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Abstract

Recent analyses of neural networks with shaped activations (i.e. the activation function is
scaled as the network size grows) have led to scaling limits described by differential equations.
However, these results do not a priori tell us anything about “ordinary” unshaped networks,
where the activation is unchanged as the network size grows. In this article, we find similar
differential equation based asymptotic characterization for two types of unshaped networks.

• Firstly, we show that the following two architectures converge to the same infinite-depth-
and-width limit at initialization: (i) a fully connected ResNet with a d−1/2 factor on
the residual branch, where d is the network depth. (ii) a multilayer perceptron (MLP)
with depth d ≪ width n and shaped ReLU activation at rate d−1/2.

• Secondly, for an unshaped MLP at initialization, we derive the first order asymptotic
correction to the layerwise correlation. In particular, if ρℓ is the correlation at layer ℓ,
then qt = ℓ2(1 − ρℓ) with t = ℓ

n converges to an SDE with a singularity at t = 0.

These results together provide a connection between shaped and unshaped network
architectures, and opens up the possibility of studying the effect of normalization methods
and how it connects with shaping activation functions.

1 Introduction

Martens et al. (2021); Zhang et al. (2022) proposed transforming the activation function to be more linear as
the neural network becomes larger in size, which significantly improved the speed of training deep networks
without batch normalization. Based on the infinite-depth-and-width limit analysis of Li et al. (2022), the
principle of these transformations can be roughly summarized as follows: choose an activation function
φs : R → R as a perturbation of the identity map depending on the network width n (or depth d = n2p, p > 0)

φs(x) = x + 1
np

h(x) + O(n−2p) = x + 1√
d

h(x) + O(d−1) , (1.1)

where for simplicity we will ignore the higher order terms for now. Li et al. (2022) also showed the limiting
multilayer perceptron (MLP) can be described by a Neural Covariance stochastic differential equation (SDE).
Furthermore, it appears the choice of p = 1

2 is necessary to reach a non-degenerate nor trivial limit, at least
when the depth-to-width ratio d

n converges to a positive constant (see (Li et al., 2022, Proposition 3.4)).

Recently, Hayou & Yang (2023); Cirone et al. (2023) also studied the infinite-depth-and-width limit of a
specific ResNet architecture (He et al., 2016). Most interestingly, the limit is described by an ordinary
differential equation (ODE) very similar to the neural covariance SDE. Furthermore, Hayou & Yang (2023)
showed the width and depth limits commute, i.e. no dependence on the depth-to-width ratio d

n . It is then
natural to consider a more careful comparison and understanding of the two differential equations.
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Figure 1: Empirical distribution of the transformed correlation rt = log(ℓ2(1 − ρℓ)) for an unshaped ReLU
MLP, SDE sample density computed via kernel density estimation. Simulated with n = d = 150, ρ0 =
0.3, r0 = log(1 − ρ0) = log(0.7), SDE step size 10−2, and 213 samples.

At the same time, Li et al. (2022) demonstrated the unshaped network also has an accurate approximation
via a Markov chain. Jakub & Nica (2023) further studied the large width asymptotics of the Markov chain
updates, where the transition kernel still depends on the width. Since the Markov chain quickly converges to
a fixed point, it does not immediately appear to have a scaling limit. However, this motivates us to consider
a modified scaling around the fixed point, so that we can recover a first order asymptotic correction term.

In this note, we provide two technical results that address both of the above questions. Both of the results
are achieved by considering a modification of the scaling, which leads to the following results.

• Firstly, we demonstrate that shaping the activation has a close connection to ResNets, and the
covariance ODE is in fact just the deterministic drift component of the covariance SDE. Furthermore,
in the limit as the scaled ratio of d

n2p to converges to a positive constant and p ∈ (0, 1
2 ), the shaped

MLP covariance also converges to the same ODE.

• Secondly, we analyze the correlation of an unshaped MLP, providing a derivation of the first order
asymptotic correction. The correction term arises from rescaling the correlation ρℓ in layer ℓ by
qℓ = ℓ2(1 − ρℓ), and we show it is closely approximated by an SDE.

The rest of this article is organized as follows. Firstly, we will provide a brief literature review in the rest
of this section. Next, we will review the most relevant known results on this covariance SDEs and ODEs in
Section 2. Then in Section 3, we will make the connection between shaping and ResNets precise. At the
same time, we will also provide a derivation of the unshaped regime in Section 4, where we show that by
modifying the scaling yet again, we can recover another SDE related to the correlation of a ReLU MLP.

1.1 Related Work

On a conceptual level, the main difficulty of analyzing neural networks is due to the lack of mathematical
tractability. In a seminal work, Neal (1995) showed that two layer neural networks at initialization converges
to a Gaussian process. Beyond the result itself, the conceptual breakthrough opened up the field to analyzing
large size asymptotics of neural networks. In particular, this led to a large body of work on large or infinite
width neural networks (Lee et al., 2018; Jacot et al., 2018; Du et al., 2019; Mei et al., 2018; Sirignano &
Spiliopoulos, 2018; Yang, 2019; Bartlett et al., 2021). However, majority of these results relied on the network
converging to a kernel limit, which are known to perform worse than neural networks (Ghorbani et al., 2020).
The gap in performance is believed to be primarily due to a lack of feature learning (Yang & Hu, 2021; Abbe
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Notation Description Notation Description
nin ∈ N Input dimension nout ∈ N Output dimension
n ∈ N Hidden layer width d ∈ N Number of hidden layers (depth)
φ(·) Base activation φs(·) Shaped activation
xα ∈ Rnin Input for 1 ≤ α ≤ m W0 ∈ Rnin×n Weight matrix at layer 0
zα

out ∈ Rnout Network output Wout ∈ Rn×nout Weight matrix at final layer
zα

ℓ ∈ Rn Neurons (pre-activation)
for layer 1 ≤ ℓ ≤ d

Wℓ ∈ Rn×n Weight matrix at layer 1 ≤ ℓ ≤ d
All weights initialized iid ∼ N (0, 1)

φα
ℓ ∈ Rn Neurons (post-activation)

for layer 1 ≤ ℓ ≤ d
c ∈ R Normalizing constant

c :=
(
Eφ(g)2)−1 for g ∼ N (0, 1)

V αβ
ℓ ∈ R Covariance c

n
⟨φα

ℓ , φβ
ℓ ⟩ ραβ

ℓ ∈ [−1, 1] Correlation V αβ
ℓ /

√
V αα

ℓ V ββ
ℓ

Table 1: Notation

et al., 2022; Ba et al., 2022). While this motivated the study of several alternative scaling limits, in this
work we are mostly interested in the infinite-depth-and-width limit.

First investigated by Hanin & Nica (2019b), it was shown that not only does this regime not converge to a
Gaussian process at initialization, it also learns features Hanin & Nica (2019a). This limit has since been
analyzed with transform based methods (Noci et al., 2021) and central limit theorem approaches (Li et al.,
2021). As we will describe in more detail soon, the result of most interest is the covariance SDE limit of Li
et al. (2022). The MLP results were also further extended to the transformer setting (Noci et al., 2023).

The d−1/2 scaling for ResNets was first considered by Hayou et al. (2021), with the depth limit carefully
studied afterwards (Hayou, 2022; Hayou & Yang, 2023; Hayou, 2023). Fischer et al. (2023) also arrived at the
same scaling through a different theoretical approach. This scaling has found applications for hyperparameter
tuning (Bordelon et al., 2023; Yang et al., 2023) when used in conjunction with the µP scaling (Yang & Hu,
2021).

Batch and layer normalization methods were introduced as a remedy for unstable training (Ioffe & Szegedy,
2015; Ba et al., 2016), albeit theoretical analyses of these highly discrete changes per layer has been
challenging. A recent promising approach studies the isometry gap, and shows that batch normalization
methods achieves a similar effect as shaping activation functions (Meterez et al., 2023). Theoretical
connections between these approaches using a differential equation based description remains an open
problem.

2 Background on Shaped Networks and ResNets

Let {xα}m
α=1 be a set of input data points in Rnin , and let zα

ℓ ∈ Rn denote the ℓ-th hidden layer with respect
to the input xα. We consider the standard width-n depth-d MLP architecture with He-initialization (He
et al., 2015) defined by the following recursion

zα
out =

√
c

n
Wout φ(zα

d ) , zα
ℓ+1 =

√
c

n
Wℓ φs(zα

ℓ ) , zα
1 = 1

√
nin

Win xα , (2.1)

where φs : R → R is the activation function to be specified, c−1 = Eφs(g)2 for g ∼ N(0, 1), zα
ℓ ∈ Rn, zα

out ∈
Rnout , and the matrices Wout ∈ Rnout×n, Wℓ ∈ Rn×n, Win ∈ Rn×nin are initialized with iid N(0, 1) entries.

The main structure used to study neural networks at initialization, such as the neural network Gaussian
processes (NNGP) (Neal, 1995; Lee et al., 2018), is on the conditional Gaussian property. More precisely, if
we condition on the previous layers Fℓ = σ((zα

k )α∈[m],k≤ℓ), we have that

[zα
ℓ+1]mα=1|Fℓ

d= N
(

0,
c

n
[⟨φα

ℓ , φβ
ℓ ⟩]mα,β=1 ⊗ In

)
, (2.2)

where we use the notation [·]mα=1 to vertically stack vectors, let φα
ℓ = φs(zα

ℓ ) be the post activation hidden
layer, and let ⊗ be the Kronecker product.
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This naturally leads us to define the covariance matrix as Vℓ := c
n [⟨φα

ℓ , φβ
ℓ ⟩]mα,β=1. The NNGP results

essentially reduces down to applying the Law of Large Numbers inductively to show the covariance V αβ
ℓ

converges to its expect value. More precisely, if [zα
ℓ ]mα=1 ∼ N (0, Vℓ−1 ⊗ In), then in the limit as n → ∞

V αβ
ℓ = c

n

n∑
i=1

φs(zα
ℓ,i)φs(zβ

ℓ,i)
d−→ cEφs(gα)φs(gβ) , where [gα, gβ ]⊤ ∼ N

(
0,

[
V αα

ℓ−1 V αβ
ℓ−1

V αβ
ℓ−1 V ββ

ℓ−1

])
. (2.3)

However, since the next layer covariance Vℓ is a deterministic function of the previous Vℓ−1, this forms a fixed
point type iteration Vℓ = f(Vℓ−1). Indeed, if we observe the correlations ραβ

ℓ = ⟨φα
ℓ ,φβ

ℓ
⟩

|φα
ℓ

| |φβ
ℓ

|
, which is bounded

in [−1, 1], it does in fact converge to a fixed point at ρ∞ = 1 for ReLU activations (see e.g. Proposition 3.4
(i) Li et al. (2022)).

This degeneracy of correlations also causes unstable gradients, which led to a proposal by Martens et al.
(2021); Zhang et al. (2022) to modify the shape of activation functions φs depending on the size of the
network, leading to improved training speeds without using normalization methods. However, as both of
these works computed the activation shape based on a set of criteria, it is unclear what is the appropriate
modification in the scaling limit as depth and width both approaches infinity.

2.1 Shaped Limit of Neural Networks

To this end, Li et al. (2022) is the first to describe the limit as d, n → ∞ with d
n → T > 0 and the activation

function φs is shaped at a precise rate to be closer to the identity as we increase n. In particular, the
covariance matrix Vℓ forms a Markov chain, as it satisfies the definition of Vℓ+1|Fℓ = Vℓ+1|σ(Vℓ) (see e.g.
(2.3)). The main result describes the scaling limit of the Markov chain V⌊tn⌋ via a stochastic differential
equation (SDE), which we can intuitively interpret as the Euler discretization converging to the differential
equation

Vℓ+1 = Vℓ + b(Vℓ)
n

+ Σ(Vℓ)1/2ξℓ√
n

+ O(n−3/2) n→∞−−−−→ dVt = b(Vt) dt + Σ(Vt) dBt , (2.4)

where ξℓ are iid. zero mean identity variance random vectors, and we interpret 1
n as the step size of the

discretization.

The activation functions are modified as follows. For a ReLU-like activation, we choose

φs(x) = s+ max(x, 0) + s− min(x, 0) , s± = 1 + c±

np
, c± ∈ R , p ≥ 0 , (2.5)

or for a smooth activation φ ∈ C4(R) such that φ(0) = 0, φ′(0) = 1 and φ(4)(x) bounded by a polynomial,
we choose

φs(x) = s φ
(x

s

)
, s = anp , a ̸= 0 , p ≥ 0 . (2.6)

We will first recall one of the main results of Li et al. (2022), which is stated informally1 below.
Theorem 2.1 (Theorem 3.2 and 3.9 of Li et al. (2022), Informal). Let p = 1

2 . Then in the limit as
d, n → ∞, d

n → T > 0, and φs defined as above, we have that the upper triangular entries of V⌊tn⌋ (flattened
to a vector) converges to the following SDE weakly

dVt = b(Vt) dt + Σ(Vt)1/2 dBt , V0 = 1
nin

[⟨xα, xβ⟩]mα,β=1 , (2.7)

where Σ(V )|αβ,γδ = V αγV βδ + V αδV βγ , and if φ is a ReLU-like activation we have

b(V )|αβ = ν(ραβ)
√

V ααV ββ , ραβ = V αβ

√
V ααV ββ

, ν(ρ) = (c+ − c−)2

2π

(√
1 − ρ2 − ρ arccos ρ

)
, (2.8)

1The statement is “informal” in the sense that we have stated what the final limit is, but not the precise sense of the
convergence. See Appendix A for a rigorous treatment of the convergence result.
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or else if φ is a smooth activation we have

bαβ(Vt) = φ′′(0)2

4a2

(
V αα

t V ββ
t + V αβ

t (2V αβ
t − 3)

)
+ φ′′′(0)

2a2 V αβ
t (V αα

t + V ββ
t − 2) . (2.9)

While the formulae may seem overwhelming, there is actually a fairly straight forward interpretation of
both the drift b and the diffusion coefficient Σ1/2. In particular, for the unshaped ReLU network, that is
φs(x) = max(x, 0), the deterministic component of the update for the covariance matrix compared to the
shaped network are as follows

Unshaped: EVℓ+1 − Vℓ ∝ b(Vℓ) ,

Shaped: EVℓ+1 − Vℓ ∝ b(Vℓ)
n

.
(2.10)

Effectively, the drift component got slowed down by a multiplicative factor of 1
n , which can interpreted as

an Euler discretization step. In order to achieve a stable limit as we take depth d to infinity, we would
also require each layer to contribute infinitesimally as a rate proportional to 1

d , therefore this is a desired
rescaling.

The diffusion coefficient is much more interesting. Since we can interpret this diffusion to be on the manifold
of symmetric positive definite matrices, we would expect the diffusion coefficient of Brownian motions on this
manifold to correspond to a Riemannian metric. Indeed, this is shown in Li et al. (2024), as Σ−1 corresponds
to the affine invariant metric. More precisely, for all V ∈ SPD(m), the inner product corresponding to Σ−1

⟨A, B⟩Σ−1(V ) =
∑

1≤i≤j≤m

AijBijΣ−1(V )ij = 1
2

Tr(AV −1BV −1) , for all A, B ∈ Sym(m) . (2.11)

Furthermore, this gives the linear network SDE dVt = Σ(Vt)1/2, dBt an interpretation as the dual Brownian
motion in information geometry, which uses a pair of dually flat affine connections instead of the standard
Levi-Civita connection.

2.2 ODE Limit of Residual Networks

At the same time, Hayou & Yang (2023); Cirone et al. (2023) found an ordinary differential equation (ODE)
limit describing the covariance matrix for infinite-depth-and-width ResNets. The authors considered a
ResNet architecture with a 1√

d
factor on their residual branch, more precisely their recursion is defined

as follows (in our notation and convention)

zα
ℓ+1 = zα

ℓ + 1√
dn

Wℓ φ(zα
ℓ ) , where φ(x) = max(x, 0) . (2.12)

Intuitively, this is similar to shaping activations, it also weakens the effect of each layer as we take d to
infinity. This will be discussed in more details in the following section.

One of their main results can be stated informally as follows.
Theorem 2.2 (Theorem 2 of Hayou & Yang (2023), Informal). Let d, n → ∞ (in any order), and the
covariance process V αβ

⌊td⌋ converges to the following ODE

d

dt
V αβ

t = 1
2

f(ραβ
t )

ραβ
t

V αβ
t , (2.13)

where f(ρ) = 1
π (ρ arcsin ρ +

√
1 − ρ2) + 1

2 ρ.

Here, we observe this ODE (2.13) is exactly the drift component of the covariance SDE (2.7), i.e.

1
2

f(ραβ
t )

ραβ
t

V αβ
t = ν(ραβ

t )
√

V αα
t V ββ

t , if (c+ − c−)2 = 1 ,
d

n
= 1 . (2.14)
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To see this, we just need to use the identity arcsin ρ = π
2 − arccos ρ to get that 1

2 f(ρ) = ν(ρ), and that
V αβ

t

ραβ
t

=
√

V αα
t V ββ

t is exactly the definition of ραβ
t . We also note the correlation ODE d

dt ραβ
t = ν(ραβ

t ) was
first derived in (Zhang et al., 2022, Proposition 3), where they considered the sequential width then depth
limit with a fixed initial and terminal condition.

In the next section, we will describe another way to recover this ODE from an alternative scaling limit of
the shaped MLP.

3 An Alternative Shaped Limit for p ∈ (0, 1
2)

We start by providing some intuitions on this result. The shaped MLP can be seen as a layerwise perturbation
of the linear network

zℓ+1 =
√

c

n
Wℓ φs(zℓ) ≈

√
c

n
Wℓ zℓ + 1√

d

√
c

n
Wℓ h(zℓ) , (3.1)

where c−1 = Eφs(g)2 for g ∼ N(0, 1) corresponds to the He-initialization (He et al., 2015), and Wℓ ∈ Rn×n

has iid N(0, 1) entries.

On an intuitive level (which we will make precise in Remark 3.3), if we take the infinite-width limit first,
then this removes the effect of the random weights. In other words, if we replace the weights 1√

n
Wℓ with the

identity matrix In in each hidden layer, we get the same limit at initialization. Therefore, we can heuristically
write

zℓ+1 ≈ zℓ + 1√
d

h(zℓ) , (3.2)

where we also used the fact c → 1 in the limit.

Observe this is resembling a ResNet, where the first zℓ is the skip connection. In fact, we can again
heuristically add back in the weights on the residual branch to get

zℓ+1 ≈ zℓ + 1√
d

Wℓh(zℓ) , (3.3)

which exactly recovers the ResNet formulation of Hayou et al. (2021); Hayou & Yang (2023), where the
authors studied the case when h(x) = max(x, 0) is the ReLU activation.
Remark 3.1. On a heuristic level, this implies that whenever the width limit is taken first (or equivalently
d = n2p for p ∈ (0, 1/2)), the shaped network with shaping parameter d−1/2 has the same limiting distribution
at initialization as a ResNet with a d−1/2 weighting on the residual branch.

However, we note that despite having identical ODE for the covariance at initialization, this does not imply
the training dynamics will be the same — it will likely be different. Furthermore, since Hayou & Yang
(2023) showed the width and depth limits commute for ResNets, this provides the additional insight that
noncommunitativity of limits in shaped MLPs arises from the product of random matrices.

3.1 Precise Results

The core object that forms a Markov chain is the post-activation covariance matrix c
n [⟨φα

ℓ , φβ
ℓ ⟩]mα,β=1. To see

this, we will use the property of Gaussian matrix multiplication, where we let W ∈ Rn×n with iid entries
Wij ∼ N(0, 1), and {uα}m

α=1 ∈ Rn be a collection of constant vectors, which gives us

[Wuα]mα=1
d= N(0, [⟨uα, uβ⟩]mα=1 ⊗ In) , (3.4)

where we use the notation [vα]mα=1 to stack the vectors vertically. This forms a Markov chain because we
can condition on Fℓ = σ([zα

ℓ ]mα=1) to get

[zα
ℓ+1]mα=1|Fℓ = [zα

ℓ+1]mα=1|σ(Vℓ) ∼ N(0, Vℓ ⊗ In) . (3.5)

and we can see that Vℓ+1|Fℓ = Vℓ+1|σ(Vℓ), which is exactly the definition of a Markov chain.
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We will start by deriving the precise Markov chain update up to a term of size O(n−3p), which will be a
slight modification of the Euler discretization we saw in (2.4).
Lemma 3.2 (Covariance Markov Chain for the Shaped MLP). Let zα

ℓ be the MLP in defined in (2.1) with
shaped ReLU activations defined in (2.5). For p ∈ (0, 1

2 ) and d = n2p, the Markov chain satisfies

Vℓ+1 = Vℓ + b(Vℓ)
d

+ Σs(Vℓ)1/2 ξℓ√
n

+ O(d−3/2) , (3.6)

where {ξℓ}ℓ≥0 are iid zero mean and identity covariance random vectors, and in the limit as n, d → ∞ we
have that Σs → Σ, and the coefficients are defined as

b(V )αβ = ν(ραβ)
√

V ααV ββ , Σ(V )αβ,γδ = V αγV βδ + V αδV βγ , (3.7)

where ραβ = V αβ
√

V ααV ββ
, and ν(ρ) = (c+−c−)2

2π

(√
1 − ρ2 + ρ arccos ρ

)
.

Proof. To start, we will observe that conditioned on Fℓ, we have that

V αβ
ℓ+1|Fℓ = c

n

n∑
i=1

φs(zα
ℓ+1,i) φs(zβ

ℓ+1,i) = |φα
ℓ | |φβ

ℓ | c

n

n∑
i=1

φs(gα
i ) φs(gβ

i ) , (3.8)

where used the fact that zℓ+1 are jointly Gaussian, and we have that[
gα

i

gβ
i

]n

i=1
∼ N

(
0 ,

[
1 ραβ

ℓ

ραβ
ℓ 1

]
⊗ In

)
, (3.9)

for ραβ = V αβ
√

V ααV ββ
. At this point, we can define K1(ραβ) = Eφs(gα

i ) φs(gβ
i ) and the random variable

Rαβ
ℓ = 1√

n

n∑
i=1

cφs(gα
i )φs(gβ

i ) − cK1(ραβ
ℓ ) , (3.10)

which allows us to decompose this into a deterministic and a random component as

V αβ
ℓ+1|Fℓ = |φα

ℓ | |φβ
ℓ |
(

cK1(ραβ
ℓ ) + 1√

n
Rαβ

ℓ

)
. (3.11)

We can Taylor expand cK1(ρ) in terms of n−p to get the following result from Lemma B.1

cK1(ρ) = ρ + ν(ρ)
n2p

+ O(n−3p) , ν(ρ) = (c+ − c−)2

2π

(√
1 − ρ2 + ρ arccos ρ

)
. (3.12)

Similarly from Lemma B.3, we also have the approximation

ERαβ
ℓ Rγδ

ℓ = ραγ
ℓ ρβδ

ℓ + ραδ
ℓ ρβγ

ℓ + O(n−p) . (3.13)

Putting everything together, we can write

cK1(ραβ
ℓ ) + 1√

n
Rαβ

ℓ = ραβ
ℓ +

ν(ραβ
ℓ )

n2p
+ 1√

n
Rαβ

ℓ + O(n−3p) , (3.14)

which implies we can write

V αβ
ℓ+1 = V αβ

ℓ + b(Vℓ)αβ

n2p
+ Rαβℓ

√
n

+ O(n−3p) , (3.15)

where b(V ) = ν(ραβ
ℓ )
√

V αα
ℓ V ββ

ℓ . Now taking the upper triangular entries of Vℓ as a vector, we have that

Vℓ+1 = Vℓ + b(Vℓ)
n2p

+ Σs(Vℓ)ξℓ√
n

+ O(n−3p) , (3.16)

where Σs(V )|αβ,γδ =
√

V ααV ββ(ραγρβδ +ραδρβγ)+O(n−p) = V αγV βδ +V αδV βγ +O(n−p), and ξℓ is a zero
mean identity covariance random vector. We recover the exact desire result from writing d = n2p.
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Remark 3.3. We note that the drift term arising from the activation depends only on the depth d and
the random term only depends on the width n. If we decouple the dependence on d and n, and take the
infinite-width limit first, we arrive at

Vℓ+1 = Vℓ + bs(Vℓ)
d

+ O(n−3/2) , (3.17)

which is equivalent to removing the randomness of the weights.

We note this Markov chain behaves like a sum of two Euler updates with step sizes 1
n2p and 1

n , where the
1
n corresponds to the random term with coefficient 1√

n
. However since p ∈ (0, 1

2 ), the first term with step
size 1

n2p will dominate, which is the term that corresponds to shaping the activation function. Therefore, we
expect the random term to vanish in the limit, and hence leaving us with an ODE only. We make this result
precise in the following Proposition.
Proposition 3.4 (Covariance ODE for the Shaped ReLU MLP). Let p ∈ (0, 1

2 ). Then in the limit as
d, n → ∞, d

n2p → 1, and φs is the shaped ReLU defined in (2.5), we have that the upper triangular entries
of V⌊tn⌋ (flattened to a vector) converges to the following ODE weakly with respect to the Skorohod topology
of DR+,Rm(m+1)/2

dVt = b(Vt) dt , V0 = 1
nin

[⟨xα, xβ⟩]mα,β=1 , (3.18)

where b is defined in Theorem 2.1 and Lemma 3.2.

Proof. Starting with the Markov chain in Lemma 3.2, we will treat the random term of order O(n−1/2) as
part of the drift instead. More precisely, we let

b̂(V )
n2p

= b(V )
n2p

+ Σs(V )1/2ξℓ√
n

, (3.19)

which in expectation just equals to b(V )n−2p. Since there is no random term at the order of n−p, we can
apply Proposition A.7 to the special as if the diffusion coefficient is equal to zero. At the same time, since
the higher order term in the Markov chain is at the desired order of O(n−3p), which will vanish in the limit,
we get the desired result.

At this point it’s worth pointing out the regime of p ∈ (0, 1
2 ) was studied in Li et al. (2022), but the scaling

limit was taken to be d
n → T instead of d

n2p . This led to a “degenerate” regime where ρt = 1 for all t > 0.
The above ODE result implies that the degenerate limit can be characterized in a more refined way if the
scaling is chosen carefully.

In the next and final section, we show that actually even when the network is unshaped (i.e. p = 0), there
exists a scaling such that we can characterize the limiting Markov chain up to the first order asymptotic
correction.

4 An SDE for the Unshaped ReLU MLP

In this section, we let φs(x) = φ(x) = max(x, 0), and we are interested in studying the correlation

ραβ
ℓ =

V αβ
ℓ√

V αα
ℓ V ββ

ℓ

=
⟨φα

ℓ , φβ
ℓ ⟩

|φα
ℓ | |φβ

ℓ |
. (4.1)

From this point onwards, we will only consider the marginal over two inputs, so we will drop the superscript
αβ. Similar to the previous section, we will also start by providing an intuitive sketch.

Many existing work has derived the rough asymptotic order of the unshaped correlation to be ρℓ = 1−O(ℓ−2),
where ℓ is the layer (see for example Appendix E of Li et al. (2022) and Jakub & Nica (2023)). Firstly, this
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implies that a Taylor expansion of all functions of ρ in the Markov chain update around ρ = 1 will be very
accurate. At the same time, it is natural to magnify the object inside the big O by reverting the scaling, or
more precisely consider the object

qℓ = ℓ2(1 − ρℓ) , (4.2)
which will hopefully remain at size Θ(1).

For simplicity, we can consider the infinite-width update of the unshaped correlation (which corresponds to
the zeroth-order Taylor expansion in 1

n )

ρℓ+1 = ρℓ + c1(1 − ρℓ)3/2 + O((1 − ρℓ)5/2) , (4.3)

where for the sake of illustration we will take c1 = 1 and drop the big O term for now. Substituting in qℓ,
we can recover the update

qℓ+1 = qℓ + 2qℓ

ℓ
−

q
3/2
ℓ

ℓ
. (4.4)

While this doesn’t quite look like an Euler update just yet, we can substitute in t = ℓ
n for the time scale,

which will lead us to have
qℓ+1 = qℓ + 1

tn

(
2qℓ − q

3/2
ℓ

)
, (4.5)

hence (heuristically) giving us the singular ODE

dqt = 2qt − q
3/2
t

t
. (4.6)

To recover the SDE, we will simply include the additional terms of the Markov chain instead taking the
infinite-width limit first.

4.1 Full Derivation

In the rest of this section, we will provide a derivation of an SDE arising from an appropriate scaling of ρℓ.
Theorem 4.1 (Rescaled Correlation). Let qℓ = ℓ2(1 − ρℓ). Then for all t0 > 0, the process {q⌊tn⌋}t≥t0

converges to a solution of the following SDE weakly in the Skorohod topology (see (Li et al., 2022, Appendix
A))

dqt = 2qt

(
1 −

√
2

3π q
1/2
t

t
− 1

)
dt + 2

√
2qt dBt . (4.7)

The above statement holds only when t0 > 0, and there is a interesting technicality that must be resolved
to interpret what happens as t → 0+. In particular, the Markov chain is not time homogeneous, and the
limiting SDE has a singularity at t = 0. The contribution of the singularity needs to be controlled in order
to establish convergence for all t ≥ 0. Furthermore, due to the singularity issue, it is also unclear what the
initial condition of qt should be.

In our simulations for Figure 1, we addressed the time singularity by shifting the time evaluation of 1
t to

the next step of 1
t+∆t

, where ∆t > 0 is the time step size. More precisely, we first consider the log version
of rt = log qt

drt = −2

(
1 −

1 −
√

2
3π exp( rt

2 )
t

)
dt + 2

√
2dBt . (4.8)

Then we choose the following discretization

rt+∆t
= rt − 2

(
1 −

1 −
√

2
3π exp( rt

2 )
t + ∆t

)
∆t + 2

√
2 ξt

√
∆t , (4.9)

where ξt ∼ N(0, 1). For initial conditions, we also noticed that since the initial correlation must be contained
in the interval [−1, 1], the end result was not very sensitive to the choice of r0.
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Proof of Theorem 4.1. Firstly, we will introduce the definitions

Kp,r(ρ) = Eφs(g)pφs(ĝ)r , (4.10)

where g, w ∼ N(0, 1) and we define ĝ = ρg + qw with q =
√

1 − ρ2. We will also use the short hand notation
to write Kp := Kp,p. Here we will recall several formulae calculated in Cho & Saul (2009) and (Li et al.,
2022, Lemma B.4)

K0(ρ) = E1{g>0}1{ρg+qw>0} = arccos(−ρ)
2π

,

K1(ρ) = Eφ(g)φ(ρg + qw) = q + ρ arccos(−ρ)
2π

,

K2(ρ) = Eφ(g)2φ(ρg + qw)2 = 3ρq + arccos(−ρ)(1 + 2ρ2)
2π

,

K3,1(ρ) = Eφ(g)3φ(ρg + qw) = q(2 + ρ2) + 3 arccos(−ρ)ρ
2π

. .

(4.11)

Furthermore, we will define
M2 := E [cφ(g)2 − 1]2 = 5 . (4.12)

Using the steps of (Li et al., 2022, Proposition B.8), we can establish an approximate Markov chain

ρℓ+1 = cK1(ρℓ) + µ̂r(ρℓ)
n

+ σr(ρℓ)ξℓ√
n

+ O(n−3/2) , (4.13)

where ξℓ are iid with zero mean and unit variance, and

µr(ρℓ) = E[ µ̂r(ρℓ)|ρℓ] = c

4
[
K1(c2K2 + 3M2 + 3) − 4cK3,1

]
,

σ2
r(ρℓ) = c2

2
[
K2

1 (c2K2 + M2 + 1) − 4cK1K3,1 + 2K2
]

,
(4.14)

and we write K· = K·(ρℓ).

Here we use the big O(f(n, ℓ)) to denote a random variable X such that for all p ≥ 1

E|X|p

f(n, ℓ)p
≤ Cp < ∞ , (4.15)

for some constants Cp > 0 independent of n and ℓ.

In view of the SDE convergence theorem Proposition A.7, if we eventually reach an SDE, we will only need to
keep track of the expected drift µr instead of the random drift. We can then Taylor expand the coefficients in
terms of ρℓ about ρℓ = 1 (from the negative direction) using SymPy (Meurer et al., 2017), which translates
to the following update rule

ρℓ+1 = ρℓ + 2
√

2
3π

(1 − ρℓ)3/2 +
√

2
30π

(1 − ρℓ)5/2

+ 1
n

(
−2(1 − ρℓ) + 4

√
2

π
(1 − ρℓ)3/2 + 3(1 − ρℓ)2 − 73

√
2

15π
(1 − ρℓ)5/2

)
+ ξℓ√

n

(
2
√

2(1 − ρℓ) − 56
15π

(1 − ρℓ)3/2
)

+ O((1 − ρℓ)4 + n−3/2) .

(4.16)

We note up to this point, a similar approach was taken in Jakub & Nica (2023). However, we will diverge
here by consider the following scaling

qℓ = ℓ2(1 − ρℓ) . (4.17)

10



Published in Transactions on Machine Learning Research (04/2024)

The choice of ℓ2 scale is motivated by the infinite-width limit, where (1 − ρℓ) shown to be of order O(ℓ−2)
in (Li et al., 2022, Appendix E). This implies the following update

ℓ2

(ℓ + 1)2 qℓ+1 = qℓ − ℓ2 2
√

2
3π

(1 − ρℓ)3/2 − ℓ2
√

2
30π

(1 − ρℓ)5/2

− ℓ2

n

(
−2(1 − ρℓ) + 4

√
2

π
(1 − ρℓ)3/2 + 3(1 − ρℓ)2 − 73

√
2

15π
(1 − ρℓ)5/2

)
+ ξℓℓ

2
√

n

(
2
√

2(1 − ρℓ) − 56
15π

(1 − ρℓ)3/2
)

+ O(ℓ−8q4
ℓ + ℓ−2n−3/2) .

(4.18)

Next, we will drop all higher order terms in ℓ, then using the fact that ℓ2

(ℓ+1)2 = 1 − 2
ℓ + O(ℓ−2), we can write

qℓ+1 = qℓ(1 + 2ℓ−1) − 2
√

2
3π

q
3/2
ℓ

ℓ
− 2qℓ

n
+ ξℓ√

n
2
√

2qℓ + O(ℓ−2 + n−1/2ℓ−1) , (4.19)

where we dropped ℓ−2n−3/2 in the big O since it gets dominated by ℓ−2.

Choosing the time scaling t = ℓ
n then gives us

qℓ+1 = qℓ + 2
n

qℓ

(
1 −

√
2

3π q
1/2
ℓ

t
− 1

)
+ 2
√

2
n

qℓ ξℓ + O(t−2n−2 + t−1n−3/2) . (4.20)

Finally, we will use the Markov chain convergence result to an SDE result Proposition A.7, which leads to
the desired SDE for t ≥ t0 > 0

dqt = 2qt

(
1 −

√
2

3π q
1/2
t

t
− 1

)
dt + 2

√
2qt dBt . (4.21)

5 Discussion

In this section, we provide some discussion on the potential impact of this work, from both a practical and
a theoretical point of view.

Stable Training via Depth Scaling. Martens et al. (2021) make the key observation that as depth
increases, the increased instability of training dynamics is due to the key role of nonlinear activation functions.
Since then, it is better understood that to achieve stable training in large depth, it is necessary to weaken
the nonlinearities of each layer (Noci et al., 2023; Bordelon et al., 2023; Yang et al., 2023). Our results
observe a key connection between two strategies, either weakening the activation function, or weakening
the entire layer via skip connections directly. From a practical point of view, since both the shaping and
ResNet approaches can lead to the same covariance ODE at initialization, we understand that the key to
preventing unstable gradients is weakening nonlinearities. To choose between the two regimes, it is therefore
left to study the role of weakening the weight matrix or otherwise, and how this affects training dynamics.
In particular, we note that the shaped limit admits feature learning without modifying the scaling (Hanin
& Nica, 2019a), which is fundamentally different than the µP regime (Yang & Hu, 2021).

Analysis of Normalization Methods. Since the correlation Markov chain has large jumps, and quickly
to a degenerate fixed point, it is intuitive to assume this chain does not admit a continuous time limit, and
therefore difficult to analyze from an analytical approach. Indeed, this is the approach taken by Meterez
et al. (2023), which yielded one of the first analysis of normalization methods in a deep network. However,
our result provides a counter-intuitive understanding: it remains possible to analyze seemingly large discrete
jumps in a Markov chain if rescaled appropriately. In our case, since the Markov chain converges quickly to
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the fixed point at ρ = 1, zooming in around the fixed point as a function of time (or layer ℓ) allows us to view
the dynamics at the correct scale. This overcomes a previously known technical hurdle, and opens up the
possibility of analyzing normalization methods, which is still lacking theoretical progress. More specifically,
we would like to understand how normalization methods may help or hurt performance in practice, and how
to best choose and tune these methods given their many variants, all of which are now made easier by our
scaling approach.

Foundation for Studying Training Dynamics. Until recently, almost all of the work on infinite-
depth neural networks remain at initialization. This is not due to a lack of attempts, but rather due to
a lack of mathematical techniques available. In particular, we also emphasize the seminal work of neural
tangent kernels for training dynamics (Jacot et al., 2018) is entirely built on the same techniques studying
initialization (Neal, 1995; Lee et al., 2018). For this reason, it is important to slowly yet firmly build
up a foundation of theoretical results, that understands as much structure as possible at initialization.
To this goal, the key distinction from the infinite-width regime is that each layer must be viewed as an
infinitesimal discretization of a continuous “layer time.” This approach is what helped yield some of the first
characterization of training dynamics for infinite-depth ResNets (Bordelon et al., 2023; Yang et al., 2023). In
fact, any theory of training dynamics must also account for this infinitesimal treatment of layers, otherwise
the limit cannot possibly be stable. Therefore, we view this line of work as building towards a theory of
training dynamics, and eventually generalization as well.
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A Background on Markov Chain Convergence to SDEs

In this section, we will review the main technical results used for Markov chain convergence to SDEs. In
particular, we will consider piecewise constant interpolations of Markov chains in continuous time defined by
V

(n)
⌊tn⌋, which converges to a continuous process Vt. Due to measurability concerns of the Markov chain with

jumps, in order to define weak convergence on the space of processes, we need to define a precise space along
with its equipped topology first introduced by Skorohod. We will mostly follow the references Kallenberg
(2021); Ethier & Kurtz (2009); Stroock & Varadhan (1997) in the rest of this section, and the content will
be essentially a rephrasing of Appendix A in Li et al. (2022).

To start, we will let S be a complete separable metric space, where the stochastic processes takes value in
(in our case, it’s the upper triangular entries Rm(m+1)/2). Let DR+,S be the space of càdlàg functions, i.e.
functions that are right continuous with left limits, from R+ to S. For xn ∈ R+, we use xn

ul−→ x to denote
locally uniform convergence, or uniform convergence on compact subsets of R+. We also consider a class
of bijections λ on R+ such that λ is strictly increasing, and λ0 = 0. We define Skorohod convergence,
written as xn

s−→ x on DR+,S , if there exists a sequence of such bijections λn such that

λn
ul−→ Id , xn ◦ λn

ul−→ x . (A.1)

Intuitively, this allows us to side step any discontinuities in the notion of convergence, as λn is allowed to
perform a “time change” so we always land on the “correct side” of the discontinuity.

Importantly, we note that DR+,S with the above notion of convergence forms a well behaved probability
space.
Theorem A.1 (Theorem A5.3, Kallenberg (2021)). For any separable complete metric space S, there exists
a topology T on DR+,S such that

(i) T induces the Skorohod convergence xn
s−→ x,

(ii) DR+,S is Polish (separable completely metrizable topological space) under T ,

(iii) T generates the Borel σ-field generated by the evaluation maps πt, t ≥ 0, where πt(x) = xt.

To be fully self-contained, we will also introduce the definitions of a Feller semi-group, generator, and the
core. Let S be a locally compact separable metric space, and let C0 = C0(S) be the space of continuous
functions that vanishes at infinity, equipped with the sup norm, hence making C0 a Banach space. We say
T : C0 → C0 is a positive contraction operator if for all 0 ≤ f ≤ 1, we have that 0 ≤ Tf ≤ 1. A
semi-group (Tt) of positive contraction operators on C0 is called a Feller semi-group if it also satisfies

Tt C0 ⊂ C0 , t ≥ 0 ,

Tt f(x) → x , as t → 0 , f ∈ C0 , x ∈ S .
(A.2)

Let D ⊂ C0 and A : D → C0. We say the pair (A, D) is a generator of the semi-group (Tt) if D is the
maximal set such that

lim
t→0

Tt f − f

t
= Af . (A.3)

We say an operator A with domain D on a Banach space B is closed, if its graph G = {(f, Af) : f ∈ D} is
a closed subset of B × B. If the closure of G is the graph of an operator A, we say that A is the closure of
A.

We say a linear subspace D ⊂ D is a core of A, if the closure of A|D is A. Intuitively, all important properties
of A can be recovered via a limit point of Afn, for fn ∈ D. Furthermore, if (A, D) is a geneator of a Feller
semi-group, every dense invariant subspace D ⊂ D is a core of A (Kallenberg, 2021, Proposition 17.9). In
particular, the core we will work with is the space C∞

0 of smooth functions that vanishes at infinity.

The following is a sufficient condition for a semi-group to be Feller.
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Theorem A.2 (Section 8, Theorem 2.5, Ethier & Kurtz (2009)). Let aij ∈ C2(Rd) with ∂k∂ℓa
ij be bounded

for all i, j, k, ℓ ∈ [d], and let b : Rd → Rd be Lipschitz. Then the generator defined by the elliptic operator

Af = 1
2

d∑
i,j=1

aij∂i∂jf +
d∑

i=1
bi∂if , (A.4)

generates a Feller semi-group on C0.

Next, we will state a set of equivalent conditions for convergence of Feller processes.
Theorem A.3 (Theorem 17.25, Kallenberg (2021)). Let X, X1, X2, X3, · · · be Feller processes in S with
semi-groups (Tt), (Tn,t) and generators (A, D), (An, Dn), respectively, and fix a core D for A. Then these
conditions are equivalent:

(i) for any f ∈ D, there exists some fn ∈ Dn with fn → f and Anfn → Af ,

(ii) Tn,t → Tt strongly for each t > 0,

(iii) Tn,tf → Ttf for every f ∈ C0, uniformly for bounded t > 0,

(iv) Xn
0

d−→ X0 in S ⇒ Xn d−→ X in the Skohorod topology of DR+,S.

We note that it is common to choose the core D = C∞
0 , and that checking the first condition is sufficient for

convergence in the Skorohod topology. The next result will help us apply the above criterion to continuous
time interpolated Markov chains.
Theorem A.4 (Theorem 17.28, Kallenberg (2021)). Let Y 1, Y 2, Y 3, · · · be discrete time Markov chains in
S with transition operators U1, U2, U3, · · · , and let X be a Feller process with semi-group (Tt) and generator
A. Fix a core D for A, and let 0 < hn → 0. Then conditions (i) − (iv) of Theorem A.3 remain equivalent
for the operators and processes

An = h−1
n (Un − I) , Tn,t = U⌊t/hn⌋

n , Xn
t = Y n

⌊t/hn⌋ . (A.5)

Here we note that in our applications, we will always choose hn = n−2p, which is essentially dependent on
the width of the neural network.

At this point, we still need to check that the generators An converges to A with respect to the core D = C∞
0 .

For this goal, we will use a lemma from Stroock & Varadhan (1997). Here we will define Πn(x, dy) to be the
Markov transition kernel of Y n, and let

aij
n (x) = 1

hn

∫
|y−x|≤1

(yi − xi)(yj − xj) Πn(x, dy) ,

bi
n(x) = 1

hn

∫
|y−x|≤1

(yi − xi) Πn(x, dy) ,

∆ϵ
n(x) = 1

hn
Πn(x,Rd \ B(x, ϵ)) .

(A.6)

Lemma A.5 (Lemma 11.2.1, Stroock & Varadhan (1997)). The following two conditions are equivalent:

(i) For any R > 0, ϵ > 0 we have that

lim
n→∞

sup
|x|≤R

∥an(x) − a(x)∥op + |bn(x) − b(x)| + ∆ϵ
n(x) = 0 , (A.7)

(ii) For each f ∈ C∞
0 (Rd), we have that

1
hn

Anf → Af , (A.8)

uniformly on compact sets of Rd, where A is defined as (A.3).
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We will also need to weaken the definition slightly for non-Lipschitz coefficients.
Definition A.6. We say a sequence of processes Xn converge locally to X in the Skorohod topology if for
any r > 0, we define the following stopping times

τn := {t ≥ 0 : |Xn
t | ≥ r} , τ := {t ≥ 0 : |Xt| ≥ r} , (A.9)

and we have that Xn
t∧τn converge to Xt∧τ in the Skorohod topology.

Finally, to summarize everything into a useful form for this paper, we will state the following proposition.
Proposition A.7 (Convergence of Markov Chains to SDE, Proposition A.6, Li et al. (2022)). Let Y n be a
discrete time Markov chain on RN defined by the following update for p, δ > 0

Y n
ℓ+1 = Y n

ℓ + b̂n(Y n
ℓ , ωn

ℓ )
n2p

+ σn(Y n
ℓ )

np
ξn

ℓ + O(n−2p−δ) , (A.10)

where ξn
ℓ ∈ RN are iid random variables with zero mean, identity covariance, and moments uniformly bounded

in n. Furthermore, ωn
ℓ are also iid random variables such that E[̂bn(Y n

ℓ , ωn
ℓ )|Y n

ℓ = y] = bn(y) and b̂n(y, ωn
ℓ )

has uniformly bounded moments in n. Finally, σn is a deterministic function, and the remainder terms in
O(n−2p−δ) have uniformly bounded moments in n.

Suppose bn, σn are uniformly Lipschitz functions in n and converges to b, σ uniformly on compact sets, then
in the limit as n → ∞, the process Xn

t = Y n
⌊tn2p⌋ converges in distribution to the solution of the following

SDE in the Skorohod topology of DR+,RN

dXt = b(Xt) dt + σ(Xt) dBt , X0 = lim
n→∞

Y n
0 . (A.11)

Suppose otherwise bn, σn are only locally Lipschitz (but still uniform in n), then Xn converges locally to X in
the same topology (see Definition A.6). More precisely, for any fixed r > 0, we consider the stopping times

τn := inf {t ≥ 0 : |Xn
t | ≥ r} , τ := inf {t ≥ 0 : |Xt| ≥ r} , (A.12)

then the stopped process Xn
t∧τn converges in distribution to the stopped solution Xt∧τ of the above SDE in

the same topology.

B Technical Lemmas for Shaped Activations

Here we will recall and slightly modify a collection of definitions and technical results from Appendix B and
C of Li et al. (2022), which are related to the shaped activation that we will use in the main theorems. To
start, we will let φ(x) = max(x, 0), and recall the ReLU-like activation function as

φs(x) = s+ max(x, 0) + s− min(x, 0) = s+φ(x) − s−φ(x) . (B.1)

Let g ∼ N (0, 1), then we will restate Li et al. (2022, Lemma B.3, B.6)

Eφ(g) = 1√
2π

, Eφ(g)2 = 1
2

, Eφ(g)4 = 3
2

.

Eφs(g) = s+ − s−√
2π

, Eφs(g)2 =
s2

+ + s2
−

2
, Eφs(g)4 = 3

2
(s4

+ + s4
−) .

(B.2)

We will also recall the definitions

J̄p,r(ρ) := Eφ(g)pφ(ĝ)r , Kp,r(ρ) := Eφs(g)pφs(ĝ)r , (B.3)

where g, w are iid N (0, 1) and we define ĝ = ρg + qw with q =
√

1 − ρ2. We will also use the short hand
notation to write J̄p := J̄p,p, Kp := Kp,p.
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Here we recall from Cho & Saul (2009) and Li et al. (2022, Lemma B.7) that

J̄1(ρ) =
√

1 − ρ2 + (π − arccos ρ)ρ
2π

, K1(ρ) = (s2
+ + s2

−)J̄1(ρ) − 2s+s−J̄1(−ρ) . (B.4)

Next we will slightly modify a Taylor expansion result from (Li et al., 2022, Lemma C.1)
Lemma B.1 (Taylor Expand Shaping Correlation). Recall φs(x) = s+ max(x, 0) + s− min(x, 0). Let s± =
1 + c±

np for p > 0, then we have the following Taylor expansion

cK1(ρ) = ρ + ν(ρ)
n2p

+ O(n−3p) , ν(ρ) = (c+ − c−)2

2π

(√
1 − ρ2 + ρ arccos ρ

)
. (B.5)

Proof. We start by expanding the formula for K1(ρ) to get

cK1(ρ) = 2
s2

+ + s2
−

1
2π

(
(s2

+ + s2
−)
(√

1 − ρ2 + (π − arccos ρ)ρ
)

− 2s+s−

(√
1 − ρ2 − (arccos ρ)ρ

))
. (B.6)

At this point, we can plug in s± = 1 + c±
np , and Taylor expanding gives us

cK1(ρ) = ρ arccos (ρ)
π

+ ρ (π − arccos (ρ))
π

+
(
n−p

)2
(

−ρc2
+ arccos (ρ) + 2ρc+c− arccos (ρ) − ρc2

− arccos (ρ)
2π

+
c2

+
√

1 − ρ2 − 2c+c−
√

1 − ρ2 + c2
−
√

1 − ρ2

2π

)
+ O

((
n−p

)3
)

.

(B.7)

Simplifying the expressions gives us the desired result of

cK1(ρ) = ρ + ν(ρ)
n2p

+ O(n−3p) . (B.8)

Similar to Li et al. (2022, Lemma C.2), we can also approximate the fourth moment of shaped activation
functions via the fourth moment of Gaussians.
Lemma B.2 (Fourth Moment Approximation). Considers the jointly Gaussian random variables

[gα]4α=1 ∼ N
(
0 , [ραβ ]4α,β=1

)
, (B.9)

where ραα = 1 for all α. Let φs(x) = s+ max(x, 0) + s− min(x, 0) with coefficients s± = 1 + c±
np , then we

have

E
4∏

α=1
φs(gα) = E

4∏
α=1

gα + O(n−p) = ρ12ρ34 + ρ13ρ24 + ρ14ρ23 + O(n−p) . (B.10)

Proof. Observe that we can write φs(x) as a perturbation of identity

φs(x) = x + 1
np

(c+φ(x) − c−φ(−x)) = x + O(n−p) . (B.11)

This means we can approximate the product of shaped activations without the activation
4∏

α=1
φs(gα) =

4∏
α=1

gα + O(n−p) . (B.12)
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Finally, we can use the Isserlis Theorem to write

E
4∏

α=1
gα = E g1g2E g3g4 + E g1g3E g2g4 + E g1g4E g2g3 = ρ12ρ34 + ρ13ρ24 + ρ14ρ23 , (B.13)

which is the desired result.

Furthermore, we can characterize the covariance of the following random variables

Rαβ = 1√
n

n∑
i=1

[
cφs(gα

i )φs(gβ
i ) − cK1(ραβ)

]
, (B.14)

where the random vector [gα
i , gβ

i ] are iid copies of the same Gaussian vector. This follows from a modification
of Li et al. (2022, Lemma C.3).
Lemma B.3 (Covariance of Rαβ). Let Rαβ be defined as above. Then if s± = 1 + c±

np for the shaped
activation, we have that

ERαβRγδ = ραγρβδ + ραδρβγ + O(n−p) . (B.15)

Proof. Firstly, we note since each entry of the sum in Rαβ are iid, we will only need to compute the moments
for a single entry. This means

ERαβRγδ = E c2
(

φs(gα
i )φs(gβ

i ) − K1(ραβ)
) (

φs(gγ
i )φs(gδ

i ) − K1(ργδ)
)

. (B.16)

At this point, we observe that c = 1 + O(n−p), K1(ρ) = ρ + O(n−2p), and we can write

ERαβRγδ = E
(

φs(gα
i )φs(gβ

i ) − ραβ
) (

φs(gγ
i )φs(gδ

i ) − ργδ
)

+ O(n−p) . (B.17)

Finally, the fourth moment approximation Lemma B.2 gives us the desired result

ERαβRγδ = ραβργδ + ραγρβδ + ραδρβγ − ραβργδ − ραβργδ + ραβργδ + O(n−p)
= ραγρβδ + ραδρβγ + O(n−p) .

(B.18)
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