMark;, HashMark, is more resilient to various perturbations and cell modification. The
embedding approach is visually represented in Figure[T|and described in Algorithm [} The crux of
the strategy is to embed a global bit (say 0) in every cell of the dataset X using a binary hash function
‘H—consequently, a watermarked table to have more values that hash to 0 than an unwatermarked
table. Detection is performed by using the secret description of the hash function to hash the data
and count the number of cells that map to zero. Additional methods can allow the user to check only
a subset of locations, making a slight skew more pronounced. This approach has the versatility of
embedding a watermark in an existing dataset or generating a watermarked dataset at the source. The
latter is a setting suitable for synthetic data.
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Detecting HashMark,. To detect HashMarks, we use a one-proportion z-test (Fleiss et al., 2013)),
which is a statistical test used to determine whether the single sample rate, for example, the success
rate in the number of entries that map to 0, is significantly different from a hypothesized population
rate. We define the null hypothesis as:

Hj : Dataset X is not watermarked

However, we note that if the null hypothesis holds, then so does a hypothesis Hy;
The ¢-th column is not watermarked also hold. This reduces the problem of rejecting Hy to sim-
ply rejecting Hy ; for each column 4.

Let T; represent the number of elements in the ¢-th value column that hash to 0. Under the i-th
null hypothesis, Hy ; should follow the Bernoulli Distribution B with probability 1/2 as an ideal
hash function ‘H will output O or 1 with probability 1/2. Let m be the total number of rows, i.e.,
T; ~ B(m,1/2) for a sufficiently large number of rows m. By the Central Limit Theorem (CLT),
for large m, we obtain that:

N (i - ;) ~ N(0,1)

where A/(0, 1) is the normal distribution. Thus, the test statistic for a one-proportion z-test is:

s=avin (2 3) 1)
m 2
For each column, the detection algorithm computes a z-score by counting the number of values that
hash to 0. To account for multiple hypothesis testing (e.g., five columns at a = 0.05), per-column
thresholds «y; are adjusted (e.g., o; = 0.01). If a column’s z-score exceeds its threshold, the null
hypothesis is rejected, indicating a watermark. Otherwise, no conclusion is made.

To prevent spoofing (where forgers combine valid watermarked datasets), we use a secret seed in the
hash function (Algorithm[I). Each dataset’s watermark uses a unique seed, making concatenated
forgeries detectable as inconsistent.

Robustness to Deletion, Permutation. It is clear that the permutation of rows does not impact the
count T;. Hy ; is evaluated for every column 7. This implies that the permutation of the column from
position ¢ to some j will still have its corresponding null hypothesis Hy ; and will be evaluated. Note
that the detection algorithm performs multiple hypothesis tests simultaneously. Therefore, removing
columns implies that one has to compute «; as a function of o and the number of remaining columns.
This guarantees robustness to column deletion. Removal of rows implies a smaller m. This results in
an increase in the error in the CLT approximation. However, in practice, a rule of thumb for applying
the Z-test has been m > 50 (Contributions, |2025). However, if m < 50, one could apply the Z-test
on Hj and not individual H ;.

Finally, as remarked before, one can also modify the application of H to ensure support for truncation.

4.3 ANALYSIS ON REMOVAL OF HashMark

Before we look at the mathematical analysis, we discuss the modes of attack to remove the watermark.
The property of the ideal hash function H implies that the perturbation of a cell content initially
mapping to O can flip to 1, with a probability of 0.5. Further, a secret seed (of the seeded hash
function) implies that an adversary, without knowledge of this seed, cannot determine the actual
mapping of the bit.

This section will study the effort required for the perturbation to remove the watermark. Specifically,
an adversary can only modify r cells by adding noise to them. We will analyze the expected number
of r. Note that an adversary, adding noise to every cell in a column, can remove the watermark. This
is true for every scheme (He et al.,|2024; Ngo et al.,[2024; Zheng et al., 2024). Experimentally, we
present the results for comparison with Ngo et al.|(2024) in Section [5]

In the analysis below, we assume there are a total of M values. Of this, N is the number of values
that have the property of hashing to a desired bit. In HashMark;, we have N = ¢ while M = mn. In
HashMarks, we have N = M = m as described above. The proof of the following two results is
deferred to Section[E]in the appendix.
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Algorithm 1 Embedding Algorithm

Input: Sampling Algorithm for Dataset D Generate
Secret Seed seed

Number of Rows: £

Associated Distribution: p

Column column of dataset X

seed & S //S is the seed space of the hash function.

fori =1to/do
while 7 (seed, D[i]) # 0 do
new_value < Generate(p, D[i]) //Additional parameters could include t for threshold-constrained
sampling.
Dli] < new_value
end while
end for

Proposition 1. Given values valy, . .. ,valys. Then, the minimum number of values needed to ensure

that the Z-score remains « is given by: « - @ + %

Theorem 3. Let r be the number of cells an adversary can modify. This modification is done by
sampling noises €1, . .. , €, E.D. Then, we have: Elr] :==2-(N—-T,)- %,for any error distribution
D.

Note that in HashMark; where N < M, the number of tries needed for the adversary is inversely pro-
portional to N, making HashMark; more robust to noise addition attacks. Meanwhile, in HashMarks,
since M = N, the number of tries needed is much smaller. Consequently, one can envision
HashMarks where only a specific subset of cells (chosen at random) is embedded with the bit. While
this makes it more resilient to modification attacks, the problem of efficiently identifying this subset
of cells becomes paramount.

Other Attacks. We also consider two additional attack vectors:

» Data augmentation: Adding rows lowers the z-score. Since the secret is unknown, about
half of the added rows will map to O on average. For instance, doubling m valid rows

reduces the z-score by a factor of \/2 in expectation.

* Feature selection: The z-score threshold depends on the number of columns (Section 5.1.1).
Removing columns thus requires raising the detection threshold.

HashMark and Applications. Watermarking tabular data enables verifiable integrity in organiza-
tional settings where datasets are routinely shared. With HashMarks, two guarantees hold when a
watermark is detected in a dataset D: (1) Theorem bounds the expected number of undetectable
cell modifications, and (2) if an attacker injects ym rows into an m-row dataset, the z-score degrades
predictably, scaling as /1 + . These properties define a measurable trust boundary, supporting
provenance tracking while tolerating benign changes. By formalizing this robustness—utility tradeoff,
our work advances watermarking for practical data governance.

5 EXPERIMENTAL RESULTS

In this section, we focus on experimentation for embedding watermarks in numerical data, specifically
floating-point values. Our experiments were performed on an Apple MacBook M1 Pro with 16GB
of memory running Sonoma 14.3. We used Python 3.11. We instantiated the hash function using
SHA-256 from the hashlib module. We select a random seed for evaluating the hash function. We
implemented Generate by adding 10~ to the value until it hashes to 0. Our choice of ¢ is specified
for each context separately. Due to space constraints, we will focus on HashMarks in this section.
We defer the experiments pertaining to HashMark; to the appendix in Section
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Figure 2: Plot of various experiments on Gaussian dataset. Figures and show the distribution of
the data, before and after watermarking. Value refers to the actual value in the dataset. Figure [2¢]
shows the variation of the z-score with the number of rows sampled. Figure 2d|plots the variation of
the mean-squared error (MSE) for different choices of c. Figure[2¢|plots the change in z-score when
compared with the choice of ¢ for various Gaussian noises.

5.1 EVALUATION OF HashMark,

In this section, we evaluate the performance of HashMark, along the following dimensions with
additional details on the experimental setup found in Section[D.2.T}

Performance (vs the work of Ngo et al.| (2024)) on Gaussian Datasets. Following
(2024)), we evaluate HashMarks on Gaussian data (1 column, 2000 rows). With ¢ = 10, HashMarksy

achieves comparable robustness and fidelity while being significantly simpler, showing that complex
watermarking is unnecessary.

* Fidelity: KDE plots (Figs[2aH2b) show near-identical distributions pre- and post-
watermarking. Figure [2d] confirms that smaller ¢ values (larger perturbations) increase
MSE, as expected.

* Robustness: Figure[2¢|shows z-scores increase with more rows, strengthening detection.
Under added Gaussian noise (Fig[2¢), smaller ¢ values lower z-scores, indicating higher
sensitivity. Importantly, our z-scores consistently exceed those of Ngo et al. (Figlf).
Extended results (Figs[8a] [8b) in the appendix confirm these trends.

For completeness, Figurd7] reproduces Ngo et al.’s plots, while Figures [8aH8b| provide
additional HashMark, results, all consistent with the conclusions above.

Utility for Real-Life Datasets. Following prior work (He et al.| 20245 [Ngo et al., 2024)), we evaluate
HashMarks on four real-world datasets (Section , training CTGAN (Xu et al., 2019), Gaussian
Copula (Masarotto & Varin, 2012), and TVAE [2019) via the Synthetic Data Vault
2016). Table [2b]shows that watermarking minimally affects accuracy, even for multi-class
tasks. We also study constrained sampling, where rows are retained only if at least a fraction ¢ of
columns hash to 0. Tables AH6] show that larger ¢ increases generation time but preserves accuracy,
with z-scores rising as expected; similar trends hold for regression (R?).
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Fidelity for Alphanumeric Synthetic Data. We assess HashMark, on alphanumeric attributes by
computing the Jensen—Shannon divergence (JSD) between watermarked synthetic data (all values
hash to 0) and real datasets, using SciPy’s implementation |Virtanen et al.| (2020) over 30 trials:

* ASINs (10-character alphanumeric): 0.1090 £ 0.0016 JSD vs. Amazon Product
Dataset |[PromptCloud|(2020)

¢ Git commit hashes (40-character hex): 0.002176 4+ 0.0003 JSD vs. GitHub Commit
Messages |Dave| (2023))

The consistently low JSD values show that HashMarky preserves the underlying distributions, even
for alphanumeric data.

Simpler Classifiers and Datasets. To assess HashMark, in a simpler setting, we evaluate it on
single-attribute, two-class datasets using linear regression, logistic regression, and decision trees.
Results in Table|2al show that while the perturbation parameter (10~¢) governs the deviation from the
original values, even small c values lead to only negligible changes in model performance.

Table 2: Performance of HashMarks with Generate instantiated by incrementing with 10™¢.

(a) Performance with Simple Regression Models.  (b) Accuracy comparison of different classifiers and
W/M = Watermarked dataset. For Logistic/Decision synthesizers across four datasets on synthetic and wa-
Tree, we report accuracy; for Linear Regression, we  termarked synthetic data. Standard deviations are in-

report R? values. cluded for each record. W/M = Watermarked synthetic
dataset, while Non-W/M refers to an unwatermarked
c=2 c=4 c=6 but synthetic dataset. Here, ¢ = 6.
Logistic Reg. (Orig.) 99.98% 99.98% 99.98%
Logistic Reg. (W/M) 99.64% 99.98% 99.98% Dataset Classifier ~ Synth. ~ Non-W/M (%) WM (%)

. P CTGAN  83.63+4.63  83.31+501
Lfnear Reg. (Orig. RQ) 1.000000  1.000000  1.000000 XGB Copula 94384053 94404 0.52
Linear Reg. (W/M R?)  0.999899  1.000000  1.000000 TUAE  0487%037 9489 %039

Wilt : 3 : )
Decision Tree (Orig.) 100% 100% 100% 1 CTGAN  8445+574  8430+5.70
Decision Tree (W/M) 100% 99.995%  99.961% RF Copula 9439+ 0.52  94.40 & 0.52

TVAE 94.34+£0.37 9434+ 0.38

CTGAN 4926 £238  49.11 :2.68
XGB Copula 55.15£5.12  55.66 £4.77
TVAE 61.55£239 61.13+246

Housing
CTGAN 4831 £1.90 48.14 £2.00
RF Copula 5297 +5.83 53.04+5.93
TVAE 6230+ 1.92 6240+ 1.77
XGB CTGAN  77.65+£2.07 77.62+2.08
HOG TVAE 89.77+1.59  89.3441.76
RF CTGAN 7440 £441 7439 +£448
TVAE 91.20+2.16  91.28+2.16
CTGAN 8643 £0.79 8528 £1.95
XGB Copula 86.01 £ 1.38  86.56 &+ 1.41
TVAE 87.94 +0.61  87.8540.54
Shoppers

CTGAN  87.77 £0.82  86.00 & 2.74
RF Copula 86.05 £ 1.40 8578 +1.38
TVAE 88.71 £1.00  88.10 £1.23

6 CONCLUSION

We present HashMark, a hash-based framework for watermarking tabular datasets, enhancing data
integrity, provenance, and accountability in machine learning pipelines. HashMark supports both
numerical and categorical features, improving upon prior approaches (He et al.| [2024; Ngo et al.,
2024} |Zheng et al., 2024) while maintaining downstream utility. Our method naturally extends to
synthetic data, enabling the verifiable and responsible use of generative models in applications such
as stress testing, privacy-preserving data sharing, and benchmark creation. By providing rigorous
fidelity guarantees and addressing challenges in correlation preservation, HashMark contributes to
ongoing efforts in secure data management, trustworthy machine learning, and the development of
robust datasets and benchmarks for future research.
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A RELATED WORK

Watermarking Tabular Data. Watermarking tabular data has been extensively studied. |Agrawal
& Kiernan|(2002) pioneered a scheme embedding watermarks in the least significant bit of specific
cells using hash values based on primary and private keys. Subsequent works by [Xiao et al.|(2007)
and [Hamadou et al.|(2011)) improved this by embedding multiple bits. Another approach embeds
watermarks in statistical properties. Sion et al.|(2003) introduced a method that partitions dataset rows
and modifies subset statistics, later refined by Shehab et al. Shehab et al.|(2008)) to resist insertion and
deletion attacks using optimized partitioning and hash-based embedding. Their approach, however,
relies on assumptions about data distribution and primary keys.

Inspired by watermarking techniques in large language models |Aaronson|(2023); Kamaruddin et al.
(2018); [Kirchenbauer et al.| (2023), He et al.| (2024), INgo et al.| (2024)), and Zheng et al.| (2024)
proposed watermarking schemes for generative tabular data using red-green interval partitioning.

He et al.| (2024) introduced a data binning approach, ensuring values lie near green intervals and
using statistical hypothesis testing for detection. However, assuming continuous distributions makes
it vulnerable to feature selection and truncation attacks. [Ngo et al.| (2024)) paired columns into
key-value sets, deriving a seed from the key column to generate bins for the value column. Entries
falling in red bins were resampled from green bins. While novel, this method suffers from two key
weaknesses: (i) detection requires prior knowledge of the column pairing or an exhaustive search
across all pairs, and (ii) relying on key column-derived seeds introduces low entropy, weakening
the pseudorandomness of bin assignments and potentially compromising security. It is important to
note that even with knowledge of column pairing, any deletion of rows will trigger an error when
calculating the key column-derived seed, which is not explored or discussed in the paper. |[Zheng
et al.| (2024) took a similar approach, embedding watermarks as additive noise within predefined
bins. They assumed noise follows a bounded range [—p, p|, partitioned into red and green bins, with
watermarking achieved by sampling noise only from green bins. Despite robustness claims and
categorical feature support, their method has several limitations. First, detection requires access to
the original dataset, making watermark verification infeasible in practical scenarios where datasets
are modified or shuffled. Second, row-matching under permutation increases detection complexity.
Finally, their claimed support for categorical data is unclear and lacks empirical validation - (a) Their
protocol description focuses only on categorical data, i.e., those with a fixed range (e.g., education
level, employee designation, marital status, etc.). They suggest encoding it first as integers and then
applying their embedding techniques. However, this method is flawed because these differences
often result in floating-point values, distorting the expected integer-based distribution. Restricting
differences to integers could also leave gaps in the data (by omitting particular values from the range),
harming its utility. Instead, we argue against watermarking such columns altogether, and (b) it does
not address unrestricted categorical data (e.g., alphanumeric ASINSs) or provide experiments for such
cases. The above is summarized in Table[T}

Watermarking for LLMs. Many watermarking schemes for LLMs take advantage of the sampling
algorithm that generates each token of an LLM output. (Christ et al.|(2024)) observed that these LLM
output tokens correlate with the randomness used in the token sampling algorithm. This correlation is
efficiently communicable for many LLLM outputs by replacing this randomness with cryptographic
pseudorandomness. Subsequent works [Fairoze et al.|(2025); Christ & Gunn| (2024) have built upon
this idea by incorporating error correction and public identifiability into these watermarks. However,
robustness remains a persistent issue for this line of work, and a recent impossibility result|Zhang
et al.|(2024a) demonstrated that an adversary that can efficiently perturb or resample the output can
always remove a watermark. Another line of work, which has been the source of inspiration for
more recent watermarking schemes for tabular data, include |Aaronson| (2023); [Kamaruddin et al.
(2018)); [Kirchenbauer et al.|(2023). Kirchenbauer et al.|(2023)) introduced the red-green list paradigm,
forming the basis of several works He et al.| (2024)); Zheng et al.| (2024); |Ngo et al.|(2024). More
recently, |Giboulot & Furon| (2024)) improved on the works employing the red-green list paradigm.

B DATASET DETAILS

Wilt. Wilt (Johnson, [2013)) is the public dataset from the UCI Machine Learning Repository
from a remote sensing study on detecting diseased trees in satellite imagery. It comprises 4,839
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image segments with spectral and texture features from Quickbird multispectral and panchromatic
bands. The dataset includes six numerical and categorical attributes and a binary classification task:
identifying trees as wilted or healthy. We generate synthetic datasets. There are 4839 records with
6 features (including the target) and 2 classes. This dataset is licensed under a Creative Commons
Attribution 4.0 International (CC BY 4.0) license.

California Housing Prices. The California Housing Prices dataset (Kelley Pace & Barry, |1997;
Géron, |2019)), sourced from the 1990 U.S. Census, contains 20,640 records with 10 socio-economic
and geographical attributes influencing housing prices. It has a multi-target label indicating proximity
to the ocean, making it a multi-class classification problem. It has 5 classes. This dataset is licensed
under Apache License Version 2.0.

HOG. The HOG feature dataset (Alpaydin & Alimoglul|1996) is generated with the histogram of
oriented gradients (HOG) features extracted from the digits dataset, combined with their categories.
There are 16 features, 10992 records, and 10 classes. This dataset is licensed under a Creative
Commons Attribution 4.0 International (CC BY 4.0) license.

Shoppers Dataset. The shoppers dataset (Sakar et al.,[2018) aimed to capture the shoppers pur-
chasing intent. There are 12,330 records with 18 attributes with two classes. The dataset is licensed
under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.

King Dataset. The King dataset (harlfoxeml 2016)) aimed to capture the prices of house sales for
King County, which includes Seattle. It includes homes sold between May 2014 and May 2015. It is
useful for regression-based price prediction. There are 21,613 rows records with 12 columnsﬂwith
the price column being the regression data target. The dataset is licensed under a CCO license.

Amazon ASINs. We used the Amazon Product Details Dataset ?. For our experiments, we parsed
the dataset only to extract the unique identifiers for Amazon products, generating 30,000 actual
ASINs. This dataset is licensed under CCO.

Gitcommit Hashes. We used the Gitcommit Messages dataset (Davel [2023)). It contains 4.3 million
records, from which we only extracted the hashes for the gitcommit messages. The dataset is licensed
under the Open Data Commons Attribution License (ODC-By) v1.0.

C HashMark;: EMBEDDING PSEUDORANDOM BITS

We begin by describing our first approach to watermarking. This approach ensures high fidelity
and detectability but suffers from issues when it comes to robustness. The embedding algorithm is
formally defined in Algorithm[2] We start with an original dataset X of dimension m x n. The idea is to
sample ¢ pseudorandom bits. Let us call it bit, . .., bity. Additionally, we also sample ¢ cells defined
by (row;, col;) in X. By modifying the cell content suitably, we ensure that H (X[row;, col;]) = bit;.

C.1 DETECTING HashMark;
To detect, the algorithm needs:

» Knowledge of X to retrieve the original binary string of bitq, ..., bit,.
» Knowledge of X to first identify the target cells (row;, col;), and then using H to retrieve
bit}, ..., bit}.
* The watermark detection is successful iff (bitq, ..., bity) = (bit],. .., bit))
However, this scheme is low-robust because the detection algorithm critically relies on extracting

the cell where the watermark was embedded. This would be meaningless if the first row (or the first
column) were removed. The benefit of this approach is that only ¢ of the spots are touched, which is

non

’We used only 12 columns for our experiments. These are "floors", "waterfront","lat" ,"bedrooms"

non non non non non

,"sqft_basement" ,"view" ,"bathrooms","sqft_living15","sqft_above","grade","sqft_living","price".
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Algorithm 2 HashMark; Embedding Algorithm

Input: Original Dataset X of dimension m X n
Probability Distributions p1, ..., pn.

PRG G, : X — {0,1}"
PRG G : Xy — [m]* x [n]*

X & x X &
. 3
(bit:}o_, & Gi(X))
{(row;, coli)}f:1 — G2(X2)
seed & S //S is the seed space of H

fori =1to/do
while H (seed, X[row;, col;]) # bit; do

new_value &- Generate(p;, X[row;, col;])
X[row;, col;] + new_value
end while
end for

a tunable parameter. This ensures very high fidelity and utility. The detectability is also reducible to
the hardness of the underlying cryptographic primitives (and does not rely on a statistical measure).

D EXPERIMENTS FOR HashMark

D.1 EVALUATION OF HashMark;
We begin by benchmarking the performance of HashMark; along the following axes:

* Varying ¢, we wish to study the running time of the watermarking process. We break down
the running time of watermarking as (a) the cost of identifying locations to embed the
watermark and (b) the time taken to run Generate to embed the desired bits.

* The utility of the watermarked dataset vs. the original dataset for downstream machine
learning tasks.

* The role of £ in accuracy, i.e., how does the accuracy change when more bits are embedded?

Performance of Embedding Process. In Figure[3] we plot the time, in seconds, against the number
of bits being embedded. We split the cost as follows: to generate locations for embedding (dubbed
pair generation time) and then modify the cell content until it hashes to the desired bit. Recall that the
pair generation time requires using a seed to produce ¢ cell positions, which only contain floating
point values. We then use the same seed to generate ¢ bits additionally. As one can observe, the
embedding time is much smaller than the pair generation time, and it takes less than 10 milliseconds
to embed as many as 1000 bits.

Dataset. We study the above for a specific dataset - the adult census income dataset from (Byrd
et al.} [2022; [Jayaraman et al., [2018)) to predict if an individual earns over $50,000 per year. The
preprocessed dataset has 105 features and 45,222 records with a 25% positive class (i.e., 25% of the
records have class 1 while the rest are in class 0) We randomly split into training and testing datasets.
We observed that the dataset consisted of integers or floating-point values with at least eight decimal
places. This leads us to choose ¢ = 6 and embed it only in the floating-point values.

Downstream Utility. We embed ¢ = 384 bits E]They are:

* Logistic Regression Classifier with maximum iterations as 1000

3Choice of £ is set to be 384 because it is the number of bits in a standard hash-based watermarking scheme,
albeit for messaging applications (i.e., signatures) known as BLS Signature [Boneh et al.|(2004)). Note that this
corresponds to less than 1% of the number of cells in the dataset.

15



Under review as a conference paper at ICLR 2026

Average Running Time vs Number of Embedded Bits
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Figure 3: Embedding Time as a function of ¢ for HashMark;. Here, the blue column refers to the
cost of generating valid cells to embed in the dataset, while the green column is the cost of modifying
the content to make it hash to the desired bit.

Table 3: Classification accuracy (%) with and without watermarking. In addition to this, we add the
standard deviation of each record.

Model Logistic Regression Random Forest MLP Classifier
Original 84.021 £0.3 85.186 + 0.27 83.504 + 0.44
Watermarked 84.021 £ 0.3 85.188 +0.28 83.508 + 0.446

e Random Forest Classifier with 100 estimators

* MLP Classifier with hidden layer sizes 100, 50; maximum iterations=1000, and learning
rate 0.0001

We plotted the difference in accuracy when run on the original versus the watermarked dataset in
Figures [ and 5 for each of the 1000 runs. Meanwhile, in Table[3] we present the average accuracy of
the 1000 runs. Identical behavior was observed in the Logistic Regression classifier with less than
0.005% difference observed in the accuracy of the other two classifiers. This shows that HashMark;’s
embedding has a negligible impact on the accuracy of the classifier. For completeness, we also plot
the difference in accuracy between the original and watermarked dataset in Figures ] and [3] in each
of the 1000 runs. As can be observed, the most significant difference in accuracy is less than 0.005%.

Finally, in Figure [5b] we plot the impact of increasing ¢ on the accuracy of the logistic regression
classifier. As expected, larger £ does cause an impact in accuracy, though the degradation is minimal.

D.2 EVALUATION OF HashMarky
D.2.1 EXPERIMENTAL SETUP

We now present additional details about the experimental setup for the various experiments described
in Section[5.1] In all cases, default hyperparameters were selected unless otherwise specified.
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each of the 1000 iterations for the Random Forest Classifier

Figure 4: Experiments pertaining to HashMark; for the Adult Census Dataset (Part 1).

* Gaussian Datasets: We follow the same experimental setup as described by Ngo et al.| (2024),
with the only exception that we rely on 1 column (as opposed to 2 in their work, which
is necessitated by their protocol description). The Generate function is defined by adding
107° until it hashes to 0. We conduct various studies, as documented in Figure |2, with
additional experiments described below in Figure [f|and Figure 8]

« Utility for Real-Life Datasets: We evaluate our approach on four classification datasets
and one regression dataset, following prior work. Each dataset is split 75/25 into training
and test sets. Using the Synthetic Data Vault (SDV), we train three generative models with
default hyperparameters: CTGAN (GAN-based), Gaussian Copula (copula-based), and
TVAE (VAE-based). Once synthetic data is generated, we train machine learning models
on it—two classifiers for the classification datasets and three regressors for the regression
dataset—and measure performance using classification accuracy (for classification) or R?
(for regression). Performance was measured with respect to the original test data.

We then embed watermarks into the generated synthetic datasets. For classification datasets,
we evaluate two watermarking strategies:

1. Perturbation-based Generate: adding a small perturbation of 1076,

2. Constrained sampling-based Generate: rows are drawn i.i.d. from the learned distribu-
tion p and retained only if at least a fraction ¢ of the n columns hash to 0; otherwise,
the row is resampled until the dataset reaches the target size.

For the regression dataset, we only apply the constrained sampling approach. After wa-
termarking, we retrain the downstream ML models and measure accuracy/R?, compute
z-scores to assess watermark detectability, and record the average watermarking time for

17
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Figure 5: Experiments pertaining to HashMark; for the Adult Census Dataset (Part 2).

the rejection-sampling method. Performance was measured with respect to the original test
data.

* Fidelity of Alphanumeric Synthetic Data: We generate random 10-character of alphanumeric
for ASINs and 40-characters of hexadecimal values such that they all hash to 0. We then
take an average of the 30 trials, measuring the Jensen-Shannon Divergence.

We also present additional experiments studying the variation of MSE with respect to the choice of ¢
for further values of c. Similarly, we also show how the Z-score varies for larger sampled rows. This
is done in Figure|[§]

In Figure[7] we reproduce Figure 2 from Ngo et al. (2024). This shows that the performance
of HashMark,, as seen in Figure [2] matches (or surpasses) similar experiments from Ngo et al.
This is especially important, considering that HashMarks is conceptually simpler, offers support for
categorical data, and is more secure. Recall that HashMarks uses a truly random value as a seed,
while Ngo et al. opt for a heuristic approach to obtain a seed via a pairing algorithm, which are often
poor sources of entropy.

E DEFERRED PROOFS

Proof of Theorem[I} For each element z; in X, let 2} be the corresponding element in X,,. As defined
above:
l‘; =x;+ k; - 10_6,

where k; = min{k > 0 | H(z; + k- 107¢) = 0. In other words, |z; — ;| = k; - 10~ ¢.

18
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Table 4: Effect of constraint threshold ¢ on synthetic data quality across two datasets. We report
the average z-scores, sampling time (in seconds), and classification accuracy (in %) using different
classifiers and synthesizers. This is with respect to HashMark,. Accuracy is shown for both the
non-W/M and W/M settings.

Dataset t z-score Sampling Time (s) Classifier Synthesizer Non-W/M (%) W/M (%)
TVAE 9524+ 0.57 95.07£0.84
XGB GC 9433 £0.31 94.53+0.24

CTGAN 83.65 £3.24 81.79+6.76

TVAE 9478 £ 0.30  94.86 + 0.42
RF GC 94.43 £ 031 94.45+£0.30
CTGAN 84.31+193 84.76 £1.54

TVAE 94.86 £ 0.44  95.19 £0.43
XGB GC 9433 +£031 9453 +£0.24
CTGAN 84.07 494 85.62+£6.19

TVAE 94.84 £ 045 94.76 + 0.66

1/4 1.74 £0.22 64.08 £ 6.68

173 1.924+0.24 65.45 +4.90

RF GC 94.43 £ 031 9445+ 0.30

CTGAN  86.08 +6.52 86.60 + 6.82

Wilt TVAE 9502+ 044 9531 + 0.48

36529 iamples XGB GC 9433 +0.31  94.43 +0.33
columns

2 9434044 65.05 4 126 CTGAN  8255+7.06 8423 +6.56

TVAE 9473 £ 043  94.68 + 0.45

RF GC 9443 £ 031 9443 +0.30

CTGAN 80.46 £7.11  80.50 + 6.03

TVAE 9522 £0.32  95.17 £ 0.65
XGB GC 9433 £ 031 94.26 £0.46
CTGAN 78.83 £9.36  78.86 £9.80

TVAE 94.83 £ 0.66 94.83 £0.25
RF GC 94.43 £ 031 9441 £0.34
CTGAN 82.12 £ 557 8421 £5.18

TVAE 9521+032 9532+£0.53
XGB GC 9433 £0.31  94.26 + 0.46
CTGAN 78.38 £ 6.28 7747 £6.41

TVAE 9493 +041 94.84 4+ 0.29
RF GC 9443 +£031 94.41+0.34
CTGAN 79.87 £6.53  80.74 £5.64

TVAE 63.35+0.76 63.43+£0.79
XGB GC 52.82£399 52274324
CTGAN 47.07 £2.58 46.59 £+ 2.15

TVAE 62.79+£0.59 62934043
RF GC 53.60 +£2.02 53.71 £3.27
CTGAN 45.72+£2.02 4650 £+ 2.31

TVAE 62.75 £ 1.54 62.86 £1.42
XGB GC 52.82£399 52.27+3.24
CTGAN 4648 +£1.73  46.63 +2.89

TVAE 6191 +£2.63 6193 £2.29

2/3 2273 +£0.30 108.95 £+ 4.59

3/4  2320+0.16 116.91 +9.98

/4 2.84+£0.72 449.17 £ 40.27

1/3 263 £0.64 415.68 +7.37

RF GC 53.60 £2.02 5371 +327

CTGAN 4899+ 139  48.69 =+ 1.20

Housing TVAE 6095 +3.12  61.02+3.05

15380183“01’1@5 XGB GC 52.82£3.99 5276+ 2.63
columns

12 18274020 55212+ 12.20 CTGAN  47.70+£195 4875+3.12

TVAE 6338+ 0.16 6330 + 0.45

RF GC 53.60 £2.02 5345 +2.90

CTGAN 49.81 £2.78  47.59 +£3.02

TVAE 61.75+2.03 61.88+1.73
XGB GC 53.60 £4.82 5291 +2.85
CTGAN 47.77+£252 4629 +3.79

TVAE 6224 +£130 62.24 £1.55
RF GC 54.06 £2.88 53.74 £3.21
CTGAN 48.81 £2.08  48.13 +2.04

TVAE 62.13 £1.85 62.83 £1.97
XGB GC 52.824+399 5391 +£3.73
CTGAN 46.84 +3.37  48.00 £ 2.20

TVAE 60.86 £2.19  60.87 £2.20
RF GC 53.60 £2.02  53.75 £2.66
CTGAN 49.80+2.68 4856+ 1.73

2/3 3443 4+0.29 848.09 £ 17.84

3/4 5374+029 1632.13 +£79.29
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Table 5: Effect of constraint threshold ¢ on synthetic data quality across two datasets. We report
the average z-scores, sampling time (in seconds), and classification accuracy (in %) using different
classifiers and synthesizers. This is with respect to HashMarks. Accuracy is shown for both the
non-W/M and W/M settings.

Dataset t z-score Sampling Time (s) Classifier Synthesizer Non-W/M (%) WM (%)
<GB TVAE 88524474 8753+ 489
4 5774078 37324+ 105.90 CTGAN 73744315 72924375
. TVAE 9248+ 133 9303+ 1.22
CTGAN 7456 +328 7424 +2.90
<GB TVAE 8884+ 190 90.64+ 1.19
U3 4894115 SIL61 £ 876 CTGAN 7044+ 626 7087 + 5.5
. TVAE  9136+094 91.92+ 1.00
HOG CTGAN  7329+381 7325+ 4.12
812;‘4 Sfmples XGB TVAE 9143 +127 9149 +0.85
columns
U 7461018 797564 1258 CTGAN 7544 +3.19 75.82 + 3.40
. TVAE 9243+ 101 91.86+ 0.89
CTGAN 74324327 7400 + 3.09
<GB TVAE 8880 +253 87.78+271
2/3 3140021  9868.32 + 8790.14 CTGAN 72714293 73344331
. TVAE 9178+ 1.63 9147 +2.50
CTGAN  7231+375 7271 + 408
<GB TVAE 9083+ 1.00 9074 + 1.09
3/4 40774016 35088.75 - 30542.58 CTGAN  7526+£404 7495+ 400
. TVAE  8892+3.03 88.08+3.70

CTGAN 70.71 £5.23  70.20 £5.15

TVAE 87.78 £ 0.78  87.78 £ 0.76
XGB GC 8551 +£0.63 85.80+0.76
CTGAN 87.35+0.35 87.06 + 0.95

TVAE 88.74 £0.32 83.74+ 045
RF GC 85.62+0.43  85.99 £+ 0.98
CTGAN 87.95+049 87.91+0.28

TVAE 88.13+0.63 87.86+0.86
XGB GC 85.51+0.63 85.28 +1.17
CTGAN 84.76 £1.05 84.94 +1.31

TVAE 88.18 +0.53  88.06 & 0.81

174 -2.11+1.38 438.51 £5.14

173 -337+1.26 639.55 £ 64.59

RF GC 85.62 + 043  85.70 + 0.68

CTGAN  88.01 +£0.62 87.80 + 0.69

Shopper TVAE 8727+ 133  87.54 +0.94

912;‘7 Sfmples XGB GC 8551 £0.63 86.10 + 0.94
columns

2 9924127 939334 107.06 CTGAN  8527+154 8559 + 1.64

TVAE 88.61 £0.56 88.28 + 0.54

RF GC 85.62 + 043  85.65+0.71

CTGAN 87.80 £0.25 87.57 £0.69

TVAE 87.46 £ 0.69  88.01 & 0.20
XGB GC 8551 £0.63 85.74 £0.61
CTGAN 85.89+0.57 85.59 +1.70

TVAE 8848 +£0.32 88.30+0.64
RF GC 85.621+ 043 86.49 £+ 0.56
CTGAN 87.80+0.88  87.82+0.59

TVAE 88.10+:0.92  88.39 £ 0.78
XGB GC 85.51+0.63  86.06 + 1.24
CTGAN 86.75+0.81 86.44+ 043

TVAE 88.52+0.55 88.17 £ 0.88
RF GC 85.62+ 043 86.77+0.74
CTGAN 87.80+0.58  87.63 £ 0.74

2/3 34144028 3690.59 £ 252.79

3/4 4350 £042 927641 £ 1742.76
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Table 6: Effect of constraint threshold ¢ on synthetic data quality for the King dataset (11 cols
and 16209 samples). We report the average z-scores, sampling time (in seconds), and classification
accuracy (as R2 values) using different classifiers and synthesizers. This is with respect to HashMarks.
Accuracy is shown for both the non-W/M and W/M settings.

Sampling Time (s) Classifier ~Synthesizer Non-W/M W/M

TVAE  0524+0067 0518+ 0.074

Ridee  CTGAN  0.524+0.067  0.511 +0.039

GC 0576+ 0018 0576+ 0.014

TVAE  0.625+0024 0614+ 0011

518.84 + 10.49 RF CTGAN 0590 +0.018  0.586 + 0.028
GC 054340017 0530 + 0.021

TVAE  0.600+ 0040 0582 + 0.055

XGB  CTGAN  0575+0019  0.567 +0.017

GC 054340017 0541 +0013

TVAE 0480+ 0.128  0.526 + 0.083

Ridee  CTGAN  0.507 +0.083  0.511 % 0.079

GC 0576+ 0.018 0576 + 0.015

TVAE 061740035  0.630 + 0.020

638.89 + 26.21 RF CTGAN 0558 +0.047  0.571 + 0.029
GC 0543+ 0017 0530+ 0017

TVAE 0576+ 0063 0572+ 0.063

XGB  CTGAN 0581 +0019 0573 +0.017

GC 054340017 0532+ 0.013

TVAE 0528 +0063 0534+ 0.043

Ridge ~ CTGAN 0471 +0.080 0458 + 0.099

GC 0576 +0.018 0579 + 0.017

TVAE 0626+ 0028  0.631 + 0.024

783.76 £ 46.10 RE CTGAN 0576 +0.020  0.583 +0.017
GC 054340017 0534+ 0011

TVAE 0603+ 0054  0.606 + 0.040

XGB  CTGAN  0547+0.038 0559 +0.019

GC 054340017 0531+ 0.025

TVAE 052340031 0464+ 0.130

Ridee ~ CTGAN  0.511+0.049 0412+ 0.078

GC 0576 +0.018 0580 + 0.018

TVAE  0.634+0023 0578+ 0.094

302149 £47842  pp CTGAN 0573 +0.030  0.557 + 0.038
GC 054340017  0.534 + 0.020

TVAE  0615+0042 0625+ 0.031

XGB ~ CTGAN  0.549 +0.036  0.494 + 0.059

GC 054340017 0533+ 0033

TVAE 0464+ 0009  49.12 + 0.067

Ridee ~ CTGAN  0.548 +0.044  0.423 + 0.095

GC 0576 + 0.018  0.582 + 0.018
TVAE  0.6587 +0.032 0.5924 + 0.045

8208.15+ 77851  pp CTGAN  0.578+0.028  0.544 + 0.04
GC 054240017 0537 +0.016
TVAE 0656+ 0041 0.0.643 + 0.031

XGB  CTGAN 0563 +0.038 0515+ 0.029

GC 054240017 0519+ 0.038
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Figure 6: This figure shows the evaluation of the robustness of Gaussian noise by studying the z-score
across various choices of standard deviation. To the left, we show the results from (2024),
and to the right, we show the results from our own experiment. Observe similar behavior across both
works.
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Figure 7: This is a reproduction of Figure 2 from Ngo et al. (2024).

Recall that 7 maps to 0 and 1 with equal probability. Therefore, for a given x} = z; + k; - 107¢, the
hash function should have mapped to 1 for every choice from O to k; — 1 and succeed in time k;. In

B+l .. R
other words, Pr[K; = k] = (3) e, it follows a geometric distribution.

Now, || X — Xy ||oo = max; |z; — 2} = max; k; - 10~°. We can use the well-known approximation
for the maximum of n i.i.d geometric variables to get E[max; k;] = 0.5 + Hy/In2 where Hyy is
the V-th harmonic number. FurtherIn N < Hy <14 1In N or Hy < In N + 1. This gives us that:
In(N)+1
n(N) + ) 10-°

(0.5 + =13

(InN +2)-107°

E[IIX = Xy|loo] <

A
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Figure 8: Plot of additional experiments on Gaussian dataset. Figureplots MSE for more values
of c. Figure@] shows how the z-score changes when more rows are involved in the computation.

Proof of Theorem[Z] The Jensen-Shannon Divergence (JSD) measures the similarity between two
probability distributions. It is defined as:

JSD(PI|Q) = 3 D(P|[M) + 3 D(Q||M) @

where M = %(P+ Q) is the midpoint distribution, and D(P||Q) is the Kullback-Leibler Divergence,

defined as: D(P||Q) = >, P(x) 10g(52§§)~

Let us find: JSD(p||p’). Partition the set of all values X into X, and X7 where X, consists of those
values in X that hashes to bit b. Note that p’ is only defined on X giving:

{p(Zz) z € Xo

/ _
plz) = 0 otherwise

Here, Z is a normalization term needed to ensure that the sum of probabilities in p’ is 1. Since
the hash function is ideal, i.e., maps to 0 and 1 with equal probability, Z is approximately 0.5 or
P (x) =2 p(x) for x € Xo.

Now, let’s find the midpoint distribution M (z) = 5 (p(z) + p'(z)). We get:

N

3p(z) =€ Xo
ip(z) otherwise

M) = {

Now, we can compute the Kullback-Leibler divergences:

DUAIM) = 3 plo) lox(£175)
i 2 e
= 3 st £y + 3 sl st )

Simplifying, we get D(p||M) = 0.5(log(2) + log(2/3)) = 0.5log(4/3). Similarly, we get:
D(p'||M) = log(4/3). Plugging this in Equation[2] we get:

3 4
JSD(pllp’) = 1 log(g) ~ 0.215
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Proof of Proposition[l] Of the m values, we need to compute 7; that ensures that the score is o. We
use Equation|T]as:

2(T; — 0.5M)
a= —>=
vM
Then, T; = 0.5M + v/ M /2. In other words, we need at least 0.5M + o/ M /2 values to ensure a
Z-score of «. Call this value T,. ]

Proof of Theorem[3] First, observe that for any value val; such that H(val;) = 0:

1
Pr[H(val; + ¢;) = 1] = 3

for any ¢; & D we already know that one needs at least 7,, = 0.5M + a+v/M /2 cells to be

unmodified to get a score of « (from Proposition[T). To achieve the watermark removal, we need to

add noise to the remaining N — T, cells. Observe that this follows a hypergeometric distribution - in

a sample of size M, N successes exist (i.e., mapping to 0). Then, the expected number of tries to
pick at least (N — T,,) successfully is given by: ~ (N — T,,) - M/N. Therefore, we get:

M

E[fr]:=2-(N —-T,) N

24



	Introduction
	Our Contributions

	Preliminaries
	Problem Formulation
	HashMark: Element Wise Tabular Watermarking
	Defining Generate
	HashMark2: Global Embedding
	Analysis on Removal of HashMark

	Experimental Results
	Evaluation of HashMark2

	Conclusion
	Related Work
	Dataset Details
	HashMark1: Embedding Pseudorandom Bits
	Detecting HashMark1

	Experiments for HashMark
	Evaluation of HashMark1
	Evaluation of HashMark2
	Experimental Setup


	Deferred Proofs

