
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MAA: METICULOUS ADVERSARIAL ATTACK AGAINST
VISION-LANGUAGE PRE-TRAINED MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Current adversarial attacks for evaluating the robustness of vision-language pre-
trained (VLP) models in multi-modal tasks suffer from limited transferability,
where attacks crafted for a specific model often struggle to generalize effectively
across different models, limiting their utility in assessing robustness more broadly.
This is mainly attributed to the over-reliance on model-specific features and re-
gions, particularly in the image modality. In this paper, we propose an elegant yet
highly effective method termed Meticulous Adversarial Attack (MAA) to fully ex-
ploit model-independent characteristics and vulnerabilities of individual samples,
achieving enhanced generalizability and reduced model dependence. MAA em-
phasizes fine-grained optimization of adversarial images by developing a novel re-
sizing and sliding crop (RScrop) technique, incorporating a multi-granularity sim-
ilarity disruption (MGSD) strategy. RScrop efficiently enriches the initial adver-
sarial examples by generating more comprehensive, diverse, and detailed perspec-
tives of the images, establishing a robust foundation for capturing representative
and intrinsic visual characteristics. Building on this, MGSD seeks to maximize
the embedding distance between adversarial examples and their original counter-
parts across different granularities and hierarchical levels within the architecture
of VLP models, thereby amplifying the impact of the adversarial perturbations
and enhancing the efficacy of attacks across every layer and component of the
model. Extensive experiments across diverse VLP models, multiple benchmark
datasets, and a variety of downstream tasks demonstrate that MAA significantly
enhances the effectiveness and transferability of adversarial attacks. A large co-
hort of performance studies is conducted to generate insights into the effectiveness
of various model configurations, guiding future advancements in this domain. The
source code is provided in the supplementary material.

1 INTRODUCTION

Vision-language pre-trained (VLP) models have achieved remarkable success and serve as founda-
tional models for a wide range of tasks, including information retrieval, image captioning, and visual
question answering Radford et al. (2021); Li et al. (2022; 2021); Yang et al. (2022). These models
are typically pre-trained on large-scale unlabeled datasets using self-supervised learning and sub-
sequently fine-tuned for specific downstream tasks. Given their extensive applications, it is crucial
to evaluate the robustness of VLP models to ensure their reliability in real-world scenarios, which
are often characterized by uncertainties and potential threats. A representative method for assessing
robustness is through adversarial attacks, where imperceptible perturbations are deliberately crafted
to mislead models to wrongly associate images and texts, resulting in incorrect predictions.

Ensuring the transferability of adversarial attacks across different models is critical, as it is imprac-
tical to craft individual attacks for every different model in real-world scenarios, especially when
attackers often lack access to target models. Existing methods usually enhance adversarial transfer-
ability by enlarging the feature distance between adversarial examples and their original counterparts
across different modalities Zhang et al. (2022); Lu et al. (2023); He et al. (2023); Yin et al. (2023);
Zhang et al. (2024). Some of them also use data augmentation techniques Lu et al. (2023); Zhang
et al. (2024); He et al. (2023) to increase data diversity to further prevent overfitting to the target
model during training (a.k.a. the source model). However, the performance of adversarial examples
produced by these methods is less effective when applied to unknown target models, where adver-
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Table 1: Comparison of different attack methods using image-only perturbations (im) and multi-
modal perturbations (mul) in the image-text retrieval task on Flickr30K. Attack success rate (%)
regarding the average of R@1 is used for evaluation. CLIPViT-B/16 is adopted as the source model.
The grey background indicates the white-box attack results.

Target Model CLIP ALBEF TCL
ViT-B/16 ViT-L/14 RN101

Method I2T T2I I2T T2I I2T T2I I2T T2I I2T T2I

Co-Attackim 90.55 91.72 7.48 16.4 8.94 12.42 2.82 5.78 5.16 7.98
Co-Attackmul 97.73 98.83 27.80 44.50 35.93 44.52 11.42 25.30 12.63 25.85

SGAim 98.04 99.00 15.58 23.29 15.33 21.20 5.11 10.41 7.06 12.12
SGAmul 99.53 99.73 32.14 47.83 44.01 51.19 14.86 29.56 16.26 30.66

VLATTACKim 99.88 99.97 8.34 16.24 13.41 17.87 2.92 7.74 6.11 10.07
VLATTACKmul 99.86 99.92 30.49 42.69 41.31 48.65 11.29 28.22 14.49 30.23

sarial perturbations for the image modality are extraordinarily less effective (an example is presented
in Table 1). Their limited transferability stems from the failure to fully explore the characteristics
and vulnerabilities of individual samples, as well as the over-reliance on model-specific patterns.

Transferability is particularly challenging in the context of VLP models due to two key factors: the
unpredictable fine-tuning process and the complexity of involving multiple modalities. VLP models
are usually fine-tuned for downstream tasks with task-specific optimizations, considering varying
datasets, objectives and other factors. The complexity of multi-modalities introduces more intricate
information. Models tend to extract any available information to make decisions, even those that
do not accurately reflect the true semantic essence of data Zhang et al. (2021b); Ilyas et al. (2019);
Hendrycks et al. (2021); Qin et al. (2022). The specialized factors of VLP models amplify this and
make models more prone to relying on specific features and regions to associate images and texts.
When these models are used as source models, attackers often generate adversarial examples that
place greater emphasis on model-specific features and attended regions, resulting in overfitting to
the source model and ultimately reducing transferability to other models.

In this paper, we focus on exploiting model-independent characteristics and vulnerabilities of im-
ages to guide the generation of adversarial examples, minimizing dependency on and susceptibility
to the source models. A simple yet highly effective and transferable attack method is developed,
termed the Meticulous Adversarial Attack (MAA). MAA refines adversarial examples primarily for
the image modality to disrupt the understanding of image-text relationships across diverse models
by augmenting low-level image details. Our approach is partially grounded in a well-acknowledged
insight: tailored perturbations to each individual image tend to be more potent than applying uni-
form perturbations across all images Poursaeed et al. (2018); Naseer et al. (2019). With this in mind,
MAA exploits representative and fine-grained characteristics and inherent vulnerabilities of origi-
nal images to facilitate the generation of targeted perturbation. This approach substantially reduces
over-reliance on the patterns/features that are generated specifically to the source model, thereby
greatly enhancing the effectiveness and transferability of adversarial examples.

Specifically, we introduce a novel resizing and sliding crop (RScrop) technique, seamlessly inte-
grated with a multi-granularity similarity disruption (MGSD) strategy. Essentially, similar to Yin
et al. (2023); Ganeshan et al. (2019), the MGSD strategy enlarges the feature distances between
adversarial examples and their original counterparts across various layers and components of the
model. Low-level layers and components process local regions and detailed features, while high-
level layers and components capture more abstract, semantic information. However, MGSD is re-
stricted by the fixed-size input and local region processing in existing VLP models, which cannot
effectively focus on more detailed aspects and their connections. For instance, in vision transform-
ers, patch embedding is learnt using non-overlapping patches, where the boundary areas between
adjacent patches are often ignored, resulting in the loss of crucial contextual information. This
limitation prevents the model from capturing fine-grained local dependencies or recognizing pat-
terns that span across patch borders. Consequently, this lack of continuity can hinder the model’s
ability to represent subtle textures, edges, and complex spatial relationships present in the image.
Though the kernels applied in CNNs can slide across an image with overlapping areas, their fixed
size and localized receptive fields inherently limit their ability to capture more local information.
To capture a fine-grained as well as comprehensive view of images to distill their representative
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Figure 1: An illustration of the proposed (a) RScrop augmentation and (b) MAA method. For
RScrop, we use the ViT-based model as an example, where images are processed patch-wise. RScrop
zooms in on adversarial examples and applies them in a sliding manner along each dimension (with
the x-dimension as an example) to capture more fine-grained local regions and their interconnec-
tions. The crop window shifts by a small step size and moves to adjacent non-overlapping areas
relative to its previous position, repeating this process until the entire image is covered. MAA en-
larges the feature distance between adversarial images and the original images across various layers
and components of the model, while also maximizing the cross-modal gap.

characteristics for performing an effective MGSD, RScrop is proposed, supported by scale- and
translation-invariant properties of DNNs Lin et al. (2019); Dong et al. (2019). It employs resizing
and cropping operations, to scale up adversarial examples and feed them in a sliding manner into
the model to enable exploration of more fine-grained features and local regions. We also maximize
the embedding distance between image and text pairs to widen the modality gap for generating both
adversarial images and texts.

The benefits of this approach are manifold. First, augmenting through scaling and sliding acts as a
magnifier, enabling the model to attend to intricate local details and previously overlooked boundary
regions of adjacent patches in individual images. This meticulous focus on fine-grained elements
enhances spatial coherence and captures subtle variations, ultimately improving the model’s sen-
sitivity to nuanced patterns and contextual dependencies within the image itself, independent of
model- and task-specific objectives. Generating adversarial examples based on these augmented
data can successfully alleviate the reliance on model-specific patterns, therefore relieving the over-
fitting issue. Second, intermediate features especially low-level features are generally more gen-
eralized and shared across various models. As a result, MAA promotes more sample-dependent
and model-generic adversarial examples, improving transferability. Third, extensive experiments
demonstrate that MAA achieves notable improvements over existing state-of-the-art techniques in
terms of adversarial transferability. Last but not least, sophisticated parameter studies are undertaken
to provide a comprehensive and in-depth analysis of model performance, shedding light on critical
design choices and fostering the development of more refined models in future work.

2 METHODOLOGY

2.1 PRELIMINARIES

Let Fs represent an available source VLP model consisting of an image encoder fimg and a text
encoder ftxt, which learn feature representations for images and texts, respectively. Given an image-
text pair (x, t), the objective is to generate adversarial examples xadv and tadv that can mislead the
predictions of an unknown target model Ft. To ensure the perturbations remain imperceptible, for
image perturbations, we use l∞-norm constraint: ||tadv − t||∞ ≤ ϵimg. For text perturbations, we
restrict the number of words that can be modified in the sentence, denoted as ϵtxt.

2.2 METICULOUS ADVERSARIAL ATTACK

MAA employs a straightforward RScrop technique in conjunction with a multi-granularity similarity
disruption (MGSD) strategy. An illustration of the framework can be found in Figure 1.

The MGSD strategy enhances adversarial images by enlarging the feature distance from the original
images across various layers and components of the model. Specifically, low-level layers and com-
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ponents process local regions and extract detailed features, e.g., patch processing of ViTs, which
enable us to enhance the local utility of adversarial examples. High-level ones capture abstract,
semantic information. By targeting these diverse granularities and hierarchical levels, we can ef-
fectively uncover the characteristics and vulnerabilities of samples and also make the generation of
adversarial examples more rely on samples and less reliant on information specialized for source
models to associate images and tests. Moreover, low-level layers and components are generally less
model-specific. These contribute to reducing overfitting and enhancing the transferability. How-
ever, common backbone networks used in VLP models, such as ViTs and CNNs, are constrained
by fixed-size processing of inputs and limited local regions. Relying solely on these networks to
generate adversarial examples fails to fully explore the representative and intrinsic characteristics
and vulnerability of samples. Specifically, these networks process fixed-size inputs, which can hin-
der the understanding of features of local regions. While targeting low-level layers that focus on
local regions can alleviate this, it does not completely solve the problem. For instance, ViTs process
images in non-overlapping patches, which overlook important local relationships between neigh-
boring patches. Similarly, CNNs utilize fixed-size convolutional filters, also imposing restrictions
on feature exploration. Furthermore, they cannot extract local information from high-level layers
and components, limiting the fine-grained optimization of adversarial samples. As different models
are prone to extract some distinct features and focus on different regions to associate images and
texts, the fixed-size constraints would make generated adversarial examples rely on model-specific
features and regions, hindering the transferability across different models.

To overcome fixed-size constraints and explore more comprehensive, diverse, and detailed infor-
mation, we propose RScrop, which involves two operations: scaling and cropping. As illustrated
in Figure 1(a). First, original adversarial images are scaled up along each dimension, enabling a
focus on fine-grained local regions. Second, we systematically crop local regions by sliding a crop
window across the image, starting from an initial point in each dimension. The window shifts by a
predefined amount along each dimension to ensure comprehensive coverage of the image with more
regions and their connections considered. Specifically, after the initial crop, the window is shifted
by a step size randomly selected to be smaller than the dimension size of the patch or the convolu-
tional filter of the first layer, ensuring that more local regions and their connections are considered.
We then move to adjacent non-overlapping areas from the previous crop (excluding the small-step
cropped regions), applying the same operation until the entire image is covered. (R4W2) The shift
step length for i-th step relative to the initial point in different dimensions can be formulated by
Li
x/y = (i/2) ∗ lx/y + (i%2) ∗αx/y(i), α

i
x/y = UniformDiscrete(β1, β2), where x and y denote

x- and y- dimension, and β1 and β2 are smaller than the size of dimension size of the patch or the
convolutional filter, i.e., lx/y . Supported by scale- and translation-invariant properties of DNNs Lin
et al. (2019); Dong et al. (2019), this method ensures thorough processing of local areas and their
relationships, providing complete coverage of the image across various layers and complements.

(R2W3,R4W2) Formally, after Rscrop, we can obtain a set of transformed adversarial images
R(xadv) = {xadv

1 ,xadv
2 , ...,xadv

k }. We maximize the feature distance between all these adversar-
ial images and original images at various layers and components as follows :

(R2W3,R4W2)min
xadv

L1 =

N∑
i=1

∑
x′∈R(xadv)

(cos(f i
img(x

′), f i
img(x))), (1)

where N is the number of layers and components, and f i
img is the representations output from the

i-th layer or component. (R4W2) For ViT-based VLP models, features would include those output
from self-attention modules and final output layer, while for ResNet-based VLP models, we extract
features from residual blocks and final output layer. By focusing on features across different layers
and different scales of images, we are able to explore fine-grained vulnerabilities of samples.

(R4W2) The RScrop also creates diverse image-text pairs, which help better explore cross-model
interactions for transferrable attacks. We enlarge the feature distance between adversarial images
and their original paired texts to comprehensively disturb image-text connections:

min
xadv

L2 =

N∑
i=1

∑
x′∈R(xadv)

(cos(fimg(x̂
′
k), ftxt(t))). (2)
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The overall objective for learning adversarial images is as follows:

min
xadv

Limg = L1 + L2. (3)

For attacking the text modality, we use the commonly used BERT-Attack method Li et al. (2020) to
generate adversarial texts by maximizing the feature distance from their original image-text pairs:

min
tadv

Ltxt = cos(ftxt(t
adv), ftxt(t)) + cos(ftxt(t

adv), fimg(x)). (4)

(R4W2,R5W2) BERT-Attack first identifies the most important word in each sentence by replacing
each word in the sentence with [MASK] one at a time and ranking the feature distance between
each modified sentence with the original sentence and the paired image. The most important word
would be replaced by a semantic-consistent word to ensure visually plausible attacks. For the attack
effectiveness, BERT is used to generate a set of candidates and the one that can fulfil Eq. 4 would
be selected to replace the original word to realize an attack.

3 EXPERIMENTS

3.1 SETTINGS

Datasets and Tasks. Three datasets are used: Flickr30K Plummer et al. (2015), MSCOCO Lin
et al. (2014), and RefCOCO+ Yu et al. (2016). The splits for training and testing follow recent
works Zhang et al. (2022); Lu et al. (2023); Yin et al. (2023); Zhang et al. (2024). We focus on
three tasks: image-text retrieval, image captioning, and visual grounding. For image-text retrieval,
Flickr30K Plummer et al. (2015) and MSCOCO Lin et al. (2014) are used. For the image captioning
task and the visual grounding task, MSCOCO and RefCOCO+ datasets are used, respectively.

Models. We test MAA and all compared methods on four kinds of widely-used VLP models: CLIP
Radford et al. (2021), ALBEF Li et al. (2021), TCL Yang et al. (2022), and BLIP Li et al. (2022).
For CLIP, different image encoders are utilized, including vision transformers (ViT-B/16 and ViT-
L/14 Dosovitskiy et al. (2020)) and CNNs (ResNet50 and ResNet101 He et al. (2016)). The text
encoder is a 6-layer transformer. For ALBEF and BLIP, we choose the variant that consists of a
ViT-B/16 as the image encoder and a 6-layer transformer as the text encoder for the attack.

Implementation details. For fundamental experiments, the perturbation magnitude is set to
ϵx = 4/255 for images and ϵt = 1 for text. MAA is also evaluated across various perturbation
magnitudes. The optimization problem for image perturbations is addressed using Projected Gra-
dient Descent (PGD) Madry et al. (2018) with T = 60 iterations and a step size of ϵx/T × 2.25.
The batch size is configured to 4. Every 10 iterations, scaling ratios would be changed by randomly
selecting from the set {1.25, 1.5, 1.75, 2} for each dimension to optimize the adversarial images.

Baselines. Several state-of-the-art approaches are selected for comparison, including Co-Attack
Zhang et al. (2022), SGA Lu et al. (2023), VLATTACK Yin et al. (2023), ETU Zhang et al. (2024),
and (R5Q1)VLPTransferAttack Gao et al. (2024). ETU only generates universal adversarial images,
while others produce adversarial images and texts. We also include baseline methods such as PGD
and BERT-Attack Li et al. (2020).

Evaluation metric. In image-text retrieval, the attack success rate (ASR) is used to evaluate all
methods, calculated as the percentage of adversarial examples that successfully deceive the model.
For other tasks, we compare the performance of target models before and after attacks.

3.2 TASK ANALYSIS

3.2.1 RESULTS ON THE IMAGE-TEXT RETRIEVAL

Image-text retrieval involves ranking the similarity between queries and data to return the most rel-
evant results. Aligning with aforementioned experiment settings, we assess the transferability of all
methods in this task across various datasets (i.e., Flickr30K and MSCOCO) and VLP models (i.e.,
CLIPViT-B/16, CLIPViT-L/14, CLIPResNet50, CLIPResNet101, ALBEF, and TCL) for both image-to-text
(I2T) and text-to-image (T2I) retrieval. Adversarial images are resized to meet the input require-
ments of each model. For instance, adversarial images generated on CLIP models are resized from
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Table 2: The attack success rate (%) on the image-text retrieval task. CLIPViT-B/16 is adopted as the
source model for training, while the target models include CLIPViT-B/16, CLIPViT-L/14, CLIPResNet50,
CLIPResNet101, ALBEF, and TCL. The grey background indicates the white-box attack results. Bold
indicates the best results.

Dataset Flickr30K MSCOCO
Image-to-Text Text-to-Image Image-to-Text Text-to-Image

Target Model Method R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CLIPViT-B/16

(R4Q2)PGD 90.55 ± 0.89 78.09 ± 0.52 78.42 ± 0.34 98.68 ± 0.82 95.83 ± 0.68 94.23 ± 0.56 97.44 ± 0.11 94.53 ± 0.24 91.06 ± 0.23 96.53 ± 0.26 91.90 ± 0.33 88.57 ± 0.49
(R4Q2)BERT-Attack 28.34 ± 0.00 11.63 ± 0.00 6.71 ± 0.00 39.05 ± 0.00 24.06 ± 0.00 17.40 ± 0.00 55.25 ± 0.00 37.26 ± 0.00 28.93 ± 0.00 57.86 ± 0.00 45.05 ± 0.00 38.73 ± 0.00

(R4Q2)Co-Attack 97.73 ± 0.18 94.29 ± 0.02 92.08 ± 0.40 98.83 ± 0.05 96.17 ± 0.05 94.38 ± 0.08 99.50 ± 0.12 98.75 ± 0.10 97.86 ± 0.35 99.60 ± 0.06 98.89 ± 0.05 98.25 ± 0.12
(R4Q2)SGA 99.53 ± 0.05 97.96 ± 0.03 96.48 ± 0.08 99.73 ± 0.03 98.88 ± 0.03 97.72 ± 0.12 91.91 ± 0.02 82.96 ± 0.21 78.69 ± 0.09 91.18 ± 0.12 81.57 ± 0.32 79.93 ± 0.08
(R4Q2)ETU 97.40 ± 0.09 94.16 ± 0.54 78.84 ± 0.32 90.24 ± 0.22 84.31 ± 0.26 69.32 ± 0.28 91.56 ± 0.19 80.45 ± 0.21 78.87 ± 0.37 90.06 ± 0.24 88.63 ± 0.09 86.17 ± 0.43

(R4Q2)VLATTACK 99.86 ± 0.14 99.99 ± 0.01 99.50 ± 0.23 99.92 ± 0.05 99.54 ± 0.24 99.56 ± 0.06 99.93 ± 0.07 99.79 ± 0.11 99.75 ± 0.06 99.98 ± 0.02 99.96 ± 0.04 99.89 ± 0.06
(R5Q1)VLPTransferAttack 99.98 ± 0.02 99.53 ± 0.03 99.42 ± 0.07 99.99 ± 0.01 99.76 ± 0.02 99.53 ± 0.01 99.93 ± 0.03 99.90 ± 0.01 99.77 ± 0.02 99.95 ± 0.03 99.88 ± 0.02 99.80 ± 0.02

(R4Q2)MAA 99.75 ± 0.02 99.05 ± 0.02 98.65 ± 0.07 99.66 ± 0.05 99.25 ± 0.06 98.85 ± 0.04 99.93 ± 0.05 99.81 ± 0.07 99.92 ± 0.02 99.90 ± 0.05 99.70 ± 0.26 99.79 ± 0.11

CLIPViT-L/14

(R4Q2)PGD 7.56 ± 0.42 2.02 ± 0.38 0.59 ± 0.18 16.71 ± 0.56 6.27 ± 0.53 3.66 ± 0.26 20.25 ± 0.52 10.19 ± 0.28 7.04 ± 0.09 29.10 ± 0.31 16.13 ± 0.24 12.49 ± 0.18
(R4Q2)BERT-Attack 24.79 ± 0.00 9.76 ± 0.00 5.59 ± 0.00 39.05 ± 0.00 23.01 ± 0.00 17.07 ± 0.00 51.05 ± 0.00 32.89 ± 0.00 25.82 ± 0.00 59.63 ± 0.00 44.27 ± 0.00 37.56 ± 0.00

(R4Q2)Co-Attack 27.80 ± 0.18 10.44 ± 0.06 5.29 ± 0.10 44.50 ± 0.64 27.31 ± 0.35 19.93 ± 0.04 53.58 ± 0.32 36.24 ± 0.26 28.29 ± 0.31 64.28 ± 0.17 48.89 ± 0.20 41.99 ± 0.15
(R4Q2)SGA 32.14 ± 0.28 15.52 ± 0.12 9.63 ± 0.22 47.83 ± 0.06 30.21 ± 0.13 23.17 ± 0.22 57.28 ± 0.11 41.33 ± 0.46 33.28 ± 0.17 65.98 ± 0.21 50.89 ± 0.22 44.03 ± 0.41
(R4Q2)ETU 8.22 ± 0.47 1.12 ± 0.08 0.20 ± 0.01 16.24 ± 0.32 5.45 ± 0.26 3.46 ± 0.32 20.22 ± 0.09 10.46 ± 0.15 7.92 ± 0.06 25.53 ± 0.18 14.58 ± 0.16 10.44 ± 0.20

(R4Q2)VLATTACK 30.49 ± 0.06 12.54 ± 0.38 6.04 ± 0.09 42.69 ± 0.28 26.64 ± 0.19 19.32 ± 0.25 56.22 ± 0.23 37.39 ± 0.19 29.91 ± 0.43 61.55 ± 0.53 45.28 ± 0.37 37.12 ± 0.32
(R4Q2,R5Q1)VLPTransferAttack 42.54 ± 0.52 23.99 ± 0.23 14.55 ± 0.41 53.82 ± 0.05 36.24 ± 0.19 28.39 ± 0.27 64.82 ± 0.28 48.98 ± 0.19 40.54 ± 0.06 71.85 ± 0.24 58.66 ± 0.30 51.77 ± 0.34

(R4Q2)MAA 54.52 ± 0.31 33.36 ± 0.12 25.76 ± 0.16 62.80 ± 0.50 46.32 ± 0.27 38.11 ± 0.21 80.72 ± 0.13 67.83 ± 0.14 61.75 ± 0.73 83.42 ± 0.49 72.67 ± 0.36 67.03 ± 0.21

CLIPResNet50

(R4Q2)PGD 14.89 ± 0.46 4.884 ± 0.51 2.02 ± 0.27 24.23 ± 0.39 9.05 ± 0.24 5.56 ± 0.16 29.03 ± 0.33 15.39 ± 0.20 10.88 ± 0.15 38.12 ± 0.56 22.64 ± 0.36 16.99 ± 0.23
(R4Q2)BERT-Attack 35.25 ± 0.00 14.69 ± 0.00 8.03 ± 0.00 44.73 ± 0.00 27.7 ± 0.00 20.28 ± 0.00 59.05 ± 0.00 42.18 ± 0.00 32.88 ± 0.00 67.43 ± 0.00 52.64 ± 0.00 45.84 ± 0.00

(R4Q2)Co-Attack 39.35 ± 0.44 17.98 ± 0.64 10.03 ± 0.19 50.54 ± 0.61 31.64 ± 0.78 25.21 ± 0.23 64.00 ± 0.33 45.92 ± 0.31 37.29 ± 0.24 71.95 ± 0.20 56.88 ± 0.24 49.78 ± 0.17
(R4Q2)SGA 43.00 ± 0.71 22.88 ± 0.23 15.65 ± 0.34 56.78 ± 0.12 36.47 ± 0.24 28.89 ± 0.31 68.78 ± 0.46 53.01 ± 0.16 43.76 ± 0.28 75.46 ± 0.19 62.00 ± 0.22 54.58 ± 0.16
(R4Q2)ETU 12.45 ± 0.26 3.46 ± 0.05 2.35 ± 0.43 22.70 ± 0.15 7.37 ± 0.28 5.06 ± 0.02 27.67 ± 0.37 15.11 ± 0.16 10.90 ± 0.12 37.12 ± 0.16 21.79 ± 0.17 16.10 ± 0.09

(R4Q2)VLATTACK 44.32 ± 0.22 20.80 ± 0.08 14.26 ± 0.31 54.31 ± 0.31 35.07 ± 0.08 27.78 ± 0.26 70.28 ± 0.15 52.14 ± 0.19 43.52 ± 0.33 75.54 ± 0.47 60.99 ± 0.39 53.35 ± 0.62
(R5Q1)VLPTransferAttack 52.65 ± 0.41 31.48 ± 0.24 22.47 ± 0.22 63.34 ± 0.46 43.52 ± 0.25 35.63 ± 0.32 76.35 ± 0.37 61.39 ± 0.22 53.23 ± 0.25 80.82 ± 0.36 68.29 ± 0.42 70.10 ± 0.23

(R4Q2)MAA 77.02 ± 0.25 63.62 ± 0.64 52.85 ± 0.45 80.26 ± 0.43 65.42 ± 0.56 58.12 ± 0.24 92.28 ± 0.60 85.71 ± 0.52 80.46 ± 0.82 92.86 ± 0.52 86.32 ± 0.37 82.03 ± 0.29

CLIPResNet101

(R4Q2)PGD 8.84 ± 0.67 2.03 ± 0.34 1.30 ± 0.27 12.82 ± 0.47 4.28 ± 0.28 2.68 ± 0.10 14.89 ± 0.09 7.92 ± 0.13 5.85 ± 0.06 21.07 ± 0.06 11.58 ± 0.32 8.91 ± 0.12
(R4Q2)BERT-Attack 30.27 ± 0.00 11.63 ± 0.00 5.77 ± 0.00 37.39 ± 0.00 24.92 ± 0.00 18.59 ± 0.00 52.39 ± 0.00 35.55 ± 0.00 28.76 ± 0.00 58.64 ± 0.00 46.29 ± 0.00 39.39 ± 0.00

(R4Q2)Co-Attack 35.93 ± 0.48 13.80 ± 0.11 8.75 ± 0.12 44.52 ± 0.45 29.13 ± 0.23 22.88 ± 0.19 58.87 ± 0.74 40.41 ± 0.54 32.89 ± 0.37 65.54 ± 0.13 52.18 ± 0.16 45.17 ± 0.14
(R4Q2)SGA 44.01 ± 0.29 21.87 ± 0.31 14.31 ± 0.44 51.19 ± 0.38 33.25 ± 0.51 26.65 ± 0.33 61.83 ± 0.29 47.87 ± 0.35 40.35 ± 0.38 69.01 ± 0.44 56.29 ± 0.46 49.65 ± 0.27
(R4Q2)ETU 7.89 ± 0.62 1.97 ± 0.32 1.15 ± 0.06 12.45 ± 0.14 4.75 ± 0.07 2.88 ± 0.15 18.24 ± 0.62 12.62 ± 0.24 8.70 ± 0.27 23.01 ± 0.44 10.15 ± 0.20 9.08 ± 0.09

(R4Q2)VLATTACK 41.31 ± 0.28 18.42 ± 0.17 11.03 ± 0.25 48.65 ± 0.10 31.47 ± 0.19 24.65 ± 0.15 62.88 ± 0.09 46.87 ± 0.05 38.80 ± 0.20 70.34 ± 0.32 56.43 ± 0.31 49.45 ± 0.25
(R5Q1)VLPTransferAttack 51.64 ± 0.56 28.45 ± 0.19 19.74 ± 0.32 59.42 ± 0.22 40.83 ± 0.35 33.21 ± 0.44 70.86 ± 0.42 57.47 ± 0.29 48.63 ± 0.24 76.49 ± 0.37 64.39 ± 0.17 57.58 ± 0.25

(R4Q2)MAA 72.23 ± 0.82 55.34 ± 0.37 44.89 ± 0.41 74.87 ± 0.23 60.65 ± 0.42 53.42 ± 0.39 89.56 ± 0.49 81.35 ± 0.27 76.86 ± 0.38 90.07 ± 0.16 83.12 ± 0.02 78.66 ± 0.06

ALBEF

(R4Q2)PGD 2.87 ± 0.09 0.23 ± 0.05 0.30 ± 0.03 5.85 ± 0.21 1.83 ± 0.11 1.10 ± 0.08 8.42 ± 0.49 3.87 ± 0.53 1.87 ± 0.08 13.11 ± 0.36 5.49 ± 0.12 3.50 ± 0.12
(R4Q2)BERT-Attack 9.45 ± 0.00 1.31 ± 0.00 0.45 ± 0.00 22.82 ± 0.00 11.22 ± 0.00 8.15 ± 0.00 28.32 ± 0.00 12.67 ± 0.00 8.25 ± 0.00 41.16 ± 0.00 26.17 ± 0.00 20.77 ± 0.00

(R4Q2)Co-Attack 11.42 ± 0.22 1.92 ± 0.18 0.53 ± 0.08 25.30 ± 0.16 12.71 ± 0.13 9.33 ± 0.13 31.01 ± 0.44 14.29 ± 0.60 9.37 ± 0.43 43.34 ± 0.73 27.71 ± 0.61 22.17 ± 0.51
(R4Q2)SGA 14.86 ± 0.05 3.31 ± 0.00 1.40 ± 0.00 29.56 ± 0.02 14.32 ± 0.24 10.68 ± 0.32 36.62 ± 0.20 18.93 ± 0.08 13.13 ± 0.24 46.78 ± 0.19 30.74 ± 0.19 24.05 ± 0.31
(R4Q2)ETU 1.72 ± 0.05 0.30 ± 0.00 0.20 ± 0.00 5.89 ± 0.46 1.26 ± 0.09 0.88 ± 0.03 12.83 ± 0.47 6.86 ± 0.26 3.34 ± 0.38 13.16 ± 0.67 7.23 ± 0.37 4.34 ± 0.16

(R4Q2)VLATTACK 11.29 ± 0.15 2.52 ± 0.10 1.00 ± 0.00 28.22 ± 0.42 13.78 ± 0.15 10.23 ± 0.11 34.60 ± 0.17 17.21 ± 0.29 11.25 ± 0.24 46.73 ± 0.33 31.43 ± 0.42 25.34 ± 0.41
(R5Q1)VLPTransferAttack 30.28 ± 0.29 12.96 ± 0.16 6.14 ± 0.35 42.88 ± 0.08 25.45 ± 0.12 19.17 ± 0.09 52.23 ± 0.23 30.39 ± 0.07 24.74 ± 0.12 59.27 ± 0.24 44.09 ± 0.26 34.21 ± 0.19

(R4Q2)MAA 32.45 ± 0.67 14.68 ± 0.43 11.20 ± 0.21 43.62 ± 0.55 25.63 ± 0.24 19.83 ± 0.20 53.82 ± 0.52 33.38 ± 0.23 26.01 ± 0.54 60.78 ± 0.74 44.35 ± 0.29 36.44 ± 0.25

TCL

(R4Q2)PGD 5.28 ± 0.32 0.32 ± 0.05 0.10 ± 0.02 8.10 ± 0.22 2.31 ± 0.19 1.39 ± 0.12 10.51 ± 0.27 4.19 ± 0.22 2.40 ± 0.07 14.62 ± 0.31 6.45 ± 0.22 4.09 ± 0.12
(R4Q2)BERT-Attack 9.59 ± 0.00 2.01 ± 0.00 0.60 ± 0.00 24.05 ± 0.00 11.89 ± 0.00 8.20 ± 0.00 29.15 ± 0.00 13.45 ± 0.00 9.39 ± 0.00 41.01 ± 0.00 25.96 ± 0.00 19.93 ± 0.00

(R4Q2)Co-Attack 12.63 ± 0.44 3.09 ± 0.12 0.84 ± 0.19 25.85 ± 0.56 13.89 ± 0.58 9.29 ± 0.33 32.35 ± 0.32 14.78 ± 0.51 10.50 ± 0.23 43.72 ± 0.19 27.77 ± 0.33 21.86 ± 0.12
(R4Q2)SGA 16.26 ± 0.21 3.69 ± 0.12 1.47 ± 0.05 30.66 ± 0.27 16.05 ± 0.19 11.20 ± 0.15 37.14 ± 0.28 18.98 ± 0.32 12.87 ± 0.08 47.05 ± 0.16 31.18 ± 0.11 24.79 ± 0.21
(R4Q2)ETU 11.78 ± 0.68 6.12 ± 0.36 2.06 ± 0.11 17.54 ± 0.43 8.65 ± 0.44 6.08 ± 0.23 17.36 ± 0.28 5.55 ± 0.34 3.92 ± 0.14 15.72 ± 0.26 7.26 ± 0.33 5.50 ± 0.21

(R4Q2)VLATTACK 14.49 ± 0.25 3.71 ± 0.19 1.47 ± 0.12 30.23 ± 0.22 16.34 ± 0.43 11.22 ± 0.32 35.94 ± 0.18 18.85 ± 0.09 12.67 ± 0.34 48.39 ± 0.28 32.34 ± 0.15 25.87 ± 0.18
(R5Q1)VLPTransferAttack 30.66 ± 0.09 12.79 ± 0.16 6.10 ± 0.12 42.79 ± 0.45 26.52 ± 0.33 19.20 ± 0.18 56.24 ± 0.28 37.39 ± 0.22 29.58 ± 0.34 61.58 ± 0.27 45.10 ± 0.03 36.96 ± 0.11

(R4Q2)MAA 41.42 ± 0.48 22.42 ± 0.11 17.03 ± 0.15 50.29 ± 0.41 31.24 ± 0.25 24.82 ± 0.33 60.95 ± 0.39 39.96 ± 0.22 31.65 ± 0.36 62.37 ± 0.27 45.17 ± 0.24 37.46 ± 0.28

Table 3: The attack success rate (%) of R@1 in image-text retrieval on Flickr30K. Grey background
highlights white-box attack results, and bold indicates the best performance.

Target Model CLIP ALBEF TCL
ViT-B/16 ViT-L/14 RN50 RN101

Source Model Method I2T T2I I2T T2I I2T T2I I2T T2I I2T T2I I2T T2I

CLIPResNet101

(R4Q2)PGD 2.22 ± 0.17 6.73 ± 0.09 8.42 ± 0.12 15.91 ± 0.12 15.28 ± 0.22 23.76 ± 0.19 93.27 ± 0.06 96.62 ± 0.18 1.78 ± 0.17 4.45 ± 0.11 3.82 ± 0.15 6.95 ± 0.25
(R4Q2)BERT-Attack 27.12 ± 0.00 37.44 ± 0.00 25.28 ± 0.00 39.85 ± 0.00 35.52 ± 0.00 46.91 ± 0.00 30.52 ± 0.00 39.97 ± 0.00 9.49 ± 0.00 23.25 ± 0.00 11.59 ± 0.00 24.36 ± 0.00

(R4Q2)Co-Attack 28.67 ± 0.27 40.42 ± 0.33 25.58 ± 0.16 41.68 ± 0.19 38.62 ± 0.46 52.89 ± 0.18 98.18 ± 0.13 98.57 ± 0.06 9.39 ± 0.12 23.83 ± 0.24 11.82 ± 0.16 25.18 ± 0.18
(R4Q2)SGA 32.57 ± 0.11 44.37 ± 0.24 28.32 ± 0.09 43.19 ± 0.06 49.27 ± 0.22 61.28 ± 0.27 97.85 ± 0.11 97.86 ± 0.09 11.82 ± 0.23 26.51 ± 0.17 14.69 ± 0.12 28.79 ± 0.27
(R4Q2)ETU 5.28 ± 0.09 7.43 ± 0.17 7.63 ± 0.26 10.15 ± 0.08 13.64 ± 0.23 16.40 ± 0.17 88.87 ± 0.22 89.52 ± 0.36 4.31 ± 0.21 7.36 ± 0.08 5.71 ± 0.22 8.98 ± 0.10

(R4Q2)VLATTACK 33.00 ± 0.31 43.27 ± 0.09 27.80 ± 0.17 40.72 ± 0.15 48.74 ± 0.08 59.72 ± 0.18 94.25 ± 0.24 96.82 ± 0.07 3.92 ± 0.09 9.38 ± 0.13 8.68 ± 0.26 13.91 ± 0.31
(R4Q2)VLPTransferAttack 35.28 ± 0.45 46.71 ± 0.33 28.41 ± 0.15 43.65 ± 0.29 60.54 ± 0.32 69.71 ± 0.17 94.13 ± 0.08 96.78 ± 0.14 12.39 ± 0.34 27.98 ± 0.14 16.65 ± 0.19 30.07 ± 0.09

(R4Q2)MAA 36.03 ± 0.81 47.56 ± 0.52 30.06 ± 0.86 44.80 ± 0.66 70.83 ± 0.45 78.93 ± 0.48 98.98 ± 0.82 98.82 ± 1.01 14.08 ± 0.52 29.15 ± 0.15 17.01 ± 0.26 31.94 ± 0.42

ALBEF

(R4Q2)PGD 10.45 ± 0.54 14.92 ± 0.24 16.52 ± 0.14 30.83 ± 0.32 15.50 ± 0.11 23.79 ± 0.37 22.27 ± 0.23 38.24 ± 0.16 87.12 ± 0.08 90.07 ± 0.10 25.04 ± 0.23 30.12 ± 0.17
(R4Q2)BERT-Attack 25.03 ± 0.00 35.66 ± 0.00 28.88 ± 0.00 38.04 ± 0.00 37.12 ± 0.00 56.90 ± 0.00 31.42 ± 0.00 45.35 ± 0.00 32.53 ± 0.00 50.61 ± 0.00 8.22 ± 0.00 19.57 ± 0.00

(R4Q2)Co-Attack 27.88 ± 0.25 38.52 ± 0.09 24.23 ± 0.61 38.51 ± 0.23 33.26 ± 0.19 46.42 ± 0.10 33.58 ± 0.42 46.39 ± 0.16 98.61 ± 0.08 98.66 ± 0.05 28.25 ± 0.15 42.99 ± 0.51
(R4Q2)SGA 38.76 ± 0.27 47.45 ± 0.25 31.20 ± 0.07 45.65 ± 0.32 46.57 ± 0.28 58.10 ± 0.12 42.23 ± 0.28 51.40 ± 0.41 98.69 ± 0.05 98.54 ± 0.07 64.45 ± 0.71 69.11 ± 0.22
(R4Q2)ETU 12.32 ± 0.46 17.73 ± 0.22 15.67 ± 0.51 18.42 ± 0.12 16.18 ± 0.25 25.69 ± 0.33 22.90 ± 0.07 28.57 ± 0.23 87.06 ± 0.28 89.33 ± 0.09 28.23 ± 0.46 32.38 ± 0.27

(R4Q2)VLATTACK 36.42 ± 0.33 45.86 ± 0.18 29.13 ± 0.25 44.62 ± 0.11 40.02 ± 0.23 54.12 ± 0.19 35.60 ± 0.12 47.09 ± 0.27 94.12 ± 0.08 96.80 ± 0.06 41.81 ± 0.54 52.69 ± 0.29
(R4Q2)VLPTransferAttack 38.93 ± 0.18 48.90 ± 0.12 30.50 ± 0.32 45.12 ± 0.11 48.11 ± 0.09 58.64 ± 0.32 42.53 ± 0.27 52.37 ± 0.76 99.74 ± 0.09 99.72 ± 0.12 74.24 ± 0.36 74.48 ± 0.17

(R4Q2)MAA 39.70 ± 0.58 50.09 ± 0.35 32.52 ± 0.14 47.50 ± 0.24 51.02 ± 0.08 61.07 ± 0.11 44.34 ± 0.67 55.23 ± 0.33 99.78 ± 0.22 99.65 ± 0.30 76.02 ± 0.41 76.11 ± 0.23

TCL

(R4Q2)PGD 9.26 ± 0.25 13.82 ± 0.29 9.35 ± 0.47 16.52 ± 0.12 23.26 ± 0.24 38.42 ± 0.45 16.26 ± 0.19 24.51 ± 0.09 18.09 ± 0.16 24.49 ± 0.67 94.01 ± 0.17 96.83 ± 0.09
(R4Q2)BERT-Attack 29.94 ± 0.00 39.21 ± 0.00 25.64 ± 0.00 39.56 ± 0.00 41.62 ± 0.00 59.57 ± 0.00 36.14 ± 0.00 48.78 ± 0.00 9.91 ± 0.00 23.64 ± 0.00 37.09 ± 0.00 53.07 ± 0.00

(R4Q2)Co-Attack 32.20 ± 0.22 41.78 ± 0.17 27.28 ± 0.09 42.20 ± 0.22 45.89 ± 0.37 61.21 ± 0.30 40.33 ± 0.27 50.54 ± 0.14 45.09 ± 0.19 58.12 ± 0.38 94.17 ± 0.15 96.80 ± 0.04
(R4Q2)SGA 39.32 ± 0.24 47.66 ± 0.16 29.92 ± 0.02 44.79 ± 0.13 48.25 ± 0.09 60.88 ± 0.25 42.62 ± 0.19 52.02 ± 0.31 68.90 ± 0.27 74.51 ± 0.11 99.15 ± 0.05 99.96 ± 0.02
(R4Q2)ETU 11.59 ± 0.55 16.27 ± 0.32 24.45 ± 0.27 35.89 ± 0.22 20.06 ± 0.08 27.54 ± 0.12 19.78 ± 0.26 27.46 ± 0.11 20.18 ± 0.17 23.65 ± 0.22 91.06 ± 0.07 89.40 ± 0.05

(R4Q2)VLATTACK 36.52 ± 0.67 21.22 ± 0.23 31.47 ± 0.20 45.75 ± 0.19 43.88 ± 0.11 54.92 ± 0.04 36.83 ± 0.17 47.78 ± 0.26 34.26 ± 0.13 46.68 ± 0.34 94.17 ± 0.06 96.81 ± 0.12
(R4Q2)VLPTransferAttack 41.23 ± 0.34 48.88 ± 0.27 32.39 ± 0.29 47.98 ± 0.18 52.49 ± 0.06 62.95 ± 0.09 47.13 ± 0.12 57.14 ± 0.24 71.66 ± 0.06 75.29 ± 0.10 99.89 ± 0.02 99.70 ± 0.11

(R4Q2)MAA 42.01 ± 0.08 50.98 ± 0.31 34.36 ± 0.44 50.00 ± 0.25 55.36 ± 0.28 64.27 ± 0.33 49.65 ± 0.58 57.85 ± 0.33 72.85 ± 0.21 75.69 ± 0.18 99.89 ± 0.11 99.95 ± 0.05

224× 224 to 384× 384 to attack ALBEF and TCL, or vice versa. To observe the performance trend
of the proposed MMA compared to baseline methods across various retrieval stages, we engage eval-
uation metrics R@1, R@5, and R@10. Two benchmark datasets are utilized, and the CLIPViT-B/16
model is employed as the source model for training. The corresponding results are reported in Table
2. To provide a comprehensive overview of the performance gap between the baseline methods and
MMA, Table 3 showcases the effectiveness of attacks based on all combinations of source-target
model pairs using different attack generation methods. Given space constraints, we focus on pre-
senting R@1 results for one of the benchmark datasets to highlight key trends succinctly.

It is evident that the compared methods experience significant performance degradation when attack-
ing unseen models, highlighting their tendency to overfit. Specifically, adversarial examples perform
better when the source and target models share similar objectives, training schemes and/or architec-
tures, such as between CLIP models, compared to dissimilar ones, like between CLIP and other mod-
els. This discrepancy arises because different objectives, training schemes, and architectures lead to
model-specific multimodal data processing. As a result, attackers depend on model-specific features
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Table 4: Performance on visual grounding under different attacks on RefCOCO+. CLIPViT-B/16 and
ALBEF for image-text retrieval serve as the source model, while ALBEF built for visual grounding
is used as the target model. “Baseline” refers to the target model’s performance on clean data.
Smaller values indicate better adversarial transferability, and bold highlights the best results.

Source Model CLIPViT-B/16 (R2Q1,R3W1) ALBEF

Val TestA TestB Val TestA TestB
(R2Q1,R3W1)Baseline 51.42 ± 0.33 56.85 ± 0.27 44.77 ± 0.19 51.42 ± 0.33 56.85 ± 0.27 44.77 ± 0.19
(R2Q1,R3W1)PGD 51.00 ± 0.07 56.49 ± 0.09 44.68 ± 0.10 49.92 ± 0.08 56.27 ± 0.15 40.89 ± 0.71
(R2Q1,R3W1)BERT-Attack 43.08 ± 0.00 48.31 ± 0.00 37.23 ± 0.00 46.00 ± 0.00 52.03 ± 0.00 35.84 ± 0.00
(R2Q1,R3W1)Co-Attack 43.45 ± 0.13 47.80 ± 0.27 37.43 ± 0.35 43.22 ± 0.48 47.80 ± 0.12 35.08 ± 0.34
(R2Q1,R3W1)SGA 45.24 ± 0.31 49.79 ± 0.23 38.82 ± 0.09 44.94 ± 0.37 49.81 ± 0.23 36.61 ± 0.26
(R2Q1,R3W1)ETU 50.36 ± 0.34 55.24 ± 0.24 43.52 ± 0.11 48.32 ± 0.17 52.64 ± 0.09 40.01 ± 0.23
(R2Q1,R3W1)VLATTACK 46.32 ± 0.38 50.44 ± 0.56 39.62 ± 0.27 42.38 ± 0.26 47.48 ± 0.31 35.52 ± 0.19
(R2Q1,R3W1,R5Q1)VLPTransferAttack 44.69 ± 0.22 49.72 ± 0.24 38.49 ± 0.37 42.76 ± 0.33 48.09 ± 0.51 35.45 ± 0.27
(R2Q1,R3W1)MAA 41.23 ± 0.14 45.32 ± 0.23 35.92 ± 0.15 41.35 ± 0.20 46.70 ± 0.17 33.40 ± 0.33

Table 5: Performance in the image captioning task under various attacks on MSCOCO. CLIPViT-B/16
and ALBEF for image-text retrieval serve as the source model, while BLIP built for image captioning
is used as the target model. “Baseline” refers to the target model’s performance on clean data.
Smaller values indicate better adversarial transferability, and bold highlights the best results.

Source Model CLIPViT-B/16 (R2Q1,R3W1)ALBEF

B@4 METEOR ROUGE L CIDEr SPICE B@4 METEOR ROUGE L CIDEr SPICE
(R2Q1,R3W1)Baseline 39.59 ± 0.44 30.87 ± 0.16 59.67 ± 0.09 132.02 ± 0.82 23.51 ± 0.15 39.59 ± 0.44 30.87 ± 0.16 59.67 ± 0.09 132.02 ± 0.82 23.51 ± 0.15
(R2Q1,R3W1)Co-Attack 38.34 ± 0.06 30.06 ± 0.21 58.89 ± 0.14 128.16 ± 0.31 23.12 ± 0.26 34.12 ± 0.14 27.96 ± 0.22 55.88 ± 0.51 112.73 ± 0.25 20.81 ± 0.17
(R2Q1,R3W1)SGA 37.19 ± 0.24 29.70 ± 0.11 58.15 ± 0.16 124.36 ± 0.32 22.27 ± 0.46 38.51 ± 0.23 30.24 ± 0.15 59.05 ± 0.27 128.99 ± 0.41 23.18 ± 0.08
(R2Q1,R3W1)ETU 38.92 ± 0.44 30.35 ± 0.23 59.24 ± 0.19 130.01 ± 0.25 23.34 ± 0.09 34.70 ± 0.28 27.66 ± 0.47 55.63 ± 0.16 128.57 ± 0.24 22.21 ± 0.15
(R2Q1,R3W1)VLATTACK 38.03 ± 0.36 30.07 ± 0.19 58.95 ± 0.19 127.64 ± 0.23 22.90 ± 0.09 34.74 ± 0.21 28.24 ± 0.07 56.19 ± 0.23 114.12 ± 0.27 21.09 ± 0.19
(R2Q1,R3W1,R5Q1)VLPTransferAttack 36.15 ± 0.18 29.01 ± 0.32 57.26 ± 0.28 120.58 ± 0.12 21.93 ± 0.26 28.63 ± 0.16 25.05 ± 0.18 51.73 ± 0.52 92.59 ± 0.11 18.34 ± 0.37
(R2Q1,R3W1)MAA 33.26 ± 0.41 26.78 ± 0.39 54.68 ± 0.17 107.51 ± 0.65 19.83 ± 0.12 22.82 ± 0.35 21.88 ± 0.28 47.85 ± 0.29 84.03 ± 0.19 15.91 ± 0.24

to generate adversarial examples, resulting in limited abilities to disturb cross-modal relationships.
In contrast, MAA explores the representative and intrinsic characteristics and vulnerabilities of orig-
inal images, thereby reducing over-reliance on source models and fostering the development of more
model-generic adversarial examples. Second, BERT-Attack demonstrates less overfitting to source
models. This is likely because most VLP models share the same text encoder. So all compared
multi-modal attack methods utilize BERT-Attack to enhance adversarial transferability. However, as
shown in Table 1, when text perturbations are removed, these methods experience a notable perfor-
mance drop. Additionally, text perturbations typically involve replacing, removing, or transforming
keywords, tend to be conspicuous and easily detectable Li et al. (2020); Jin et al. (2020); Iyyer et al.
(2018); Naik et al. (2018); Ren et al. (2019). These highlight the importance of enhancing attacks in
the image modality. Third, ETU is a universal attack method that learns uniform adversarial pertur-
bations for all data, making it independent of sample-specific characteristics and vulnerabilities. As
a result, ETU achieves inferior performance compared to sample-specific methods.

3.2.2 RESULTS ON THE VISUAL GROUNDING AND IMAGE CAPTIONING

The performance of various attacks on the visual grounding and image captioning tasks is presented
in Tables 4 and 5. Notably, the image captioning task only utilizes images as input. Since Co-Attack
reduces to the PGD attack when text perturbations are omitted, we do not report PGD results sepa-
rately. Visual Grounding aims to align textual descriptions with relevant objects or locations within
the visual input. This task requires attackers to effectively disrupt the correlation between texts and
fine-grained image contents. (R5W1)By means of RScrop and MGSD, the proposed method can find
more fine-grained characteristics and vulnerabilities of data and break the intra- and inter-model re-
lationships across different granularities and hierarchical levels, it achieves better performance than
other methods. In the image captioning task, the goal is to generate descriptive textual information
that accurately reflects the content of an image. This requires models to effectively identify objects,
attributes, and contextual information. Through the sliding operation of RScrop, MAA effectively
considers local regions and their dependencies to generate adversarial examples, thus enhancing the
ability to prevent target models from recognizing visual elements. (R5W1)In addition, as the pro-
posed method pays attention to the characteristics of each sample, it can prevent adversarial example
generation from depending on model-specific features, further promoting transferability.

In summary, our MAA takes into account both global and fine-grained information, achieving supe-
rior performance across various tasks, whether in image-text retrieval that focuses on matching entire
images to text or in visual grounding and image captioning that emphasize fine-grained content.
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(c) ALBEF
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Figure 2: Test accuracy on Flickr30K with varying image perturbation magnitudes. The source
model is CLIPViT-B/16. The attack success rate (ASR, %) of R@1 is reported.

3.3 PARAMETER ANALYSIS

3.3.1 EFFECT OF VARYING PERTURBATION MAGNITUDES

As the proposed method focuses primarily on images and all multi-modal attack methods all use
the same text attack techniques, we evaluate the impact of perturbation magnitude on adversarial
images by fixing the text perturbation. The results are shown in Figure 2. As illustrated, our pro-
posed method consistently outperforms others across various perturbation magnitudes. Moreover,
as the perturbation magnitude increases, the performance improvement of our method becomes sig-
nificantly more pronounced, while other methods show only minor gains. The reason is that the
proposed method explores local regions and detailed information to uncover the intrinsic vulnera-
bilities of original data, which encourages model-generic adversarial examples and reduces over-
reliance on specific models. With the perturbation magnitude increasing, the model-generic aspects
of adversarial examples would be further enhanced, thus promoting transferability. In contrast, the
compared methods primarily rely on model-specific features, meaning that increased perturbation
magnitudes mainly enhance model-specific adversarial examples, leading to inferior transferability.

R@1
R@5

R@10
0

20
40
60
80

100

AS
R

Image-to-Text
0.25~1, 0.25
1 (w/o scaling)
1.25~1.5, 0.25
1.25~2, 0.25
0~2, random
2~5, 0.25
5~10, 0.25

R@1
R@5

R@10
0

20
40
60
80

100

AS
R

Text-to-Image
0.25~1, 0.25
1 (w/o scaling)
1.25~1.5, 0.25
1.25~2, 0.25
0~2, random
2~5, 0.25
5~10, 0.25

(a) (R3W2.2) Resizing parameter analysis
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(b) Grad-CAM visualization

Figure 3: (a) (R3W2.2) Resizing parameter analysis: appropriate scaling can achieve competitive
performance. (b) A Grad-CAM visualization of original data pairs, image-only perturbed pairs and
multi-modal perturbed pairs, where MAA can significantly shift the attention of target models.

3.3.2 EFFECT OF RESIZING FACTORS

Setting appropriate resizing factors is crucial for effectively exploring local details. (R3W2.2) To
verify this, We evaluate MAA across various resizing ranges with intervals of 0.25, and also re-
port the results of random selection, as shown in Figure 3(a). It is evident that scaling within an
appropriate range enhances performance while exceeding this range adversely affects it. In light of
scale-invariant properties of DNNs Lin et al. (2019), RScrop resizes images to attend to subtle varia-
tions in local features and ensure that the network can focus on finer details. However, as the resizing
factor increases and images become progressively larger, the network may encounter diminishing
returns in its ability to capture meaningful details. This assumption is supported by a consistent per-
formance improvement within the range of 1 to 2, with peak effectiveness observed between 1.25
and 2. However, a performance decline becomes apparent once the resizing factor exceeds 2. We in-
terpret this observation as that adversarial examples generated on well-explored features and details
are more likely to transfer to other models. However, when images are excessively enlarged, critical
features may become blurred or lose detail, making recognition difficult for source models. Conse-
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Table 6: Ablation study of different components on Flickr30K. The attack success rate of R@1 on
image-text retrieval is reported. CLIPViT-B/16 is adopted as the source model.

Target Model CLIP ALBEF TCL
ViT-B/16 ViT-L/14 RN101

Method I2T T2I I2T T2I I2T T2I I2T T2I I2T T2I

(R3W2.1,R5Q1,R5W1)MAA w DIM 99.63 99.87 42.12 53.09 62.45 65.13 27.22 41.3 31.61 44.5
(R3W2.1,R5Q1,R5W1)MAA w TI-DIM 96.13 99.27 32.02 46.3 41.89 53.14 24.81 31.62 24.75 29.6

(R3W2.1,R5Q1,R5W1)MAA w SI-NI-TI-DIM 99.85 99.19 26.99 41.59 34.11 44.91 28.95 33.51 22.64 29.98
(R3W2.1,R5Q1,R5W1)MAA w SIA 99.51 99.23 42.94 54.25 63.22 69.19 27.42 40.79 35.09 45.31

MAA w ScMix 99.75 99.84 24.66 42.30 37.04 49.31 12.30 27.46 13.28 28.74
MAA w/o Resizing 100.00 99.94 42.58 54.41 62.32 68.54 22.94 37.93 30.03 42.55
MAA w/o Sliding 99.88 100.00 26.5 42.01 38.60 42.92 12.41 28.11 14.75 29.43
MAA w/o RScrop 100.00 100.00 25.47 41.85 38.83 49.23 12.62 27.48 13.91 28.90
MAA w/o MGSD 99.51 99.71 45.02 56.55 57.81 65.82 27.63 43.59 32.77 45.48

MAA 99.75 99.05 54.36 63.02 72.23 74.87 32.45 43.62 41.42 50.29

quently, adversarial examples constructed from such indistinguishable features are less effective in
attacking target models. (R3W2.2)Notably, scaling factors less than 1 can also enhance performance
as they increase data diversity to prevent overfitting. However, they do not contribute to extracting
fine-grained details, resulting in inferior performance compared to our method.

3.4 ABLATION STUDY

To verify the effectiveness of the proposed method, we conduct an extensive ablation study. Since
the method is simple, involving only two components: RScrop and MGSD, we create two variants
by removing each component individually, labeled as MAA w/o RScrop and MAA w/o MGSD. Fur-
thermore, our MGSD employs scaling to enhance the exploration of fine-grained details and utilizes
sliding crops to capture local dependencies and ensure comprehensive image coverage. To further
assess the impact of these operations, we construct two variants that use only scaling and sliding,
denoted as MAA w/o Sliding and MAA w/o Resizing, respectively. (R3Q2.1) We also compare the
proposed Rscrop with other augmentations, including DIM Xie et al. (2019), TI-DIM Dong et al.
(2019), SI-NI-TI-DIM Lin et al. (2019), SIA Wang et al. (2023)and ScMix Zhang et al. (2024). The
results for all variants in the context of image-text retrieval are summarized in Table 6. The results
show that the two key strategies of MAA are complementary, enabling it to explore local details
across different granularities and hierarchical levels. RScrop contributes more compared to MGSD,
as it still helps the method capture local information by focusing on output features, without relying
on intermediate features across levels. The performance of MAA w/o Sliding demonstrates that en-
suring full image coverage is crucial for thoroughly exploring the characteristics and vulnerabilities
of original samples. Similarly, scaling is important for capturing finer local details.

3.5 VISUALIZATION

A set of Grad-CAM Selvaraju et al. (2017) visualization examples is shown in Figure 3(b), which
highlights the activation areas and helps understand the regions of the image that contribute most to
the model’s predictions. This visualization reveals distinct focus shifts, indicating that the proposed
MAA method effectively modulates the attention patterns of the target models. Although the image
perturbations generated by MAA remain visually imperceptible to the human eye, they are highly
effective at misleading the models, verifying the distinguish performance of the proposed solution
when assessing the robustness of VLP models. In addition, text perturbations tend to be more
noticeable. We leave the study of improving imperceptibly of adversarial texts in our future work.

4 RELATED WORK

4.1 VISION-LANGUAGE PRE-TRAINED MODELS

Vision-language pre-trained (VLP) models play a crucial role in advancing the understanding of
visual and textual information and their interactions. By leveraging large-scale unlabeled datasets
and self-supervised learning techniques, VLP Models can learn rich, generalized representations
of both visual and linguistic data. This transfer learning capability enables them to be fine-tuned
for a wide range of tasks with relatively small datasets, including multi-modal retrieval, zero-shot
learning, image captioning, visual question answering, and visual entailment Radford et al. (2021);
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Li et al. (2022; 2021); Yang et al. (2022). Notable VLP methods include CLIP Radford et al.
(2021), BLIP Li et al. (2022), ALBEF Li et al. (2021), and TCL Yang et al. (2022). These methods
primarily leverage multi-modal contrastive learning to align image-text pairs. Specifically, CLIP
employs unimodal encoders to project data from different modalities into a unified feature space.
BLIP Li et al. (2022) refines noisy captions to enhance learning effectiveness. ALBEF Li et al.
(2021) and TCL Yang et al. (2022) both utilize a multi-modal encoder to learn joint representations
for images and texts. ALBEF Li et al. (2021) focuses on inter-modal relationships while TCL Yang
et al. (2022) considers both intra- and inter-modal relationships.

4.2 ADVERSARIAL ATTACK

With the widespread adoption of Deep Neural Networks, it is essential to evaluate their robustness
to ensure their reliability in real-world applications, which often involve uncertainty and potential
threats. Adversarial attacks are a prominent method used to assess this robustness, which aim to
mislead model predictions by introducing imperceptible perturbations into the data Szegedy et al.
(2014); Zhang et al. (2023; 2021a); Madry et al. (2018); Moosavi-Dezfooli et al. (2017). Traditional
methods typically focus on specific tasks and unimodal cases, such as image classification. For
image attacks, most techniques learn pixel-level perturbations, whereas text attacks often involve re-
placing or removing keywords, or performing text transformations Li et al. (2020); Jin et al. (2020);
Iyyer et al. (2018); Naik et al. (2018); Ren et al. (2019). Recently, there has been growing interest in
multi-modal vision-language scenarios. For instance, Zhang et al. (2023); Wang et al. (2021b); Zhu
et al. (2023b) address image-text retrieval by increasing the embedding distance between adversar-
ial and original data pairs. Xu et al. (2018) learn image perturbations by minimizing the distance
between the output and the target label while maximizing the difference from the original label for
the visual question answering task.

Adversarial transferability. Early attack methods typically assume a white-box setting, where
all necessary information for generating adversarial examples, including target models and tasks,
is available. However, in real-world scenarios, such comprehensive information is often unavail-
able. To address this challenge, one approach uses an ensemble of models as the victim model
during training Liu et al. (2016); Dong et al. (2018; 2019); Xiong et al. (2022), based on the intu-
ition that adversarial examples effective against a diverse set of models are likely to mislead more
models. However, assembling such a model ensemble can be difficult. Another approach utilizes
momentum-based methods Dong et al. (2018); Long et al. (2024); Lin et al. (2019); Inkawhich et al.
(2019) to stabilize gradient updates and avoid poor local maxima, though this may also divert per-
turbations from effective paths. Data augmentation Xie et al. (2019); Fang et al. (2022); Wei et al.
(2023); Wang et al. (2024; 2021a) increases data diversity, helping to prevent overfitting to specific
models. Transferability is particularly challenging for attacks on VLP models, due to the unpre-
dictable fine-tuning process. To enhance transferability, Zhang et al. (2022); Lu et al. (2023); Zhang
et al. (2024) suggests increasing the gap between adversarial data and original image-text pairs.
Some of these methods also focus on generating diverse image-text pairs through scale-invariant
transformations Lu et al. (2023) and ScMix augmentations Zhang et al. (2024). Additionally, recent
approaches consider the local utility of adversarial examples Yin et al. (2023) or perturbations Zhang
et al. (2024). However, Yin et al. (2023) enlarges block-wise similarity between samples, which is
constrained by the block size, failing to comprehensively capture local regions and their interactions.
Zhang et al. (2024) does not consider the characteristics and vulnerabilities of the original sample.
As a result, these methods cannot ensure the effectiveness and transferability of adversarial attacks.

5 CONCLUSIONS

In this paper, we propose a novel Meticulous Adversarial Attack (MAA), which demonstrates excep-
tional transferability across various VLP models, datasets, and downstream tasks. MAA enhances
adversarial transferability by refining adversarial examples specifically in the image modality. The
method is simple and easy to implement, consisting of a resizing and sliding crop technique and a
multi-granularity similarity disruption strategy. Two components work synergistically to explore the
representative, fine-grained characteristics and vulnerabilities of individual images, reducing over-
reliance on model-specific patterns. Extensive experiments validate the effectiveness and transfer-
ability of MAA, showing that it achieves highly competitive performance.
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Table 7: (R1W3, R5W1) The attack success rate (%, R@1) of the proposed method that utilizes
different ensemble source models in image-text retrieval on Flickr30K.

Target Model CLIP ALBEF TCL
ViT-B/16 ViT-L/14 RN50 RN101

Method I2T T2I I2T T2I I2T T2I I2T T2I I2T T2I I2T T2I

(R1W3)ViT-B/16 99.98 99.99 54.36 63.02 77.14 80.58 73.05 74.85 31.80 43.62 41.10 49.81
(R1W3)RN101 36.81 47.97 30.80 45.26 70.50 78.77 98.34 97.63 13.56 29.3 17.18 31.62
(R1W3)ALBEF 39.14 49.77 32.39 47.29 51.09 60.99 43.68 54.99 100.00 99.95 75.87 76.17

(R1W3)TCL 41.96 50.71 34.60 50.00 55.30 64.05 49.30 57.67 72.78 75.65 100.00 100.00
(R1W3)ViT-B/16 + ViT-L/14 99.63 99.87 99.63 99.87 62.45 68.13 27.22 41.3 40.35 50.72 49.32 56.52

(R1W3)RN50 + RN101 38.9 50.35 33.13 46.91 99.87 99.27 99.62 99.83 15.24 29.88 18.34 34.52
(R1W3)ALBEF + TCL 43.68 53.23 41.89 53.14 57.82 66.99 24.81 31.62 96.13 99.27 98.42 99.43

(R1W3)ViT-B/16 + RN101 99.02 98.32 52.39 62.37 75.22 80.27 98.34 97.84 30.87 44.43 36.14 49.02
(R1W3)ViT-B/16 + ALBEF 99.75 99.68 60.74 69.75 76.63 79.31 73.56 75.09 99.58 99.56 85.04 84.88

(R1W3)ViT-B/16 + ViT-L/14+ ALBEF 97.67 98.13 98.65 97.71 77.39 78.77 73.95 77.63 96.77 96.8 81.66 81.40

A EXPERIMENTS

A.1 (R1W3) EXPERIMENTS ON ENSEMBLE MODELS.

(R1W3, R5W1) We further explore the effectiveness of the proposed attack method with various
ensemble combinations of source models, including ensembles of homogeneous CLIP models, e.g.,
CLIPRN50 and CLIPRN101, heterogeneous models, e.g., CLIPViT-B/16 and CLIPRN101, ensembles of
models of different architectures and training process, e.g., CLIP and ALBEF. Different numbers of
models are utilized including two and three. Results are summarized in Table 7. From the results,
we have some key observations. On the one hand, using ensembles often improves performance,
particularly when combining complementary models. For example, the combination of ViT-B/16 +
ViT-L/14+ ALBEF outperforms using a single source model when attacking ALBEF and TCL. This
supports our assertion in the Related Work section that methods capable of attacking a set of models
are more likely to mislead more models. One the other hand, utilizing more models does not always
lead to better performance. For instance, ViT-B/16 + CLIPRN101 performs worse than using ViT-B/16
alone. This may be due to the varying contributions of different models to the attack. In this case,
ViT-B/16 is generally more effective than CLIPRN101, and the less effective model may dilute the
overall performance when combined.” We also discuss the limitations of this approach: “However,
there are two main limitations to such a method. First, in many scenarios, diverse models might
not be readily available. Second, utilizing multiple models significantly increases computational
overhead, which can hinder practicability and scalability.

A.2 (R1W2) FINE-GRAINED INFORMATION CAPTURE MEASUREMENT.

(R1W2) To demonstrate that the proposed method can capture fine-grained information, we perform
experiments in visual grounding. Results are summarized in Table 8. The evaluation metric mea-
sures the possibility of the overlap between the predicted and ground-truth regions. If the overlap
is larger than a certain value (i.e., 0.5), consider they are the same. From the result, it can be ob-
served that the proposed method can better extract overlapped regions with the ground truth, which
means that more regions are covered and contextual information is captured. We further utilize the
Grad-CAM visualization method to highlight the activation maps of images, which indicates the
contribution of regions to the model’s predictions. Some examples are shown in Figure 4. From the
visualizations, it can be observed that the proposed method captures finer-grained contextual fea-
tures more effectively than the vanilla model. First, the proposed method can help focus on image
regions relevant to the caption. For example, it captures the clothes in image (a), the area contribut-
ing to the bending behavior in image (c), and the entirety of the motorcycle in image (d). Second,
the method can help identify cohesive areas, such as the faces and clothing of the man in image
(b), the cat in image (e), and the pitcher in image (g). This demonstrates the improved contextual
awareness of our approach. Third, in image (d), the proposed method captures features for both
motorcycles, reflecting an improved understanding of relationships between objects described in the
caption. Lastly, the proposed method emphasizes the entire area of relevant objects rather than iso-
lating specific regions. For example, in image (a), it highlights multiple areas of the bed instead of
concentrating on just a few regions. These results highlight that the proposed method effectively
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Table 8: (R1W2) Performance on visual grounding of baseline model ALBEF with and without the
proposed method.

Source Model CLIPViT-B/16

Val TestA TestB
(R2Q1)Model w/o the proposed method 51.24 56.71 44.79
(R2Q1)Model w the proposed method 56.67 65.37 45.28

extracts fine-grained details and contextual information, thereby enabling a deeper exploration of
the characteristics and vulnerabilities of samples, which ultimately enhances attack performance.

Figure 4: (R1W2) A Grad-CAM visualization of samples with and without the proposed method.

A.3 RESULTS ON THE BLACK-BOX LARGE VISION-LANGUAGE MODELS

(R1W3,R2Q2,R5Q2) To test whether the attack methods can fool black-box Large Vision-Language
Models (LVLM), we selected two open-source large vision-language models: MiniGPT-4 Zhu et al.
(2023a) and Llama 3.2 Touvron et al. (2023) to ensure reproducibility of our experiments. Specif-
ically, MiniGPT-4, based on Vicuna V0 13B (a 13-billion-parameter large language model), has
recently scaled up the capabilities of large language models and demonstrates performance com-
parable to GPT-4. For Llama 3.2, we utilized Llama-3.2-11B-Vision-Instruct, which comprises 11
billion parameters. We evaluated the robustness of these models on multimodal tasks, including
image captioning and visual question answering (VQA). For image captioning, we provided images
with the prompt: “Describe this image, bringing all the details” as the input, For VQA, we input
images along with the question: “What is the content of this image?” We collected the generated
descriptions and answers for each attack method. To assess attack performance, we used the CLIP
score Zhao et al. (2023), which measures the similarity between the features of descriptions/answers
for adversarial images and those for clean images, generated by the CLIP text encoder. To ensure
fair comparisons, we calculated the CLIP score between the description/answer features of adver-
sarial images (for each attack method) and the clean image features generated by all attack methods.
This is because at different query times, large vision language models would produce different re-
sponses for the same input. Additionally, we reported the CLIP score between the features of clean
images and their randomly shuffled counterparts as a baseline to compare attack effectiveness. The
results are summarized in Table 9. From the results, it can be observed that the proposed method can
achieve the best performance in two tasks. In addition, the attack performance is not significant due
to the significant gap between the source and target models, in terms of architectures, training data
and schemes. Improving attack performance on large models remains an open challenge, which we
identify as a direction for future research.

A.4 COMPARISON WITH DIFFERENT AUGMENTATIONS

(R3W2.1, R3W3) To thoroughly evaluate the effectiveness of the proposed method, we compare
RScrop with several popular data augmentation techniques, both with and without MGSD, including
DIM Xie et al. (2019), TI-DIM Dong et al. (2019), SI-NI-TI-DIM Lin et al. (2019), SIA Wang
et al. (2023), and ScMix Zhang et al. (2024). The results, presented in Table 10, reveal several
insights. First, data augmentations generally enhance the transferability of adversarial examples by
increasing data diversity, which reduces overfitting to source models. Second, their combinations
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Table 9: (R1W3,R2Q2,R2Q1,R5Q2) Black-box attack against Large Vision-Language Models
(LVLM), i.e., MiniGPT-4 and Llama 3.2, on Flickr30K in vision question answering and image
captioning. CLIPViT-B/16 is taken as the source model. The CLIP score is used as the evaluation
metric, which measures the distance between features of generated texts and references, extracted
by the CLIP text encoder. For a fair comparison, we compare generated texts of adversarial images
with those of clean images from all attack methods to avoid variance during different LVLM query
processes. The CLIP score between generated texts for clean images and the randomly shuffled texts
is taken as a bar for evaluating the attack performance. Bold indicates the best performance.

Target Model and Task Llama 3.2, Visual Question Answering MiniGPT-4, Image Captioning
CLIP Text Encoder for generating features CLIP Text Encoder for generating features

CLIPViT-B/16 CLIPViT-B/32 ViT-L/14 RN50 RN101 Avg. CLIPViT-B/16 CLIPViT-B/32 ViT-L/14 RN50 RN101 Avg.
(R1W3,R2Q1,R2Q2,R5Q2)Random Shuffle 0.415 0.417 0.312 0.380 0.507 0.406 0.445 0.427 0.302 0.3987 0.631 0.441
(R1W3,R2Q1,R2Q2,R5Q2)Co-Attack 0.817 0.814 0.784 0.802 0.840 0.811 0.856 0.823 0.771 0.847 0.875 0.834
(R1W3,R2Q1,R2Q2,R5Q2)SGA 0.815 0.811 0.783 0.801 0.839 0.810 0.862 0.818 0.775 0.842 0.869 0.834
(R1W3,R2Q1,R2Q2,R5Q2)ETU 0.823 0.820 0.792 0.810 0.845 0.818 0.880 0.825 0.792 0.862 0.883 0.848
(R1W3,R2Q1,R2Q2,R5Q2)VLATTACK 0.812 0.809 0.781 0.799 0.838 0.808 0.853 0.815 0.780 0.843 0.874 0.833
(R1W3,R2Q1,R2Q2,R5Q2)VLPTransferAttack 0.810 0.806 0.776 0.794 0.835 0.804 0.852 0.811 0.776 0.842 0.870 0.830
(R1W3,R2Q1,R2Q2,R5Q2)MAA 0.798 0.794 0.763 0.782 0.825 0.793 0.843 0.801 0.768 0.833 0.859 0.821

Table 10: (R3W2.1,R3W3,R5Q1,R5W1) Comparison with different augmentations on Flickr30K.
The attack success rate of R@1 on image-text retrieval is reported. CLIPViT-B/16 is adopted as the
source model.

Target Model CLIP ALBEF TCL
ViT-B/16 ViT-L/14 RN101

Method I2T T2I I2T T2I I2T T2I I2T T2I I2T T2I

(R3W2.1,R3W3,R5Q1,R5W1)MAA w DIM 99.63 99.87 42.12 53.09 62.45 65.13 27.22 41.3 31.61 44.5
(R3W2.1,R3W3,R5Q1,R5W1)MAA w TI-DIM 96.13 99.27 32.02 46.3 41.89 53.14 24.81 31.62 24.75 29.6

(R3W2.1,R3W3,R5Q1,R5W1)MAA w SI-NI-TI-DIM 99.85 99.19 26.99 41.59 34.11 44.91 28.95 33.51 22.64 29.98
(R3W2.1,R3W3,R5Q1,R5W1)MAA w SIA 99.51 99.23 42.94 54.25 63.22 69.19 27.42 40.79 35.09 45.31

(R3W2.1,R3W3,R5Q1,R5W1)MAA w DIM w/o MGSD 100.00 100.00 41.37 54.72 62.96 63.48 26.13 40.5 29.98 42.30
(R3W2.1,R3W3,R5Q1,R5W1)MAA w TI-DIM w/o MGSD 99.14 99.36 38.53 52.35 44.83 56.4 25.03 30.64 23.12 27.23

(R3W2.1,R3W3,R5Q1,R5W1)MAA w SI-NI-TI-DIM w/o MGSD 99.94 99.57 27.48 42.11 34.87 44.01 27.48 33.97 22.14 28.42
(R3W2.1,R3W3,R5Q1,R5W1)MAA w SIA w/o MGSD 98.89 99.22 41.11 53.56 61.66 68.81 25.75 40.74 33.24 42.80

MAA w ScMix 99.75 99.84 24.66 42.30 37.04 49.31 12.30 27.46 13.28 28.74
MAA w/o Resizing 100.00 99.94 42.58 54.41 62.32 68.54 22.94 37.93 30.03 42.55
MAA w/o Sliding 99.88 100.00 26.5 42.01 38.60 42.92 12.41 28.11 14.75 29.43
MAA w/o RScrop 100.00 100.00 25.47 41.85 38.83 49.23 12.62 27.48 13.91 28.90
MAA w/o MGSD 99.51 99.71 45.02 56.55 57.81 65.82 27.63 43.59 32.77 45.48

MAA 99.75 99.05 54.36 63.02 72.23 74.87 32.45 43.62 41.42 50.29

with MGSD provide only minor performance improvements, likely due to their limited ability to
alleviate fixed-size processing constraints in models, which restrict the extraction of fine-grained
details. In contrast, through resizing and sliding crop, the proposed RScrop effectively addresses
this constraint, capturing finer-grained information that shifts adversarial example generation to rely
more on sample-specific characteristics rather than model-specific features. These findings highlight
the superior ability of the proposed method to extract detailed information and improve adversarial
transferability.

A.5 RESULTS ON MORE MODELS
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Table 11: The attack success rate (%) on the image-text retrieval task. CLIPViT-B/16 is adopted as the
source model for training, while the target models include CLIPViT-B/16, CLIPViT-L/14, CLIPResNet50,
CLIPResNet101, ALBEF, and TCL. The grey background indicates the white-box attack results. Bold
indicates the best results.

Dataset Flickr30K MSCOCO
Image-to-Text Text-to-Image Image-to-Text Text-to-Image

Target Model Method R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CLIPViT-B/16

(R4Q2)PGD 90.55 ± 0.89 78.09 ± 0.52 78.42 ± 0.34 98.68 ± 0.82 95.83 ± 0.68 94.23 ± 0.56 97.44 ± 0.11 94.53 ± 0.24 91.06 ± 0.23 96.53 ± 0.26 91.90 ± 0.33 88.57 ± 0.49
(R4Q2)BERT-Attack 28.34 ± 0.00 11.63 ± 0.00 6.71 ± 0.00 39.05 ± 0.00 24.06 ± 0.00 17.40 ± 0.00 55.25 ± 0.00 37.26 ± 0.00 28.93 ± 0.00 57.86 ± 0.00 45.05 ± 0.00 38.73 ± 0.00

(R4Q2)Co-Attack 97.73 ± 0.18 94.29 ± 0.02 92.08 ± 0.40 98.83 ± 0.05 96.17 ± 0.05 94.38 ± 0.08 99.50 ± 0.12 98.75 ± 0.10 97.86 ± 0.35 99.60 ± 0.06 98.89 ± 0.05 98.25 ± 0.12
(R4Q2)SGA 99.53 ± 0.05 97.96 ± 0.03 96.48 ± 0.08 99.73 ± 0.03 98.88 ± 0.03 97.72 ± 0.12 91.91 ± 0.02 82.96 ± 0.21 78.69 ± 0.09 91.18 ± 0.12 81.57 ± 0.32 79.93 ± 0.08
(R4Q2)ETU 97.40 ± 0.09 94.16 ± 0.54 78.84 ± 0.32 90.24 ± 0.22 84.31 ± 0.26 69.32 ± 0.28 91.56 ± 0.19 80.45 ± 0.21 78.87 ± 0.37 90.06 ± 0.24 88.63 ± 0.09 86.17 ± 0.43

(R4Q2)VLATTACK 99.86 ± 0.14 99.99 ± 0.01 99.50 ± 0.23 99.92 ± 0.05 99.54 ± 0.24 99.56 ± 0.06 99.93 ± 0.07 99.79 ± 0.11 99.75 ± 0.06 99.98 ± 0.02 99.96 ± 0.04 99.89 ± 0.06
(R5Q1)VLPTransferAttack 99.98 ± 0.02 99.53 ± 0.03 99.42 ± 0.07 99.99 ± 0.01 99.76 ± 0.02 99.53 ± 0.01 99.93 ± 0.03 99.90 ± 0.01 99.77 ± 0.02 99.95 ± 0.03 99.88 ± 0.02 99.80 ± 0.02

(R4Q2)MAA 99.75 ± 0.02 99.05 ± 0.02 98.65 ± 0.07 99.66 ± 0.05 99.25 ± 0.06 98.85 ± 0.04 99.93 ± 0.05 99.81 ± 0.07 99.92 ± 0.02 99.90 ± 0.05 99.70 ± 0.26 99.79 ± 0.11

CLIPViT-L/14

(R4Q2)PGD 7.56 ± 0.42 2.02 ± 0.38 0.59 ± 0.18 16.71 ± 0.56 6.27 ± 0.53 3.66 ± 0.26 20.25 ± 0.52 10.19 ± 0.28 7.04 ± 0.09 29.10 ± 0.31 16.13 ± 0.24 12.49 ± 0.18
(R4Q2)BERT-Attack 24.79 ± 0.00 9.76 ± 0.00 5.59 ± 0.00 39.05 ± 0.00 23.01 ± 0.00 17.07 ± 0.00 51.05 ± 0.00 32.89 ± 0.00 25.82 ± 0.00 59.63 ± 0.00 44.27 ± 0.00 37.56 ± 0.00

(R4Q2)Co-Attack 27.80 ± 0.18 10.44 ± 0.06 5.29 ± 0.10 44.50 ± 0.64 27.31 ± 0.35 19.93 ± 0.04 53.58 ± 0.32 36.24 ± 0.26 28.29 ± 0.31 64.28 ± 0.17 48.89 ± 0.20 41.99 ± 0.15
(R4Q2)SGA 32.14 ± 0.28 15.52 ± 0.12 9.63 ± 0.22 47.83 ± 0.06 30.21 ± 0.13 23.17 ± 0.22 57.28 ± 0.11 41.33 ± 0.46 33.28 ± 0.17 65.98 ± 0.21 50.89 ± 0.22 44.03 ± 0.41
(R4Q2)ETU 8.22 ± 0.47 1.12 ± 0.08 0.20 ± 0.01 16.24 ± 0.32 5.45 ± 0.26 3.46 ± 0.32 20.22 ± 0.09 10.46 ± 0.15 7.92 ± 0.06 25.53 ± 0.18 14.58 ± 0.16 10.44 ± 0.20

(R4Q2)VLATTACK 30.49 ± 0.06 12.54 ± 0.38 6.04 ± 0.09 42.69 ± 0.28 26.64 ± 0.19 19.32 ± 0.25 56.22 ± 0.23 37.39 ± 0.19 29.91 ± 0.43 61.55 ± 0.53 45.28 ± 0.37 37.12 ± 0.32
(R4Q2,R5Q1)VLPTransferAttack 42.54 ± 0.52 23.99 ± 0.23 14.55 ± 0.41 53.82 ± 0.05 36.24 ± 0.19 28.39 ± 0.27 64.82 ± 0.28 48.98 ± 0.19 40.54 ± 0.06 71.85 ± 0.24 58.66 ± 0.30 51.77 ± 0.34

(R4Q2)MAA 54.52 ± 0.31 33.36 ± 0.12 25.76 ± 0.16 62.80 ± 0.50 46.32 ± 0.27 38.11 ± 0.21 80.72 ± 0.13 67.83 ± 0.14 61.75 ± 0.73 83.42 ± 0.49 72.67 ± 0.36 67.03 ± 0.21

CLIPResNet50

(R4Q2)PGD 14.89 ± 0.46 4.884 ± 0.51 2.02 ± 0.27 24.23 ± 0.39 9.05 ± 0.24 5.56 ± 0.16 29.03 ± 0.33 15.39 ± 0.20 10.88 ± 0.15 38.12 ± 0.56 22.64 ± 0.36 16.99 ± 0.23
(R4Q2)BERT-Attack 35.25 ± 0.00 14.69 ± 0.00 8.03 ± 0.00 44.73 ± 0.00 27.7 ± 0.00 20.28 ± 0.00 59.05 ± 0.00 42.18 ± 0.00 32.88 ± 0.00 67.43 ± 0.00 52.64 ± 0.00 45.84 ± 0.00

(R4Q2)Co-Attack 39.35 ± 0.44 17.98 ± 0.64 10.03 ± 0.19 50.54 ± 0.61 31.64 ± 0.78 25.21 ± 0.23 64.00 ± 0.33 45.92 ± 0.31 37.29 ± 0.24 71.95 ± 0.20 56.88 ± 0.24 49.78 ± 0.17
(R4Q2)SGA 43.00 ± 0.71 22.88 ± 0.23 15.65 ± 0.34 56.78 ± 0.12 36.47 ± 0.24 28.89 ± 0.31 68.78 ± 0.46 53.01 ± 0.16 43.76 ± 0.28 75.46 ± 0.19 62.00 ± 0.22 54.58 ± 0.16
(R4Q2)ETU 12.45 ± 0.26 3.46 ± 0.05 2.35 ± 0.43 22.70 ± 0.15 7.37 ± 0.28 5.06 ± 0.02 27.67 ± 0.37 15.11 ± 0.16 10.90 ± 0.12 37.12 ± 0.16 21.79 ± 0.17 16.10 ± 0.09

(R4Q2)VLATTACK 44.32 ± 0.22 20.80 ± 0.08 14.26 ± 0.31 54.31 ± 0.31 35.07 ± 0.08 27.78 ± 0.26 70.28 ± 0.15 52.14 ± 0.19 43.52 ± 0.33 75.54 ± 0.47 60.99 ± 0.39 53.35 ± 0.62
(R5Q1)VLPTransferAttack 52.65 ± 0.41 31.48 ± 0.24 22.47 ± 0.22 63.34 ± 0.46 43.52 ± 0.25 35.63 ± 0.32 76.35 ± 0.37 61.39 ± 0.22 53.23 ± 0.25 80.82 ± 0.36 68.29 ± 0.42 70.10 ± 0.23

(R4Q2)MAA 77.02 ± 0.25 63.62 ± 0.64 52.85 ± 0.45 80.26 ± 0.43 65.42 ± 0.56 58.12 ± 0.24 92.28 ± 0.60 85.71 ± 0.52 80.46 ± 0.82 92.86 ± 0.52 86.32 ± 0.37 82.03 ± 0.29

CLIPResNet101

(R4Q2)PGD 8.84 ± 0.67 2.03 ± 0.34 1.30 ± 0.27 12.82 ± 0.47 4.28 ± 0.28 2.68 ± 0.10 14.89 ± 0.09 7.92 ± 0.13 5.85 ± 0.06 21.07 ± 0.06 11.58 ± 0.32 8.91 ± 0.12
(R4Q2)BERT-Attack 30.27 ± 0.00 11.63 ± 0.00 5.77 ± 0.00 37.39 ± 0.00 24.92 ± 0.00 18.59 ± 0.00 52.39 ± 0.00 35.55 ± 0.00 28.76 ± 0.00 58.64 ± 0.00 46.29 ± 0.00 39.39 ± 0.00

(R4Q2)Co-Attack 35.93 ± 0.48 13.80 ± 0.11 8.75 ± 0.12 44.52 ± 0.45 29.13 ± 0.23 22.88 ± 0.19 58.87 ± 0.74 40.41 ± 0.54 32.89 ± 0.37 65.54 ± 0.13 52.18 ± 0.16 45.17 ± 0.14
(R4Q2)SGA 44.01 ± 0.29 21.87 ± 0.31 14.31 ± 0.44 51.19 ± 0.38 33.25 ± 0.51 26.65 ± 0.33 61.83 ± 0.29 47.87 ± 0.35 40.35 ± 0.38 69.01 ± 0.44 56.29 ± 0.46 49.65 ± 0.27
(R4Q2)ETU 7.89 ± 0.62 1.97 ± 0.32 1.15 ± 0.06 12.45 ± 0.14 4.75 ± 0.07 2.88 ± 0.15 18.24 ± 0.62 12.62 ± 0.24 8.70 ± 0.27 23.01 ± 0.44 10.15 ± 0.20 9.08 ± 0.09

(R4Q2)VLATTACK 41.31 ± 0.28 18.42 ± 0.17 11.03 ± 0.25 48.65 ± 0.10 31.47 ± 0.19 24.65 ± 0.15 62.88 ± 0.09 46.87 ± 0.05 38.80 ± 0.20 70.34 ± 0.32 56.43 ± 0.31 49.45 ± 0.25
(R5Q1)VLPTransferAttack 51.64 ± 0.56 28.45 ± 0.19 19.74 ± 0.32 59.42 ± 0.22 40.83 ± 0.35 33.21 ± 0.44 70.86 ± 0.42 57.47 ± 0.29 48.63 ± 0.24 76.49 ± 0.37 64.39 ± 0.17 57.58 ± 0.25

(R4Q2)MAA 72.23 ± 0.82 55.34 ± 0.37 44.89 ± 0.41 74.87 ± 0.23 60.65 ± 0.42 53.42 ± 0.39 89.56 ± 0.49 81.35 ± 0.27 76.86 ± 0.38 90.07 ± 0.16 83.12 ± 0.02 78.66 ± 0.06

ALBEF

(R4Q2)PGD 2.87 ± 0.09 0.23 ± 0.05 0.30 ± 0.03 5.85 ± 0.21 1.83 ± 0.11 1.10 ± 0.08 8.42 ± 0.49 3.87 ± 0.53 1.87 ± 0.08 13.11 ± 0.36 5.49 ± 0.12 3.50 ± 0.12
(R4Q2)BERT-Attack 9.45 ± 0.00 1.31 ± 0.00 0.45 ± 0.00 22.82 ± 0.00 11.22 ± 0.00 8.15 ± 0.00 28.32 ± 0.00 12.67 ± 0.00 8.25 ± 0.00 41.16 ± 0.00 26.17 ± 0.00 20.77 ± 0.00

(R4Q2)Co-Attack 11.42 ± 0.22 1.92 ± 0.18 0.53 ± 0.08 25.30 ± 0.16 12.71 ± 0.13 9.33 ± 0.13 31.01 ± 0.44 14.29 ± 0.60 9.37 ± 0.43 43.34 ± 0.73 27.71 ± 0.61 22.17 ± 0.51
(R4Q2)SGA 14.86 ± 0.05 3.31 ± 0.00 1.40 ± 0.00 29.56 ± 0.02 14.32 ± 0.24 10.68 ± 0.32 36.62 ± 0.20 18.93 ± 0.08 13.13 ± 0.24 46.78 ± 0.19 30.74 ± 0.19 24.05 ± 0.31
(R4Q2)ETU 1.72 ± 0.05 0.30 ± 0.00 0.20 ± 0.00 5.89 ± 0.46 1.26 ± 0.09 0.88 ± 0.03 12.83 ± 0.47 6.86 ± 0.26 3.34 ± 0.38 13.16 ± 0.67 7.23 ± 0.37 4.34 ± 0.16

(R4Q2)VLATTACK 11.29 ± 0.15 2.52 ± 0.10 1.00 ± 0.00 28.22 ± 0.42 13.78 ± 0.15 10.23 ± 0.11 34.60 ± 0.17 17.21 ± 0.29 11.25 ± 0.24 46.73 ± 0.33 31.43 ± 0.42 25.34 ± 0.41
(R5Q1)VLPTransferAttack 30.28 ± 0.29 12.96 ± 0.16 6.14 ± 0.35 42.88 ± 0.08 25.45 ± 0.12 19.17 ± 0.09 52.23 ± 0.23 30.39 ± 0.07 24.74 ± 0.12 59.27 ± 0.24 44.09 ± 0.26 34.21 ± 0.19

(R4Q2)MAA 32.45 ± 0.67 14.68 ± 0.43 11.20 ± 0.21 43.62 ± 0.55 25.63 ± 0.24 19.83 ± 0.20 53.82 ± 0.52 33.38 ± 0.23 26.01 ± 0.54 60.78 ± 0.74 44.35 ± 0.29 36.44 ± 0.25

TCL

(R4Q2)PGD 5.28 ± 0.32 0.32 ± 0.05 0.10 ± 0.02 8.10 ± 0.22 2.31 ± 0.19 1.39 ± 0.12 10.51 ± 0.27 4.19 ± 0.22 2.40 ± 0.07 14.62 ± 0.31 6.45 ± 0.22 4.09 ± 0.12
(R4Q2)BERT-Attack 9.59 ± 0.00 2.01 ± 0.00 0.60 ± 0.00 24.05 ± 0.00 11.89 ± 0.00 8.20 ± 0.00 29.15 ± 0.00 13.45 ± 0.00 9.39 ± 0.00 41.01 ± 0.00 25.96 ± 0.00 19.93 ± 0.00

(R4Q2)Co-Attack 12.63 ± 0.44 3.09 ± 0.12 0.84 ± 0.19 25.85 ± 0.56 13.89 ± 0.58 9.29 ± 0.33 32.35 ± 0.32 14.78 ± 0.51 10.50 ± 0.23 43.72 ± 0.19 27.77 ± 0.33 21.86 ± 0.12
(R4Q2)SGA 16.26 ± 0.21 3.69 ± 0.12 1.47 ± 0.05 30.66 ± 0.27 16.05 ± 0.19 11.20 ± 0.15 37.14 ± 0.28 18.98 ± 0.32 12.87 ± 0.08 47.05 ± 0.16 31.18 ± 0.11 24.79 ± 0.21
(R4Q2)ETU 11.78 ± 0.68 6.12 ± 0.36 2.06 ± 0.11 17.54 ± 0.43 8.65 ± 0.44 6.08 ± 0.23 17.36 ± 0.28 5.55 ± 0.34 3.92 ± 0.14 15.72 ± 0.26 7.26 ± 0.33 5.50 ± 0.21

(R4Q2)VLATTACK 14.49 ± 0.25 3.71 ± 0.19 1.47 ± 0.12 30.23 ± 0.22 16.34 ± 0.43 11.22 ± 0.32 35.94 ± 0.18 18.85 ± 0.09 12.67 ± 0.34 48.39 ± 0.28 32.34 ± 0.15 25.87 ± 0.18
(R5Q1)VLPTransferAttack 30.66 ± 0.09 12.79 ± 0.16 6.10 ± 0.12 42.79 ± 0.45 26.52 ± 0.33 19.20 ± 0.18 56.24 ± 0.28 37.39 ± 0.22 29.58 ± 0.34 61.58 ± 0.27 45.10 ± 0.03 36.96 ± 0.11

(R4Q2)MAA 41.42 ± 0.48 22.42 ± 0.11 17.03 ± 0.15 50.29 ± 0.41 31.24 ± 0.25 24.82 ± 0.33 60.95 ± 0.39 39.96 ± 0.22 31.65 ± 0.36 62.37 ± 0.27 45.17 ± 0.24 37.46 ± 0.28

(R2Q1)BLIP

(R2Q1)PGD 2.66 ± 0.53 0.36 ± 0.31 0.13 ± 0.34 5.63 ± 0.17 2.22 ± 0.24 1.12 ± 0.28 11.27 ± 0.14 4.08 ± 0.32 1.60 ± 0.51 12.07 ± 0.25 5.32 ± 0.18 2.12 ± 0.07
(R2Q1)BERT-Attack 9.36 ± 0.00 1.48 ± 0.00 0.62 ± 0.00 22.01 ± 0.00 11.23 ± 0.00 8.11 ± 0.00 28.23 ± 0.00 12.89 ± 0.00 9.42 ± 0.00 39.23 ± 0.00 24.25 ± 0.00 19.98 ± 0.00

(R2Q1)Co-Attack 10.89 ± 0.49 2.34 ± 0.34 1.21 ± 0.16 23.49 ± 0.43 13.07 ± 0.45 9.82 ± 0.20 27.65 ± 0.27 13.34 ± 0.37 9.93 ± 0.48 41.18 ± 0.11 25.85 ± 0.23 23.03 ± 0.17
(R2Q1)SGA 13.29 ± 0.09 2.15 ± 0.30 1.42 ± 0.09 27.32 ± 0.46 13.17 ± 0.34 10.69 ± 0.25 35.55 ± 0.48 13.42 ± 0.25 11.96 ± 0.14 42.89 ± 0.23 28.68 ± 0.16 23.66 ± 0.42
(R2Q1)ETU 2.36 ± 0.22 2.08 ± 0.12 1.89 ± 0.09 4.38 ± 0.41 2.02 ± 0.18 1.38 ± 0.11 10.90 ± 0.31 5.85 ± 0.17 4.11 ± 0.23 11.33 ± 0.07 6.26 ± 0.13 2.31 ± 0.09

(R2Q1)VLATTACK 12.01 ± 0.20 4.88 ± 0.27 2.03 ± 0.06 26.78 ± 0.15 12.28 ± 0.22 9.89 ± 0.43 31.39 ± 0.24 18.85 ± 0.17 15.28 ± 0.21 45.72 ± 0.09 29.78 ± 0.53 23.01 ± 0.28
(R2Q1,R5Q1)VLPTransferAttack 27.82 ± 0.35 12.68 ± 0.21 5.99 ± 0.29 40.14 ± 0.19 22.35 ± 0.82 15.58 ± 0.23 51.17 ± 0.54 26.59 ± 0.33 21.07 ± 0.48 56.38 ± 0.11 45.35 ± 0.34 31.26 ± 0.19

(R2Q1)MAA 29.04 ± 0.29 15.11 ± 0.37 10.97 ± 0.62 41.22 ± 0.31 24.61 ± 0.33 17.57 ± 0.20 52.88 ± 0.15 30.33 ± 0.34 22.69 ± 0.17 58.78 ± 0.33 46.05 ± 0.40 34.49 ± 0.14

Table 12: The attack success rate (%) of R@1 in image-text retrieval on Flickr30K. Grey back-
ground highlights white-box attack results, and bold indicates the best performance.

Target Model CLIP ALBEF TCL (R2Q1)BLIP
ViT-B/16 ViT-L/14 RN50 RN101

Source Model Method I2T T2I I2T T2I I2T T2I I2T T2I I2T T2I I2T T2I I2T T2I

CLIPResNet101

(R4Q2,R2Q1)PGD 2.22 ± 0.17 6.73 ± 0.09 8.42 ± 0.12 15.91 ± 0.12 15.28 ± 0.22 23.76 ± 0.19 93.27 ± 0.06 96.62 ± 0.18 1.78 ± 0.17 4.45 ± 0.11 3.82 ± 0.15 6.95 ± 0.25 1.56 ± 0.09 5.32 ± 0.17
(R4Q2,R2Q1)BERT-Attack 27.12 ± 0.00 37.44 ± 0.00 25.28 ± 0.00 39.85 ± 0.00 35.52 ± 0.00 46.91 ± 0.00 30.52 ± 0.00 39.97 ± 0.00 9.49 ± 0.00 23.25 ± 0.00 11.59 ± 0.00 24.36 ± 0.00 7.48 ± 0.00 21.92 ± 0.00

(R4Q2)Co-Attack 28.67 ± 0.27 40.42 ± 0.33 25.58 ± 0.16 41.68 ± 0.19 38.62 ± 0.46 52.89 ± 0.18 98.18 ± 0.13 98.57 ± 0.06 9.39 ± 0.12 23.83 ± 0.24 11.82 ± 0.16 25.18 ± 0.18 8.08 ± 0.40 19.36 ± 0.73
(R4Q2,R2Q1)SGA 32.57 ± 0.11 44.37 ± 0.24 28.32 ± 0.09 43.19 ± 0.06 49.27 ± 0.22 61.28 ± 0.27 97.85 ± 0.11 97.86 ± 0.09 11.82 ± 0.23 26.51 ± 0.17 14.69 ± 0.12 28.79 ± 0.27 9.75 ± 0.18 23.48 ± 0.16
(R4Q2,R2Q1)ETU 5.28 ± 0.09 7.43 ± 0.17 7.63 ± 0.26 10.15 ± 0.08 13.64 ± 0.23 16.40 ± 0.17 88.87 ± 0.22 89.52 ± 0.36 4.31 ± 0.21 7.36 ± 0.08 5.71 ± 0.22 8.98 ± 0.10 4.02 ± 0.28 7.99 ± 0.07

(R4Q2,R2Q1)VLATTACK 33.00 ± 0.31 43.27 ± 0.09 27.80 ± 0.17 40.72 ± 0.15 48.74 ± 0.08 59.72 ± 0.18 94.25 ± 0.24 96.82 ± 0.07 3.92 ± 0.09 9.38 ± 0.13 8.68 ± 0.26 13.91 ± 0.31 5.67 ± 0.59 11.22 ± 0.27
(R4Q2,R2Q1)VLPTransferAttack 35.28 ± 0.45 46.71 ± 0.33 28.41 ± 0.15 43.65 ± 0.29 60.54 ± 0.32 69.71 ± 0.17 94.13 ± 0.08 96.78 ± 0.14 12.39 ± 0.34 27.98 ± 0.14 16.65 ± 0.19 30.07 ± 0.09 11.76 ± 0.09 28.06 ± 0.27

(R4Q2,R2Q1)MAA 36.03 ± 0.81 47.56 ± 0.52 30.06 ± 0.86 44.80 ± 0.66 70.83 ± 0.45 78.93 ± 0.48 98.98 ± 0.82 98.82 ± 1.01 14.08 ± 0.52 29.15 ± 0.15 17.01 ± 0.26 31.94 ± 0.42 12.82 ± 0.26 29.11 ± 0.34

ALBEF

(R4Q2,R2Q1)PGD 10.45 ± 0.54 14.92 ± 0.24 16.52 ± 0.14 30.83 ± 0.32 15.50 ± 0.11 23.79 ± 0.37 22.27 ± 0.23 38.24 ± 0.16 87.12 ± 0.08 90.07 ± 0.10 25.04 ± 0.23 30.12 ± 0.17 22.04 ± 0.38 26.83 ± 0.14
(R4Q2,R2Q1)BERT-Attack 25.03 ± 0.00 35.66 ± 0.00 28.88 ± 0.00 38.04 ± 0.00 37.12 ± 0.00 56.90 ± 0.00 31.42 ± 0.00 45.35 ± 0.00 32.53 ± 0.00 50.61 ± 0.00 8.22 ± 0.00 19.57 ± 0.00 7.25 ± 0.00 18.68 ± 0.00

(R4Q2,R2Q1)Co-Attack 27.88 ± 0.25 38.52 ± 0.09 24.23 ± 0.61 38.51 ± 0.23 33.26 ± 0.19 46.42 ± 0.10 33.58 ± 0.42 46.39 ± 0.16 98.61 ± 0.08 98.66 ± 0.05 28.25 ± 0.15 42.99 ± 0.51 23.36 ± 0.25 48.59 ± 0.18
(R4Q2,R2Q1)SGA 38.76 ± 0.27 47.45 ± 0.25 31.20 ± 0.07 45.65 ± 0.32 46.57 ± 0.28 58.10 ± 0.12 42.23 ± 0.28 51.40 ± 0.41 98.69 ± 0.05 98.54 ± 0.07 64.45 ± 0.71 69.11 ± 0.22 59.30 ± 0.53 63.88 ± 0.67
(R4Q2,R2Q1)ETU 12.32 ± 0.46 17.73 ± 0.22 15.67 ± 0.51 18.42 ± 0.12 16.18 ± 0.25 25.69 ± 0.33 22.90 ± 0.07 28.57 ± 0.23 87.06 ± 0.28 89.33 ± 0.09 28.23 ± 0.46 32.38 ± 0.27 23.55 ± 0.35 28.21 ± 0.21

(R4Q2,R2Q1)VLATTACK 36.42 ± 0.33 45.86 ± 0.18 29.13 ± 0.25 44.62 ± 0.11 40.02 ± 0.23 54.12 ± 0.19 35.60 ± 0.12 47.09 ± 0.27 94.12 ± 0.08 96.80 ± 0.06 41.81 ± 0.54 52.69 ± 0.29 38.07 ± 0.37 46.24 ± 0.41
(R4Q2,R2Q1)VLPTransferAttack 38.93 ± 0.18 48.90 ± 0.12 30.50 ± 0.32 45.12 ± 0.11 48.11 ± 0.09 58.64 ± 0.32 42.53 ± 0.27 52.37 ± 0.76 99.74 ± 0.09 99.72 ± 0.12 74.24 ± 0.36 74.48 ± 0.17 70.35 ± 0.24 69.78 ± 0.45

(R4Q2,R2Q1)MAA 39.70 ± 0.58 50.09 ± 0.35 32.52 ± 0.14 47.50 ± 0.24 51.02 ± 0.08 61.07 ± 0.11 44.34 ± 0.67 55.23 ± 0.33 99.78 ± 0.22 99.65 ± 0.30 76.02 ± 0.41 76.11 ± 0.23 71.19 ± 0.18 72.14 ± 0.17

TCL

(R4Q2,R2Q1)PGD 9.26 ± 0.25 13.82 ± 0.29 9.35 ± 0.47 16.52 ± 0.12 23.26 ± 0.24 38.42 ± 0.45 16.26 ± 0.19 24.51 ± 0.09 18.09 ± 0.16 24.49 ± 0.67 94.01 ± 0.17 96.83 ± 0.09 14.46 ± 0.37 18.88 ± 0.21
(R4Q2,R2Q1)BERT-Attack 29.94 ± 0.00 39.21 ± 0.00 25.64 ± 0.00 39.56 ± 0.00 41.62 ± 0.00 59.57 ± 0.00 36.14 ± 0.00 48.78 ± 0.00 9.91 ± 0.00 23.64 ± 0.00 37.09 ± 0.00 53.07 ± 0.00 9.53 ± 0.00 22.80 ± 0.00

(R4Q2,R2Q1)Co-Attack 32.20 ± 0.22 41.78 ± 0.17 27.28 ± 0.09 42.20 ± 0.22 45.89 ± 0.37 61.21 ± 0.30 40.33 ± 0.27 50.54 ± 0.14 45.09 ± 0.19 58.12 ± 0.38 94.17 ± 0.15 96.80 ± 0.04 40.30 ± 0.47 52.67 ± 0.84
(R4Q2,R2Q1)SGA 39.32 ± 0.24 47.66 ± 0.16 29.92 ± 0.02 44.79 ± 0.13 48.25 ± 0.09 60.88 ± 0.25 42.62 ± 0.19 52.02 ± 0.31 68.90 ± 0.27 74.51 ± 0.11 99.15 ± 0.05 99.96 ± 0.02 63.46 ± 0.35 69.03 ± 0.41
(R4Q2,R2Q1)ETU 11.59 ± 0.55 16.27 ± 0.32 24.45 ± 0.27 35.89 ± 0.22 20.06 ± 0.08 27.54 ± 0.12 19.78 ± 0.26 27.46 ± 0.11 20.18 ± 0.17 23.65 ± 0.22 91.06 ± 0.07 89.40 ± 0.05 15.49 ± 0.26 16.35 ± 0.47

(R4Q2,R2Q1)VLATTACK 36.52 ± 0.67 21.22 ± 0.23 31.47 ± 0.20 45.75 ± 0.19 43.88 ± 0.11 54.92 ± 0.04 36.83 ± 0.17 47.78 ± 0.26 34.26 ± 0.13 46.68 ± 0.34 94.17 ± 0.06 96.81 ± 0.12 29.43 ± 0.42 42.74 ± 0.11
(R4Q2,R2Q1)VLPTransferAttack 41.23 ± 0.34 48.88 ± 0.27 32.39 ± 0.29 47.98 ± 0.18 52.49 ± 0.06 62.95 ± 0.09 47.13 ± 0.12 57.14 ± 0.24 71.66 ± 0.06 75.29 ± 0.10 99.89 ± 0.02 99.70 ± 0.11 66.74 ± 0.27 70.33 ± 0.21

(R4Q2,R2Q1)MAA 42.01 ± 0.08 50.98 ± 0.31 34.36 ± 0.44 50.00 ± 0.25 55.36 ± 0.28 64.27 ± 0.33 49.65 ± 0.58 57.85 ± 0.33 72.85 ± 0.21 75.69 ± 0.18 99.89 ± 0.11 99.95 ± 0.05 67.78 ± 0.52 70.75 ± 0.35
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