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Abstract

The quality of probabilistic forecasts is crucial for decision-making under uncertainty.
While proper scoring rules incentivize truthful reporting of precise forecasts, they fall short
when forecasters face epistemic uncertainty about their beliefs, limiting their use in safety-
critical domains where decision-makers (DMs) prioritize proper uncertainty management.
To address this, we propose a framework for scoring imprecise forecasts—forecasts given
as a set of beliefs. Despite existing impossibility results for deterministic scoring rules, we
enable truthful elicitation by drawing connection to social choice theory and introducing
a two-way communication framework where DMs first share their aggregation rules (e.g.,
averaging or min-max) used in downstream decisions for resolving forecast ambiguity. This,
in turn, helps forecasters resolve indecision during elicitation. We further show that truthful
elicitation of imprecise forecasts is achievable using proper scoring rules randomized over
the aggregation procedure. Our approach allows DM to elicit and integrate the forecaster’s
epistemic uncertainty into their decision-making process, thus improving credibility.

Keywords: Imprecise Probability, Scoring Rules, Elicitation

1 Introduction

Probabilistic forecasting is a powerful tool for decision-making under uncertainty with diverse
applications ranging from energy demand forecasting (Pinson, 2013; Pinson & Girard, 2012) and
credit risk assessment (Rindt et al., 2022; Yanagisawa, 2023) to machine learning (ML) (Gneiting &
Raftery, 2007) and large language models (LLMs) (Shao et al., 2024; Wu & Hartline, 2024). Proper
scoring rules serve as fundamental tools for evaluating the quality of probabilistic forecasts (Brier,
1950; Gneiting & Raftery, 2007; Murphy & Winkler, 1988). They also serve as a backbone for elic-
iting other distributional properties such as their moments. (Frongillo & Kash, 2014). By assigning
numerical scores based on the reported forecast and the realized outcome, these rules incentivize
truthful reporting, i.e., any deviation from the forecaster’s true beliefs would result in suboptimal
scores. Beyond their applications in statistics, proper scoring rules have a deep connection with
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mechanism design, a sub-field of economics. When used as a payment mechanism, they ensure
that the agents have no incentive to lie, a property known as incentive compatibility (Myerson,
1981).

Traditionally, scoring rules operate under the assumption that forecasters possess a precise prob-
abilistic belief about some uncertain event. They are designed to reward the forecasters whose
forecasts reflect their true precise beliefs (Gneiting & Katzfuss, 2014; Savage, 1971). For example, in
weather forecasting (Brier, 1950) a forecaster who believes there is a 60% chance of rain tomorrow
should ideally report 60% as their forecast. However, in many real-world scenarios, forecasters
face significant ambiguity due to the inherent complexity of atmospheric systems, coupled with
limited data and model resolution, which introduce substantial imprecision (Wilks, 2011). It is
thus plausible for forecasters to report imprecise probability assessments in these scenarios; for
example, the chance of rain tomorrow may be assessed within the interval [50%, 70%]. Impor-
tantly, classical proper scoring rules built for precise forecasts cannot account for such additional
uncertainty (Konek, 2015).

Under the context of machine learning, imprecise forecasting is closely related to the concept of
out-of-distribution (OOD) generalization (Muandet et al., 2013; Wang et al., 2021; Zhou et al., 2023).
In standard supervised learning, where training and test data are assumed to be independent
and identically distributed (i.i.d.), the predictive model reflects the learner’s precise belief about
the data generating process. However, in OOD generalization—where multiple training datasets
are observed, and the test data may not be i.i.d. with the training data—Singh et al. (2024) argue
that the notion of generalization (e.g., average-case or worst-case optimization strategy) should
be determined by the model’s end user, also referred to as the decision-maker (DM). When
direct interaction between the learner and the DM is not possible, Singh et al. (2024) propose an
imprecise learning algorithm that trains a portfolio of predictors (forecasts) in advance, which
are then provided to the DM. In contrast, for practical scenarios where the learner and DM can
communicate, eliciting precise forecasts is straightforward using classical scoring rules. However,
eliciting imprecise forecasts remains challenging due to the lack of suitable imprecise scoring
rules. This gap motivates us to design appropriate imprecise scoring rules that are applicable
beyond machine learning contexts.

In these scenarios, the key challenge to designing an appropriate scoring mechanism arises from
the forecaster’s epistemic uncertainty. This challenge has led to several impossibility theorems
for strictly proper imprecise scoring rules (Mayo-Wilson & Wheeler, 2015; Schoenfield, 2017;
Seidenfeld et al., 2012). However, these works focus solely on eliciting imprecise forecasts from
the forecaster, overlooking the fact that probabilistic forecasts are typically used by downstream
DMs, making elicitation rarely the sole objective. Without input from the DMs during elicitation,
forecasters must rely solely on their imprecise beliefs, which contain inherent ambiguity. This
often leads to indecision during elicitation—a key factor behind the impossibility results observed
in prior work. Recently, Fröhlich & Williamson (2024) explored imprecise scoring rules involving
DMs, but their analysis focused only on min-max (pessimistic) decision-making and lacked formal
discussion of the DM’s role. More broadly, indecision can be resolved through subjective choices
beyond the min-max rule. However, it cannot be resolved by forecasters independently without
eliminating their epistemic uncertainty. We argue that the DM must actively assist forecasters in
navigating indecision by communicating their subjective preferences.
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Figure 1: We consider scenarios where the expert may possess imprecise belief over the outcome
o ∈ O, represented as a credal set P ⊆ ∆(O). The goal is to construct a strictly proper imprecise
scoring rule s(Q, o) to incentivise a truthful report Q = P . The leftmost figure illustrates the
direct extension of precise scoring rules to the imprecise setting. Scoring rules in precise settings,
however, do not involve the downstream decision-maker (DM) in the elicitation process. In this
work, we show that truthful elicitation of imprecise forecasts requires the DM to share their
knowledge of the aggregation rule ρ used in decision making with the expert (middle). To avoid
strategic manipulation by the expert, the rightmost figure depicts the proposed framework in
which the DM shares only a distribution θ(ρ) over aggregation rules. This allows us to construct
a strictly proper imprecise scoring rule, sθ.

Our contributions. To address this challenge, we propose a novel setup for scoring imprecise
forecasts where we consider a DM as an additional agent, who actively guides the forecaster in
resolving indecision during elicitation. Our contributions are summarized as follows:

• We show that, without communication between the DM and the forecaster, we recover prior
impossibility results.

• We formalize DM-forecaster communication using aggregation rules from social choice
theory (Arrow, 2012) and generalize tailored scoring rules (Johnstone et al., 2011) to accom-
modate these aggregations.

• We analyze the connection between axiomatic properties of aggregation rules from the
social choice perspective and their impact on both truthful elicitation from the forecaster
and the DM’s decision-making process.

• By restricting to strategic communication, specifically by sharing only a distribution over
aggregation rules, we propose a novel randomized tailored scoring rule that is strictly proper
for imprecise forecasts.

The rest of the paper is organized as follows. Section 2 introduces proper scoring rules and
imprecise probabilities. Section 3 then formalizes the notion of an imprecise forecaster and
outlines decision-making for the forecaster and DM. Next, Section 4 explores imprecise scoring
rules, first without communication and then with aggregation. Section 5 presents strictly proper
scoring rules for imprecise forecasts, while Section 6 reviews prior work. Finally, Section 7
concludes with a discussion of future directions.
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2 Preliminaries

This section introduces proper scoring rules, imprecise probabilities and credal sets. We begin by
establishing the notation. Let (O,F) be a measurable space whereO is a nonempty continuous set
of possible outcomes (or states of nature) and F the corresponding sigma-algebra. An uncertain
event is denoted by a random variable X ∶ O → R and ∆(O) denotes the set of plausible
probability distributions on O. Our framework involves two agents: a forecaster and a decision-
maker (DM), each with an associated utility functions u ∶ X × O → R, where X represents
the input space relevant to the agent’s utility. Since we often refer to specific outcomes o ∈ O,
we assume X to be the identify function when discussing expected utilities. Thus, for some
x ∈ X , th agent’s expected utility under a distribution p is expressed as: EX∼p[Xx(o)], where
Xx(o) ∶= u(x, o) is used as shorthand. Additionally,H denotes Hilbert space.

2.1 Precise Scoring Rules
Scoring rules incentivize an expert to truthfully report their probability assessments of an uncertain
event (Brier, 1950; Winkler, 1967). Specifically, a scoring rule s ∶ ∆(O) ×O → R assigns a score
of s(q, o) to an expert with a forecast q when an outcome o happens.

Definition 2.1. A forecaster is precise if their true belief can be expressed as a probability
distribution p ∈ ∆(O).
Since classical proper scoring rules focus on truthful reporting and evaluation of precise forecasts,
we refer them as precise scoring rules. A precise scoring rule is regular if s(q, o) ∈ R for all o ∈ O
and s(q, o) = −∞ only if q(o) = 0. A regular scoring rule disincentivises strong predictions
about the impossibility of an event.

Definition 2.2 (Expected Utility of Expert). Precise scoring rules implicitly assume that the expert
is an expected utility-maximising agent. Therefore for an expert with true belief p, utility of
reporting forecast q is

up(q) = Eo∼p[s(q, o)] (1)

We now define a sub-class of regular precise scoring rules, known as strictly proper precise scoring
rules that incentivize truthful reporting of the expert’s belief.

Definition 2.3 (Strictly Proper Precise Scoring Rule). A regular precise scoring rule s ∶ ∆(O) ×
O → R ∪ {−∞} is strictly proper if the expert’s true belief p ∈ ∆(O) uniquely maximizes their
expected utility, i.e., for all p, q ∈ ∆(O),

Eo∼p[s(p, o)] > Eo∼p[s(q, o)] (2)

Some examples of strictly proper precise scoring rules are, logarithmic scoring rule s(q, o) =

ao+b log(q(o)) and quadratic scoring rule s(q, o) = ao+b(2q(o)−Eo∼q[q(o)])with b ∈ R+ and
ao ∈ R as arbitrary parameters. Proper precise scoring rules are closely related to convexity and
can be characterized using convex functions as shown in Gneiting & Raftery (2007); McCarthy
(1956); Savage (1971).
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Theorem 2.4 (Gneiting & Raftery 2007). A regular scoring rule s is (strictly) proper if and only if

s(q, o) = G(q) − ∫ G
′(q)dq +G

′(q)(o) (3)

where G ∶ ∆(O) → R is a (strictly) convex function and G′(q) is a subgradient of G at point q and
G

′(q)(o) is the value of gradient at outcome o.

An implication of Theorem 2.4 is that with this characterisation of the scoring rule s, we can
interpretG as the correspondingmaximum expected score (Frongillo &Kash, 2014). The derivation
of G as the expected score is included in the appendix A.1 for completeness.

2.2 Imprecise Probabilities and Credal Sets
Standard probability theory assigns a unique numerical value to each event, whereas imprecise
probabilities allow for a range of plausible values to represent uncertainty in the presence of
limited or ambiguous information. One common approach to modelling such uncertainty is via
credal sets. A credal set P is defined as a subset of the plausible probability distributions over a
given outcome space O, i.e.,

P ⊆ ∆(O) = {p ∶ O → [0, 1] ∣ ∫ dp(o) = 1} .

It is important to note that while many authors assume that P is convex (and often closed) to
ensure consistency with rational decision-making (Gajdos et al., 2004; Troffaes, 2007) and to satisfy
coherence (de Finetti, 1974; Walley, 1991), the definition itself does not require P to be the convex
hull. Rather, P is directly specified as a set of probability measures representing the range of
plausible beliefs about the state of nature (Augustin et al., 2014; Walley, 1991). For clarity, we
denote the credal set that is the convex hull of probabilities with co(P) and the extreme points
of such convex hull as ext(P). Generalizing classical scoring rules to accommodate imprecise
probabilities involves adapting the classic framework to account for all the distributions in the
credal sets. This will ensure the generalized scoring mechanism’s validity for non-singleton sets
of probabilities.

3 A Unifying Decision-making Framework for DM and Fore-
caster

In this work, we consider scenarios where an agent is tasked with selecting an input x from a
finite space of inputs X ∶= {x1, . . . , xn}. Agent’s choice of input x ∈ X and outcome of uncertain
event o ∈ O quantify the utility u(x, o) obtained by the agent. In the case of a precise forecaster,
X ∶= ∆(O) and the equation 1 shows how the precise score u(x, o) ∶= s(p, o) acts as a utility
for the forecaster, underlining the decision-making aspect within elicitation. From the DM’s
perspective, X ∶= A where A ∶= {a1, . . . , am} denotes the finite space of actions which DM can
choose from. Depending upon the outcome o ∈ O, the DM obtains u(x, o) ∶= u(a, o) as the
utility.
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3.1 Decision-Making with Forecasts
There exists a crucial difference between decision-making with imprecise forecasts v.s. precise
forecasts. In the case of precise forecasts, the agent (forecaster or DM) has (via belief or report)
a p ∈ ∆(O). Using p allows them to define a complete preference relation ⪰p over X based on
several well-established rationality frameworks (Savage, 1972; Von Neumann & Morgenstern,
1947). Thereby, allowing the agent to select the corresponding best input x∗. This x∗ represents
the best forecast to report in the case of a precise forecaster and the best action to take in the case
of DM. However, in scenarios where the belief (or obtained report) for an agent is a credal set
P , the preference relation (⪰P ) obtained on X using P is unclear. In this case, a natural way to
define ⪰P is based on the idea of dominance.

Definition 3.1. Consider a credal set P , then the corresponding preference relation ⪰P over X
for a VNM rational (Von Neumann & Morgenstern, 1947) agent can be defined as follows, for all
x, x

′
∈ X ,

x ⪰P x
′ iff Ep[u(x, o)] ≥ Ep[u(x′

, o)] ∀p ∈ P

Unless the reported credal setP is implicitly a precise forecast of type {p ∈ ∆(O)}, the preference
relation ⪰P is a partial order over X . The partial order ⪰P can be incomplete, since there can be a
pair of inputs x, x′

∈ X such that x′ /⪰P x and x /⪰P x
′. In other words, x and x′ are incomparable.

This can result in indecision for the agent. This means that both the forecaster and the DM
face indecision when solely relying on the credal set for their respective tasks (elicitation or
decision-making).

3.2 Imprecise Forecaster
Our work focuses on analyzing scoring rules in scenarios where the forecaster may be imprecise.
Specifically, we formalise the notion of an imprecise forecaster and their truthfulness below.

Definition 3.2. A forecaster is imprecise if their true belief can be expressed as a set of probability
distributions P ⊆ ∆(O). A report Q ⊆ ∆(O) is called an imprecise forecast, which implicitly
includes precise forecasts Q = {q} for some q ∈ ∆(O).
Definition 3.2 generalizes the precise setting as it allows the forecaster to express their (partial)
ignorance by reporting both aleatoric uncertainties (as elements in the set) and epistemic uncer-
tainties (as the set itself) (Hüllermeier & Waegeman, 2021). This subsumes both scenarios where
the forecaster’s belief is truly imprecise, e.g., the probability that it will rain tomorrow is [0.6, 0.8],
and where their belief is calibrated with respect to multiple sources of potentially conflicting in-
formation, e.g., the estimated probability based on data from multiple weather stations. Moreover,
this can also be interpreted as a “collective” report obtained from multiple (potentially conflicting)
precise forecasters.

Imprecise probability scoring rules can be defined analogously to precise scoring rules as fol-
lows.
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Definition 3.3. (Imprecise Probability Scoring Rule) An imprecise probability (IP) scoring rule
s ∶ 2∆(O) ×O → R∪ {−∞} assigns a score of s(Q, o) to a report Q ⊆ ∆(O) when the outcome
o ∈ O is realized.

Analogous to precise setting, an IP scoring rule is regular if s(Q, o) ∈ R for all o ∈ O, except if
q(o) = 0 for all q ∈ Q, then s(Q, o) = −∞. To define regularity analogous to the precise setting
we consider for all q ∈ Q, since otherwise reporting vacuous set ∆(O) or other imprecise sets
will have −∞ as an incentive. Thereby discouraging the forecaster from reporting their epistemic
uncertainty. The score s(Q, o) obtained by the forecaster induces a corresponding set of utilities
V

P(Q) for the forecaster with an imprecise belief P , representing the expected utility of the
imprecise score with respect to every precise distribution within their belief P . We define this
utility set as follows:

V
P(Q) = {Ep[s(Q, o)]}p∈P (4)

From the forecaster’s perspective this collection of expected utility functions V P ∶ 2∆(O)
→ R∣P∣,

for each report Q result in a range of plausible expected utility, i.e.,

im(V P(Q)) = [ inf
p∈P

Ep[s(Q, o)], sup
p∈P

Ep[s(Q, o)]] (5)

where im is the image or the range of the forecaster’s minimum and maximum expected utility
for a given forecast. While the equivalence of two precise distributions is natural i.e. whether two
distributions p = q or not. The equivalence of two imprecise beliefs is not obvious as they are sets
of distributions. We now define the equivalence of two beliefs P ,P ′ in the context of elicitation
as follows

Definition 3.4. (Equivalence of imprecise beliefs) Two beliefs P ,P ′
⊆ ∆(O) are considered

equivalent, denoted as P ≃ P ′, if for all IP scoring rules s and forecasts Q ⊆ ∆(O), we have
im(V P(Q)) = im(V P ′

(Q)).
Intuitively, we define the equivalence of two imprecise forecasts based on the premise that they do
not differ in the range of plausible expected utilities for any scoring rule s and reported imprecise
forecast Q, i.e. the decision-making induced by two imprecise beliefs P and P ′ is same under all
scenarios. We now show that Definition 3.4 when used for precise forecasts does not change the
classic notion of equivalence.

Proposition 3.5. For all p, q ∈ ∆(O), {p} ≃ {q} iff p = q.

With Proposition 3.5, we establish that Definition 3.4 generalises from the notion of equivalence of
precise forecasts, i.e. distributions to imprecise forecasts. We can also characterize the equivalence
of two imprecise forecasts as the equivalence of their corresponding credal sets.

Proposition 3.6. For imprecise forecasts P ,P ′
⊆ ∆(O), P ≃ P ′ if and only if co(P) = co(P ′).

It has previously been shown that two sets of distributions must be credal sets to induce the same
rational decision-making behaviour (Huntley et al., 2014; Troffaes, 2007; Troffaes & de Cooman,
2014). Definition 3.4 defines the equivalence of two imprecise beliefs w.r.t elicitation and Propo-
sition 3.6 establishes its equivalence to rational decision making. This allows us to consider
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elicitation as a decision-making task for the forecaster. As a consequence of Proposition 3.6,
even though a forecaster outputs a set of probability distributions P . We restrict our focus to
evaluating a credal set of forecasts co(P). Henceforth, with a slight abuse of notation, we will use
P to represent co(P).
Definition 3.7. (Truthfulness of Imprecise Forecaster) Let P ⊆ ∆(O) be the true belief of an
imprecise forecaster. A report Q ⊆ ∆(O) is truthful if Q ≃ P .

Definition 3.7 generalizes the concept of truthfulness in the precise setting. An imprecise forecaster
who reports their true belief is considered truthful. For instance, if the forecaster believes the
probability of rain tomorrow lies within the interval [0.6, 0.8], then they must report their actual
epistemic uncertainty by reporting the interval [0.6, 0.8].

4 Proper IP Scoring Rules

In this section, we introduce proper imprecise scoring rules, i.e., scores that incentivize the truthful
elicitation of an imprecise forecaster according to Definition 3.7. We start by focusing only on the
elicitation of the imprecise forecaster without any communication from the DM. The following
definition clarifies what it means for an imprecise scoring rule to be (strictly) proper, which
naturally generalises Definition 3.1 from the forecaster’s perspective.

Definition 4.1. An imprecise scoring rule is (strictly) proper if for all credal sets P ,Q ⊆ ∆(O),
the forecaster with an imprecise belief P /≃ Q (strictly) prefers P over Q, i.e., P ⪰P Q. The
preference relation ⪰P is described by the (strict) dominance of V P(P) over V P(Q), i.e.,

Ep[s(P , o)] ≥ Ep[s(Q, o)] for all p ∈ P ,

for strict dominance, at least one ≥ has to be strictly greater.

We define strict properness of an imprecise scoring rule in Definition 4.1 using dominance since it
preserves the main idea behind strictly proper scoring rules in the precise setting, i.e. to incentivise
the forecaster to be truthful. A strictly proper IP scoring rule incentivises the imprecise forecaster
to be truthful according to Definition 3.7.

Theorem 4.2. There does not exist a strictly proper imprecise scoring rule s. In addition, for a scoring
rule s to be proper it must be constant across all forecasts.

Similar impossibility results for imprecise forecasts have previously been reported in Mayo-Wilson
& Wheeler (2015); Schoenfield (2017); Seidenfeld et al. (2012). The implication of Theorem 4.2
is that under the current setup of an imprecise forecaster, any imprecise scoring rule satisfying
properness in Definition 4.1 has a constant score across all forecasts. We observe in Section 3.1
that agents face possible indecision while decision-making with the credal set P . As a result,
we observe in Theorem 4.2 that it is not possible to design a scoring rule that incentivises the
imprecise forecaster to report their imprecise belief P honestly. Unlike in the precise setting,
where the forecaster had a complete preference relation on plausible reports (see Definition 2.3),
the epistemic uncertainty of the imprecise forecaster only allows for an incomplete preference
relation ⪰P over plausible reports. Without further information, the imprecise forecaster cannot
complete this incomplete preference relation.
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4.1 Aggregation Functions
To resolve indecision arising from epistemic uncertainty in the credal set P , the DM exercises a
subjective choice through aggregation function ρ to make ⪰P complete. The DM communicates
the choice of ρ to the forecaster prior to elicitation, and the elicited credal set then informs
downstream decisions for the DM. The resulting utility can be shared with the forecaster as an
incentive.

Definition 4.3 (Aggregation Function). Considering a credal setQ, we can define the aggregation
function as ρ ∶ H∣Q∣

→ H, also known as a social choice function or social welfare function,
combines multiple utilities via a positive linear combination. Aggregation ρ for any x ∈ X is
defined as follows

ρ[{Eq[u(x, o)]}q∈Q] = ∫
q∈Q

w(q)Eq[u(x, o)]dq

where w(q) ∈ R∣Q∣
≥0 for all q ∈ Q depends on the expected utilities {Eq[u(x, o)]}q∈Q.

We focus on linear aggregations because, according to Harsanyi (1955), this class of aggregation
rules uniquely satisfies both VNM axioms (Von Neumann & Morgenstern, 1947) and Bayes Opti-
mality (Brown, 1981). Many popular aggregation functions such as utilitarian and egalitarian rules
can be expressed with linear aggregations as they characterise relative utilitarianism (Dhillon &
Mertens, 1999).

For the utilitarian and egalitarian rules, the decision-making process from an agent’s perspective
(either DM or forecaster) can be described as follows. Consider an input x ∈ X (a ∈ A or
P ⊆ ∆(O)), the utilitarian rule corresponds to the linear combination ρ[{Eq[u(x, o)]}q∈Q] =

1/∣Q∣∑q∈Q Eq[u(x, o)], whereas in the egalitarian rule it corresponds tominq∈Q Eq[u(x, o)]. Here,
the weights w can be interpreted as w(q) = 1/∣Q∣ and a one-hot vector, respectively. We now
describe how a VNM-rational DM (see (7) for forecaster) uses ρ to obtain the best action a∗Q,ρ

a
∗
Q,ρ = argmax

a∈A
ρ[{Eq[u(a, o)]}q∈Q]. (6)

Given the incomplete preference relation from a credal set Q, i.e., ⪰Q∶= {⪰q}q∈Q, the aggregation
rule ρ allows us to define the corresponding complete preference relation ⪰ρ[Q], representing the
aggregated utility from Equation (6). By abuse of notation, ⪰ρ[Q] represents the aggregation of
utilities rather than the credal set.

Axiomatisation of ρ: When interpreting imprecise forecasts as a “collective” report of precise
forecasters, a social choice perspective naturally emerges for the downstream DM. Although
non-intuitive, this perspective applies even to a single-agent imprecise forecaster. Following
Arrow (1950), we outline three desirable properties of any aggregation rule ρ: Pareto Efficiency
(PE), Independence from Irrelevant Alternatives (IIA), and Non-Dictatorship (ND).

Definition 4.4 (Pareto Efficiency). An aggregation rule ρ is Pareto Efficient iff for all x, x′
∈ X ,

x ⪰Q x
′
⟹ x ⪰ρ[Q] x

′
.

From the DM’s perspective, X = A, and as a result, a Pareto efficient ρ will respect the inherent
partial order ⪰Q over actions which DM could infer from the reported credal setQ. Therefore, the
DM can be assured that application of ρ only resolves indecision and similarly for the forecaster
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when choosing the best report. Additionally, from the forecaster’s perspective, a non-PE ρ can
distort recommendations of their forecast Q of an action a over a′. The aggregation rule that
violates PE may result in the payment/score that misaligns with the forecaster’s report.

Definition 4.5 (IIA). An aggregation function ρ is considered IIA if preferences between x, y ∈ X ,
i.e., x ⪰ρ[Q] y or y ⪰ρ[Q] x is independent of z ∈ X .

Although cryptic, IIA is desirable to the DM. From the DM’s perspective, X = A. Imagine a
scenario where there exists a z ∈ A such that both x, y ∈ A dominate z w.r.t. the partial order
⪰Q, implying that z is irrelevant to the DM under forecasts Q. However, if ρ violates IIA, the
post-aggregation preference ⪰ρ[Q] between x and y can be influenced by the presence or absence
of z. This makes the DM vulnerable to strategic manipulation regarding the best action to take
by adding or removing z, which in turn creates uncertainty for the forecaster about their own
incentives.

Definition 4.6 (Non-Dictatorship). An aggregation rule ρ is said to be non-dictatorial if for a
profile of preferences⪰Q∶= {⪰q}q∈Q there does not exist q ∈ Q (dictator) such that for all x, y ∈ X ,
x ⪰q y implies x ⪰ρ[Q] y.

From the downstream decision-making perspective for a DM, non-dictatorship is optional. How-
ever, when DM wants to communicate the aggregation rule ρ to the forecaster and wishes to
truthfully elicit their true belief, non-dictatorship becomes crucial. Given a dictatorial ρ, the
forecaster can manipulate the DM by strategically reporting the dictator. We discuss this more
formally in Appendix C.1.

4.2 Proper IP scoring rules with aggregation
The DM communicates the aggregation function ρ to the forecaster and incentivizes them using
an IP scoring rule. This communication helps resolve the forecaster’s epistemic uncertainty,
parameterizing the IP scoring rule as sρ ∶ 2∆(O) × O → R. The forecaster reports Q ∈ 2

∆(O)

and receives a score of sρ(Q, o) when outcome o ∈ O occurs. Unlike prior IP scoring rules,
the forecaster can now use ρ to resolve indecision and complete the preference relation over
2
∆(O). This is evident from the expected utility of the forecaster with belief P when reporting
Q ⊆ ∆(O):

V
P
ρ (Q) ∶= ρ[V P(Q)] = ρ[{Ep[sρ(Q, o)]}p∈P]. (7)

Since an imprecise decision scoring rule sρ is simply a parameterized IP scoring rule, its regularity is
defined exactly as in Section 4. We extend (strict) properness for IP scoring rules fromDefinition 2.3
to aggregation as

Definition 4.7. A regular IP scoring rule sρ for an aggregation function ρ is proper if, for all
P ⊆ ∆(O) and all Q /≃ P , V P

ρ (P) ≥ V
P
ρ (Q). The IP scoring rule sρ is strictly proper if and only

if at least one of the inequalities is strict.
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Notably, strictness in Definition 4.7 adheres to the notion of truthfulness defined in Definition 3.7.
Since DM needs to evaluate the forecaster, we employ the class of scoring rules that accommodate
a DM in evaluating a forecast, called tailored scoring rules (Dawid, 2007; Johnstone et al., 2011;
Richmond et al., 2008), following the ideas of business sharing proposed in Savage (1971). We now
define them in the context of aggregation functions for imprecise forecasts.

Definition 4.8 (Tailored Scoring Rules). An IP scoring rule s is tailored for a DM with utility
function u and aggregation function ρ, if for any k, c ∈ R≥0 the score is defined as

sρ(Q, o) = ku(a∗Q,ρ, o) + c,

In Definition 4.8, k can be referred to as the business share obtained by the forecaster in the utility
of the DM and c is the fixed fee of the forecaster. Next, we show that the class of tailored scoring
rules is proper for any choice of ρ,

Proposition 4.9. A tailored scoring rule sρ is proper with respect to Definition 4.7 for any aggregation
rule ρ.

While necessary, the properness of scoring rules is easy to satisfy (see Theorem 4.2). For example,
a constant scoring rule is always proper. We therefore characterize the conditions under which
the tailored scoring rules for imprecise forecasts are strictly proper.

Lemma 4.10. Let sρ be a tailored scoring rule. Then, the following holds:

1. sρ is strictly proper for precise distributions if and only if a∗q ∶= argmaxa∈A Eq[u(a, o)] is
a unique maximizer for all q ∈ ∆(O).

2. sρ is not strictly proper, i.e., does not satisfy Definition 4.7, for any Pareto efficient ρ.

Lemma 4.10 ensures the existence of non-degenerate proper IP scoring rules. Beyond this positive
result, we observe that Pareto efficiency leads to the impossibility of truthful elicitation under
Definition 3.7. Although sρ in Lemma 4.10 is not strictly proper for imprecise forecasts, it remains
practical to implement while being proper for all forecasts and strictly proper for precise ones.
We speculate that the properties of sρ are optimal for deterministic scoring rules, given the prior
impossibility of any real-valued strictly proper IP scoring rules (Seidenfeld et al., 2012). To explore
this further, we investigate whether allowing randomization in the choice of aggregation rule can
enable truthful elicitation.

5 A strictly-proper IP scoring rule

With the randomized choice of aggregation, the DM can pick an aggregation rule randomly
post-elicitation to evaluate the reported forecast. The forecaster then becomes unaware of the
aggregation function which can lead the forecaster back to indecision. To resolve the forecaster’s
indecision, the DM shares a distribution θ ∈ ∆(ρ) where ρ is the class of aggregation functions
the DM will pick from, thereby enabling the forecaster to resolve their indecision as follows:

V
P
θ (Q) ∶= Eρ∼θ[V P

ρ (Q)]. (8)
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This allows the tailored scoring rule sρ to be randomized with respect to the random variable ρ.
Analogous to Definition 4.8 for tailored scoring rules, we now define randomized tailored scoring
rule sθ.

Definition 5.1. A regular IP scoring rule sθ is randomized tailored for a DM with a class of
aggregation functions ρ and a distribution θ ∈ ∆(ρ), if for any kρ, cρ ∈ R≥0 and an arbitrary
function Π ∶ 2∆(O)

→ R, the score is defined as

sθ(Q, o)(ρ) = {kρu(a
∗
ρ,Q, o) + cρ if θ(ρ) > 0

Πo(Q) if θ(ρ) = 0
.

Given that we have now extended the tailored scoring rule to random variables, in a similar spirit
to Definition 4.7 on properness of IP scoring rules with aggregation, we define properness of
randomized tailored scoring rules as follows.

Definition 5.2. A randomized tailored scoring rule sθ for a distribution θ ∈ ∆(ρ) and a class of
aggregation rules ρ, is considered proper if, for all P ,Q ⊆ ∆(O) and Q /≃ P ,

V
P
θ (P) ≥ V

P
θ (Q). (9)

sθ is strictly proper if the inequality in Equation (9) is strict.

Again the strictness in Definition 5.2 adheres to the notion of truthfulness defined in Definition 3.7.
We will establish this connection later in this section. We can observe from Equation 8 that
randomized tailored scoring rules are proper for any choice of θ ∈ ∆(ρ) as a direct consequence
of Proposition 4.9. Before we discuss how to build strictly proper IP scoring rules, we need to
identify if there exists a unique representation of the credal set in the action space which will let
the DM identify the credal set.

Theorem 5.3. For any reported credal set Q ⊆ ∆(O) and a DM using a utility function u such that
a
∗
q ∶= argmaxa∈A Eq[u(a, o)] is unique for all q ∈ ∆(O), the set of actions Aext

Q ∶= {a∗q }
q∈ext(Q)

acts as a unique representation of a credal set Q in action space A.

The implication of unique representation Aext
Q in the action space for any credal set Q is that the

DM is able to identify the credal set from the set of actions Aext
Q . In a naive analogy, all actions in

Aext
Q together act as a fingerprint of credal setQ which can be uniquely incentivised by the DM to

elicit Q. We now introduce a common class of linear aggregations to operationalise scoring rules
based on Theorem 5.3.

Fixed Linear Aggregations is another common class of aggregation rules which aggregates
the expected utilities of a credal set Q for any input x ∈ X , i.e., {Eq[u(x, o)]}q∈Q, into a convex
combination of utilities with mixing coefficient λ ∈ ∆

∣Q∣ as

ρλ[{Eq[u(x, o)]}q∈Q] ∶= ∫
q∈Q

λ(q)Eq[u(x, o)]dq

= E∫ λ(q)qdq[u(x, o)]

12



Although the class of fixed linear aggregations are Pareto-efficient and non-dictatorial in classic
social choice theory, in our setup fixed linear aggregations are dictatorships as they directly
aggregate the epistemic uncertainity. Due to Proposition 3.6, a forecaster can report Q or co(Q).
We illustrate this with an example, for any report Q ⊆ ∆(O) and any choice of fixed linear
aggregation λ, we obtain Q ∶= λ

⊤Q. Even though Q may not be in Q, it is guaranteed that
Q ∈ co(Q), and therefore Q acts as a dictator. This means that although the DM uses the full
credal set in the sense of all extreme points to perform decision-making, their preference over
actions can be fully represented by a precise belief P ∈ co(P). From Section 4.1, non-dictatorship
was only desirable due to the strategic manipulation by the forecaster. In the scenario where
forecasters are unaware of the exact aggregation rule, using a random dictatorial ρλ allows the DM
to keep PE and IIA. To this end, we show the strict properness of these randomized dictatorships.
Since strict properness for imprecise forecasters implicitly requires strictness for precise forecasts,
which means that the sθ must satisfy Lemma 4.10 for every λ.

Corollary 5.4. For any DM whose utility function u satisfies Lemma 4.10 and chooses ρ as fixed
linear aggregations. Then sθ is a strictly proper IP scoring rule for a θ ∈ ∆(ρ), given that θ has full
support over ρ.

Corollary 5.4 allows us to build strictly proper IP scoring rules which can be characterized as
follows. A randomized tailored scoring rule sθ made using the class of fixed linear aggregation
rules is characterized as

sθ(Q, o)(λ) = {kλu(a
∗
ρλ,Q, o) + cλ if θ(λ) > 0

Πo(Q) if θ(λ) = 0
, (10)

where λ ∈ ∆
∣ext(Q)∣ is considered strictly proper if supp(θ) = [0, 1] where Π ∶ 2∆(O)

→ R is an
arbitrary regular scoring function.

In recent years, several frameworks have been proposed for learning that challenge the implicit
assumptions made in standard ML pipeline about loss functions (Gopalan et al., 2021)) or pref-
erences (Singh et al., 2024) of the users being known to the model trainer. Thus, they focus on
training models that perform reasonably well for a class of losses or aggregation rules. Within our
setup of IP scoring rules, these ML frameworks translate to the DM abstaining from sharing the
exact aggregation rule with the forecaster. However, they are not exact implementations of the
score we propose. Applying the proposed score to ML applications is one of the future research
avenues.

6 Related Work
The work of Fröhlich & Williamson (2024) is most closely related to ours. They also explore
the generalization of proper scoring rules to imprecise forecasts, with a specific emphasis on
calibration (Dawid, 1982). While their focus is on imprecisions arising from datamodels, we address
more general issues related to the elicitation of imprecise forecasts. Their findings demonstrate
that, unlike in precise settings where proper scoring and calibration objectives align, these goals
can diverge when dealing with imprecise forecasts—a result that parallels our own. However,
their reliance on the min-max aggregation within their scoring framework limits their analysis to
pessimistic decision-making, resulting in a scoring rule that only satisfies properness.
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Several impossibility results show that no continuous scoring rule over credal sets can simul-
taneously ensure strict incentive compatibility, calibration, and non-domination (Mayo-Wilson
& Wheeler, 2015; Schoenfield, 2017; Seidenfeld et al., 2012). Seidenfeld et al. (2012) proved that
such rules must either relax incentive compatibility or allow some imprecise forecasts to be
dominated by more precise ones. Mayo-Wilson & Wheeler (2015) highlighted that these trade-offs
can inadvertently reward false precision, while Schoenfield (2017) showed that any continuous
rule either degenerates or fails to calibrate in natural decision contexts. Although our approach
can partially circumvent these issues, these impossibility results remain a fundamental constraint
for deterministic approaches.

Alternatively, some argue that the impossibility of imprecise scoring rules analogous to precise
ones reflects an inherent feature of imprecision (Konek, 2015). Building on this, Konek (2019)
introduces a family of imprecise probability (IP) scoring rules parameterized by the Hurwicz
criterion, and Konek (2023) extends these ideas to formalize the trade-offs between precision
and robustness through axiomatic foundations. Since the Hurwicz criterion represents a Pareto-
efficient aggregation, our results in Section 4 apply directly to their framework, offering insights
into precision-robustness trade-offs from a social choice perspective.

Finally, our work is uniquely positioned at the intersection of proper scoring rules, forecast
elicitation, and machine learning, providing novel perspectives on decision-making under uncer-
tainty. Credal sets have become a mainstream approach for representing modelers’ imprecision in
uncertainty-aware machine learning with applications in prediction (Caprio et al., 2024; Singh et al.,
2024), uncertainty quantification (Sale et al., 2023; Wang et al., 2024), optimal transport (Caprio,
2024), and statistical hypothesis testing (Chau et al., 2024), among others. To this end, our results
concerning strictly proper scoring rules for credal sets are directly relevant to the challenges of
learning and decision-making with credal sets, providing insights into fundamental problems and
future research directions.

7 Discussion
Our investigation of strictly proper IP scoring rules reveals that, unlike in the classical precise
setting, forecasting under imprecision demands careful attention to the decision-making aspect
within forecast elicitation. In traditional frameworks with strictly proper scoring rules, forecasters
are simply expected utility maximizers, making the reporting decision straightforward. However,
when forecasts are imprecise—represented as sets or intervals—forecasters cannot internally
aggregate their epistemic uncertainty. Instead, they require an external aggregation rule to
reconcile their credal set-induced preferences into a single forecast.

This need for external decision guidance naturally connects to social choice theory. In our
framework, the DM provides a collective aggregation rule that guides forecasters in resolving their
uncertainty. This approach not only preserves incentive compatibility in the imprecise setting but
also highlights the importance of designing scoring rules that balance accuracy and robustness.
By explicitly integrating a social choice–inspired aggregation function into the elicitation process,
our work offers new perspectives on collective decision-making, where imprecise forecasts can be
viewed as forecasts of the “collective.” This highlights promising directions for future research on
imprecise scoring rules.
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A Additional Supporting lemmas and proofs

A.1 Proof of Remark A.1
Remark A.1. Scoring rule s is (strictly) proper if and only if the corresponding (strictly) convex
function G(q) = ∫ s(q, o)dq(o)

Proof. It follows from Theorem 2.4 that regular scoring rule s is (strictly) proper if and only if
there exists a corresponding (strictly) convex function G on ∆(O) such that

s(q, o) = G(q) − ∫ G
′(q)(o)dq(o) +G

′(q)(o). (11)
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(⇒) Let us assume that there exists a strictly proper scoring rule s. Then, according to Theorem
2.4 there exists a convex function G ∶ ∆(O) → R such that

s(q, o) = G(q) − ∫ G
′(q)dq +G

′(q)(o)

Eo∼p[s(q, o)] = Eo∼p[G(q) − ∫ G
′(q)dp +G

′(q)(o)] (expert’s true belief p)

= G(q) − ∫ G
′(q)dq + ∫ G

′(q)dp,

where q is the true belief of the forecaster. Then, we consider the maximum expected score

∫ s(q, o)dq(o) ∶= max
p∈∆(O)

uq(p) (s is strictly proper)

= max
p∈∆(O)

Eo∼q[s(p, o)]

= max
p∈∆(O)

{G(p) − ∫ G
′(p)(o)dp(o) + ∫ G

′(p)(o)dq(o)}

= G(p∗) − ∫ G
′(p∗)(o)dp∗(o) + ∫ G

′(p∗)(o)dq(o) (p∗ is the maximizer)

= G(q) − ∫ G
′(q)(o)dq(o) + ∫ G

′(q)(o)dq(o) (s is strictly proper so p
∗
= q)

= G(q).

(⇐)
We define the (strictly) convex function G using the expected score of some scoring rule s, i.e.,
G(p) = ∫ s(p, o)dp(o) and the subgradient G′(p) = s(p, o). Then,

G(p) − ∫ G
′(p)(o)dp(o) +G

′(p)(o) ∶= ∫ s(p, o)dp(o) − ∫ s(p, o)dp(o) + s(p, o)

= s(p, o)

This implies that s is strictly proper scoring rule as a consequence of Theorem 2.4.

A.2 Lower and Upper probabilities are always extreme points
Before we show that the lower and upper probabilities are always extreme points we make need to
make sure that that the set of probabilities P has a corresponding set of extreme points. Therefore
we precisely define the extreme points of P , independent of the convex hull of P as follows

Definition A.2. Given a set P , we define the extreme points as ext(P) as the collection of p ∈ P
for which there does not exist a set of pointsC ⊆ P\{p} and a probability measurew ∶ ∆ → [0, 1]
such that p = ∫

C
w(q)dq.
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For extreme points of a set to exist in general spaces, its convex hull must be compact according
to Choquet’s Theorem Bishop & Leeuw (1959). To establish compactness of P we first show that
with an appropriate notion of distance ∆(O) can form a bounded metric space.

PropositionA.3. The metric space (∆(O), dTV ) is bounded, where dTV denotes the total variational
distance between two probability distributions p, q in terms of their corresponding probability measures
P,Q is defined as

dTV (p, q) ∶= sup
A⊆O

∣P (A) −Q(A)∣ = 1

2
∫ ∣p(o) − q(o)∣do

Proof. As defined above, the total variational distance is half the L1 distance Levin & Peres
(2017). This allows us to express the total variation distance directly using densities. To show
(∆(O), dTV ) is bounded, let p, q be arbitrary distributions in ∆(O). Then

dTV (p, q) ∶=
1

2
∫ ∣p(o) − q(o)∣do

<
1

2
∫ ∣p(o)∣ + ∣ − q(o)∣do ( Triangle Inequality)

=
1

2
∫ ∣p(o)∣do + 1

2
∫ ∣q(o)∣do

=
1

2
∫ p(o)do + 1

2
∫ q(o)do (p(o) ≥ 0 and q(o) ≥ 0)

=
1

2
+

1

2
= 1

Thus (∆(O), dTV ) is a bounded metric space.

We now discuss the conditions on P such that ext(P) ⊆ P .

Proposition A.4. There exists a probability measure w ∈ ∆(ext(P)) for all p ∈ P such that

p = ∫
p∈ext(P)

w(p)dp

iff co(P) = co(P), where co(P) denotes the convex hull of the closure of P when O is finite. And
for cases where O is an infinite continuous set, co(P) must additionally be totally bounded.

Proof. The above result is a direct implication of the Heine-Borel Theorem (Theorem 2.41, (Rudin,
1976)) and Choquet’s theorem (Bishop & Leeuw, 1959). First we discuss the proof for the case where
O is finite. Since P ⊆ ∆(O), using A.3 we can say that P is bounded. This means that co(P)
is also bounded. Now, we know that the convex hull of a closed set P is also closed. Therefore,
co(P) is closed and since co(P) = co(P), co(P) is also closed. This makes co(P) compact as
it is both bounded and closed by Heine-Borel Theorem. Now we can directly apply Choquet’s
theorem to obtain a probability measure w for every p ∈ P such that p = ∫

p∈ext(P)w(p)dp. In
case when O is an infinite continuous set, we are dealing with P ⊆ ∆(O), where ∆(O) may not
have Heine-Borel Property, thus co(P) being totally bounded in addition to closed ensures that
co(P) is compact and therefore Choquet’s theorem is applicable.
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The proposition A.4 tries to identify what conditions should P satisfy so that we can interpret
co(P), i.e. the convex hull of P as a credal set with valid extreme points ext(P). The general
condition is that co(P) = co(P) as a condition on P . Equivalently, the condition on co(P) is
that it is closed. Notice for finite P , it is trivially satisfied. This allows us to exclude P = (0, 1

2
)

type of open sets from our discussion since they are open sets and its convex hull will violate
closedness i.e. co(P) = P = (0, 1

2
). Depending on the convention, if credal sets for P are defined

as the closure of their convex hulls i.e. co(P), then credal sets are by compact (Heine-Borel
Theorem) and Proposition A.4 is applicable. For now, we will restrict our discussion to P such
that co(P) = co(P).
Lemma A.5. Let P ⊆ ∆(O) be the forecaster’s belief and ext(P) the extreme points of the convex
hull generated by P ⊆ ∆(O). Given any scoring rule s ∶ 2∆(O) ×O → R and forecasts Q ⊆ ∆(O),
let

p
(s,Q)
L ∶= arg inf

p∈P
Ep[s(Q, o)], p

(s,Q)
U ∶= arg sup

p∈P
Ep[s(Q, o)].

Then, both p
(s,Q)
L and p(s,Q)

U belong to ext(P) for all pairs of s and Q. In addition, P ≃ ext(P).

Proof. Firstly, for all p ∈ P , either p ∈ ext(P) or p /∈ ext(P). This follows trivially from the
definition of extreme points of a convex hull in section 2.2.

The proof proceeds as follows. In (i) and (ii), we show that p(s,Q)
L , p

(s,Q)
U ∈ ext(P) for all pairs

of s and Q, respectively, with a contradiction. Then, given (i) and (ii), P ≃ ext(P) follows from
Definition 3.4 for the equivalence of imprecise beliefs.

(i) Lower probability: For all s and Q, p(s,Q)
L ∈ ext(P).

We prove this by contradiction. Let us first assume there exists a pair of s,Q such that p(s,Q)
L ∈

P \ ext(P). Since we have fixed s and Q, we drop the superscript from p
(s,Q)
L for readability and

treat pL as a distribution in P . Next, given pL ∈ P \ ext(P), it implies that there exists a second
order distribution w ∈ ∆(ext(P)) such that w(p) > 0 for all p ∈ ext(P).

pL = ∫
p∈ext(P)

w(p)dp ∶= ⟨w, ext(P)⟩H (H is the corresponding Hilbert space)

( ⟹ ) EpL[s(Q, o)] = E⟨w,ext(P)⟩H[s(Q, o)]

= ⟨w, {Ep[s(Q, o)]}
p∈ext(P)

⟩
H

> inf
p∈ext(P)

Ep[s(Q, o)]. (w(p) > 0 for all p ∈ ext(P))

This results in a contradiction because ext(P) ⊆ P . Therefore, pL ∈ ext(P).Since our choice ofQ
and s was arbitrary, the contradiction holds for all Q ⊆ ∆(O) and s. Therefore, p(s,Q)

L ∈ ext(P)
for all and s.

(ii) Upper probability: For all s and Q, p(s,Q)
U ∈ ext(P).
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Similarly, we show that pU ∈ ext(P). Suppose that pU ∈ P \ ext(P). This implies that there exists
a second order distribution w ∈ ∆(ext(P)) such that w(p) > 0 for all p ∈ ext(P) and

pU = ⟨w, ext(P)⟩H
( ⟹ ) EpU[s(Q, o)] = E⟨w,ext(P)⟩H[s(Q, o)]

= ⟨w, {Ep[s(Q, o)]}
p∈ext(P)

⟩
H

< sup
p∈ext(P)

Ep[s(Q, o)]. (w(p) > 0 for all p ∈ ext(P))

This also results in a contradiction since ext(P) ⊆ P . Hence, both pL and pU belong to ext(P).
Equivalence of P and ext(P): Next, we show that P and ext(P) are equivalent by applying
Definition 3.4. For any reported set of beliefs Q ⊆ ∆(O) and scoring rule s,

im(V P(Q)) = [inf
p∈P

Ep[s(Q, o)], sup
p∈P

Ep[s(Q, o)]]

= [EpL[s(Q, o)], EpU[s(Q, o)]]

= [ inf
p∈ext(P)

Ep[s(Q, o)], sup
p∈ext(P)

Ep[s(Q, o)]] (pL, pU ∈ ext(P) and ext(P) ⊆ P)

= im(V ext(P)(Q)).

This completes the proof.

A.3 Equivalence of extreme points for elicitation

Lemma A.6. If two beliefs P ,P ′
⊆ ∆(O) are equivalent, i.e., P ≃ P ′, then ext(P) = ext(P ′).

Proof. By Definition 3.4, two imprecise beliefs P ,P ′
⊆ ∆(O) are equivalent if for all scoring rule

s and forecast Q ⊆ ∆(O), im(V P(Q)) = im(V P ′

(Q)). This means that,

inf
p∈P

Ep[s(Q, o)] = inf
p′∈P ′

Ep′[s(Q, o)] and sup
p∈P

Ep[s(Q, o)] = sup
p′∈P ′

Ep′[s(Q, o)].

(⇒) For the first part of the proof, we show that ext(P) ⊆ ext(P ′). Let q ∈ ext(P), we know that
for all s,Q,

inf
p∈ext(P)

Ep[s(Q, o)] ≤ Eq[s(Q, o)] ≤ sup
p∈ext(P)

Ep[s(Q, o)]

inf
p∈P

Ep[s(Q, o)] ≤ Eq[s(Q, o)] ≤ sup
p∈P

Ep[s(Q, o)] (P ≃ ext(P) from Lemma A.5)

inf
p′∈P ′

Ep′[s(Q, o)] ≤ Eq[s(Q, o)] ≤ sup
p′∈P ′

Ep′[s(Q, o)] (P ≃ P ′ by definition)

inf
p′∈ext(P ′)

Ep′[s(Q, o)] ≤ Eq[s(Q, o)] ≤ sup
p′∈ext(P ′)

Ep′[s(Q, o)]. (P ′
≃ ext(P ′) from Lemma A.5)
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The last inequalities imply that q ∈ ext(P ′). (⇐) Next, we show that ext(P ′) ⊆ ext(P). Let
q
′
∈ ext(P ′). Then, we know that for all s,Q,

inf
p′∈ext(P ′)

Ep[s(Q, o)] ≤ Eq′[s(Q, o)] ≤ sup
p′∈ext(P ′)

Ep′[s(Q, o)]

inf
p′∈P ′

Ep′[s(Q, o)] ≤ Eq′[s(Q, o)] ≤ sup
p′∈P ′

Ep[s(Q, o)] (P ′
≃ ext(P ′) from Lemma A.5)

inf
p∈P

Ep[s(Q, o)] ≤ Eq′[s(Q, o)] ≤ sup
p∈P

Ep[s(Q, o)] (P ≃ P ′ by definition)

inf
p∈ext(P)

Ep[s(Q, o)] ≤ Eq′[s(Q, o)] ≤ sup
p∈ext(P)

Ep[s(Q, o)]. (P ≃ ext(P) from Lemma A.5)

The last inequalities imply that q′ ∈ ext(P). Since both ext(P) ⊆ ext(P ′) and ext(P ′) ⊆ ext(P),
we can conclude that ext(P) = ext(P ′).

A.4 Preference relation in the subset of a credal set
The lemma argues that the dominance induced by the preference relation associated with a credal
set can only be refined by considering its subsets. Formally,

Lemma A.7. For any pair of imprecise forecasts P ,Q ⊆ ∆(O) such that co(Q) ⊂ co(P)

a ⪰P a
′
⟹ a ⪰Q a

′
∀ a, a

′
∈ A

where⪰P ,⪰Q are the partial preference relations over the space of actions induced by the corresponding
expected utility profiles {Ep[u(⋅, o)]}p∈P and {Eq[u(⋅, o)]}q∈Q.

Proof. Let us assume an arbitrary Q and P such that Q ⊂ P . Now let us consider a pair of inputs
x, x

′
∈ X such that x ⪰P x

′. This implies that

Ep[u(x, o)] ≥ Ep[u(x′
, o)] ∀p ∈ P

⟹ Ep[u(x, o)] ≥ Ep[u(x′
, o)] ∀p ∈ co(P)

⟹ Eq[u(x, o)] ≥ Eq[u(x′
, o)] ∀q ∈ co(Q) (co(Q) ⊂ co(P))

⟹ Eq[u(x, o)] ≥ Eq[u(x′
, o)] ∀q ∈ Q

⟹ x ⪰Q x
′

B Proof of Results in Section 3

B.1 Proof of Proposition 3.5

Proof. (⇐) Let us assume that there are two identical distributions p, q ∈ ∆(O), i.e., p = q that
implies Ep[s(Q, o)] = Eq[s(Q, o)] for allQ ⊆ ∆(O) and IP scoring rule s. Therefore, {p} ≃ {q}.
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(⇒) Next, let us assume that {p} ≃ {q}, which means that

Ep[s(Q, o)] = Eq[s(Q, o)], ∀s,∀Q ⊆ ∆(O).

Since the above holds for all s and Q, we choose s to be strictly proper for precise forecasts and
Q ∶= {p}. Hence,

Ep[s({p}, o)] = Eq[s({p}, o)]
⟹ p = q. (s is strictly proper for precise forecasts)

This completes the proof.

B.2 Proof of Proposition 3.6

Proposition B.1. Two imprecise forecasts P ,P ′
⊆ ∆(O) are equivalent if and only if they induce

the same credal set, i.e., co(P) = co(P ′).

Proof. (⇐) First, we assume that P and P ′ induce the same credal set, i.e.,

co(P) = co(P ′)
ext(P) = ext(P ′) (credal sets are convex hulls)

ext(P) ≃ P and ext(P ′) ≃ P ′ (Lemma A.5)
⟹ P ≃ P ′

Hence, P and P ′ are equivalent.

(⇒) Next, we assume that P and P ′ are equivalent. Then, it follows from Lemma A.6 that
ext(P) = ext(P ′).
Let us assume that there exists a P ∈ co(P). Since credal sets are convex sets, P can be expressed
as a convex combination of the extreme points. Therefore, there exists some w ∈ ∆(ext(P)) such
that

P = ∫
p∈extP

w(p)dp =
(♦)

∫
p∈extP ′

w(p)dp (♦ ∶ Lemma A.6)

Thus P ∈ co(P ′) and therefore, co(P ′) ⊆ co(P).
Similarly, let us assume that there exists a P ′

∈ co(P ′). Now P
′ can also be expressed as a convex

combination of the extreme points. Therefore, there exists some w′
∈ ∆(ext(P ′)) such that

P
′
= ∫

p′∈extP ′
w

′(p′)dp′ =
(♦)

∫
p′∈extP

w(p′)dp′ (♦ ∶ Lemma A.6)

Thus P ∈ co(P) and therefore, co(P) ⊆ co(P ′). Since co(P ′) ⊆ co(P) and co(P) ⊆ co(P ′),
therefore co(P) = co(P ′)
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B.3 Proof of Theorem 4.2
Part I: We first show that for any IP scoring rule s, it must give a constant score to all fore-
casts.

Proof. Let us assume there exists a proper scoring rule s ∶ 2
∆(O) × O → R ∪ {−∞}. Then,

according to the definition of proper IP scoring rules for an imprecise forecaster with a vacuous
belief ∆(O), we must have,

∆(O) ⪰∆(O) Q, ∀Q /≃ ∆(O).
This follows from the fact that for a proper score s, V ∆(O)(∆(O)) dominates V ∆(O)(Q). Conse-
quently, it follows from Definition 4.1 that

Ep[s(∆(O), o)] ≥ Ep[s(Q, o)], ∀Q /≃ ∆(O), ∀p ∈ ∆(O). (12)

Let Q̃ ∶= {Q ∣Q /≃ ∆(O)} be the set of all forecasts not equivalent to the forecaster’s belief
(∆(O)), then we can rewrite (12) as

Ep[s(∆(O), o)] ≥ Ep[s(Q, o)], ∀Q ∈ Q̃, ∀p ∈ ∆(O). (13)

Also, {q}q∈∆(O) ⊆ Q̃ since q /≃ ∆(O). Combining this with Equation (13) yields
Ep[s(∆(O), o)] ≥ Ep[s({q}, o)], ∀q ∈ ∆(O), ∀p ∈ ∆(O)

⟹ Ep[s(∆(O), o)] ≥ Ep[s({p}, o)], ∀p ∈ ∆(O), (14)
where the second inequalities follow by selecting the inequalities such that q = p. Similarly, let us
analyse the incentives for all precise forecasters with belief p ∈ ∆(O) given a proper IP scoring
rule s. Then, for all precise forecasters we must have,

{p} ⪰{p} Q, ∀p ∈ ∆(O), ∀Q ∈ Q̃ (Q̃ ∶= 2
∆(O) \ {p})

⟹ {p} ⪰{p} ∆(O), ∀p ∈ ∆(O) (∆(O) ∈ Q̃)
⟹ Ep[s({p}, o)] ≥ Ep[s(∆(O), o)], ∀p ∈ ∆(O).

However, it follows from Equation (14) thatEp[s(∆(O), o)] ≥ Ep[s({p}, o)] andEp[s({p}, o)] ≥
Ep[s(∆(O), o)] for all p ∈ ∆(O). This implies that Ep[s(∆(O), o)] = Ep[s({p}, o)] for all
p ∈ ∆(O).
Therefore, any IP scoring rule s that satisfies properness sets up incorrect incentives for the
forecaster. For example, the expected score for honestly reporting a precise forecast is the same as
reporting the vacuous set of all distributions, i.e.,

Ep[s(∆(O), o)] = Ep[s({p}, o)], ∀p ∈ ∆(O). (15)
While the above equation is sufficient to discard any proper scoring rule, we show that the only
IP scoring rule possible is a constant function. For s to be proper for imprecise forecasts, the
following must hold true for all P ⊆ ∆(O):

P ⪰P {q}, ∀q ∈ ∆(O)
Ep[s(P , o)] ≥ Ep[s({q}, o)], ∀q ∈ ∆(O), ∀p ∈ P
Ep[s(P , o)] ≥ Ep[s({q}, o)], ∀q ∈ P , ∀p ∈ P

⟹ Ep[s(P , o)] ≥ Ep[s({p}, o)], ∀p ∈ P . (16)
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Similarly, for any p ∈ ∆(O), the following must hold:

{p} ⪰p P , ∀p ∈ ∆(O)
⟹ Ep[s({p}, o)] ≥ Ep[s(P , o)]. (17)

Combining Equations 15, 16 and 17 yields

Ep[s(∆(O), o)] = Ep[s({p}, o)] = Ep[s(P , o)], ∀p ∈ ∆(O) (18)

Given Equation 18 is valid for all p ∈ ∆(O), we consider the a subset of ∆(O). To be precise, the
set of all Dirac distributions associated with each outcome, i.e. p ∈ {δo}o∈O

Ep[s(∆(O), o)] = Ep[s({p}, o)] = Ep[s(P , o)], p ∈ {δo}o∈O ({δo}o∈O ⊆ ∆(O))
⟹ s(∆(O), o) = s({p}, o) = s(P , o), ∀o ∈ O.

Hence, s needs to be a constant score for it to be a proper IP scoring rule.

Part II: There exists no strictly proper IP scoring rule s.

Proof. Assume that there exists a strictly proper IP scoring rule s. Consider a precise forecaster
with belief q ∈ ∆(O). Then, we have

{q} ≻q Q, ∀Q /≃ q

⟹ Eq[s({q}, o)] > Eq[s(Q, o)]
⟹ Eq[s({q}, o)] > Eq[s(∆(O), o)]. (∆(O) is one possible Q) (19)

Since s is strictly proper, it satisfies Equation 15. However, this results in a contradiction to
Equation 19. Hence, no s can be strictly proper.

C Proof of Results in Section 4

C.1 Why is Non-dictatorship Desirable?
Let us assume that ρ violates non-dictatorship, then ρ is dictatorial. For clarity, we also define a
dictatorship.

Definition C.1. (Dictatorship) An aggregation rule ρ is a dictatorial if there exists a Pρ ∈ P
(dictator), that depends on ρ, such that for any pair of reports Q,Q′

⊆ ∆(O),

Q ⪰Pρ
Q′

⟹ Q ⪰ρ[P] Q
′
.

A dictatorial ρ not only allows the forecaster to remove indecision in their decision-making
problem about which Q to report, it also allows the forecaster to precisely resolve their epistemic
uncertainty, i.e., by reducing the credal set P to only the dictator Pρ.
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Let us denote the set of best reports plausible under aggregation ρ by Q̃ρ ∶= {Q ∣Q ⪰ρ Q
′
,∀Q′

⊆

∆(O)}. Since ⪰ρ is complete, if the set of best reports Q̃ contains more than one report, then
they must be indifferent w.r.t. ⪰ρ[P]. Given ρ is a dictatorship, there exists Pρ ∈ P such that ⪰Pρ

dictates the preference ⪰ρ[P]. That is, the set of best reports under Pρ must be exactly the same as
that under ρ. Therefore,

Q̃P
= Q̃ρ

.

This implies that the expected scores of Pρ and P with any dictatorial ρ is the same, i.e.,

V
P
ρ ({Pρ}) = V

P
ρ (P).

C.2 Proof of Proposition 4.9
Proof. We prove this result by contradiction. Let us assume that there exists a tailored scoring rule
sρ that is not proper and analyse this scoring rule for an arbitrary forecaster with an imprecise
belief P ⊆ ∆(O). Since sρ is not proper, it implies that there exists Q ⊆ ∆(O) where Q /≃ P
such that

V
P
ρ (Q) > V

P
ρ (P). (20)

In other words, the forecaster strictly prefers the forecast Q over their belief P . However, let’s
analyse the scenario from DM’s perspective when they obtain forecast P , the optimal action
according to the forecast P is

a
∗
P,ρ = argmax

a∈A
ρ [{Ep[u(a, o)]}p∈P] . (21)

Since a∗P,ρ is the maximizer of DM’s aggregated utility, this means that for all a ∈ A,

ρ [{Ep[u(a∗P,ρ, o)]}p∈P] ≥ ρ [{Ep[u(a, o)]}p∈P] . (22)

However, we know that from Equation (20)

V
P
ρ (Q) > V

P
ρ (P)

ρ[{Ep[sρ(Q, o)]}p∈P] > ρ[{Ep[sρ(P , o)]}p∈P]
ρ[{Ep[u(a∗Q,ρ, o)]}p∈P] > ρ[{Ep[u(a∗P,ρ, o)]}p∈P].

This results in a contradiction to Equation (22). Therefore, sρ must be proper. Since this holds for
any choice of ρ, we can conclude that sρ must be proper for any aggregation rule ρ.

C.3 Proof of Lemma 4.10
Part I: Strict properness of IP scoring rule for precise forecasts

Proof. (⇒) From Theorem 2.4, a regular precise scoring rule s is (strictly) proper if and only if
there exists a corresponding (strictly) convex function G on ∆(O) such that

s(p, o) = G(p) − ∫ G
′(p)(o)dp(o) +G

′(p)(o).
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Moreover, it follows from Remark A.1 that the G(p) = Ep[s(p, o)]. Hence, for a tailored scoring
rule sρ on precise distribution p ∈ ∆(O) to be strictly proper, we must have

G(p) = Ep[sρ({p}, o)]
= kEp[u(a∗p , o)] + c (Tailored scoring rule; Definition 4.8)
= max

a∈A
kEp[u(a, o)] + c.

Next, for G(p) to be strictly convex in p, we must have that for all p, q ∈ ∆(O),

G(q) > G(p) + ∫ G
′(p)(o)[q(o) − p(o)]do (23)

Where G′(p)(o) is the oth component of the gradient G′(p) at p. Let us consider the right-hand
side of Equation (23).

G(p) + ∫ G
′(p)(o)[q(o) − p(o)]do = kEp[u(a∗p , o)] + c + ∫ ku(a∗p , o)[q(o) − p(o)]do (24)

= kEp[u(a∗p , o)] + kEq[u(a∗p , o)] − kEp[u(a∗p , o)] + c
(25)

= kEq[u(a∗p , o)] + c. (26)

Since G(q) ∶= kEq[u(a∗q , o)] + c, for G to be strictly convex, we use Equation (26) to rewrite
Equation (23) as follows

G(q) > kEq[u(a∗p , o)] + c, ∀p, q ∈ ∆(O),
⟹ kEq[u(a∗q , o)] + c > kEq[u(a∗p , o)] + c, ∀p, q ∈ ∆(O).

Hence, a∗q must be a unique maximizer.

(⇐)

We assume that a∗p ∶= argmaxa∈A Ep[u(a, o)] is the unique maximizer for all p ∈ ∆(O). Then,
for all p, q ∈ ∆(O) and some arbitrary λ ∈ [0, 1],

G(λp + (1 − λ)q) = Eλp+(1−λ)q[sρ({λp + (1 − λ)q}, o)]
= λEp[sρ({λp + (1 − λ)q}, o)] + (1 − λ)Eq[sρ({λp + (1 − λ)q}, o)]
= λkEp[u(a∗λp+(1−λ)q, o)] + λc + (1 − λ)kEq[u(a∗λp+(1−λ)q, o)] + (1 − λ)c
< λkEp[u(a∗p , o)] + λc + (1 − λ)kEq[u(a∗q , o)] + (1 − λ)c

(a∗p and a
∗
q are unique)

= λG(p) + (1 − λ)G(q).

Hence, G is strictly convex.

Part II: Impossibility of strictly proper scoring rules with Pareto efficient ρ
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Proof. Suppose that there exists the aggregation rule ρ such that the tailored scoring rule sρ is
strictly proper for both precise and imprecise forecasts. This means that for all P ⊆ ∆(O), and
for all Q /≃ P ,

V
P
ρ (P) > V

P
ρ (Q)

⟹ ρ({Ep[sρ(P , o)]}p∈P) > ρ({Ep[sρ(Q, o)]}p∈P)
⟹ ρ({Ep[u(a∗ρ,P , o)]}p∈P) > ρ({Ep[u(a∗ρ,Q, o)]}p∈P). (sρ is tailored scoring rule)

The aggregation rule ρ maps the set of preferences ⪰P∶= {⪰p}p∈P into a complete preference
relation ⪰ρ(P) which follows the aggregated utility ρ({Ep[u(⋅, o)]}p∈P).

Since ρ is Pareto efficient, for all a, a′ ∈ A, a ⪰P a
′ implies a ⪰ρ[P] a

′. Only for actions that
are incomparable to one another, i.e., a /⪰P a

′ and a
′ /⪰P a, ρ decides to remove indecision by

completing the preference as a ⪰ρ[P] a
′ or a′ ⪰ρ[P] a.

Without loss of generality, let us assume that ρ chooses to rank a ⪰ρ[P] a
′ for two incomparable

a, a
′
∈ A with respect to original credal set P . However, based on Lemma A.7, we can construct

a Q ⊆ ∆(O) such that co(Q) ⊂ co(P) and a
∗
ρ,P = a

∗
ρ,Q. This provides a counterexample to

strictness of sρ for all Pareto efficient ρ.

We now explain the counterexample in detail. We construct Q based on its partial preference
relation ⪰Q. The preference relation ⪰Q must be well defined for any two pair of actions a, a′ ∈ A.
To this end we use the preference relation ⪰P to define all possible scenarios for a pair of actions
a, a

′
∈ A. Either a, a′ ∈ A are comparable with respect to ⪰P (Case I) or incomparable (Case II).

The construction of ⪰Q is defined below

Case I

a ⪰P a
′ implies a ⪰Q a

′

(Lemma A.7)

Case II

(a /⪰P a
′) ∧ (a′ /⪰P a)

Case II.1

a ⪰Q a
′ ∶= a ⪰ρ[P] a

′

Case II.2

(a /⪰Q a
′) ∧ (a′ /⪰Q a)

Figure 2: In Case I when actions are comparable in ⪰P the Lemma A.7 dictates their order to
be the same for partial preference induced by ⪰Q. However, in Case II when the actions are
incomparable w.r.t ⪰P either their order in ⪰Q must be set to aggregated order of P i.e. ⪰ρ[P] or
they are left untouched, i.e. incomparable w.r.t ⪰Q

Now we are ready to reason what happens when we aggregate the partial preference ⪰Q with ρ.
We will reason for all the cases we defined above.

Case I: For all pairs of a, a′ ∈ A that are comparable w.r.t. ⪰P (Assume w.l.o.g a ⪰P a
′).

a ⪰P a
′
⟹
(♣)

a ⪰ρ[P] a
′ and a ⪰P a

′
⟹
(♦)

a ⪰Q a
′
⟹
(♣)

a ⪰ρ[Q] a
′
.

(♣ ∶ ρ is PE,♦: Lemma A.7)
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Therefore, whenever the pair of actions a, a′ ∈ A are comparable w.r.t. ⪰P , the aggregated
preference relation is the same, i.e., {⪰ρ[P]} ≡ {⪰ρ[Q]}.

Case II: Consider a, a′ ∈ A that are incomparable w.r.t. ⪰P . (Assume w.l.o.g that ρ resolves
this as a ⪰ρ[P] a

′)

Case II.1: The pair of a, a′ ∈ A is also comparable w.r.t. ⪰Q (Assume w.l.o.g a ⪰Q a
′)

a ⪰Q a
′
⟹
(♣)

a ⪰ρ[Q] a
′ and a ⪰Q a

′
⟹
(♦)

a ⪰ρ[P] a
′

(♣ ∶ ρ is PE, ♦: by construction)

Case II.2: The pair a, a′ ∈ A is incomparable w.r.t. ⪰Q.

Since ρ is a function, it will resolve indecision for two inputs in the same way, given
that ∣A∣ is fixed across both these resolutions:

((a /⪰P a
′
∧ a

′ /⪰P a) ⟹ (a ⪰ρ[P] a
′)) ∧ (a /⪰Q a

′
∧ a

′ /⪰Q a) ⟹ a ⪰ρ[Q] a
′
.

Therefore, similar to Case 1, whenever the pair of actions a, a′ ∈ A are incomparable w.r.t.
⪰P , the aggregated preference is the same, i.e., {⪰ρ[P]} ≡ {⪰ρ[Q]}. Hence, a∗ρ,P = a

∗
ρ,Q.

This makes sρ not strictly proper.

D Proof for Results in Section 5

D.1 Proof of Theorem 5.3
Proof. We prove this by contradiction, let us assume that, Aext is not a sufficient way to represent
credal sets in the actions space. This implies that there exists a pair of credal sets Q,Q′

⊆ O such
that Q /≃ Q′ and Aext

Q′ = Aext
Q . Since Q /≃ Q′ it implies either of the two cases

• Case 1: There exists a q′ ∈ ext(Q′) such that q′ /∈ ext(Q). This implies that

∃ a
∗
q′ ∈ Aext

Q′ and ∃ a
∗
q′ ∈ Aext

Q (a∗q′ is unique for all q
′
∈ ∆(O))

This results contradicts Aext
Q′ = Aext

Q .

• Case 2: There exists a q ∈ ext(Q) such that q /∈ ext(Q′). We follow the same reasoning as
Case 1, i.e.,

∃ a
∗
q ∈ Aext

Q and ∃ a
∗
q ∈ Aext

Q′ (a∗q is unique for all q ∈ ∆(O))

resulting in a contradiction with Aext
Q′ = Aext

Q .

Hence Aext is a unique representation for all credal sets.
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D.2 Proof of Corollary 5.4

Proof. We know that for sθ to be strictly proper, the following must hold for all beliefs P ⊆ ∆(O)

V
P
θ (P) = V

P
θ (Q) iif P ≃ Q

(⇒) Given, θ ∈ ∆(ρ) has full support, V P
θ (P) = V

P
θ (Q) implies that,

ρ({Ep[sρ(P , o)]}p∈P) = ρ({Ep[sρ(Q, o)]}p∈P) ∀ρ ∈ ρ ∀P ⊆ ∆(O)
λ

⊤{Ep[u(a∗λ⊤P , o)]} = λ
⊤{Ep[u(a∗λ⊤Q, o)]} ∀λ ∈ ∆

∣ext(P)∣
∀P ⊆ ∆(O)

(ρ: fixed linear aggregation)
λ

⊤{Ep[u(a∗λ⊤P , o)]} = λ
⊤{Ep[u(a∗λ⊤Q, o)]} ∀λ ∈ {δi}i∈∣ext(P)∣ ∀P ⊆ ∆(O)

(δii∈∣ext(P)∣ ⊂ ∆
∣ext(P)∣)

Ep[u(a∗p , o)] = Ep[u(a∗q , o)] ∀p ∈ P ∀P ⊆ ∆(O) (q ∶= δ
T
i Q)

a
∗
p = a

∗
q ∀p ∈ P ∀P ⊆ ∆(O) (Lemma 4.10)

⟹ Aext
P = Aext

Q (By Definition of Aext)
⟹ P ≃ Q (Theorem 5.3)

(⇐) Given that P ≃ Q we show that V P
θ (P) = V

P
θ (Q). This is trivial since two equivalent

forecasts produce the same underlying partial order on the actions A. As aggregation functions
make this partial order complete, by the property of being a function, they will result in the same
complete order for the same partial order. Therefore, given P ≃ Q implies that

V
P
ρ (P) = V

P
ρ (Q) ∀ρ ∈ ρ

Eθ[V P
ρ (P)] = Eθ[V P

ρ (Q)] ∀θ ∈ ∆(ρ)
V

P
θ (P) = V

P
θ (Q) ∀θ ∈ ∆(ρ)

Therefore, the imprecise forecaster is truthful in the epistemic sense w.r.t the strictly proper IP
scoring rule sθ.

E Simulations

To test the sanity of our proposed scoring rule, we simulate a scenario where an imprecise
forecaster predicts a binary outcome (e.g., chance of rain tomorrow). We assume the forecaster
has an imprecise forecast [0.4, 0.6] and uses an imprecise scoring rule sρ where ρ is a dictatorship
or some other aggregation like min-max. We compare this to our randomized imprecise scoring
rule sθ. Given the binary outcome, the forecaster reports an interval Q ∶= [q1, q2] where q1
denotes the lower probability and q2 the upper probability respectively. Figure 3 highlights that
the randomized scoring rule sθ is strictly proper for imprecise forecasts as it has the highest
expected score for the forecaster only when the forecaster reports his true belief. While in
other cases of using a deterministic imprecise scoring rule sρ, if DM provides a ρ such that it
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Figure 3: (Left-to-right) In the first figure we simulate the scoring rule where ρ is a dictatorship
with a fixed mixing weight of 0.5, in the middle figure we simulate the scoring rule with min-max
ρ (pessimistic decision maker) and in the last figure we simulate the scoring rule where the
aggregation is a randomized dictatorship and the forecaster obtains a distribution θ = U[0, 1]
over ρ. The lower half of the figure is not plotted since that corresponds to region q1 > q2, i.e.
lower probability being greater than upper probability

is a dictatorship, such as in the case of Figure 3(a), the scoring rule is proper; however, the
forecaster can lie by reporting the dictator. This can be inferred from the contour that the point
[0.5, 0.5], which corresponds to the precise forecast 0.5, also has the highest expected score. With
ρ being a min-max rule, the scoring rule sρ is proper but not strictly as other imprecise forecasts
allow the forecaster to obtain the same expected score. For our implementation we consider
A = [0, 1] and u(a, o) ∶= (o − a)2 to satisfy Lemma 4.10. We release our implementation at
https://github.com/muandet-lab/Imprecise-Scoring-Rule.

32

https://github.com/muandet-lab/Imprecise-Scoring-Rule

	Introduction
	Preliminaries
	Precise Scoring Rules
	Imprecise Probabilities and Credal Sets

	A Unifying Decision-making Framework for DM and Forecaster
	Decision-Making with Forecasts
	Imprecise Forecaster

	Proper IP Scoring Rules
	Aggregation Functions
	Proper IP scoring rules with aggregation

	A strictly-proper IP scoring rule
	Related Work
	Discussion
	Appendix
	I Appendix
	Additional Supporting lemmas and proofs
	Proof of Remark A.1
	Lower and Upper probabilities are always extreme points
	Equivalence of extreme points for elicitation
	Preference relation in the subset of a credal set

	Proof of Results in Section 3
	Proof of Proposition  3.5
	Proof of Proposition  3.6
	Proof of Theorem 4.2

	Proof of Results in Section 4
	Why is Non-dictatorship Desirable?
	Proof of Proposition 4.9
	Proof of Lemma 4.10

	Proof for Results in Section 5
	Proof of Theorem  5.3
	Proof of Corollary  5.4

	Simulations


