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Abstract
Coordination between independent learning agents in a multi-agent environment is an
important problem where AI systems may impact each others learning process. In this
paper, we study how individual agents converge to optimal equilibrium in multi-agent
where coordination is necessary to achieve optimality. Specifically, we cover the case
of coordination to maximize every individual payoffs and coordination to maximize
the collective payoff (cooperation). We study the emergence of such coordination be-
haviours in two-player matrix games with unknown payoff matrices and noisy bandit
feedback. We consider four different environments along with widely used determin-
istic and stochastic bandit strategies. We study how different learning strategies and
observation noise influence convergence to the optimal equilibrium. Our results indi-
cate that coordination often emerge more easily from interactions between deterministic
agents, especially when they follow the same learning behaviour. However, stochastic
learning strategies appear to be more robust in the presence of many optimal joint ac-
tions. Overall, noisy observations often help stabilizing learning behaviours.

1 Introduction

Coordinating independent agents in multi-agent systems is a central problem in reinforcement learn-
ing (Wei & Luke, 2016). As autonomous agents are increasingly deployed to interactively learn from
their environment, they may not be designed to reason over the presence of other learning agents in
the environment. Therefore, to achieve optimal outcomes, the agents may have to learn to coordinate
implicitly. Understanding implicit coordination has broader impacts into frontier applications such
as autonomous fleets of cars, drones, or robots (Broecker et al., 2018; Toghi et al., 2021).

We consider the setting where independent learning agents (also referred to as learners) are unable
to explicitly observe the actions and the outcomes of other agents (Claus & Boutilier, 1998). Such
independent learners can treat each other as part of the environment. However, in this setting, the
evolution of agents over time (through learning) translates into non-stationary noise on the outcomes
observed by each agent (Laurent et al., 2011). Moreover, discovering the optimal joint action re-
quires a coordinated exploration, while maintaining this optimal behaviour requires a coordinated
exploitation. Independent learners are therefore at risk of facing the alter-exploration problem (Lau-
rent et al., 2011), where they enter a vicious circle of uncoordinated exploration-exploitation pre-
venting them for identifying the optimal joint action. On top of that, interactions between agent
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actions can hinder convergence to a common, coordinated, equilibrium (Matignon et al., 2012). Un-
derstanding how the exploration-exploitation mechanisms underlying different learning strategies
impact the emergence of coordinated behaviours therefore remains an open research question.

We study the emergence of coordination between independent learning agents under repeated ma-
trix games. More specifically, we focus on two-player games, where the expected outcome of each
player is described using a matrix on the joint actions (Robinson & Goforth, 2006). The typical set-
ting assumes that the matrix is known to the players (Osborne & Rubinstein, 1994). It has been gen-
eralized to unknown matrices with bandit feedback in zero-sum games (O’Donoghue et al., 2021),
where players only observe each others actions and a noisy payoff. However, due to the known
zero-sum dynamics, players can deduce the reward obtained by the other player. As this is therefore
not compatible with the definition of individual learners, we consider truly unknown matrices.

We also consider the traditional bandit feedback (Lattimore & Szepesvári, 2020) where players
observe only their own rewards. Our work complements the very few prior results in this setting fo-
cused essentially on cooperation (Douglas et al., 2024), that is coordination on a collective objective,
with noise-free observations.

We study interplays between exploration-exploitation strategies using state-of-the-art bandit meth-
ods in coordination and cooperation games, in the presence of specific challenges induced by the
structure of payoff matrices and noisy observations.

2 Problem setting

We consider two-player repeated games characterized by unknown payoff matrices R(1), R(2) ∈
Rk×m. On each round t = 1, 2, . . . , T (with unknown horizon T ), player 1 (row player) selects
action it ∈ {1, . . . , k} and player 2 (column player) selects action jt ∈ {1, . . . ,m}. Let A :=
{1, . . . , k} × {1, . . . ,m} denote the set of joint actions. The joint action at = (it, jt) is played and
rewards are generated for both players1:

r
(1)
t = R(1)

at
+ η

(1)
t r

(2)
t = R(2)

at
+ η

(2)
t ,

where η
(1)
t and η

(2)
t are zero-mean noises, independent and identically distributed from a known

distribution across time. Both players can only observe their own reward and not the actions of the
other player. This is known as bandit feedback (Lattimore & Szepesvári, 2020).

The two-player zero-sum matrix games (O’Donoghue et al., 2021) correspond to a specific configu-
ration of this setting where R(1) = −R(2) and this information is known to the players. Therefore,
each player can learn the motivation of the other player by learning their own payoff matrix. In our
general setting, the relationship between R(1) and R(2), if any, remains unknown to the players.

Coordination games We say that coordination is required when the payoff matrices are such
that the optimal joint action for both players is the same, that is a⋆ := argmaxa∈A R(1) =
argmaxa∈A R(2). In this case, the optimal joint policy allows both players to maximize their indi-
vidual profit. Note that all games where R(1) = R(2) are coordination games by default. However,
coordination can also involve payoff, that is R(1) ̸= R(2). In this case, players have different moti-
vations, but their motivations are well-aligned such that the optimal joint action corresponds to each
player maximizing their individual outcome simultaneously.

The performance of learning agents in a coordination game is evaluated using the cumulative regret:

R(1)(T ) :=

T∑
t=1

(
R(1)

a⋆
− E[R(1)

at
]
)

R(2)(T ) :=

T∑
t=1

(
R(2)

a⋆
− E[R(2)

at
]
)
, (1)

1Given a matrix M , M(i,j) denotes the element at row i and column j in M . For a joint action a = (i, j), Ma = M(i,j).
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that is the expected deviation between the cumulative rewards obtained with the optimal joint action
and the cumulative rewards obtained by each player. Without loss of generality, we can focus on the
cumulative regret of a single player since the performances of both players are tied together.

Cooperation games We denote as cooperation a sub-case of coordination, where the outcome is
equally bad for all agents if all players pursue their individual profit; the optimal behaviour is to
coordinate on the best collective action. Prisoner’s Dilemma is a well-known example of coopera-
tion game. Let R denote the collective payoff, defined such that the element at row i and column
j corresponds to the minimum expected payoff over both players given joint action a = (i, j):
Ra = minp∈{1,2} R

(p)
a . We evaluate the performance of learning agents in a cooperation using the

collective cumulative regret:

R(T ) :=

T∑
t=1

(Ra⋆ − E[Rat ]) , (2)

where the optimal collective joint action a⋆ := argmaxa∈A R maximizes the minimum outcome.

3 Methodology

This section describes the considered environments (games) and individual learners (players) strate-
gies, along with the design of the study.

3.1 Games

Four games are selected to capture different challenges faced by individual learners in a multi-agent
system where coordination is required (Matignon et al., 2012): stochasticity, non-stationarity, alter-
exploration, shadowed equilibrium, and Pareto-selection. All games are configured such as to have
bounded expected outcomes contained in [0, 1]. We consider three pure coordination games (using
R(1) = R(2)2) and one cooperation game to complement prior findings (Douglas et al., 2024).

Simple game We begin with a simple two-action coordination game characterized by a single
optimal joint action a⋆ = (1, 1) to isolate common emergent coordination challenges:

R(1) = R(2) =

[
1 0
0 0.5

]
.

This game can be considered as easy since the individual components of a⋆ can be identified even
when the other player behaves randomly. However, in a learning setting, players policies may evolve
over time, which can result in non-stationary stochastic rewards (from the perspective of a single
player). Moreover, identifying the optimal joint action still requires efficient joint exploration, which
is dependent on both players exploring sufficiently in a coordinated manner. Performance in this
game is evaluated using the cumulative regret of player 1 (Equation 1).

Pareto game We investigate the impact of multiple optimal joint actions using a normalized
variant of the Pareto-penalty coordination game from Claus & Boutilier (1998):

R(1) = R(2) =

1 γ 0
γ β γ
0 γ 1


with 0 < γ < β < 1. In this game, players must learn to coordinate on one of the optimal solutions,
that is a⋆ ∈ {(1, 1), (3, 3)}, leading to the so-called Pareto-selection challenge (Matignon et al.,
2012). One can strategically attribute payoffs (γ and β) to lead players into suboptimal solutions.

2Without loss of generality since the relationship between R(1) and R(2) is unknown to the players.
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We consider an easy variant (γ = 0, β = 0.2) to isolate the Pareto-selection challenge, and a hard
variant (γ = 0.2, β = 0.8) that induces a shadowed equilibrium (Matignon et al., 2012). Under this
additional challenge, the optimal joint actions are non-distinguishable if the other player displays a
uniformly random exploration behaviour, which is typically the case in the beginning of learning.
Performance in this game is evaluated using the cumulative regret of player 1 (Equation 1).

Prisonner’s Dilemma The Prisoner’s Dilemma is a well-studied two-agent coopera-
tion game generally described by payoff matrices:

R(1) =

[
β 0
1 γ

]
R(2) =

[
β 1
0 γ

]
with 0 < γ < β < 1 (Douglas et al., 2024). This game is characterized by a single optimal
joint action a⋆ = (1, 1), that is the best collective action. Its complexity arises from the fact that,
irrespective of the fixed action chosen by the opposing player, under such payoff matrices, agents
are incentivized in selecting action 2, resulting into the Nash equilibrium (2, 2) with outcome γ for
both players. However, if players cooperate by choosing the optimal joint action (1, 1), they obtain
the highest collective outcome β > γ. We use β = 0.6 and γ = 0.4. Performance in this game is

evaluated using the collective cumulative regret (Equation 2) with R =

[
β 0
0 γ

]
.

3.2 Learning agent strategies

When considering independent learning agents, it is natural to model the stochasticity induced by
the actions of other agents as reward noise. Akin to prior work focused on competition and coop-
eration (O’Donoghue et al., 2021; Douglas et al., 2024), we study the emergence of coordination
(both individual and collective) using stochastic bandit agents aiming to maximize their individual
profit. We consider both deterministic and stochastic widely used strategies to capture the influence
of different exploration-exploitation mechanisms.

Let Ni(t− 1) and Si(t− 1) respectively denote the number of times that action i was played up to
time t (exclusively) and the sum of rewards obtained over these plays3.

Deterministic player The well-known UCB strategies work by maintaining empirical estimates
µ̂i(t − 1) := Si(t − 1)/Ni(t − 1), and select actions based on upper confidence bounds on these
estimates (Auer, 2002). Given a fixed history of action plays and associate observations, the next
action to play is computer deterministically (Lattimore & Szepesvári, 2020):

it = argmax
i∈{1,...,k}

µ̂i(t− 1) + σ

√
8 ln(t)

Ni(t− 1)
, (3)

assuming that the stochasticity induced by the other player’s policy combined with reward noise
is σ-sub-Gaussian. UCB-based strategies typically explore actions at a logarithmic rate over the
horizon. We also consider the KL-UCB variant (Garivier & Cappé, 2013), which uses confidence
intervals directly derived from the bandit regret lower-bounds (Lai & Robbins, 1985):

it = argmax
i∈{1,...,k}

µ̂i(t− 1) + σ

√
2(ln(t) + 3 ln ln(t))

Ni(t− 1)
. (4)

Thanks to its tighter confidence intervals, KL-UCB explores slightly less frequently than UCB (al-
though still at a log-rate). Both UCB and KL-UCB require that each action is played at least one in
order for the upper confidence bounds to be computed. Therefore, during the first k rounds of the
game, each action is played once in a random order.

3We take the perspective of player 1 (row player) without loss of generality.
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Stochastic player We consider the widely recognized Thompson Sampling (TS) strategy (Thomp-
son, 1933; Chapelle & Li, 2011; Russo & Van Roy, 2014). On round t, a TS agent selects action
it based on samples θi,t from the posterior distributions associated with each action i. Formally,
considering σ-sub-Gaussian noise and a Gaussian prior with prior mean µ0 and variance σ2

0 :

θi,t ∼ N
(
mi,t, s

2
i,t

)
for each action i ∈ {1, . . . , k}

where mi,t :=
µ0/σ

2
0 + Si(t− 1)/σ2

1/σ2
0 +Ni(t− 1)/σ2

and s2i,t :=

(
1

σ2
0

+
Ni(t− 1)

σ2

)−1

it = argmax
i∈{1,...,k}

θi,t. (5)

Unlike deterministic strategies (like UCB and KL-UCB), two TS agents who have observed exactly
the same history of actions and rewards might recommend to different actions at time t.

3.3 Design of the study

We consider four games (simple, Pareto easy (γ = 0, β = 0.2), Pareto hard (γ = 0.2,
β = 0.8), and Prisoner’s Dilemma) with Gaussian noise on observations, that is η(1)t , η

(2)
t ∼

N (0, σ2
noise) with known variance σ2

noise. We consider three noise levels per game: none (σ2
noise = 0);

low (σ2
noise = 0.01); and high (σ2

noise = 1). This results into 4 × 3 = 12 environment con-
figurations. Note that the high-noise level was used previously to study competition on Rock-
Paper-Scissors (O’Donoghue et al., 2021), whereas the noise-free setting was used in the Prisoner’s
Dilemma (Douglas et al., 2024). We introduce a low-noise level, aiming to capture the impact of
small perturbations as noise can break symmetry in action selections by deterministic agents.

On each of these configurations, we evaluate five pairings of agent strategies. We study the
case where both players follow the same learning strategy: UCB×UCB, KL-UCB×KL-UCB, and
TS×TS. We study the interaction between deterministic and stochastic agent strategies: UCB×TS.
Finally, we study the interaction between deterministic strategies that explore at slightly different
rates, while following the same background logic: KL-UCB×UCB. Each pairing of agent strategies
is run 500 times on each environment configuration, resulting into 5 agent pairings × 500 runs × 12
environment configurations, for a total of 30, 000 runs.

Each run is performed over a horizon of T = 1000 rounds. For each run, deterministic strategies
initialization (one play for each action) is performed in a random order, that is not necessarily the
same for both players. Therefore agents may not be exposed to the optimal joint actions in the
first rounds. Stochastic agents are also configured to ensure that coordination is not induced through
sampling alignment. To account for the noise induced by the other agent, all strategies are configured
with a noise parameter (σ) that combines the observation noise σnoise and the outcome range variance
[0, 1]: σ =

√
σ2

noise + 1/4.

For reproducibility, all code is available online.

4 Results

We present mean cumulative regret (Equation 1) and mean cumulative collective regret (Equation 2)
for each agent pairing in each environment configuration. Appendix A contains additional results
on the proportion of joint action selections by each agent pairing in each environment configuration.

4.1 Simple game: Stochastic strategies at higher-risk of alter-exploration

Figure 1 displays the mean cumulative regret of player 1 (Equation 1) on the simple game,
for the three noise levels. We observe that the UCB×UCB and KL-UCB×KL-UCB pairings
achieve always sub-linear regret, whereas TS-based pairings incur linear higher regret. Surpris-
ingly, UCB×KL-UCB fails to converge to the optimal joint action in the noise-free setting. When

https://drive.google.com/file/d/1gVf49z6ouX6Fu65m0Iso0ja14z30hj11
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Figure 1: Average cumulative regret (plain lines) with standard deviation (dotted lines) of player 1
on the simple game (500 runs for each noise level).
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Figure 2: Proportion (over 500 runs) of joint action selections on every round of the simple game
without noise (σnoise = 0).
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Figure 3: Average cumulative regret (plain lines) with standard deviation (dotted lines) of player 1
on the easy (γ = 0, β = 0.2) Pareto game (500 runs for each noise level).

looking at the proportion of joint action selections by KL-UCB×KL-UCB and UCB×KL-UCB pair-
ings (Figure 2), we observe that KL-UCB×KL-UCB is characterized by synchronized exploration-
exploitation phases, with the duration of exploitation phases increasing over time. However, results
for the UCB×KL-UCB pairings show that synchronicity is not guaranteed when the two deter-
ministic agents learn at slightly different speeds. This confirms that pathological alter-exploration
cycles may prevent the emergence of coordination even in the simplest settings. Fortunately, agent-
independent observation noise appears able to break such cycles (Figure 1, middle and right).

4.2 Pareto game: Pareto-sequences generally help, shadowed equilibria can be deadly

Figure 3 displays the mean cumulative regret of player 1 (Equation 1) on the easy (γ = 0, β = 0.2)
Pareto game, for the three noise levels. We observe that all agent pairings achieve sub-linear
regret across all noise levels, except UCB×UCB which achieves sub-linear regret only in presence
of observation noise. These results indicate that having multiple joint optimal actions alone may not
be a challenge in most real-world (noisy) settings.

Figure 4 displays the mean cumulative regret of player 1 (Equation 1) on the hard (γ = 0.2, β =
0.8) Pareto game, for the three noise levels. Recall that the hard variant includes the additional
shadowed equilibrium challenge. We observe that all pairings except UCB×KL-UCB display linear
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Figure 4: Average cumulative regret (plain lines) with standard deviation (dotted lines) of player 1
on the hard (γ = 0.2, β = 0.8) Pareto game (500 runs for each noise level).
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Figure 5: Proportion (over 500 runs) of joint action selections on every round of the hard (γ = 0.2,
β = 0.8) Pareto game without noise (σnoise = 0).

regret in the noise-free setting. When looking at the proportion of joint action selections by KL-
UCB×KL-UCB and UCB×KL-UCB pairings (Figure 5), we observe that KL-UCB×KL-UCB fails
to distinguish the optimal joint actions from the best suboptimal joint action (2, 2), still showing
coordination issues. On the other hand, UCB×KL-UCB converges to the optimal joint actions,
suggesting that a lack of initial coordination could help to avoid suboptimal joint action (2, 2) early
in the game. These results highlight the difficulty of facing shadowed equilibria and suggests that
intricate interplays between the learning agent strategies may be required to identify the optimal
action under such conditions. Fortunately, we also observe that under sufficient observation noise,
fully-deterministic agent pairings all achieve sub-linear regret. This however suggests that alter-
exploration dynamics in TS-based pairings are more difficult to break.

4.3 Prisoner’s Dilemma: Observation noise slows the emergence of cooperation

Figure 6 displays the mean cumulative collective regret (Equation 2) on the Prisoner’s
Dilemma game, for the three noise levels. We observe that UCB×UCB and KL-UCB×KL-UCB
converge to the optimal collective action under the noise-free setting, confirming results from Dou-
glas et al. (2024). However, it is unclear whether this result holds under noisy observation given
the considered horizon. This suggest that optimal collective joint actions might be more difficult to
identify than optimal (individual) joint actions. Interestingly, we observe plateaus in the cumulative
regret of UCB×KL-UCB, indicating phases of convergence to the cooperation equilibrium that the
agents appear unable to maintain.

Figure 7 displays the proportion of joint action selections by KL-UCB×KL-UCB in the noise-
free and low-noise settings, highlighting again the subtlety of mechanisms at interplay in alter-
exploration. In the noise-free setting (left), the agents manage to identify the cooperation equilib-
rium, exploring the Nash equilibrium in phases that appear to extend over time. In the low-noise
setting (right), the agents quickly converge to the Nash equilibrium, but the frequency of the cooper-
ation equilibrium increases over time. While noise does appear to slow down convergence, its does
not seem to prevent it from emerging.



Reinforcement Learning Journal 2025

0 200 400 600 800 1000
Round (t)

0

50

100

150

200

250

300

M
ea

n 
cu

m
ul

at
iv

e 
re

gr
et

 R
(t)

noise = 0.0

UCB×UCB
KLUCB×KLUCB
TS×TS
UCB×KLUCB
UCB×TS

0 200 400 600 800 1000
Round (t)

0

50

100

150

200

250

300

noise = 0.1

0 200 400 600 800 1000
Round (t)

0

50

100

150

200

250

300

noise = 1.0

Figure 6: Average cumulative collective regret (plain lines) with standard deviation (dotted lines) on
the Prisoner’s Dilemma game (500 runs for each noise level).
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Figure 7: Proportion (over 500 runs) of joint action selections on every round of the Prisoner’s
Dilemma game in the noise-free (σnoise = 0, left) and low-noise setting (σnoise = 0.1, right).

5 Conclusion

In this work, we study the influence of the learning mechanisms on the emergence of coordination
between independent agents. We focus on two-player matrix games where reward matrices are
unknown to the players and players observe only their own noisy rewards (bandit feedback). This is
among the very few works that consider noisy reward feedback (O’Donoghue et al., 2021) and, to
our knowledge, the first work to also consider that the relationship between reward matrices is also
unknown to the player.

Our results indicate that coordination tends to emerge more easily from interactions between de-
terministic agents, especially when they follow the same learning behaviour. This observation was
made even in the simple game, where TS-based agents failed to converge to the optimal joint
action. This suggest that their stable and predictable exploration-exploitation regimes might be
less at risk of resulting in alter-exploration dynamics. This finding is interesting considering that
Thompson Sampling (TS) is known to perform better under the traditional stochastic bandit set-
ting (Chapelle & Li, 2011). Previous studies (Sadoune et al., 2024; Douglas et al., 2024) on variants
of the Prisoner’s Dilemma have also shown that UCB has a better potential to converge to
the optimal joint action compared to stochastic strategies like ε-greedy or TS. However, our findings
reveal a counter-example: the same mechanism being the success of determinism strategy pairing
can also hamper coordination in the noise-free Pareto games. Fortunately, observation noise ap-
pears to be sufficient for allowing coordination to emerge in the presence of shadowed equilibria.
Finally, our results on Prisoner’s Dilemma complement prior results (Douglas et al., 2024)
by showing that cooperation may still emerge from UCB-based agents under observation noise.

These results motivate further experiments, possibly on longer horizons, to confirm the observed
behaviours under the noisier settings. A major challenge remains to parametrize game environ-
ments in such was as to isolate the studied challenges to produce meaningful conclusions. Finally,
these results call for a theoretical analysis that could provide formal insights and explanations on
the observed behaviours. As a final remark, it is important to note a negative impact of implicit
coordination. In the field of pricing algorithms, coordination might lead to collusion and increase
prices (Harrington, 2018; Calvano et al., 2020; Sadoune et al., 2024; Douglas et al., 2024).
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A Proportion of joint action selections

A.1 Simple game

Figures 8, 9, and 10 display the proportion (over 500 runs) of joint action selections on every round
of the simple game for each agent strategy pairing, for each noise level respectively. Note that this
game contains a single joint optimal action a⋆ = (1, 1).

Noise-free setting We observe (Figure 8) that both UCB×UCB and KL-UCB×KL-UCB pair-
ings are characterized a lot of exploration during the first 100-200 rounds, followed by exploitation
phases that become longer and longer over time. On the other hand, TS×TS quickly converge to
a high-proportion of a⋆ selections that plateaus, maintaining a low but fixed selection proportion
of suboptimal (but coordinated) action (2, 2). This results into linear regret (Figure 1, left). Both
UCB×KL-UCB and UCB×TS display a strong lack of coordination as they keep playing joint ac-
tions (2, 1) and (1, 2) that provide a null outcome (in expectation).
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Figure 8: Proportion of joint action selections per agent strategy pairing on the simple game
without noise. The joint optimal action is a⋆ = (1, 1).

Noisy settings In noisy settings (Figures 9 and 10), we observe that all agent strategy pairings
quickly converge to a high-proportion of a⋆ selections that eventually plateaus, maintaining a low
but fixed selection proportion of suboptimal (but coordinated) action (2, 2). The higher the noise, the
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slower the convergence. Surprisingly, UCB×UCB and KL-UCB×KL-UCB explore much less than
in the noise-free setting. Moreover, miscoordinated exploration patterns that resulted into selections
of joint actions (2, 1) and (1, 2) for UCB×KL-UCB and UCB×KL-UCB disappear in the presence
of observation noise.
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Figure 9: Proportion of joint action selections per agent strategy pairing on the simple game with
low noise. The joint optimal action is a⋆ = (1, 1).
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Figure 10: Proportion of joint action selections per agent strategy pairing on the simple game with
high noise. The joint optimal action is a⋆ = (1, 1).
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A.2 Pareto game (easy)

Figures 11, 12, and 13 display the proportion (over 500 runs) of joint action selections on every
round of the easy (γ = 0, β = 0.2) Pareto game for each agent strategy pairing, for each noise
level respectively. This game contains two joint optimal actions, that is a⋆ ∈ {(1, 1), (3, 3)}.

Noise-free setting We observe (Figure 11) that UCB×UCB and KL-UCB×KL-UCB pairings
seem to implicitly coordinate their exploration, with the exploration of non-null suboptimal joint
action (2, 2) triggering switches between the two joint optimal actions. Since switches between op-
timal joint actions are not instantaneous, they result into some regret (Figure 3, left). On the other
hand, TS×TS also alternates between the two optimal joint actions (with probabilities around 50%
on each), but switches must we coordinated to obtain logarithmic regret (Figure 3, left).
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Figure 11: Proportion of joint action selections per agent strategy pairing on the easy (γ = 0,
β = 0.2) Pareto game without noise. The joint optimal actions are (1, 1) and (3, 3).

Noisy settings In presence of observation noise (Figures 12 and 13), we observe that all pairings
result in a behaviour that is similar to TS×TS in the noise-free setting (Figure 11). They alternate
between the two optimal joint actions (with probabilities around 50% on each), but switches must
be coordinated to obtain logarithmic regret (Figure 3, middle and right).
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Figure 12: Proportion of joint action selections per agent strategy pairing on the easy (γ = 0,
β = 0.2) Pareto game with low noise. The joint optimal actions are (1, 1) and (3, 3).
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Figure 13: Proportion of joint action selections per agent strategy pairing on the easy (γ = 0,
β = 0.2) Pareto game with high noise. The joint optimal actions are (1, 1) and (3, 3).
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A.3 Pareto game (hard)

Figures 14, 15, and 16 display the proportion (over 500 runs) of joint action selections on every
round of the hard (γ = 0.2, β = 0.8) Pareto game for each agent strategy pairing, for each noise
level respectively. This game contains two joint optimal actions, that is a⋆ ∈ {(1, 1), (3, 3)}, with
several non-null suboptimal joint actions (1, 3), (2, 2), and (3, 1). The configuration is such that
under a uniform random strategy of player 2, all actions appear to have the same expected outcome
(0.4) for player 1.

Noise-free setting We observe (Figure 14) that all pairings but UCB×KL-UCB display linear re-
gret and that UCB×UCB and KL-UCB×KL-UCB both initially converge to the high-paying subop-
timal action (2, 2), followed by a slow convergence to the optimal joint actions (mixture). Although
this suboptimal behaviour translates into linear regret (Figure 4, left), it still shows coordination
between the players. On the other hand, TS-based pairings display a quick convergence towards
at least one optimal joint action, with a constant proportion of plays remaining on the high-paying
suboptimal joint action. Only UCB×KL-UCB manages to ignore the high-paying suboptimal joint
action, suggesting that early miscoordination might have (luckily) prevented the agents from identi-
fying action (2, 2).
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Figure 14: Proportion of joint action selections per agent strategy pairing on the hard (γ = 0.2,
β = 0.8) Pareto game without noise. The joint optimal actions are (1, 1) and (3, 3).
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Noisy settings In presence of observation noise (Figures 15 and 16), we observe that all pairings of
deterministic agents converge to the optimal joint actions, showing proper coordination. Observation
noise therefore appears to mitigate the arising difficulties when combining several suboptimal joint
actions with several optimal joint actions in fully-deterministic agent pairings.
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Figure 15: Proportion of joint action selections per agent strategy pairing on the hard (γ = 0.2,
β = 0.8) Pareto game with low noise. The joint optimal actions are (1, 1) and (3, 3).
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Figure 16: Proportion of joint action selections per agent strategy pairing on the hard (γ = 0.2,
β = 0.8) Pareto game with high noise. The joint optimal actions are (1, 1) and (3, 3).
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A.4 Prisoner’s Dilemma

Figures 17, 18, and 19 display the proportion (over 500 runs) of joint action selections on every
round of the Prisoner’s Dilemma game for each agent strategy pairing, for each noise level
respectively. This game contains one collective joint optimal action, that is a⋆ = (1, 1), and the
Nash equilibrium at (2, 2).

Noise-free setting We observe (Figure 17) that UCB×UCB and KL-UCB×KL-UCB exhibit coor-
dinated, symmetric behavior: both players switch actions in the same rounds, alternately visiting (1,
1) and (2, 2). This coordination prevents them from playing the mismatched joint actions (1, 2) and
(2, 1) that cause difficulties in this game. In contrast, TS×TS quickly converges to the Nash equilib-
rium, indicating that agents fail to synchronize as they pursue their individual best outcomes.Finally,
the UCB×KL-UCB pairing exhibits an interesting pattern in the absence of noise: it shows phases
of convergence to the cooperation equilibrium that transform into phases of convergence to the Nash
equilibrium. These are probably triggered by individual, miscoordinated exploration, as shown by
the high-proportion of selections for joint action (2, 1).
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Figure 17: Proportion of joint action selections per agent strategy pairing on the Prisoner’s
Dilemma game without noise. The joint optimal action is (1, 1).
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Noisy settings We observe that under low observation noise (Figure 18), all pairings initially con-
verge to the Nash equilibrium (2, 2), the optimal joint action a⋆ = (1, 1) being played the least.
However, pairings of deterministic agents gradually increase their selection of a⋆ over time at the
expense of the Nash equilibrium. Unfortunately, the horizon appears to be too short to confirm the
phenomenon under high observation noise (Figure 19).
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Figure 18: Proportion of joint action selections per agent strategy pairing on the Prisoner’s
Dilemma game with low noise. The joint optimal action is (1, 1).
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Figure 19: Proportion of joint action selections per agent strategy pairing on the Prisoner’s
Dilemma game with high noise. The joint optimal action is (1, 1)


