
OPT2024: 16th Annual Workshop on Optimization for Machine Learning

A Continuous Variable Optimization method for the Quadratic
Assignment Problem

author names withheld

Under Review for OPT 2024

Abstract
We present a novel continuous algorithm for solving the Quadratic Assignment Problem (QAP),
leveraging auxiliary dynamics to enforce permutation constraints without the need for post-processing.
This approach outperforms traditional continuous methods in terms of constraint enforcement and
demonstrates faster convergence compared to branch-and-bound techniques. Despite the algo-
rithm’s effectiveness, the number of auxiliary variables currently scales cubically with the problem
size, posing a limitation. However, our analysis suggests that associating auxiliary variables with
correlators of clause functions could significantly improve efficiency. Additionally, the algorithm
encounters challenges with local minima due to the geodesically non-convex QAP potential. We
propose future research directions to address this issue, including alternative formulations of the
potential landscape and strategies for escaping local minima.
Keywords: Non-convex optimization, Manifold optimization, Dynamical systems, Differential
equations, Combinatorial Optimization, Chaos theory, Boolean Satisfyability, SAT, Quadratic As-
signment problem, QAP, Traveling Salesmen problem, TSP, Continuous variable computing

© .



CONTINUOUS OPTIMIZATION FOR QAP

1. Introduction

Combinatorial optimization is crucial for many real-world applications but is hindered by the ex-
ponential time complexity of state-of-the-art methods. As problem size increases, even advanced
algorithms become computationally infeasible. While exact methods like branch and bound and
heuristics such as Tabu search [4], genetic algorithms [3], and simulated annealing [7] have been
developed, they also face scalability challenges. This work presents a continuous algorithm address-
ing one of the toughest combinatorial optimization challenges: the Quadratic Assignment Problem
(QAP), a generalization of the Travelling Salesman Problem (TSP). By employing a continuous rep-
resentation of the discrete problem, we harness analog variable computing to enhance scalability.

1.1. Continuous Variable Machines

Digital computing advancements are nearing a standstill due to physical limits on transistor size.
Simultaneously, little progress has been made in efficiently solving classes of combinatorial con-
straint satisfaction and optimization problems. Consequently, alternative computational paradigms
are emerging. Continuous variable algorithms may outperform digital systems in specific domains,
with recent analog computing devices solving problems significantly faster than conventional meth-
ods [1, 5].However, benchmarking these continuous algorithms poses a unique challenge: unless
a dedicated physical machine is built, the only way to verify their performance is through sim-
ulation on digital machines. This adds a significant constant and a polynomial overhead to the
time complexity. Nevertheless, continuous variable machines hold potential for overcoming current
computational bottlenecks in combinatorial optimization.

1.2. Problem Formulation

This work focuses on the Quadratic Assignment Problem (QAP), involving two sets: N facilities
and N locations. Each location has a distance specified, and each facility has a weight or flow, indi-
cating goods transported between facilities. The goal is to assign facilities to locations to minimize
total cost, calculated as the sum of the products of flows and distances.

Mathematically, we aim to minimize:

min
P∈Pn

tr
(
ATP TBP + P TC

)︸ ︷︷ ︸
≡VQAP(P )

, (1)

where A, B, and C are constant N ×N matrices. The constraint ensures P is a permutation matrix,
with the special case C = 0 reducing the QAP to the TSP.

A continuous variable solver is defined by the dynamical system:

d

dt
P = f(P, t;A,B,C, . . . ),

where f is constructed to ensure fixed points correspond to solutions defined by matrices A, B, and
C.

1.3. Related Work

As continuous variable computation gains traction, efforts to address QAP-like optimization prob-
lems have emerged. Adapting the discrete nature of permutation groups to continuous systems
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poses challenges. One approach is to relax the solution space to N × N matrices, broadening the
search space but introducing inefficiencies. Alternatively, restricting optimization to the orthogonal
manifold ON has been explored using Riemannian gradient descent, but this method struggles with
convergence due to increased geodesic non-convexity and local minima.

Restricting dynamics to the convex hull of permutation matrices (the Birkhoff polytope) main-
tains combinatorial structure while benefiting from convexity, making optimization potentially more
tractable.

2. Methodology

Our approach was to enforce the permutation constraint by reformulating the it as a boolean satis-
fyability problem and employing the dynamical system from [2] in addition to the gradient on the
original objective function.

2.1. The SAT problem

Boolean SAT is a family of constraint satisfaction problems in which we are given a set of Boolean1

variables xi ∈ B, where i ∈ [N ], and a set of constraints in the form of a logical expression (also
called ”formula”):

F (x1, x2, . . . , xN ) =
M∧

m=1

Cm = C1 ∧ C2 ∧ · · · ∧ CM ,

where ∧ is the logical and operation and Cm is called the mth clause. Each clause consists of literals
concatenated by ∨, the logical or operator: Cm = νm1 ∨ · · · ∨ νmk

. A literal νi is a variable xi or
its negation xi. The decision problem is to determine whether there is a configuration of the logical
variables such that the constraint is satisfied. A convenient way to encode a particular problem
instance (a particular choice of νi) is to define a matrix

cim =


1 if xi ∈ Cm,
−1 if xi ∈ Cm,
0 otherwise.

The state space of a SAT problem with N variables is identical to the vertex set of the hypercube
graph QN , in which each vertex is identified by a string of N bits. The chief ingredient that makes
SAT problems hard is the exponential size of the state space (the configuration space QN has 2N

vertices).

2.2. Continuous satisfyability solver

The idea behind the algorithm defined in [2], is to break up the problem along the clauses, and
define an objective function -called clause function- for each:

Km = 2−km

N∏
j=1

(1− cmjsj(t)) ∈ [0, 1] . (2)

1. The set is defind as B ≡ {0, 1} or FALSE/TRUE
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Here si is called a soft-spin, the embedded or relaxed continuous variable assotiated to the boolean
variable xi, and it can take values from −1 to +1. The clause function is a continuous relaxation
of the boolean observable of the clause, it is one (true) if the function is zero, and one otherwise.
To solve a SAT problem, all of these function have to be true at the same time, corresponding to
the the minimum of the sum of some monotonically increasing function of these clause functions.
If we were to define a gradient descent on such a potential, it would be guaranteed that the minima
of that function corresponds to solution to the SAT problem. The problem is that this function
is non-convex, and so such dynamics are bound to get stuck in local minima. To overcome this
hurdle, non-local information has to be incorporated into the algorithm. This comes in the form of
additional auxiliary variables that contain information about the previous evolution of the system:
The SAT problem becomes a minimization problem of the potential

VSAT(s, a) =
M∑
m

amK2
m =

M∑
m

K2
m exp

∫ t

0
K2

m(τ)dτ︸ ︷︷ ︸
=am(t)

= VSAT [s(τ ≤ t)] .

with the dynamics defined as:

dsi
dt

= −∂siVSAT(s, a) ,

dam
dt

= amK2
m .

It is proved in [2] that the only fixed points if this dynamical system are those that correspond
to a valid solution to the SAT problem.

2.3. Reformulating the constraint

Per definition a permutation matrix contains one and only one number 1 in each of its rows and
columns. The logical function F that the elements of a permutation matrix have to satisfy is thus:

F (P11, P12, . . . , PNN ) =

 N∧
i=1

N∨
j=1

Pij ∧
∧
k ̸=j

¬Pik

 ∧

 N∧
j=1

N∨
i=1

Pij ∧
∧
k ̸=i

¬Pkj

 .

Which can be formulated as a SAT problem in conjunctive normal form:

F (P ) =

(
N∨
i=1

Pij

)
∧

∧
j ̸=k

(¬Pij ∨ ¬Pkj)

 . (3)

Note that the least amount of clauses in this formulation is M = 2N
(
1 +N (N−1)

2

)
2.4. Proposed algorithm

The Eucledian gradient on the relaxed (soft-spin) matrix elements:

∇VQAP(P ) = BPA+BTPA+ C.
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However, this gradient is a continuous vector function defined over the whole eucledian embedding
space, and does not respect any constraints. To enforce the permutation constraints we supplement
the gradient descent by the SAT potential described in the previous section.

d

dt
Pij = −β∂PijVQAP(P )− ∂PijVSAT(P, a) ≡ f(P, a) , (4)

d

dt
am = amK2

m . (5)

The two terms in the formulation have different long term behavior. The QAP gradient is al-
ways some polynomial in the elements of P while the SAT potential behaves exponentially due
to equation 5. This means, that eventually the constraint term will outgrow the QAP gradient and
the dynamics will converge to a permutation matrix. The analog time until the dynamics converge
to a candidate solution state (aTTS) mainly depends on the SAT dynamics, and the value of the
parameter β.

The SAT dynamics approximately constrain the dynamics to the interior of the hypercube
HN2 = [−1,+1]×N2

, but it might be worthwhile to restrict the dynamics to the embedded manifold
of orthogonal matrices O(N). This can be achieved by projecting the vector-field f from equation
4, down to O(N) via the generalized Lie bracket

f̃(P ) = P {f(P ), P} .

3. Simulations and Results

The algorithm was tested on a randomly generated dataset using the DifferentialEquations mod-
ule of the Julia programming language and compared against a conventional optimizer, SCIP. The
matrix formulation poses a significant challenge for both methods, even for smaller problems with
N = 10, primarily due to the nature of the constraints. While digital methods that directly handle
permutations (such as 2-opt heuristics) or brute-force techniques can solve problems of this size,
they do not offer convergence guarantees. These simulations are intended as a proof of principle.

Due to the exponential enforcement of the constraints, the analog solver’s time-to-solution re-
mains constant as a function of problem size. However, when simulating the system on a digital
machine, larger problems require increased memory allocation, which slows down the integration
process. The simulation results suggest that the evolution of the solution gap follows a sub-power-
law trend, in contrast to the behavior observed with branch-and-bound methods (see Fig. 2).

Simulations suggest, that restricting the dynamics to the embedded orthogonal manifold has
both advantages and drawbacks. Operating on the manifold potentially allows a drastic reduction in
the number of SAT constraints, as permutation matrices are the only orthogonal matrices with only
non-negative entries. However, the potential described by equation 1 is geodesically non-convex,
meaning the restriction introduces new local minima. As a result, the Riemannian gradient often
gets trapped in local optima.

4. Conclusion and Future Work

We have demonstrated that the auxiliary dynamics effectively enforce the permutation constraint,
representing a notable improvement over previous continuous approaches that either did not enforce
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these constraints [6] or required post-processing. Additionally, we observed that the convergence of
the gap is faster than with branch-and-bound methods.

A significant drawback of the current SAT constraints is the number of auxiliary variables,
which scales cubically with the number of sites. However, the evolution of these auxiliary variables
suggests that the SAT problem itself is relatively simple. This observation implies that the number
of auxiliary variables could potentially be reduced, improving efficiency. One possible approach is
to associate auxiliary variables with correlators of clause functions, rather than assigning them to
each individual clause function.

In its current form, the algorithm does not address scenarios where the dynamics become trapped
in local minima due to the geodesically non-convex nature of the QAP potential. Further research is
needed to mitigate this issue, potentially by developing techniques designed to escape local minima
or through alternative formulations of the potential landscape.
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Figure 1: An example simulation of an N = 7 system finding a solution.

Figure 2: The evolution of the gap as a function of wall-clock time. Solid lines correspond to analog
solver, dotted line correspond to branch and bound. For N = 10 sized problems.
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