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Abstract
Understanding transition paths between meta-
stable states in molecular systems is fundamental
for material design and drug discovery. However,
sampling these paths via unbiased molecular dy-
namics simulations is computationally prohibitive
due to the high energy barriers between the meta-
stable states. Recent machine learning approaches
are often restricted to simple systems or rely on
collective variables (CVs) extracted from expen-
sive domain knowledge. In this work, we propose
to leverage generative flow networks (GFlowNets)
to sample transition paths without relying on CVs.
We reformulate the problem as amortized energy-
based sampling over transition paths and train a
neural bias potential by minimizing the squared
log-ratio between the target distribution and the
generator, derived from the flow matching ob-
jective of GFlowNets. Our evaluation on three
proteins (Alanine Dipeptide, Polyproline Helix,
and Chignolin) demonstrates that our approach,
called TPS-GFN, generates more realistic and di-
verse transition paths than the previous CV-free
machine learning approach.

1. Introduction
In material design and drug discovery, understanding the
mechanisms and kinetics of transitions between meta-stable
states of molecular systems, such as protein folding and
chemical reactions (Spotte-Smith et al., 2022; Ahn et al.,
2019; Mulholland, 2005; Piana et al., 2012), is crucial. A
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comprehensive study of them requires sampling diverse tran-
sition paths (Lee et al., 2017; Elber, 2016), which provide
insights into mechanisms and energy landscapes. However,
sampling transition paths through unbiased molecular dy-
namics (MD) simulations is challenging due to the high
energy barriers of intermediate states, which cause an ex-
ponential decay in transition probability (Pechukas, 1981).
Thus, a brute-force search through unbiased MD simulations
is impractical within a realistic computational budget.

To address this problem, researchers have developed bias
potential enhanced sampling (BPES) methods such as um-
brella sampling (Torrie & Valleau, 1977; Kästner, 2011),
meta-dynamics (Ensing et al., 2006; Branduardi et al., 2012;
Bussi & Branduardi, 2015), on-the-fly probability-enhanced
sampling (Invernizzi & Parrinello, 2020, OPES), and adap-
tive biasing force (Comer et al., 2015, ABF) methods. BPES
methods rely on bias potentials (or forces) to facilitate tran-
sitions across high energy barriers. These methods design
bias potentials using collective variables (CVs), functions
of atomic coordinates that capture the slow modes of the
transition. While effective for some systems, the reliance
on expensive domain knowledge limits the applicability of
BPES methods to systems where CVs are less understood.

Recently, machine learning has emerged as a promising
paradigm for both designing and training neural bias poten-
tials—neural network predicting the bias potential—without
relying on CVs (Das et al., 2021; Lelièvre et al., 2023;
Petersen et al., 2023; Holdijk et al., 2024). For instance,
Das et al. (2021) and Lelièvre et al. (2023) used reinforce-
ment learning to sample transition paths from biased MD
with a parametrized force that approximates the transition
path distribution. However, these works are limited to two-
dimensional systems. Holdijk et al. (2024) trained the neural
bias potential by minimizing KL divergence on the paths col-
lected by itself, i.e., on-policy training. Still, this approach
suffers from mode-seeking behavior, and the on-policy train-
ing does not reuse the collected paths, leading to inefficiency
in sample complexity.

Contribution. In this work, we propose TPS-GFN, gen-
erative flow networks (Bengio et al., 2021, GFlowNets or
GFNs) for transition path sampling (TPS), which trains the
neural bias potential without requiring collective variables
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(CVs). To this end, we formulate the problem as the energy-
based sampling over transition paths between the given
meta-stable states. GFlowNet allows off-policy training and
avoids collapsing to a particular mode of distribution over
transition paths.

In particular, our method trains the neural bias potential by
minimizing the squared log-ratio between the target distri-
bution and the generator, which we derive from the one-
step trajectory balance (TB) objective (Bengio et al., 2023;
Malkin et al., 2022a). We use a replay buffer to store the
paths, which are later used for off-policy training of the gen-
erator. Furthermore, we also design a new reward function
to provide dense training signals and evaluate paths with
various lengths between the meta-stable states.

We extensively evaluate our method for three peptides, i.e.,
Alenine Dipeptide, Polyproline Helix, and Chignolin. We
demonstrate that our method faithfully generates a realistic
transition path between the given meta-stable states in Fig-
ure 1, outperforming the prior ML-based approach (Holdijk
et al., 2024). We also show that our method generates di-
verse transition paths and even discovers transition states.

2. Related work
2.1. Collective variable-based transition path sampling

Bias potential-based methods. Bias potential (or force)
was originally introduced in enhanced sampling to explore
molecular conformations that are difficult to access by the
unbiased molecular dynamics (MD) within limited simu-
lation times (Hénin et al., 2022). We focus on adaptive
bias simulations such as meta-dynamics (Branduardi et al.,
2012), on-the-fly probability-enhanced sampling (Invernizzi
& Parrinello, 2020, OPES), and adaptive biasing force
(Comer et al., 2015, ABF). These methods bias potential
(or force) in a time-dependent manner and enhance the sam-
pling along a few well-designed collective variables (CVs).
However, selecting collective variables of a molecule re-
quires domain expertise, restricting the applications to sys-
tems where CVs are little known.

MCMC-based methods. Shooting is a well-established
method using the Markov chain Monte Carlo (MCMC) pro-
cedure on path space (Dellago et al., 1998). This method
perturbs the velocity of a shooting point—one of the points
on a transition path—to initiate MD simulations. It then
performs MD simulations from this perturbed point and
proposes new transition paths. Borrero & Dellago (2016)
moved the shooting point with meta-dynamics to avoid traps
in path space. Jung et al. (2023) used a neural network to
model commitor function, selecting a shooting point with
a high acceptance rate. Plainer et al. (2023) used latent
proposals to leverage information from the latent space of
the Boltzmann generator (Noé et al., 2019). However, the

MCMC-based method suffers from a long mixing time to
sample independent transition paths, and there is a trade-off
between the acceptance rate and diversity. To avoid long
mixing time, Falkner et al. (2022) directly generated inde-
pendent shooting points from the Boltzmann generator with
the umbrella sampling, but this method requires predefined
CVs and shooting regions.

Automated learning of CV. To avoid the requirement of
expensive domain knowledge about CVs, researchers have
explored automating the derivation of CV from data (Bonati
et al., 2020; 2021; Trizio & Parrinello, 2021; Ray et al.,
2023; Yang et al., 2024). Bonati et al. (2020; 2021) and
Trizio & Parrinello (2021) used discriminant analysis and
time-lagged independent component analysis, respectively,
on the neural network outputs from the physical descriptors
collected by MD simulations. Ray et al. (2023) and Yang
et al. (2024) considered the transition state ensemble as data
augmentation strategies for discriminant analysis.

2.2. Collective variable-free transition path sampling

Generation from a fixed dataset. Given a dataset of transi-
tion paths, one can train generative models using the dataset
to sample a transition path. Petersen et al. (2023) and
Lelièvre et al. (2023) applied diffusion probabilistic models
(Ho et al., 2020) and variational auto-encoders (Kingma &
Welling, 2013), respectively. However, these methods are
limited to small systems, as collecting the transition paths is
notoriously difficult due to high energy barriers.

Neural bias potential-based method. Without a previ-
ously collected dataset, Das et al. (2021) and Hua et al.
(2024) considered transition path sampling as a reinforce-
ment learning (RL) problem and trained the neural bias
potentials (or forces) of the policy by minimizing KL diver-
gence. However, these works are limited to two-dimensional
systems. Notably, Holdijk et al. (2024) scaled up to larger
systems such as Chignolin and applied the path integral
cross-entropy (Kappen & Ruiz, 2016) used in stochastic
optimal control framework to train the neural bias potential.

2.3. Generative flow networks

Generative flow networks (GFlowNets) are the learning
framework for amortized inference, generating objects
through a series of decisions with a stochastic policy, or
forward policy (Bengio et al., 2021; 2023). By learning
the policy to sample an object proportionally to their re-
wards, GFlowNets can produce diverse samples (Bengio
et al., 2021). Specifically, they train the forward policy
by matching its trajectory flow with an auxiliary backward
trajectory flow. Training objectives such as flow match-
ing (Bengio et al., 2021), trajectory balance (Malkin et al.,
2022a), and detailed balance (Bengio et al., 2023) have
been proposed. Recent studies have successfully applied
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Figure 1. Transition paths generated by TPS-GFN, progressing from left to right over time. (Top) A conformation change of Alanine
Dipeptide. (Middle) An isomerization of Polyproline Helix from left-handed to right-handed helix. (Bottom) A Chignolin folding
process.

GFlowNets to tasks including molecular conformer gener-
ation (Volokhova et al., 2023), drug discovery (Shen et al.,
2023), crystal structure design (Hernandez-Garcia et al.,
2023), and biological sequence design (Jain et al., 2022).

Comparison with RL and variational inference. RL and
variational inference are similar to GFlowNets in learn-
ing a target distribution specified by a reward function.
GFlowNets and RL make sequential decisions to achieve
high rewards, but GFLowNets differ by sampling propor-
tionally to the reward rather than maximizing it. Moreover,
while variational inference aim to learn the target (Boltz-
mann) distribution, GFlowNets reduce the variance of gra-
dient estimator by estimating marginal quantities and allow
off-policy learning without the need for importance sam-
pling (Malkin et al., 2022b).

3. Method
3.1. Problem setup

At a high level, our goal is to sample transition paths from
one meta-stable state to another meta-stable state through
unbiased molecular dynamics (MD), e.g., transition paths
from the meta-stable region C5 to C7ax of Alanine Dipep-
tide, as illustrated in Figure 2. Since such events rarely
occur due to the high energy barrier between the two meta-
stable regions, we train a neural network to search for such
transition paths.

Molecular dynamics. We consider MD simulations that de-
scribe motion of a molecular state x = (r,v) withN atoms,
given the atom-wise positions (or conformation) r ∈ RN×3

and the atom-wise velocities v ∈ RN×3. In particular, we
consider Langevin dynamics (Bussi & Parrinello, 2007) to

describe the molecular motion:

dr = vdt,

dv =
−∇rU(r)

m
dt− γvdt+

√
2γkBλ

m
dw,

where U(r), m, γ, kB , λ, and dw denote the potential
energy, the atom-wise masses, the friction term, the Boltz-
mann constant, the temperature, and the Brownian motion,
respectively.

Euler Maruyama discretization. Langevin dynamics
can be discretized into a sequence of molecular states
x0,x1, . . . ,xT using the Euler Maruyama method (Kloe-
den et al., 2012) as follows:

rt = rt−1 + vt−1∆,

vt = (1− γ∆)vt−1 +
−∇rU(rt)

m
∆+

√
2γkBλ

m
εt∆,

where ∆ is the discretization step size and εt ∈ RN×3 is a
noise from the standard normal distribution. We denote the
conditional probabilities described above as pMD(xt|xt−1).

Transition path sampling. One of the challenges in sam-
pling transition paths through unbiased MD simulations is
the meta-stability: a state remains trapped for a long time in
the initial meta-stable region A ⊆ RN×3 before transition-
ing into a distinct meta-stable region B ⊆ RN×3. Our goal
is to sample a transition path x0:T = (x0, . . .xT ) that links
the distinct regions A and B where r0 ∈ A, rT ∈ B and T
is the length of the path.

Since the meta-stable region A and B are not well-specified
for many molecular systems, we find unique local minima
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ϕ

ψ

Figure 2. A transition path from the meta-stable state C5 to C7ax
on the potential energy landscape of Alanine Dipeptide, repre-
sented by its well-known collective variables (CV), which are the
two backbone dihedral angles (ϕ, ψ). The transition path is high-
lighted with yellow arrows.

rA and rB of the potential function inside the meta-stable
regions A and B, respectively. Afterwards, we sample a
transition path x0:T that starts from the state x0 = xA
and ends nearby the conformation rB, i.e., rT ∈ B. To be
specific, we fix x0 = xA and sample the path x1:T from
the following distribution:

pA,B(x1:T |x0) =
1

Z
1B(rT )

T∏
t=1

pMD(xt|xt−1), (1)

where Z is the normalizing constant and 1B(rT ) is the
binary indicator function for the conformation rT being in
the meta-stable region B. In other words, 1B(rT ) = 1 if
rT ∈ B, and 1B(rT ) = 0 otherwise.

To sample transition paths from the target distribution
pA,B(x1:T |x0), one can use rejection sampling. This in-
volves sampling x1:T through unbiased MD simulations
and then checking if rT ∈ B. However, this method is
computationally expensive due to the low acceptance rate,
which is caused by the high-energy barriers.

3.2. TPS-GFN: GFlowNets for transition path sampling

In this section, we explain our approach, called TPS-GFN,
that amortizes the expensive cost of sampling transition
paths from the distribution pA,B(x1:T |x0). Our key idea is
threefold: (1) using the trajectory balance (TB) objective
to train a generator pθ(x1:T |x0) =

∏T
t=1 pθ(xt|xt−1) to-

wards the true distribution pA,B(x1:T |x0), (2) relaxation
of the target distribution, and (3) parameterization of the
generator with the neural bias potential. We provide a full
description of the algorithm in Algorithm 1.

Training with trajectory balance (TB). We aim to make
the generator pθ(x1:T |x0) imitate the target distribution
pA,B(x1:T |x0). From Equation (1), we can achieve this by

Algorithm 1 GFlowNet training for transition path sampling

1: Initialize an empty replay buffer B, a neural biased
potential bθ, a scalar parameter Zθ, and a temperature
schedule λstart = λ1 > · · · > λI = λend.

2: for i = 1, . . . , I do
3: Generate M1 paths {x(m)

0:T }
M1
m=1 from the biased MD

simulations at the temperature λi.
4: Update the replay buffer B ← B ∪ {x(m)

0:T }
M1
m=1.

5: for j = 1, . . . , J do
6: Sample M2 paths {x(m)

0:T }
M2
m=1 from the buffer B.

7: Update parameters of bθ and Zθ to minimize the
loss LTB (Equation (2)) using these samples.

8: end for
9: end for

satisfying the following identity:(
log

Z
∏T

t=1 pθ(xt|xt−1)

1B(rT )
∏T

t=1 pMD(xt|xt−1)

)2

= 0,

for all paths x1:T . To this end, we propose to use
the one-step TB objective (Malkin et al., 2022a), the
squared log-ratio between the unnormalized generator
Zθpθ(x1:T |x0) and the unnormalized target distribution
1B(rT )

∏T
t=1 pMD(xt|xt−1), as follows:

LTB(x1:T ) =

(
log

Zθ

∏T
t=1 pθ(xt|xt−1)

1B(rT )
∏T

t=1 pMD(xt|xt−1)

)2

, (2)

where Zθ ∈ R is a learnable scalar parameter to estimate
the normalization constant Z. We match the generator
with the target distribution by minimizing the loss func-
tion LTB(x1:T ) over paths x1:T sampled from an arbitrary
training distribution, i.e., off-policy training. We provide
an explicit derivation of the one-step TB objective (Equa-
tion (2)) in Appendix A.

To leverage the ability of the TB objective, we use a replay
buffer that collects the samples from the tempered version
of the generator and reuses them for training. This improves
sample efficiency and training stability, both for GFlowNets
(Bengio et al., 2021) and reinforcement learning (Mnih
et al., 2013). In particular, we collect paths from biased MD
simulations with a predefined temperature schedule, starting
from a high temperature λstart, decreasing the temperature
with each rollout, and ending at a temperature λend. This
annealing strategy rapidly identifies target metastable states
and explores diverse transition paths.

As described in Algorithm 1, the training algorithm of TPS-
GFN iterates through four steps: (1) generating paths from
the tempered version of the generator, (2) storing generated
paths in the replay buffer, (3) sampling paths from the replay
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Table 1. Benchmark scores on Alanine Dipeptide which has well-known CVs. All metrics are averaged over 64 trajectories. ETP and EFP
are reported only if the final state is in the target meta-stable state. The best values are highlighted in bold except unbiased MD (300K).
Values from the paper Holdijk et al. (2024) and the model parameter of its official code are indicated by † and ‡, respectively. Methods
using bias potential and force are denoted by (P) and (F), respectively.

Method EPD (↓) THP (↑) ETP (↓) LL (↑) EPCD (↓) EFP (↓)
nm× 10−3 % kJmol−1 ×102 nm kJmol−1

MD (300K) 7.52± 0.96 0.00 − 5.72 ± 0.00 84.73± 4.97 −
MD (9000K) 7.96± 2.36 4.68 870.11± 164.52 −13.14± 2.83 115.06± 31.37 789.54± 134.34

PIPS (P)† 1.21± 0.31 63.50 −8.35 ± 8.04 − − −
PIPS (F)‡ 2.08± 0.29 46.87 3.49± 12.19 5.56± 0.01 12.06± 3.41 −24.85± 13.56
TPS-GFN (P) 1.15± 0.07 100.00 −9.94± 9.89 5.58± 0.01 3.93± 0.95 −50.63± 8.02
TPS-GFN (F) 1.48± 0.21 81.25 11.66± 18.44 5.57± 0.02 8.77± 4.12 −30.14± 11.46

Table 2. Benchmark scores on Polyproline Helix and Chignolin.
All metrics are averaged over 64 trajectories. The best values
are highlighted in bold except unbiased MD. Reproduced results
from Holdijk et al. (2024) are indicated by †. Methods using bias
potential and force are denoted by (P) and (F), respectively.

Method EPD (↓) LL (↑) EPCD (↓)
nm× 10−3 ×102 nm

Polyproline Helix

MD (300K) 24.14± 3.10 13.89± 0.01 87.96± 3.93

PIPS (P)† 14.81± 5.32 13.77± 0.02 73.83± 17.94
PIPS (F)† 30.25± 3.29 13.75± 0.02 104.89± 4.60
TPS-GFN (P) 6.95± 0.67 13.51± 0.03 58.48± 4.25
TPS-GFN (F) 17.63± 1.32 13.87± 0.02 82.08± 4.02

Chignolin

MD (300K) 367.84± 101.43 36.01± 0.04 258.49± 21.15

PIPS (P)† 59.73± 11.19 34.03± 0.44 184.97± 18.57
PIPS (F)† 90.60± 43.86 33.83± 0.33 214.42± 39.63
TPS-GFN (P) 16.46± 5.94 33.88± 0.21 62.76± 14.93
TPS-GFN (F) 55.21± 10.15 34.54± 0.14 148.34± 18.14

buffer, and (4) training the generator by minimizing the
TB objective. After training, TPS-GFN directly generates
transition paths with biased MD simulation by amortizing
inference in the target distribution.

As shown by Malkin et al. (2022b), the TB objective au-
tomatically performs gradient variance reduction for varia-
tional inference by estimating the normalizing constant Z
that acts as a baseline and allows off-policy learning with-
out the need for importance sampling. This is also a slight
modification to the VarGrad objective (Richter et al., 2020;
Deleu et al., 2024) that was proposed to reduce the variance
of the gradient estimator of the evidence lower bound.

We note the similarity of TPS-GFN with the prior work
(Holdijk et al., 2024), which minimizes the Kullback-Leibler
(KL) divergence between the generator and the target dis-
tribution. In comparison, the TB objective yields better
training dynamics due to reduced variance in the gradients,

and better sample efficiency due to the ability to reuse the
collected sample with the replay buffer. Furthermore, TPS-
GFN does not suffer from the mode-seeking behavior of KL
divergence.

Target distribution relaxation. Learning to imitate the
target distribution pA,B with the TB objective is challenging
since its probability is rarely non-zero due to the binary
indicator function 1B(rT ) of the target distribution. To alle-
viate this issue, we (1) replace the binary indicator function
with a piecewise smooth function having positive values for
all input paths and (2) allow paths to reach the meta-stable
region B before termination.

First, we relax the target distribution as follows:

p̃A,B(x1:T |x0) =
1

Z̃
1̃B(r1:T )

T∏
t=1

pMD(xt|xt−1),

where Z̃ is the normalizing constant and 1̃B(r1:T ) is the
relaxed binary indicator function defined as follows:

1̃B(r1:T ) = max
t∈{1,...,T}

exp

(
−∥D(rt)−D(rB)∥2F

2σ2

)
,

where ∥·∥F is the Frobenius norm, σ > 0 controls the
degree of relaxation. D(r) ∈ RN×N is a matrix whose
(i, j)-th element is the Euclidean distance ∥ri − rj∥2 be-
tween i-th and the j-th atoms. Second, we allow the paths to
have flexible lengths, by cutting off the tail of the generated
paths at t∗ = argmint∈{1,...,T}∥D(rt) − D(rB)∥F . This
enables finding transition paths of various lengths.

Parameterizing generator with neural bias potential.
Similar to Holdijk et al. (2024), we model the generator
pθ(x1:T |x0) as the discretization of the following biased
Langevin dynamics:

dr = vdt,

dv =
−∇rUb(r)

m
dt− γvdt+

√
2γkBλ

m
dw,
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𝛙
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(b) PIPS
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(c) TPS-GFN (Ours)

Figure 3. 64 sampled paths for each method on the Ramachandran plot of Alanine Dipeptide. White circles indicate meta-stable states,
and stars indicate transition states. (a) The paths from unbiased MD simulations that fail to escape the initial meta-stable region. (b) The
paths generated by PIPS pass through only one transition state. (c) The paths generated by TPS-GFN pass through both transition states.
For clarity, 10 paths are highlighted.

where Ub(r) = U(r) + bθ(r) and bθ is the neural bias
potential that guides the Langevin dynamics towards the
meta-stable region B. We discretize the biased Langevin
dynamics as follows:

rt+1 = rt + vt∆,

vt+1 = (1− γ∆)vt +
−∇rUb(rt)

m
∆+

√
2γkBλ

m
εt∆,

We model the neural bias potential bθ(r) or directly force
bθ(r) = −∇rbθ(r) for the generator. We use a multi-
layered perception (MLP) architecture to parameterize the
neural bias potential or force.

4. Experiment
In this section, we evaluate TPS-GFN on three benchmark
systems, (1) Alanine Dipeptide, (2) Polyproline Helix, and
(3) Chignolin based on realisticity and diversity of gener-
ated paths. We compare our method with unbiased MD and
path integral stochastic optimal control for path sampling
(Holdijk et al., 2024, PIPS) both quantitatively and qual-
itatively. We run molecular dynamics (MD) simulations,
using OpenMM library (Eastman et al., 2023). We report
OpenMM and model configurations in Appendix B.1 and
Appendix B.2, respectively.

4.1. Molecular systems

Alanine Dipeptide. Alanine Dipeptide is a small peptide of
two alanine residues connected by a peptide bond. Alanine
Dipeptide has the well-known collective variable (CV), the
two backbone dihedral angles (ϕ, ψ). In our experiments,
we sample conformation changes from the meta-stable re-
gion C5 to C7ax as shown in Figure 2.

Polyproline Helix. Polyproline helix is a protein secondary
structure formed by a sequence of proline amino acids
(Adzhubei et al., 2013). Polyproline has two meta-stable
states: Polyproline I (PP-I) and Polyproline II (PP-II). PP-I
is a right-handed helix with all peptide bonds in the cis con-
figuration, while PP-II is a left-handed helix with all peptide
bonds in the trans configuration (Moradi et al., 2009). In
our experiments, we use Polyproline consisting of 3 proline
residues and sample isomerizations from PP-II to PP-I.

Chignolin. Chignolin is a synthetic protein consisting of
10 amino acids and folds into a stable β-hairpin structure
(Honda et al., 2004; Seibert et al., 2005). A network of
hydrogen bonds and hydrophobic interactions stabilizes the
β-hairpin structure of chignolin. In our experiments, we
sample folding processes from unfolded to folded states.

4.2. Quantitative results

We consider three metrics (1) Expected pairwise dis-
tance (EPD) (2) target hit percentage (THP) (3) energy
transition point (ETP) introduced by Holdijk et al. (2024).
EPD measures the similarity between the final conformation
and the target conformation by comparing their interatomic
distances. THP evaluates how many paths achieve the target
meta-stable region in a binary manner. Unlike EPD and
THP which only evaluate the final conformations of transi-
tion paths, ETP measures the maximum potential energy of
a transition path, referring to the ability of a model to find
the transition states when crossing the energy barrier.

However, ETP only evaluates the potential energy of the
transition state, it can not reflect the realisticity of the over-
all transition path. To resolve this issue, we propose log-
likelihood (LL) which refers to the log-likelihood of con-
ditional density induced by the unbiased MD simulation.

6



Collective Variable Free Transition Path Sampling with Generative Flow Network

Figure 4. An isomerization from the meta-stable region PP-II to PP-I of Polyproline generated by TPS-GFN. (Top) 3d views of three
states: initial, transition, and final state. The backbone of the Polyproline Helix is highlighted in green. (Middle) The potential energy of
states over time. (Bottom) The handedness of states over time. The red line at y = 0 differentiates between PP-II and PP-I.

Similarly, since EPD and THP only consider the distance
between the final conformation of sampled paths and the
target conformation, they can not reflect the potential en-
ergy of the final conformation which explains its stability
and realisticity. To evaluate it, we propose the potential
energy of the final point (EFP), and the expected pairwise
Coulomb distance (EPCD). EPCD measures both geometric
and electrostatic similarity by comparing the Coulomb ma-
trices of the final conformation and the target conformation.
The Coulomb matrix captures atomic mass and energy level
around the final state better than the distance matrix. More
details of metrics are in Appendix B.3.

Alanine Dipeptide. Since Alanine Dipeptide has the well-
known CV, i.e., two backbone dihedral angles (ϕ, ψ), we
can evaluate THP, ETP, and EFP which requires defining the
meta-stable region with the CV. In Table 1, TPS-GFN out-
performs the baselines for both previous metrics (EPD, THP,
ETP) and proposed metrics (LL, EPCD, EFP) regardless
of predicting bias potential or force. The paths generated
by our model reach the target meta-stable state better than
unbiased MD simulations at 9000K while maintaining the
realisticity at 300K. This shows that the TB objective used
in our method leads to more realistic and high-quality tran-
sition paths than the KL divergence used in PIPS. Thus,
our method faithfully amortizes the rejection sampling with
unbiased MD simulations at 300K.

Polyproline Helix and Chignolin. Unlike Alanine Dipep-
tide, the CVs of Polyproline Helix, and Chignolin are less
understood. Therefore, we exclude metrics THP, ETP, and
EFP which require CVs to define the meta-stable state. In Ta-

ble 2, our method outperforms baselines in both Polyproline
Helix and Chignolin, regardless of predicting bias potential
or force. This shows that our model samples more realistic
transition paths. We note that predicting bias potential pro-
duces better transition paths than predicting bias force since
the external force from the bias potential is conservative.

4.3. Qualitative results

In this section, we evaluate our model based on visualiza-
tions of paths. For Alanine Dipeptide, we compare tran-
sition paths from our method with baselines for diversity.
For Polyproline Helix and Chignolin, we visualize the 3D
conformations of a transition path with a potential energy
plot. For more visualizations, please refer to project page.

Alanine Dipeptide. In Figure 3, we sample transition paths
of three methods from C5 to C7ax on Ramachandran plot
of Alanine Dipeptide. We sampled 64 transition paths for all
cases. The paths from unbiased MD simulations in Figure 3a
remain trapped in the initial meta-stable region, and fail to
produce transition paths. Both PIPS (Holdijk et al., 2024)
and TPS-GFN generate valid transition paths between two
meta-stable regions as shown in Figure 3b and Figure 3c,
respectively. PIPS generates transition paths that pass near
one of the transition states while TPS-GFN generates tran-
sition paths that pass near both transition states as shown
in Figure 3c. This shows that TPS-GFN captures diverse
transition paths and discovers transition states.

Polyproline Helix. We plot potential energy over time and
visualize 3D structures of three states: initial, transition, and
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Figure 5. A folding process of Chignolin generated by TPS-GFN. (Top) 3d views of three states: initial, transition, and final state.
(Middle) The potential energy over time. (Bottom) The doner-accepter distance of the two key hydrogen bonds, ASP3OD-THR6OG and
ASP3N-THR8O over time. To form the hydrogen bonds, the donor-acceptor distance must be lower than the red line at y = 3.5Å.

final state of a transition path. We also consider handedness,
H , which differentiates between PP-II and PP-I (Moradi
et al., 2009). Specifically, H < 0 indicates a left-handed he-
lix, while H > 0 indicates a right-handed helix. In Figure 4,
our method captures the isomerization of Polyproline Helix
from left-handed to right-handed Helix.

Chignolin. Similarly, we plot potential energy and visualize
3D structures. We consider the donor-acceptance distance
of the two key hydrogen bonds, Asp3OD–Thr6OG and
Asp3N–Thr8O. In Figure 5, our method captures the folding
process, by forming the key hydrogen bonds at the final state.
Notably, our method generates folding processes about 4
ps, which is shorter than the average folding time of 0.6 µs
reported by Lindorff-Larsen et al. (2011).

5. Conclusion
In this work, we introduced a novel CV-free approach to
sampling transition paths using generative flow networks
(GFlowNets) to train neural bias potentials for efficient and
diverse sampling. By reformulating the problem as amor-
tized energy-based sampling and employing the one-step
trajectory balance (TB) objective, our approach significantly
improves the discovery of realistic transition paths com-
pared to existing methods. Evaluations on proteins such
as Alanine Dipeptide, Polyproline Helix, and Chignolin
demonstrate superior accuracy and diversity in identifying
transition states. We believe that our works expand to more
complex systems, with significant implications for drug
discovery and material design.

Limitation. While our algorithm successfully samples tran-
sition paths for small peptides, we did not evaluate our
algorithm for larger peptides or proteins due to the lack of
computational budget. In addition, our work does not gener-
alize across different pairs of meta-stable states or different
molecular systems. This points to an interesting venue for
future research, which would be more appealing for practi-
cal applications in drug discovery or material design.
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A. Generative Flow Networks
In this section, we briefly introduce the concept of GFlowNets and explain how we derive Equation (2). We refer to Lahlou
et al. (Lahlou et al., 2023) for a comprehensive study on formalizing GFlowNets on continuous state spaces.

Generative flow networks. GFlowNet (Bengio et al., 2021; 2023) is a framework to sequentially construct samples s ∈ S
proportional to a reward function R(s), where S is a set of data. In other words, GFlowNet aims to learn a target distribution
p∗(s) defined as:

p∗(s) =
R(s)

Z
, Z =

∫
S
R(s)ds,

where Z is the normalizing constant. To this end, GFlowNet samples a trajectory τ = (s0, ..., sL) ∈ {s0} × SL of length L
through a series of state transitions made by a forward policy PF (sl|sl−1; θ) for l = 1, . . . , L, where s0 is the fixed initial
state of all trajectories and s = sL is the terminal state we want to sample.

Flow matching. To train the forward policy, GFlowNet introduces an auxiliary backward policy PB(sl−1|sl; θ) and matches
the forward flow ZθPF (τ ; θ) with backward flow R(s)PB(τ |s; θ) using the flow matching objective over the trajectories
τ = (s0, ..., sL):

Zθ

L∏
l=1

PF (sl|sl−1; θ) ≈ R(s)
L∏

l=1

PB(sl−1|sl; θ) (3)

where Zθ ∈ R is a learnable scalar parameter to estimate the normalization constant Z. Equation (3) induces ZθPF (s) ≈
R(s), by marginalizing forward and backward flows over set of trajectories T (s) ending at the terminal state s, i.e.,∫
τ∈T (s)

ZθPF (τ ; θ)dτ = ZθPF (s) and
∫
τ∈T (s)

R(s)PB(τ |s; θ)dτ = R(s). In other words, we can sequentially construct
a sample s proportional to a reward function R(s) through a series of state transitions by the forward policy after minimizing
the flow matching objective.

Trajectory balance. For flow matching, Malkin et al. (Malkin et al., 2022a) proposed the trajectory balance objective:

LTB(s1, . . . , sL; θ) =

(
log

Zθ

∏L
l=1 PF (sl|sl−1; θ)

R(sL)
∏L

l=1 PB(sl−1|sl; θ)

)2

,

which corresponds to minimizing the squared difference of logarithms on the left and right-hand side of Equation (3). In
particular, one-step GFlowNets, i.e., L = 1, induces the following training objective:

LTB(s1; θ) =

(
log

ZθPF (s1|s0; θ)
R(s1)

)2

, (4)

where PB(s0|s1; θ) is ignored since s0 is the constant initial state. Note that the detailed balance (Bengio et al., 2023)
objective also reduces to the same formula as in Equation (4) with one-step GFlowNets.

Transition path sampling via GFlowNets. In this work, we formulate the transition path sampling problem (Equation (1))
as one-step GFlowNets. We set S as a set of paths x1:T of length T starting at the initial state s0 = x0 and the reward
function as

R(x1:T ) = 1B(rT )

T∏
t=1

pMD(xt|xt−1) ∝ pA,B(x1:T |x0). (5)

Since PF (s1|s0; θ) = pθ(x1:T |x0), one can derive Equation (2) from Equation (4):

L(x1:T ; θ) =

(
log

Zθ

∏T
t=1 pθ(xt|xt−1)

1B(rT )
∏T

t=1 pMD(xt|xt−1)

)2

.

12



Collective Variable Free Transition Path Sampling with Generative Flow Network

B. Experiment details
We implement codes based on OpenMM (Eastman et al., 2023) and Pytorch (Paszke et al., 2019) libraries and run codes on
a single GPU (NVIDIA RTX 3090 or RTX A5000).

B.1. OpenMM configurations

We use the Langevin integrator (Bussi & Parrinello, 2007) with the step size ∆ = 1 fs and the friction term γ = 1 ps−1.
In training TPS-GFN, we start simulations from a temperature λstart = 600K, linearly decrease temperature, and end at a
temperature λend = 300K. Other OpenMM configurations are shown in Table 3. For PIPS, the number of steps T of Alanine
Dipeptide is 500 as given by Holdijk et al. (2024).

Table 3. OpenMM configurations.

Molecule # steps (T ) Force field Solvent

Alanine Dipeptide 1000 amber99sbildn tip3p
Polyproline Helix 10000 amber/protein.ff14SBonlysc implicit/gbn2
Chignolin 10000 amber/protein.ff14SBonlysc implicit/gbn2

B.2. Model configurations

For PIPS, we use the model configurations reported by Holdijk et al. (2024). For TPS-GFN, we roll out I = 1000 times,
the learning rate to 0.0001 for the neural bias potential, and 0.01 for a scalar parameter w = logZθ. We concatenate the
distance feature di = ∥ri − (rB)i∥2 and the position ri of the i-th atom, using this as input for the neural bias potential. We
report other model configurations in Table 4. We use the same configurations for both the neural bias potential and force,
except for the output dimension of neural networks.

Table 4. Model configurations of TPS-GFN.

Molecule Trains per rollout (J) # Samples (M1) Batch Size (M2) Buffer Size Relaxation (σ)

Alanine Dipeptide 2000 16 16 2048 0.05
Polyproline Helix 100 2 2 256 0.1
Chignolin 100 2 2 256 0.2

B.3. Evaluation metrics

Following Holdijk et al. (2024), we adopt the following three metrics for evaluation.

Expected pairwise distance (EPD). The interatomic pairwise distance matrix D(·) expresses molecular conformation in
an E(3)-invariant manner. EPD measures the similarity between the final conformation rt∗ and the target conformation rB
by comparing interatomic pairwise distance matrices as follows:

EPD(rt∗ , rB) =
1

N2
∥D(rt∗)−D(rB)∥2F

Where t∗ is the index of the final conformation of transition paths.

Target hit percentage (THP). THP measures the success rate of paths arriving at the target meta-stable state B in a binary
manner. For the final conformations {r(i)}Mi=1 of M paths, THP is defined as follows:

THP =
|{i : r(i) ∈ B}|

M

For the alanine dipeptide, we use B = {r : |ϕ(r)−ϕ(rB)|+ |ψ(r)−ψ(rB)| < 0.75} where (ϕ, ψ) is the collective variable
consisting of two backbone dihedral angles.
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Energy transition point (ETP). ETP measures the ability of the method to find the transition states when crossing the
energy barrier. ETP refers to the maximum potential energy among states in a transition path. Formally, given a transition
path x0:t∗ that reaches the target meta-stable region i.e., rt∗ ∈ B, ETP is defined as follows:

ETP(x0:t∗) = max
i∈[0,t∗]

U(ri)

However, we point out that these metrics can not measure the realisticity of the overall paths with respect to unbiased
molecular dynamics (MD) and final conformations with respect to their potential energy.

Log Likelihood (LL). Log-likelihood (LL) evaluates the realisticity of paths with respect to unbiased MD simulation at
300K, referring to the log-likelihood of conditional density of unbiased MD simulation as follows:

LL(x0:T ) =
1

T

T∑
t=1

log pMD(xt|xt−1)

We divide by T to evaluate paths regardless of length.

For the realisticity of final conformations, we focus on the potential energy of them. We propose two metrics, potential
Energy of the final point (EFP) and Expected pairwise coulomb distance (EPCD).

Potential energy of final point (EFP). The final conformations of a transition path from unbiased MD simulation have
low potential energy due to meta-stability. EFP measures the potential energy U(rt∗) of the final conformations of transition
paths sampled from the model.

Expected pairwise Coulomb distance (EPCD). Coulomb matrix (Rupp et al., 2012)C(r) of the conformation r describes
electrostatic interaction between nuclei and is formulated as follows:

C(r)ij =

{
0.5Z2.4

i for i = j

ZiZj/∥ri − rj∥2 for i ̸= j

where Zi and Zj are the atomic numbers and ri, rj are the positions of atoms i and j, respectively. The atomic numbers Zi

and Zj of the Coulomb matrix reflect mass and energy level around the final conformation better than the distance matrix.
We propose EPCD which replaces the distance metrics used in EPD with the Coulomb matrix and is defined as follows:

EPCD(rt, rB) =
1

N2
∥C(rt∗)− C(rB)∥2F

EPCD measures geometric and electrostatic similarities between the final conformation rt∗ and the target conformation rB.
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