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Abstract

Coordination between independent learning agents in a multi-agent environment is an1
important problem where AI systems may impact each others learning process. In this2
paper, we study how individual agents converge to optimal equilibrium in multi-agent3
where coordination is necessary to achieve optimality. Specifically, we cover the case4
of coordination to maximize every individual payoffs and coordination to maximize5
the collective payoff (cooperation). We study the emergence of such coordination be-6
haviours in two-player matrix games with unknown payoff matrices and noisy bandit7
feedback. We consider four different environments along with widely used determin-8
istic and stochastic bandit strategies. We study how different learning strategies and9
observation noise influence convergence to the optimal equilibrium. Our results indi-10
cate that coordination often emerge more easily from interactions between deterministic11
agents, especially when they follow the same learning behaviour. However, stochastic12
learning strategies appear to be more robust in the presence of many optimal joint ac-13
tions. Overall, noisy observations often help stabilizing learning behaviours.14

1 Introduction15

Coordinating independent agents in multi-agent systems is a central problem in reinforcement learn-16
ing (Wei & Luke, 2016). As autonomous agents are increasingly deployed to interactively learn from17
their environment, they may not be designed to reason over the presence of other learning agents in18
the environment. Therefore, to achieve optimal outcomes, the agents may have to learn to coordinate19
implicitly. Understanding implicit coordination has broader impacts into frontier applications such20
as autonomous fleets of cars, drones, or robots (Broecker et al., 2018; Toghi et al., 2021).21

We consider the setting where independent learning agents (also referred to as learners) are unable22
to explicitly observe the actions and the outcomes of other agents (Claus & Boutilier, 1998). Such23
independent learners can treat each other as part of the environment. However, in this setting, the24
evolution of agents over time (through learning) translates into non-stationary noise on the outcomes25
observed by each agent (Laurent et al., 2011). Moreover, discovering the optimal joint action re-26
quires a coordinated exploration, while maintaining this optimal behaviour requires a coordinated27
exploitation. Independent learners are therefore at risk of facing the alter-exploration problem (Lau-28
rent et al., 2011), where they enter a vicious circle of uncoordinated exploration-exploitation pre-29
venting them for identifying the optimal joint action. On top of that, interactions between agent30
actions can hinder convergence to a common, coordinated, equilibrium (Matignon et al., 2012). Un-31
derstanding how the exploration-exploitation mechanisms underlying different learning strategies32
impact the emergence of coordinated behaviours therefore remains an open research question.33

We study the emergence of coordination between independent learning agents under repeated ma-34
trix games. More specifically, we focus on two-player games, where the expected outcome of each35

1



Under review for RLC 2025, to be published in RLJ 2025

player is described using a matrix on the joint actions (Robinson & Goforth, 2006). The typical set-36
ting assumes that the matrix is known to the players (Osborne & Rubinstein, 1994). It has been gen-37
eralized to unknown matrices with bandit feedback in zero-sum games (O’Donoghue et al., 2021),38
where players only observe each others actions and a noisy payoff. However, due to the known39
zero-sum dynamics, players can deduce the reward obtained by the other player. As this is therefore40
not compatible with the definition of individual learners, we consider truly unknown matrices.41

We also consider the traditional bandit feedback (Lattimore & Szepesvári, 2020) where players42
observe only their own rewards. Our work complements the very few prior results in this setting fo-43
cused essentially on cooperation (Douglas et al., 2024), that is coordination on a collective objective,44
with noise-free observations.45

We study interplays between exploration-exploitation strategies using state-of-the-art bandit meth-46
ods in coordination and cooperation games, in the presence of specific challenges induced by the47
structure of payoff matrices and noisy observations.48

2 Problem setting49

We consider two-player repeated games characterized by unknown payoff matrices R(1), R(2) ∈50
Rk×m. On each round t = 1, 2, . . . , T (with unknown horizon T ), player 1 (row player) selects51
action it ∈ {1, . . . , k} and player 2 (column player) selects action jt ∈ {1, . . . ,m}. Let A :=52
{1, . . . , k} × {1, . . . ,m} denote the set of joint actions. The joint action at = (it, jt) is played and53
rewards are generated for both players1:54

r
(1)
t = R(1)

at
+ η

(1)
t r

(2)
t = R(2)

at
+ η

(2)
t ,

where η
(1)
t and η

(2)
t are zero-mean noises, independent and identically distributed from a known55

distribution across time. Both players can only observe their own reward and not the actions of the56
other player. This is known as bandit feedback (Lattimore & Szepesvári, 2020).57

The two-player zero-sum matrix games (O’Donoghue et al., 2021) correspond to a specific configu-58
ration of this setting where R(1) = −R(2) and this information is known to the players. Therefore,59
each player can learn the motivation of the other player by learning their own payoff matrix. In our60
general setting, the relationship between R(1) and R(2), if any, remains unknown to the players.61

Coordination games We say that coordination is required when the payoff matrices are such62
that the optimal joint action for both players is the same, that is a⋆ := argmaxa∈A R(1) =63
argmaxa∈A R(2). In this case, the optimal joint policy allows both players to maximize their indi-64
vidual profit. Note that all games where R(1) = R(2) are coordination games by default. However,65
coordination can also involve payoff, that is R(1) ̸= R(2). In this case, players have different moti-66
vations, but their motivations are well-aligned such that the optimal joint action corresponds to each67
player maximizing their individual outcome simultaneously.68

The performance of learning agents in a coordination game is evaluated using the cumulative regret:69

R(1)(T ) :=

T∑
t=1

(
R(1)

a⋆
− E[R(1)

at
]
)

R(2)(T ) :=

T∑
t=1

(
R(2)

a⋆
− E[R(2)

at
]
)
, (1)

that is the expected deviation between the cumulative rewards obtained with the optimal joint action70
and the cumulative rewards obtained by each player. Without loss of generality, we can focus on the71
cumulative regret of a single player since the performances of both players are tied together.72

Cooperation games We denote as cooperation a sub-case of coordination, where the outcome is73
equally bad for all agents if all players pursue their individual profit; the optimal behaviour is to74

1Given a matrix M , M(i,j) denotes the element at row i and column j in M . For a joint action a = (i, j), Ma = M(i,j).
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coordinate on the best collective action. Prisoner’s Dilemma is a well-known example of coopera-75
tion game. Let R denote the collective payoff, defined such that the element at row i and column76
j corresponds to the minimum expected payoff over both players given joint action a = (i, j):77

Ra = minp∈{1,2} R
(p)
a . We evaluate the performance of learning agents in a cooperation using the78

collective cumulative regret:79

R(T ) :=

T∑
t=1

(Ra⋆
− E[Rat

]) , (2)

where the optimal collective joint action a⋆ := argmaxa∈A R maximizes the minimum outcome.80

3 Methodology81

This section describes the considered environments (games) and individual learners (players) strate-82
gies, along with the design of the study.83

3.1 Games84

Four games are selected to capture different challenges faced by individual learners in a multi-agent85
system where coordination is required (Matignon et al., 2012): stochasticity, non-stationarity, alter-86
exploration, shadowed equilibrium, and Pareto-selection. All games are configured such as to have87
bounded expected outcomes contained in [0, 1]. We consider three pure coordination games (using88
R(1) = R(2)2) and one cooperation game to complement prior findings (Douglas et al., 2024).89

Simple game We begin with a simple two-action coordination game characterized by a single90
optimal joint action a⋆ = (1, 1) to isolate common emergent coordination challenges:91

R(1) = R(2) =

[
1 0
0 0.5

]
.

This game can be considered as easy since the individual components of a⋆ can be identified even92
when the other player behaves randomly. However, in a learning setting, players policies may evolve93
over time, which can result in non-stationary stochastic rewards (from the perspective of a single94
player). Moreover, identifying the optimal joint action still requires efficient joint exploration, which95
is dependent on both players exploring sufficiently in a coordinated manner. Performance in this96
game is evaluated using the cumulative regret of player 1 (Equation 1).97

Pareto game We investigate the impact of multiple optimal joint actions using a normalized98
variant of the Pareto-penalty coordination game from Claus & Boutilier (1998):99

R(1) = R(2) =

1 γ 0
γ β γ
0 γ 1


with 0 < γ < β < 1. In this game, players must learn to coordinate on one of the optimal solutions,100
that is a⋆ ∈ {(1, 1), (3, 3)}, leading to the so-called Pareto-selection challenge (Matignon et al.,101
2012). One can strategically attribute payoffs (γ and β) to lead players into suboptimal solutions.102
We consider an easy variant (γ = 0, β = 0.2) to isolate the Pareto-selection challenge, and a hard103
variant (γ = 0.2, β = 0.8) that induces a shadowed equilibrium (Matignon et al., 2012). Under this104
additional challenge, the optimal joint actions are non-distinguishable if the other player displays a105
uniformly random exploration behaviour, which is typically the case in the beginning of learning.106
Performance in this game is evaluated using the cumulative regret of player 1 (Equation 1).107

2Without loss of generality since the relationship between R(1) and R(2) is unknown to the players.
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Prisonner’s Dilemma The Prisoner’s Dilemma is a well-studied two-agent coopera-108
tion game generally described by payoff matrices:109

R(1) =

[
β 0
1 γ

]
R(2) =

[
β 1
0 γ

]
with 0 < γ < β < 1 (Douglas et al., 2024). This game is characterized by a single optimal110
joint action a⋆ = (1, 1), that is the best collective action. Its complexity arises from the fact that,111
irrespective of the fixed action chosen by the opposing player, under such payoff matrices, agents112
are incentivized in selecting action 2, resulting into the Nash equilibrium (2, 2) with outcome γ for113
both players. However, if players cooperate by choosing the optimal joint action (1, 1), they obtain114
the highest collective outcome β > γ. We use β = 0.6 and γ = 0.4. Performance in this game is115

evaluated using the collective cumulative regret (Equation 2) with R =

[
β 0
0 γ

]
.116

3.2 Learning agent strategies117

When considering independent learning agents, it is natural to model the stochasticity induced by118
the actions of other agents as reward noise. Akin to prior work focused on competition and coop-119
eration (O’Donoghue et al., 2021; Douglas et al., 2024), we study the emergence of coordination120
(both individual and collective) using stochastic bandit agents aiming to maximize their individual121
profit. We consider both deterministic and stochastic widely used strategies to capture the influence122
of different exploration-exploitation mechanisms.123

Let Ni(t− 1) and Si(t− 1) respectively denote the number of times that action i was played up to124
time t (exclusively) and the sum of rewards obtained over these plays3.125

Deterministic player The well-known UCB strategies work by maintaining empirical estimates126
µ̂i(t − 1) := Si(t − 1)/Ni(t − 1), and select actions based on upper confidence bounds on these127
estimates (Auer, 2002). Given a fixed history of action plays and associate observations, the next128
action to play is computer deterministically (Lattimore & Szepesvári, 2020):129

it = argmax
i∈{1,...,k}

µ̂i(t− 1) + σ

√
8 ln(t)

Ni(t− 1)
, (3)

assuming that the stochasticity induced by the other player’s policy combined with reward noise130
is σ-sub-Gaussian. UCB-based strategies typically explore actions at a logarithmic rate over the131
horizon. We also consider the KL-UCB variant (Garivier & Cappé, 2013), which uses confidence132
intervals directly derived from the bandit regret lower-bounds (Lai & Robbins, 1985):133

it = argmax
i∈{1,...,k}

µ̂i(t− 1) + σ

√
2(ln(t) + 3 ln ln(t))

Ni(t− 1)
. (4)

Thanks to its tighter confidence intervals, KL-UCB explores slightly less frequently than UCB (al-134
though still at a log-rate). Both UCB and KL-UCB require that each action is played at least one in135
order for the upper confidence bounds to be computed. Therefore, during the first k rounds of the136
game, each action is played once in a random order.137

Stochastic player We consider the widely recognized Thompson Sampling (TS) strategy (Thomp-138
son, 1933; Chapelle & Li, 2011; Russo & Van Roy, 2014). On round t, a TS agent selects action139
it based on samples θi,t from the posterior distributions associated with each action i. Formally,140

3We take the perspective of player 1 (row player) without loss of generality.

4



Multi-Agent Matrix Games with Individual Learners

considering σ-sub-Gaussian noise and a Gaussian prior with prior mean µ0 and variance σ2
0 :141

θi,t ∼ N
(
mi,t, s

2
i,t

)
for each action i ∈ {1, . . . , k}

where mi,t :=
µ0/σ

2
0 + Si(t− 1)/σ2

1/σ2
0 +Ni(t− 1)/σ2

and s2i,t :=

(
1

σ2
0

+
Ni(t− 1)

σ2

)−1

it = argmax
i∈{1,...,k}

θi,t. (5)

Unlike deterministic strategies (like UCB and KL-UCB), two TS agents who have observed exactly142
the same history of actions and rewards might recommend to different actions at time t.143

3.3 Design of the study144

We consider four games (simple, Pareto easy (γ = 0, β = 0.2), Pareto hard (γ = 0.2,145
β = 0.8), and Prisoner’s Dilemma) with Gaussian noise on observations, that is η(1)t , η

(2)
t ∼146

N (0, σ2
noise) with known variance σ2

noise. We consider three noise levels per game: none (σ2
noise = 0);147

low (σ2
noise = 0.01); and high (σ2

noise = 1). This results into 4 × 3 = 12 environment con-148
figurations. Note that the high-noise level was used previously to study competition on Rock-149
Paper-Scissors (O’Donoghue et al., 2021), whereas the noise-free setting was used in the Prisoner’s150
Dilemma (Douglas et al., 2024). We introduce a low-noise level, aiming to capture the impact of151
small perturbations as noise can break symmetry in action selections by deterministic agents.152

On each of these configurations, we evaluate five pairings of agent strategies. We study the153
case where both players follow the same learning strategy: UCB×UCB, KL-UCB×KL-UCB, and154
TS×TS. We study the interaction between deterministic and stochastic agent strategies: UCB×TS.155
Finally, we study the interaction between deterministic strategies that explore at slightly different156
rates, while following the same background logic: KL-UCB×UCB. Each pairing of agent strategies157
is run 500 times on each environment configuration, resulting into 5 agent pairings × 500 runs × 12158
environment configurations, for a total of 30, 000 runs.159

Each run is performed over a horizon of T = 1000 rounds. For each run, deterministic strategies160
initialization (one play for each action) is performed in a random order, that is not necessarily the161
same for both players. Therefore agents may not be exposed to the optimal joint actions in the162
first rounds. Stochastic agents are also configured to ensure that coordination is not induced through163
sampling alignment. To account for the noise induced by the other agent, all strategies are configured164
with a noise parameter (σ) that combines the observation noise σnoise and the outcome range variance165
[0, 1]: σ =

√
σ2

noise + 1/4.166

For reproducibility, all code is available online.167

4 Results168

We present mean cumulative regret (Equation 1) and mean cumulative collective regret (Equation 2)169
for each agent pairing in each environment configuration. Appendix A contains additional results170
on the proportion of joint action selections by each agent pairing in each environment configuration.171

4.1 Simple game: Stochastic strategies at higher-risk of alter-exploration172

Figure 1 displays the mean cumulative regret of player 1 (Equation 1) on the simple game,173
for the three noise levels. We observe that the UCB×UCB and KL-UCB×KL-UCB pairings174
achieve always sub-linear regret, whereas TS-based pairings incur linear higher regret. Surpris-175
ingly, UCB×KL-UCB fails to converge to the optimal joint action in the noise-free setting. When176
looking at the proportion of joint action selections by KL-UCB×KL-UCB and UCB×KL-UCB pair-177
ings (Figure 2), we observe that KL-UCB×KL-UCB is characterized by synchronized exploration-178
exploitation phases, with the duration of exploitation phases increasing over time. However, results179
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Figure 1: Average cumulative regret (plain lines) with standard deviation (dotted lines) of player 1
on the simple game (500 runs for each noise level).
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Figure 2: Proportion (over 500 runs) of joint action selections on every round of the simple game
without noise (σnoise = 0).
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Figure 3: Average cumulative regret (plain lines) with standard deviation (dotted lines) of player 1
on the easy (γ = 0, β = 0.2) Pareto game (500 runs for each noise level).

for the UCB×KL-UCB pairings show that synchronicity is not guaranteed when the two deter-180
ministic agents learn at slightly different speeds. This confirms that pathological alter-exploration181
cycles may prevent the emergence of coordination even in the simplest settings. Fortunately, agent-182
independent observation noise appears able to break such cycles (Figure 1, middle and right).183

4.2 Pareto game: Pareto-sequences generally help, shadowed equilibria can be deadly184

Figure 3 displays the mean cumulative regret of player 1 (Equation 1) on the easy (γ = 0, β = 0.2)185
Pareto game, for the three noise levels. We observe that all agent pairings achieve sub-linear186
regret across all noise levels, except UCB×UCB which achieves sub-linear regret only in presence187
of observation noise. These results indicate that having multiple joint optimal actions alone may not188
be a challenge in most real-world (noisy) settings.189

Figure 4 displays the mean cumulative regret of player 1 (Equation 1) on the hard (γ = 0.2, β =190
0.8) Pareto game, for the three noise levels. Recall that the hard variant includes the additional191
shadowed equilibrium challenge. We observe that all pairings except UCB×KL-UCB display linear192
regret in the noise-free setting. When looking at the proportion of joint action selections by KL-193
UCB×KL-UCB and UCB×KL-UCB pairings (Figure 5), we observe that KL-UCB×KL-UCB fails194
to distinguish the optimal joint actions from the best suboptimal joint action (2, 2), still showing195
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Figure 4: Average cumulative regret (plain lines) with standard deviation (dotted lines) of player 1
on the hard (γ = 0.2, β = 0.8) Pareto game (500 runs for each noise level).
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Figure 5: Proportion (over 500 runs) of joint action selections on every round of the hard (γ = 0.2,
β = 0.8) Pareto game without noise (σnoise = 0).

coordination issues. On the other hand, UCB×KL-UCB converges to the optimal joint actions,196
suggesting that a lack of initial coordination could help to avoid suboptimal joint action (2, 2) early197
in the game. These results highlight the difficulty of facing shadowed equilibria and suggests that198
intricate interplays between the learning agent strategies may be required to identify the optimal199
action under such conditions. Fortunately, we also observe that under sufficient observation noise,200
fully-deterministic agent pairings all achieve sub-linear regret. This however suggests that alter-201
exploration dynamics in TS-based pairings are more difficult to break.202

4.3 Prisoner’s Dilemma: Observation noise slows the emergence of cooperation203

Figure 6 displays the mean cumulative collective regret (Equation 2) on the Prisoner’s204
Dilemma game, for the three noise levels. We observe that UCB×UCB and KL-UCB×KL-UCB205
converge to the optimal collective action under the noise-free setting, confirming results from Dou-206
glas et al. (2024). However, it is unclear whether this result holds under noisy observation given207
the considered horizon. This suggest that optimal collective joint actions might be more difficult to208
identify than optimal (individual) joint actions. Interestingly, we observe plateaus in the cumulative209
regret of UCB×KL-UCB, indicating phases of convergence to the cooperation equilibrium that the210
agents appear unable to maintain.211

Figure 7 displays the proportion of joint action selections by KL-UCB×KL-UCB in the noise-212
free and low-noise settings, highlighting again the subtlety of mechanisms at interplay in alter-213
exploration. In the noise-free setting (left), the agents manage to identify the cooperation equilib-214
rium, exploring the Nash equilibrium in phases that appear to extend over time. In the low-noise215
setting (right), the agents quickly converge to the Nash equilibrium, but the frequency of the cooper-216
ation equilibrium increases over time. While noise doise appear to slow down convergence, its does217
not seem to prevent it from emerging.218

5 Conclusion219

In this work, we study the influence of the learning mechanisms on the emergence of coordination220
between independent agents. We focus on two-player matrix games where reward matrices are221
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Figure 6: Average cumulative collective regret (plain lines) with standard deviation (dotted lines) on
the Prisoner’s Dilemma game (500 runs for each noise level).
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Figure 7: Proportion (over 500 runs) of joint action selections on every round of the Prisoner’s
Dilemma game in the noise-free (σnoise = 0, left) and low-noise setting (σnoise = 0.1, right).

unknown to the players and players observe only their own noisy rewards (bandit feedback). This is222
among the very few works that consider noisy reward feedback (O’Donoghue et al., 2021) and, to223
our knowledge, the first work to also consider that the relationship between reward matrices is also224
unknown to the player.225

Our results indicate that coordination tends to emerge more easily from interactions between de-226
terministic agents, especially when they follow the same learning behaviour. This observation was227
made even in the simple game, where TS-based agents failed to converge to the optimal joint228
action. This suggest that their stable and predictable exploration-exploitation regimes might be229
less at risk of resulting in alter-exploration dynamics. This finding is interesting considering that230
Thompson Sampling (TS) is known to perform better under the traditional stochastic bandit set-231
ting (Chapelle & Li, 2011). Previous studies (Sadoune et al., 2024; Douglas et al., 2024) on variants232
of the Prisoner’s Dilemma have also shown that UCB has a better potential to converge to233
the optimal joint action compared to stochastic strategies like ε-greedy or TS. However, our findings234
reveal a counter-example: the same mechanism being the success of determinism strategy pairing235
can also hamper coordination in the noise-free Pareto games. Fortunately, observation noise ap-236
pears to be sufficient for allowing coordination to emerge in the presence of shadowed equilibria.237
Finally, our results on Prisoner’s Dilemma complement prior results (Douglas et al., 2024)238
by showing that cooperation may still emerge from UCB-based agents under observation noise.239

These results motivate further experiments, possibly on longer horizons, to confirm the observed240
behaviours under the noisier settings. A major challenge remains to parametrize game environ-241
ments in such was as to isolate the studied challenges to produce meaningful conclusions. Finally,242
these results call for a theoretical analysis that could provide formal insights and explanations on243
the observed behaviours. As a final remark, it is important to note a negative impact of implicit244
coordination. In the field of pricing algorithms, coordination might lead to collusion and increase245
prices (Harrington, 2018; Calvano et al., 2020; Sadoune et al., 2024; Douglas et al., 2024).246
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A Proportion of joint action selections295

A.1 Simple game296

Figures 8, 9, and 10 display the proportion (over 500 runs) of joint action selections on every round297
of the simple game for each agent strategy pairing, for each noise level respectively. Note that this298
game contains a single joint optimal action a⋆ = (1, 1).299

Noise-free setting We observe (Figure 8) that both UCB×UCB and KL-UCB×KL-UCB pair-300
ings are characterized a lot of exploration during the first 100-200 rounds, followed by exploitation301
phases that become longer and longer over time. On the other hand, TS×TS quickly converge to302
a high-proportion of a⋆ selections that plateaus, maintaining a low but fixed selection proportion303
of suboptimal (but coordinated) action (1, 1). This results into linear regret (Figure 1, left). Both304
UCB×KL-UCB and UCB×TS display a strong lack of coordination as they keep playing joint ac-305
tions (2, 1) and (1, 2) that provide a nul outcome (in expectation).
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Figure 8: Proportion of joint action selections per agent strategy pairing on the simple game
without noise. The joint optimal action is a⋆ = (1, 1).

306

Noisy settings In noisy settings (Figures 9 and 10), we observe that all agent strategy pairings307
quickly converge to a high-proportion of a⋆ selections that eventually plateaus, maintaining a low308
but fixed selection proportion of suboptimal (but coordinated) action (1, 1). The higher the noise, the309
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slower the convergence. Surprisingly, UCB×UCB and KL-UCB×KL-UCB explore much less than310
in the noise-free setting. Moreover, miscoordinated exploration patterns that resulted into selections311
of joint actions (2, 1) and (1, 2) for UCB×KL-UCB and UCB×KL-UCB disappear in the presence312
of observation noise.313
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Figure 9: Proportion of joint action selections per agent strategy pairing on the simple game with
low noise. The joint optimal action is a⋆ = (1, 1).
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Figure 10: Proportion of joint action selections per agent strategy pairing on the simple game with
high noise. The joint optimal action is a⋆ = (1, 1).
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A.2 Pareto game (easy)314

Figures 11, 12, and 13 display the proportion (over 500 runs) of joint action selections on every315
round of the easy (γ = 0, β = 0.2) Pareto game for each agent strategy pairing, for each noise316
level respectively. This game contains two joint optimal actions, that is a⋆ ∈ {(1, 1), (3, 3)}.317

Noise-free setting We observe (Figure 11) that UCB×UCB and KL-UCB×KL-UCB pairings318
seem to implicitly coordinate their exploration, with the exploration of non-null suboptimal joint319
action (2, 2) triggering switches between the two joint optimal actions. Since switches between op-320
timal joint actions are not instantaneous, they result into some regret (Figure 3, left). On the other321
hand, TS×TS also alternates between the two optimal joint actions (with probabilities around 50%322
on each), but switches must we coordinated to obtain logarithmic regret (Figure 3, left).323
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Figure 11: Proportion of joint action selections per agent strategy pairing on the easy (γ = 0,
β = 0.2) Pareto game without noise. The joint optimal actions are (1, 1) and (3, 3).

Noisy settings In presence of observation noise (Figures 12 and 13), we observe that all pairings324
result into a behaviour that is similar to TS×TS in the noise-free setting (Figure 11). They alternate325
between the two optimal joint actions (with probabilities around 50% on each), but switches must326
we coordinated to obtain logarithmic regret (Figure 3, middle and right).327
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Figure 12: Proportion of joint action selections per agent strategy pairing on the easy (γ = 0,
β = 0.2) Pareto game with low noise. The joint optimal actions are (1, 1) and (3, 3).
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Figure 13: Proportion of joint action selections per agent strategy pairing on the easy (γ = 0,
β = 0.2) Pareto game with high noise. The joint optimal actions are (1, 1) and (3, 3).
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A.3 Pareto game (hard)328

Figures 14, 15, and 16 display the proportion (over 500 runs) of joint action selections on every329
round of the hard (γ = 0.2, β = 0.8) Pareto game for each agent strategy pairing, for each noise330
level respectively. This game contains two joint optimal actions, that is a⋆ ∈ {(1, 1), (3, 3)}, with331
several non-null suboptimal joint actions (1, 3), (2, 2), and (3, 1). The configuration is such that332
under a uniform random strategy of player 2, all actions appear to have the same expected outcome333
(0.4) for player 1.334

Noise-free setting We observe (Figure 14) that all pairings but UCB×KL-UCB display linear re-335
gret and that UCB×UCB and KL-UCB×KL-UCB both initially converge to the high-paying subop-336
timal action (2, 2), followed by a slow convergence to the optimal joint actions (mixture). Although337
this suboptimal behaviour translates into linear regret (Figure 4, left), it still shows coordination338
between the players. On the other hand, TS-based pairings display a quick convergence towards339
at least one optimal joint action, with a constant proportion of plays remaining on the high-paying340
suboptimal joint action. Only UCB×KL-UCB manages to ignore the high-paying suboptimal joint341
action, suggesting that early miscoordination might have (luckily) prevented the agents from identi-342
fying action (2, 2).343
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Figure 14: Proportion of joint action selections per agent strategy pairing on the hard (γ = 0.2,
β = 0.8) Pareto game without noise. The joint optimal actions are (1, 1) and (3, 3).
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Noisy settings In presence of observation noise (Figures 15 and 16), we observe that all pairings of344
deterministic agents converge to the optimal joint actions, showing proper coordination. Observation345
noise therefore appears to mitigate the arising difficulties when combining several suboptimal joint346
actions with several optimal joint actions in fully-deterministic agent pairings.347
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Figure 15: Proportion of joint action selections per agent strategy pairing on the hard (γ = 0.2,
β = 0.8) Pareto game with low noise. The joint optimal actions are (1, 1) and (3, 3).
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Figure 16: Proportion of joint action selections per agent strategy pairing on the hard (γ = 0.2,
β = 0.8) Pareto game with high noise. The joint optimal actions are (1, 1) and (3, 3).
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A.4 Prisoner’s Dilemma348

Figures 17, 18, and 19 display the proportion (over 500 runs) of joint action selections on every349
round of the Prisoner’s Dilemma game for each agent strategy pairing, for each noise level350
respectively. This game contains one collective joint optimal action, that is a⋆ = (1, 1), and the351
Nash equilibrium at (2, 2).352

Noise-free setting We observe (Figure 17) that UCB×UCB and KL-UCB×KL-UCB exhibit coor-353
dinated, symmetric behavior: both players switch actions in the same rounds, alternately visiting (1,354
1) and (2, 2). This coordination prevents them from playing the mismatched joint actions (1, 2) and355
(2, 1) that cause difficulties in this game. In contrast, TS×TS quickly converges to the Nash equilib-356
rium, indicating that agents fail to synchronize as they pursue their individual best outcomes.Finally,357
the UCB×KL-UCB pairing exhibits an interesting pattern in the absence of noise: it shows phases358
of convergence to the cooperation equilibrium that transform into phases of convergence to the Nash359
equilibrium. These are probably triggered by individual, miscoordinated exploration, as shown by360
the high-proportion of selections for joint action (2, 1).361
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Figure 17: Proportion of joint action selections per agent strategy pairing on the Prisoner’s
Dilemma game without noise. The joint optimal action is (1, 1).
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Noisy settings We observe that under low observation noise (Figure 18), all pairings initially con-362
verge to the Nash equilibrium (2, 2), the optimal joint action a⋆ = (1, 1) being played the least.363
However, pairings of deterministic agents gradually increase their selection of a⋆ over time at the364
expense of the Nash equilibrium. Unfortunately, the horizon appears to be too short to confirm the365
phenomenon under high observation noise (Figure 19).366
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Figure 18: Proportion of joint action selections per agent strategy pairing on the Prisoner’s
Dilemma game with low noise. The joint optimal action is (1, 1).

21



Under review for RLC 2025, to be published in RLJ 2025

0.0

0.5

1.0
UCB×UCB

0.0

0.5

1.0
KLUCB×KLUCB

0.0

0.5

1.0
TS×TS

0.0

0.5

1.0
UCB×KLUCB

0 200 400 600 800 1000
Round (t)

0.0

0.5

1.0
UCB×TS

P
ro

po
rti

on
 o

ve
r 5

00
 ru

ns

(1,1) (1,2) (2,1) (2,2)

Figure 19: Proportion of joint action selections per agent strategy pairing on the Prisoner’s
Dilemma game with high noise. The joint optimal action is (1, 1)
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