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Abstract

We propose a new general form of image-level supervision for semantic segmenta-1

tion based on approximate targets for the relative size of segments. At each training2

image, such targets are represented by a categorical distribution for the “expected”3

average prediction over the image pixels. We motivate the zero-avoiding variant of4

KL divergence as a general training loss for any segmentation architecture leading5

to quality on par with the full pixel-level supervision. However, our image-level6

supervision is significantly less expensive, it needs to know only an approximate7

fraction of an image occupied by each class. Such estimates are easy for a human8

annotator compared to pixel-accurate labeling. Our loss shows significant robust-9

ness to size target errors, which may even improve the generalization quality. The10

proposed size targets can be seen as an extension of the standard class tags, which11

correspond to non-zero size targets in each image. Using only a minimal amount12

of extra information, our supervision improves and simplifies the training. It works13

on standard segmentation architectures as is, unlike tag-based methods requiring14

complex specialized modifications and multi-stage training.15

1 Introduction16

Our image-level supervision approach applies to any semantic segmentation model and does not17

require any modification. It can be technically described in one paragraph, as follows. Soft-max18

prediction Sp = (S1
p , . . . , S

K
p ) at any pixel p is a categorical distribution over K classes, including19

background. At any image, the average prediction over all image pixels, denoted by set Ω, is20

S̄ :=
1

|Ω|
∑
p∈Ω

Sp (1)

where S̄ = (S̄1, . . . , S̄K) is also a categorical distribution over K classes. It is an image-level21

prediction of the relative or normalized sizes (volume, area, or cardinality) of the objects in the image.22

We assume that training images have approximate size targets represented by categorical distributions23

v = (vk)
K
k=1, e.g. v = (0, .15, 0, . . . , 0, .75) for the middle image in Fig. 1 if “bird” is the second24

class and “background” is the last. This representation also applies to multi-label images. For each25

training image, our size-target loss26

Lsize = KL(v∥S̄) =
∑
k

vk ln
vk
S̄k

(2)

is based on Kullback–Leibler (KL) divergence. Figure 2(b) shows some results for a generic27

segmentation network (ResNet101 [4] backbone) trained on PASCAL [5] using only image-level28

supervision with approximate size targets (8% mean relative errors). Our total loss is very simple: it29

combines size-target loss (2) and a common CRF loss (3) [6].30
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Figure 1: Supervision types for segmentation: labeling speed and accuracy on PASCAL. The top-left
corner of each image shows its estimated labeling time based on observed instances. The table
shows per-image labeling times averaged over the data and mean Intersection-over-Union (mIoU) for
comparable end-to-end methods with similar ResNet backbones (ResNet101 or WideResNet38 [1]),
for fairness. We obtained mIoU scores, except for the “tag” and “box” scores from [2] and [3]. Our
supplemental materials detail evaluation of the labeling times and mIoU. For completeness, Tab.2
includes more complex architectures and multi-stage systems, e.g. for tags. This paper focuses on
standard segmentation architectures for size supervision.

1.1 Overview of weakly-supervised segmentation31

By weakly-supervised semantic segmentation we refer to all methods that do not use full pixel-32

precise ground truth (GT) masks for training. Such full supervision is overwhelmingly expensive for33

segmentation and is unrealistic for many practical purposes, see the right image in Fig. 1. There are34

many forms of weak supervision for semantic segmentation, e.g. based on partial pixel-level ground35

truth defined by “seeds” [6, 7], boxes [3], or image-level class-tags [2, 8, 9], see Fig. 1. It is also36

common to incorporate self-supervision based on various augmentation ideas and contrastive losses37

[10–12].38

Lack of supervision also motivates unsupervised loss functions such as standard old-school regulariza-39

tion objectives for low-level segmentation or clustering. For example, many methods [13, 14, 12] use40

variants of K-means objective (squared errors) enforcing the compactness of each class representation.41

It is also very common to use CRF-based pairwise loss functions [6, 7] that encourage segment shape42

regularity and alignment to intensity contrast edges in each image [15]. The last point addresses the43

well-known limitation of standard segmentation networks that often output low-resolution segments.44

Intensity contrast edges on the high-resolution input image is a good low-level cue of an object45

boundary and it can improve the details and localization of the semantic segments.46

Conditional or Markov random fields (CRF or MRF) are common basic examples of pairwise47

graphical models. The corresponding unsupervised loss functions can be formulated for continuous48

soft-max predictions Sp produced by segmentation networks, e.g. [6, 7, 9]. Thus, it is natural to use49

relaxations of the standard discrete CRF/MRF models, such as Potts [16] or its dense-CRF version50

[17]. We use a bilinear relaxation of the general Potts model51

Lcrf (S) =
∑
k

(1− Sk)⊤WSk (3)

where S := (Sp | p ∈ Ω) is a field of all pixel-level soft-max predictions Sp in a given image, and52

Sk := (Sk
p | p ∈ Ω) is a vector of all pixel predictions specifically for class k. Matrix W = [wpq]53

typically represents some given non-negative affinities wpq between pairs of pixels p, q ∈ Ω. It is54

easy to interpret loss (3) assuming, for simplicity, that all pixels have confident one-hot predictions55

Sp so that each Sk is a binary indicator vector for segment k. The loss sums all weights wpq between56

the pixels in different segments. Thus, the weights are interpreted as discontinuity penalties. The loss57

minimizes the discontinuity costs [16].58

In practice, affinity weights wpq are set close to 1 if two neighboring pixels p, q have similar intensities,59

and weight wpq is set close to zero either when two pixels are far from each other on the pixel grid or60

if they have largely different intensities [6, 16, 17]. The affinity matrix W could be arbitrarily dense61

or sparse, e.g. many zeros when representing a 4-connected pixel grid. The non-zero discontinuity62

costs between neighboring pixels are often set by a Gaussian kernel wpq = exp
−∥Ip−Iq∥2

2σ2 of given63

bandwidth σ, which works as a soft threshold for detecting high-contrast intensity edges in the image.64

Thus, loss (3) encourages both the alignment of the segmentation boundary to contrast edges in the65

(high-resolution) input image and the shortness/regularity of this boundary.66
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Figure 2: Semantic segmentation with standard DeepLabV3+(R101) segmentation models [18]:
PASCAL validation results for training with (a) log-barrier (9) using class tags, (b) KL-divergence
(2) using our approximate size targets, (c) cross-entropy with full (ground truth mask) supervision.

Weakly supervised segmentation methods may also use partial pixel-level ground truth where only67

some subset Seeds ⊂ Ω of image pixels has class labels [6, 7, 9]. In this case it is common to use68

partial cross-entropy loss69

Lpce(S) = −
∑

p∈Seeds

lnSyp
p (4)

where yp is the ground truth label at a seed pixel p.70

1.2 Related balancing losses71

Segmentation and classification methods often use “balancing” losses. In the context of classification,72

image-level predictions can be balanced over the whole training data. For segmentation problems,73

pixel-level predictions can be balanced within each training image. Our loss is an example of size74

balancing. Below we review some examples of related balancing loss functions used in prior work.75

Fully supervised classification. It is common to modify the standard cross-entropy loss to account76

for unbalanced training data where some classes are represented more than others. One common77

example is weighted cross-entropy, e.g. defined in [19] for image-level predictions Si as78

Lwce(S) = −
∑
i∈D

wyi
lnSyi

i (5)

where class weights wk ∝ 1
1−βvk

are motivated as a re-balancing factor based on the class distribution79

v in the training dataset D and β is a hyper-parameter. In the fully supervised setting, the purpose80

of re-weighting cross-entropy is not to make the predictions even closer to the known labels, but to81

decrease over-fitting to over-represented classes, which improves the model’s generality.82

Unsupervised classification. In the context of clustering with soft-max models [20, 21] it is common83

to use fairness loss encouraging equal-size clusters. In this case, there is no ground truth and84

fairness is one of the discriminative properties enforced by the total loss in order to improve the model85

predictions on unlabeled training data. The fairness was motivated by information-theoretic arguments86

in [20] deriving it as a negative entropy of the data-set-level average prediction Ŝ := 1
|D|

∑
i∈D Si87

for dataset D88

Lfair(Ŝ) = −H(Ŝ) ≡
∑
k

Ŝk ln Ŝk

c
=

∑
k

Ŝk ln
Ŝk

1/K
≡ KL(Ŝ∥u) (6)

where u = ( 1
K , . . . , 1

K ) is a uniform categorical distribution, and symbol c
= indicates that the equality89

is up to some additive constant independent of Ŝ. Perona et al. [21] pointed out the equivalent KL-90

divergence formulation of the fairness in (6) and generalized it to a balanced partitioning constraint91

Lbal(Ŝ) = KL(Ŝ∥v) (7)
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with any given prior distribution v that could be different from uniform.92

Semantic segmentation with image-level supervision. Most weakly-supervised semantic segmenta-93

tion methods use losses based on segment sizes. This is particularly true for image-level supervision94

techniques [2, 9, 22, 23]. Clearly, segments for tag classes should have positive sizes, and segments95

for non-tag classes should have zero sizes.96

Similarly to our paper, size-based constraints are often defined for the image-level average prediction97

S̄, see (1), computed from pixel-level predictions Sp. Many generalized forms of pixel-prediction98

averaging can be found in the literature, where they are often referred to as prediction pooling. Some99

decay parameter often provides a wide spectrum of options from basic averaging to max-pooling.100

While the specific form of pooling matters, for simplicity, we discuss the corresponding balancing101

loss functions assuming basic average prediction S̄ in (1).102

One of the earliest works on tag-supervised segmentation [9] uses log-barriers to “expand” tag103

objects in each training image and to “suppress” the non-tag objects. Assuming image tags T , their104

suppression loss is defined as105

Lsuppress(S̄) ∝ −
∑
k ̸∈T

ln(1− S̄k) (8)

encouraging each non-tag class to have zero average prediction S̄k, which implies zero predictions106

Sk
p at each pixel. Their expansion loss107

Lexpand(S̄) ∝ −
∑
k∈T

ln S̄k. (9)

encourages positive average predictions S̄k and non-trivial tag class segments.108

We observe that the expansion loss (9) may have a bias to equal-size segments, as particularly evident109

in the case of average predictions. Indeed, (9) implies110

Lexpand(S̄) ∝ KL(uT∥S̄) (10)
which is a special case of our size loss (2) when the size target v = uT is a uniform distribution over111

tag classes. The intention of the log barrier loss (9) is to push image-level size prediction S̄ from112

the boundaries of the probability simplex ∆K corresponding to the zero-level for the tag classes113

T . Figure 2(a) shows the results for training based on the total loss combining CRF loss (3) with114

the log-barrier loss (9). Its unintended bias to equal-size segments (10) is obvious. Note that the115

mentioned decay parameter used for generalized average predictions should reduce such bias.116

Alternatively, it may be safer to use barriers for S̄ like117

Lflat = −
∑
k∈T

lnmax{S̄k, ϵ} (11)

that have flat bottoms to avoid unintended bias to some specific size target inside the probability118

simplex ∆K . Similar thresholded barriers are common [22].119

1.3 Contributions120

In general, it would be great to have effective image-level supervision for segmentation that only uses121

barriers like (9) or (11) since they do not require any specific size targets. This corresponds to tag-only122

supervision. However, our empirical results for semantic segmentation using such barriers were123

poor and comparable with those in [9]. A number of more recent semantic segmentation methods124

for tag-level supervision have considerably improved such results [12, 24–30], but they introduce125

significantly more complex multi-stage training procedures and various architectural modifications,126

which makes such methods hard to replicate, generalize, or to understand the results. We are focused127

on general easy-to-understand end-to-end training methods. Our main contributions are:128

• We propose and evaluate a new general form of weak supervision, size targets. The size-129

target supervision can be approximate and is relatively easy to get from human annotators.130

• We propose the zero-avoiding variant of KL divergence as a general training loss, allowing131

our end-to-end size-target approach to be integrated with any segmentation architecture.132

• Comprehensive experiments with our size-target method demonstrate state-of-the-art perfor-133

mance across multiple datasets using standard segmentation models typically employed for134

full supervision, without any architectural modifications.135
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2 Size-target loss and its properties136

Our proposed total loss is very simple137

Ltotal := Lsize + Lcrf (12)

where the two terms are our size-target loss (2) and standard CRF loss (3). The core new com-138

ponent is our size-target loss based on the forward KL-divergence. Our size-target loss (2) en-139

courages specific target volumes for tag classes. Additionally, the size-target loss suppresses140

non-tag classes, encouraging zero volumes for classes not in the image. The CRF loss also con-141

tributes to the suppression of redundant classes. Therefore, unlike most prior work on image-142

level supervision for semantic segmentation, e.g. [9, 2, 12], we do not need separate suppres-143

sion loss terms like (8). We validated this claim experimentally, they did not change the results.144

Figure 3: Forward vs reverse KL divergence. As-
suming binary classification K = 2, we can repre-
sent all possible probability distributions as points
on the interval [0,1]. The solid curves illustrate
our “strong” size constraint, i.e. the forward KL-
divergence KL(v∥S̄) for the average prediction
S̄. We show two examples of volumetric prior
v1 = (0.9, 0.1) (blue curve) and v2 = (0.5, 0.5)
(red curve). For comparison, the dashed curves
represent reverse KL divergence KL(S̄∥v).

The size-target loss can also be integrated into145

other weakly-supervised settings, e.g. partial146

cross-entropy loss (4) commonly used for seeds.147

We show that using approximate size targets148

can significantly improve the seed-supervised149

segmentation in [6] when the seed lengths are150

short, see the right plot of Fig. 4.151

L
′

total := Lsize + Lcrf + Lpce (13)

As is well known, KL divergence is asymmetric.152

In our work on image-level supervised segmen-153

tation, the order of the estimated and target dis-154

tributions is crucial. The forward KL divergence155

possesses a zero-avoiding property, as illustrated156

in Fig. 3. Specifically, forward KL divergence157

imposes an infinite penalty when any class with158

a non-zero target is predicted as zero. In con-159

trast, the penalty of the reverse KL divergence is160

finite and much weaker. When using reverse KL161

divergence, segmentation models tend to gener-162

ate trivial solutions, predicting all pixels as the163

background class. This issue likely arises due to164

dataset imbalance, where the background class165

is prevalent. The zero-avoiding property of forward KL divergence ensures that segmentation models166

do not produce trivial solutions and predict all classes in the image tag sets.167

3 Experiments168

3.1 Experimental settings169

Datasets. We evaluate our approach on three segmentation datasets: PASCAL VOC 2012 [5], MS170

COCO 2014 [31], and 2017 ACDC Challenge1 [32]. The PASCAL dataset contains 21 classes. We171

adopt the augmented training set with 10,582 images [33], following the common practice [34, 9].172

Validation and testing contain 1449 and 1456 images. Seed supervision of the PASCAL dataset is173

from [7]. COCO has 81 classes with 80K training and 40K validation images. ACDC Challenge is174

to segment the left ventricular endocardium. The training and validation sets contain 1674 and 228175

images. The exact size targets are extracted from the ground truth masks.176

Approximate size targets. We train segmentation models using approximate size targets v =177

(vk)
K
k=1 generated for each image either by human annotators or by corrupting the exact size targets178

v̂ = (v̂k)
K
k=1 with different levels of noise. In all cases, we report the segmentation accuracy on179

validation data together with mean relative error (mRE) of the corresponding corrupted size targets.180

For each training image containing class k, the relative error for the size target vk is defined as181

RE(vk) =
|vk − v̂k|

v̂k
(14)

1https://www.creatis.insa-lyon.fr/Challenge/acdc/
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where v̂k is the exact size. mRE averages RE over all images and all classes. For human annotated182

size targets v = (vk)
K
k=1, the relative size errors are computed directly from the definition (14).183

When used, synthetic targets v = (vk)
K
k=1 are generated by corrupting the exact targets v̂ = (v̂k)

K
k=1184

vk ←− (1 + ϵ)v̂k for ϵ ∼ N (0, σ) (15)
where ϵ is white noise with standard deviation σ controlling the level of corruption and operator←−185

represents re-normalization ensuring corrupted targets (vk)Kk=1 add up to one. Equation (15) defines186

random variable vk as a function of ϵ. Thus, in this case, mRE can be analytically estimated from σ187

mRE = E

(
|vk − v̂k|

v̂k

)
≈ E(|ϵ|) =

√
2

π
σ (16)

where E is the expectation operator. The approximation in the middle uses (15) as an equality188

ignoring re-normalization of the corrupted sizes, and the last equality is a closed-form expression for189

the mean absolute deviation (MAD) of the Normal distribution N (0, σ).190

Evaluation metrics for segmentation. We employ mean Intersection-over-Union (mIoU) as the191

evaluation criteria for PASCAL and COCO, and mean Dice similarity coefficient (DSC) for the192

ACDC dataset. The quality on the PASCAL test set is assessed on the online evaluation server.193

Implementation details. We evaluate our approach with two types of ResNet-based [4] and one vision194

transformer (ViT) based [35] segmentation models on the PASCAL and COCO datasets. ResNet-195

based models follow the implementation of DeepLabV3+ [18] using the backbone of ResNet101196

(R101) or the backbone of WideResNet-38 (WR38) [1]. For brevity, we name them R101-based or197

WR38-based DeepLabV3+ models. For the ViT-based network, We follow the implementation of198

Segmenter [36], adopting its ViT-B/16 backbone and linear decoder. For experiments on the ACDC199

datasets, we use MobileNetV2-based [37] DeepLabv3+ model. The R101, WR38, and MobileNetV2200

backbones are ImageNet [38] pre-trained. ViT-B/16 backbone is pre-trained on ImageNet-21K [39]201

and fine-tuned on ImageNet-1k [38]. We directly evaluate our size-target approach on top of the202

standard architectures without any modification.203

Images are resized to 512 × 512 for PASCAL and COCO, and 256 × 256 for ACDC. We employ204

color jittering and horizontal flipping for data augmentation. Segmentation models are trained with205

stochastic gradient descent on one RTX A6000 GPU with 48 GB GDDR6: 60 epochs for PASCAL206

and COCO, and 200 epochs for ACDC, with a polynomial learning rate scheduler (power of 0.9).207

Batch sizes are set to 16 for ResNet and 20 for ViT models on PASCAL, 12 on ACDC, and 12208

(ResNet) and 16 (ViT) for MS COCO. The initial learning rate is 0.005 for ACDC and PASCAL’s209

ResNet models, and 0.0005 for PASCAL’s ViT models. The initial learning rate on COCO is 0.0005210

for ResNet and 0.0001 for ViT models. Loss function (12) is employed for size-target supervision.211

Loss (13) is only used for seed supervision in Sec. 3.3. The implementation of CRF loss (3) is the212

same as [6]. We use 2e−9 as the weight of the CRF term following the strategy in [6]. Size-target213

loss (2) and pCE (4) are used for medical images.214

3.2 Robustness to Size Errors215

We show the size targets can be approximate. The left plot in Fig. 4 illustrates the robustness of our216

approach to size errors. Segmentation models are trained with synthetic size targets subjected to217

varying levels of corruption, as defined in (15). The validation accuracy (solid red line) only drops218

slightly when mRE (16) remains below 16%. The CRF loss (3) further enhances the robustness219

(solid blue line). When the relative error (mRE) is 4%, there is a noticeable increase in validation220

accuracy. The downward trend of the training accuracy (dashed blue line) suggests that the observed221

increases in validation accuracy at mRE = 4% stem from improved neural network generalization.222

3.3 Enhancing seed-based segmentation with size targets223

Our size-target approach can be integrated with partial ground truth mask supervision (seeds). The224

right plot in Fig. 4 demonstrates the results of seed-supervised semantic segmentation with and without225

size-target supervision. Size targets significantly enhance performance, especially when the seed226

lengths are short. Without size targets, segmentation performance degrades dramatically as the seed227

length decreases. Notably, when only one pixel is labeled for each object (seed length ratio = 0.0),228

size-target supervision boosts accuracy from 66.6% to 74%, approaching the performance of full229

seed supervision (seed length ratio = 1.0).230
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Figure 4: Segmentation results on the PASCAL dataset with R101-based DeeplabV3+ networks.
The green bar in both plots indicates the segmentation accuracy for full ground truth masks (i.e. full
supervision). The left plot shows the training and validation accuracy using approximate size targets.
The segmentation is trained using losses (2) (red curve) or (12) (blue curve), where size targets are
subject to various levels of corruption (15,16). The right plot shows validation accuracy for seed
supervision of varying lengths with (blue curve) and without (red curve) using size targets. The line
styles of the blue curves differentiate among various levels of corruption.

Figure 5: Left plot shows the quality of human annotations in terms of relative errors for the dog, cat,
and bird classes within the PASCAl dataset. The histograms are normalized by the number of images
in each class. The mean relative error for the three classes is 15.9%. For comparison, the dashed line
shows the relative error distribution of synthetic size targets as defined in (15) for σ = 20.0% which
aligns with the mRE of 15.9%, see (16). The right plot presents 4-way multi-class (cat, dog, bird,
and background) segmentation accuracy using human-annotated (red star at mRE = 15.9%) and
synthetic (blue curve) size targets, employing ResNet101-based DeeplabV3+ networks. Consistent
with experiments in Sec. 3.2, synthetic size targets are generated at various levels of corruption. The
green line indicates the segmentation accuracy of full supervision using ground truth masks.

3.4 Human-annotated size targets231

Annotation tool. In this section, our approach is evaluated with size targets annotated by humans.232

We annotated training images for a subset of PASCAL classes, including cat, dog, and bird. A233

user interface with an assistance tool was developed to facilitate the annotation. The assistance tool234

overlays grid lines partitioning the image into 5× 4 small rectangles or 3× 3 large rectangles. Users235

can determine the size of a class in an image by counting rectangles (fractions allowed) or entering236

the percentage relative to the image size. Annotators can choose finer or coarser partitioning for each237

image depending on the object size. We evaluate relative errors with (14) for human annotations.238

Empirical evidence shows that annotators are approximately two times more accurate with the239

assistance tool, especially for small objects in the image. The last two columns of Table 1 report the240

annotation speed per image and mean relative error (14) for each class. The left plot in Fig. 5 shows241

the histograms of relative errors for human annotations. The histograms illustrate that annotated size242

errors are mostly below 10%, but occasional large mistakes (heavy tails) raise the mean error.243

Segmentation with human-annotated size. Segmentation models trained with human-annotated244

size targets show robustness to human “heavy tail” errors. We compare the accuracy for human-245

annotated and synthetic size targets in the right plot of Fig. 5. The accuracy for human-annotated246

size (indicated by the red star in the plot) approaches 97.2% (89.6%/92.2%) of the full supervision247

performance, demonstrating that size-target approach is significantly robust to human errors. Binary248

segmentation accuracy for each class is reported in the shaded cells in Table 1. The performance of249
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supervision gt mask gt size human-annotated size
mIoU mIoU mIoU speed mRE

cat 90.6% 88.8% 88.0% 12.6s 12.3%
dog 88.1% 84.3% 84.5% 9.1s 16.6%
bird 88.8% 86.2% 86.4% 15.2s 20.1%

Table 1: Human-annotated size targets. Two columns on the right show the average speed and relative
error for each class we annotated. The shaded cells compare the accuracy of binary segmentation
models trained with ground truth masks, ground truth size, and human-annotated size.

binary segmentation models trained with human-annotated size targets is comparable to those trained250

with precise size targets.251

3.5 Comparison with the state-of-the-art methods252

Our general training losses are applied to three standard architectures (R101-DeepLabV3+, WR38-253

DeepLabV3+, and ViT-Linear) for semantic segmentation as is, without any modification. Our results254

are highlighted in Table 2. The models are trained using synthetic size targets with an approximate255

mean relative error (mRE) of 8%. We chose this corruption level because its performance is close256

to human annotations, as shown in the right plot of Figure 5. Since our single-stage (end-to-end)257

approach is completely general, it is possible to use it in specialized architectures or complex258

training procedures. Likely, this would further improve the results, but this is not the focus of259

our work. The rest of Table 2 shows the results for semantic segmentation methods (of different260

complexities) for weak and full supervision. Methods are divided into multi-stage and single-stage261

methods, grouped by their backbones. Typical single-stage methods improve their results using262

complex architectural or training modifications such as additional training branches, extra refinement263

modules, or specialized training strategies. However, we achieve state-of-the-art using only standard264

segmentation architectures, commonly used in full supervision. The R101-based DeepLabV3+ model265

trained with approximate size targets approaches 92% (71.9/78.2) of its full supervision performance266

on PASCAL. The WR38-based DeepLabV3+ model trained with approximate size-target supervision267

surpasses other methods employing the same backbone by approximately 10%. Using the standard268

vision transformer architecture [36], the size-target approach achieves approximately 96% of the269

Backbone Decoder Architectural/training Supervision PASCAL COCO
modification Val Test Val

Multi-stage methods
R101 DeepLabV3+ MARS [40] arXiv’23 tags 77.7 77.2 49.4
R101 DeepLabV2 MatLabel [41] ICCV’23 tags 73.0 72.7 45.6
WR38 LargeFOV MCT [42] CVPR’22 tags 71.9 71.6 42.0
WR38 LargeFOV MCTOCR [43] CVPR’23 tags 72.7 72.0 42.5
SWIN DeepLabV2 ReCAM [44] CVPR’22 tags 71.8 72.2 47.9
ViT-S “Grad-clip” WeakTr [26] arXiv’23 tags 78.4 79.0 50.3

Single-stage (end-to-end) methods
R101 DeeplabV3+ - size (8%) 71.9 72.4 45.0
R101 DeeplabV3+ - full 78.2 78.2 60.4
WR38 DeepLabV3+ SSSS [2] CVPR’20 tags 62.7 64.3 -
WR38 Conv RRM [45] AAAI’20 tags 62.6 62.9 -
WR38 DeeplabV3+ - size (8%) 72.7 72.6 -
ViT-B LargeFOV ToCo [28] CVPR’23 tags 71.1 72.2 42.3
ViT-B Conv SeCo [29] arXiv’24 tags 74.0 73.8 46.7
ViT-B LargeFOV CoSA [30] arXiv’24 tags 76.2 75.1 51.0
ViT-B Linear - size (8%) 78.1 78.2 56.3
ViT-B Linear - full 81.4 80.7 -

Table 2: Semantic segmentation results (mIoU%) on PASCAL and COCO. The supervision column
indicates a form of supervision: image-level class tags, size targets (our highlighted results), or full
supervision with pixel-accurate masks. The percentage after “size” is the accuracy (mRE) of our
corrupted size targets (15,16). Our approach does not require any complex architectural modification
or multi-stage training procedures needed for tag supervision, see “Modification” column.
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[22]

Figure 6: Size-targets (2) vs. size-barriers (17) on the ACDC dataset. The left plot shows the accuracy
of the binary segmentation models (MobileNetV2-based DeeplabV3+) measured by DSC. The blue
curve shows size-target accuracy with various levels of corruption. The dashed green line shows the
accuracy of the size-barrier technique [22]. The dashed red line shows the accuracy using the mean
size target for all training images. The gray line indicates the result of full supervision. The right
image shows randomly selected qualitative results of size-barrier [22] and approximate size target
(mRE = 8%). Yellow shows true positive pixels, green is false positive, and red is false negatives.

full supervision performance on the Pascal dataset. Despite its simplicity, the size-target approach270

outperforms other complex single-stage methods on both datasets.271

3.6 Medical data: size-target vs. size-barrier272

Our method is also promising for medical image segmentation, benefiting from the consistency in273

object sizes across similar medical images, which healthcare professionals can easily estimate. We274

compare our size-target approach with the thresholded size-barrier technique [22], proposed for the275

weakly supervised medical image semantic segmentation. The size-barrier loss enforces inequality276

size constraints. Given the lower bound of each class, the thresholded size-barrier loss is277

Lflat_sq(S) =
∑
k

(
max{ak − S̄k, 0}

)2
, (17)

where ak is a lower bound of class k. We train binary segmentation models with a combination278

of partial cross-entropy loss (4) and size constraint loss: size-target (2) or size-barrier (17). Seeds279

used in the experiments are obtained using the same method provided in [22]. The object and280

background barrier, aobj and abg are set based on [22]. In the size-barrier experiments, similarly to281

[22], we suppress the non-tag classes, using the loss Lsup(S) = (S̄obj)2. Conversely, size-target282

loss automatically suppresses non-tag classes as discussed in Sec. 2. The left plot in Fig. 6 displays283

the segmentation accuracy against different levels of size target corruption. Our size-target loss284

consistently outperforms size-barrier loss, maintaining its superiority even when using highly noisy285

size targets. The peak in the accuracy curve aligns with the experimental results in Sec. 3.2 and286

Sec. 3.4. The accuracy of the model trained using size targets with relative errors of 8% surpasses287

the full supervision performance. Additionally, using a fixed average size target across all training288

images can yield performance comparable to the size-barrier method, see the dashed red line in the289

left plot of Fig. 6. The right image in Fig. 6 shows qualitative examples of both methods.290

4 Conclusions291

We proposed a new image-level supervision for semantic segmentation: size targets. Such targets292

could be approximate. In fact, our results suggest that some errors can benefit generalization. The293

size annotation by humans requires little extra effort compared to the standard image-level tags and it294

is much cheaper than the full pixel-accurate ground truth masks. We proposed an effective size-target295

loss based on forward KL divergence between the soft size targets and the average prediction. In296

combination with the standard CRF-based regularization loss, our approximate size-target supervision297

on standard segmentation architectures (DeepLab and ViT) achieves state-of-the-art performance.298

Our general easy-to-understand approach outperforms significantly more complex weakly-supervised299

techniques based on model modifications and multi-stage training procedures.300
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Figure 7: Segmentation examples using size-target supervision (mRE = 8%). Model backbones are
shown in the top-left corner of the predictions, see Table 2 for decoders.

A Appendix / supplemental material440

A.1 Labeling costs and accuracies reported in Figure 1441

Labelling costs. Figure 1 in the paper shows labeling speed and accuracy for different forms of442

supervision on PASCAL VOC. The table at the bottom of Figure 1 shows ballpark estimates of443

average labeling time per image in the whole dataset. We use the data in [46], as well as Table 1 in444

the paper, and aggregate all labeling speeds from “per class”, “per instance”, or “per point” to “per445

image” using the average number of instances or classes in each image and the aggregation rules446

formulated in [46], see their Section 4. The top-left corner in each picture shows the corresponding447

estimated labeling times for the representative multi-instance image. All the labeling times are only448

rough estimates, but they are intuitive. The relative costs for point supervision seem underestimated,449

but they follow evaluation conventions detailed in [46].450

Accuracies. The values of “point”, “size target” and “full supervision” accuracy (mIOU%) are based451

on the experiments in the paper (Figure 4). We follow the learning rate scheme in DeepLabV3+ [18]452

for the training with full supervision. For fairness, we compare these with end-to-end methods using453

similar ResNet backbones in tag- [2] and box-supervision [3]. Typical SOTA methods for tag and454

box supervision use special architectural modifications, unlike our generic size-target loss, cannot be455

seamlessly plugged into any segmentation model.456

A.2 Qualitative results457

Figure 7 presents the qualitative examples of our method on PASCAL (left) and COCO (right)458

validation sets. Despite size targets providing only image-level information, segmentation models459

can precisely identify object locations, eliminating the need for localization methods like CAM.460
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• The answer NA means that the paper does not include theoretical results.519
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to make their results reproducible or verifiable.542
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appropriate to the research performed.551
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nature of the contribution. For example554

(a) If the contribution is primarily a new algorithm, the paper should make it clear how555

to reproduce that algorithm.556
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(c) If the contribution is a new model (e.g., a large language model), then there should559

either be a way to access this model for reproducing the results or a way to reproduce560
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Answer: [No]572
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versions (if applicable).591
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the596

results?597

Answer: [Yes]598
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• The answer NA means that the paper does not include experiments.601
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material.605
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Justification: Error bars are not reported because it would be too computationally expensive.610
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the experiments?636
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experimental runs as well as estimate the total compute.644

• The paper should disclose whether the full research project required more compute645

than the experiments reported in the paper (e.g., preliminary or failed experiments that646

didn’t make it into the paper).647

9. Code Of Ethics648

Question: Does the research conducted in the paper conform, in every respect, with the649

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?650

Answer: [Yes]651

Justification: The research in the paper conforms with the code of ethics.652

Guidelines:653

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.654

• If the authors answer No, they should explain the special circumstances that require a655

deviation from the Code of Ethics.656

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-657

eration due to laws or regulations in their jurisdiction).658

10. Broader Impacts659

Question: Does the paper discuss both potential positive societal impacts and negative660

societal impacts of the work performed?661

Answer: [NA]662

Justification: Our research on weakly-supervised semantic segmentation is a purely technical663

advancement to improve image segmentation, with no direct societal impacts or associated664

ethical concerns.665

Guidelines:666

• The answer NA means that there is no societal impact of the work performed.667

• If the authors answer NA or No, they should explain why their work has no societal668

impact or why the paper does not address societal impact.669
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• Examples of negative societal impacts include potential malicious or unintended uses670

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations671

(e.g., deployment of technologies that could make decisions that unfairly impact specific672

groups), privacy considerations, and security considerations.673

• The conference expects that many papers will be foundational research and not tied674

to particular applications, let alone deployments. However, if there is a direct path to675

any negative applications, the authors should point it out. For example, it is legitimate676

to point out that an improvement in the quality of generative models could be used to677

generate deepfakes for disinformation. On the other hand, it is not needed to point out678

that a generic algorithm for optimizing neural networks could enable people to train679

models that generate Deepfakes faster.680

• The authors should consider possible harms that could arise when the technology is681

being used as intended and functioning correctly, harms that could arise when the682

technology is being used as intended but gives incorrect results, and harms following683

from (intentional or unintentional) misuse of the technology.684

• If there are negative societal impacts, the authors could also discuss possible mitigation685

strategies (e.g., gated release of models, providing defenses in addition to attacks,686

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from687

feedback over time, improving the efficiency and accessibility of ML).688

11. Safeguards689

Question: Does the paper describe safeguards that have been put in place for responsible690

release of data or models that have a high risk for misuse (e.g., pretrained language models,691

image generators, or scraped datasets)?692

Answer: [NA]693

Justification: This paper poses no such risks.694

Guidelines:695

• The answer NA means that the paper poses no such risks.696

• Released models that have a high risk for misuse or dual-use should be released with697

necessary safeguards to allow for controlled use of the model, for example by requiring698

that users adhere to usage guidelines or restrictions to access the model or implementing699

safety filters.700

• Datasets that have been scraped from the Internet could pose safety risks. The authors701

should describe how they avoided releasing unsafe images.702

• We recognize that providing effective safeguards is challenging, and many papers do703

not require this, but we encourage authors to take this into account and make a best704

faith effort.705

12. Licenses for existing assets706

Question: Are the creators or original owners of assets (e.g., code, data, models), used in707

the paper, properly credited and are the license and terms of use explicitly mentioned and708

properly respected?709

Answer: [Yes]710

Justification: The owners of assets used in this paper are credited and the license is mentioned711

and respected.712

Guidelines:713

• The answer NA means that the paper does not use existing assets.714

• The authors should cite the original paper that produced the code package or dataset.715

• The authors should state which version of the asset is used and, if possible, include a716

URL.717

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.718

• For scraped data from a particular source (e.g., website), the copyright and terms of719

service of that source should be provided.720
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• If assets are released, the license, copyright information, and terms of use in the721

package should be provided. For popular datasets, paperswithcode.com/datasets722

has curated licenses for some datasets. Their licensing guide can help determine the723

license of a dataset.724

• For existing datasets that are re-packaged, both the original license and the license of725

the derived asset (if it has changed) should be provided.726

• If this information is not available online, the authors are encouraged to reach out to727

the asset’s creators.728

13. New Assets729

Question: Are new assets introduced in the paper well documented and is the documentation730

provided alongside the assets?731

Answer: [NA]732

Justification: The paper does not release new assets.733

Guidelines:734

• The answer NA means that the paper does not release new assets.735

• Researchers should communicate the details of the dataset/code/model as part of their736

submissions via structured templates. This includes details about training, license,737

limitations, etc.738

• The paper should discuss whether and how consent was obtained from people whose739

asset is used.740

• At submission time, remember to anonymize your assets (if applicable). You can either741

create an anonymized URL or include an anonymized zip file.742

14. Crowdsourcing and Research with Human Subjects743

Question: For crowdsourcing experiments and research with human subjects, does the paper744

include the full text of instructions given to participants and screenshots, if applicable, as745

well as details about compensation (if any)?746

Answer: [NA]747

Justification: The paper does not involve crowdsourcing or research with human subjects.748

Guidelines:749

• The answer NA means that the paper does not involve crowdsourcing nor research with750

human subjects.751

• Including this information in the supplemental material is fine, but if the main contribu-752

tion of the paper involves human subjects, then as much detail as possible should be753

included in the main paper.754

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,755

or other labor should be paid at least the minimum wage in the country of the data756

collector.757

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human758

Subjects759

Question: Does the paper describe potential risks incurred by study participants, whether760

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)761

approvals (or an equivalent approval/review based on the requirements of your country or762

institution) were obtained?763

Answer: [NA]764

Justification: The paper does not involve crowdsourcing or research with human subjects.765

Guidelines:766

• The answer NA means that the paper does not involve crowdsourcing nor research with767

human subjects.768

• Depending on the country in which research is conducted, IRB approval (or equivalent)769

may be required for any human subjects research. If you obtained IRB approval, you770

should clearly state this in the paper.771
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• We recognize that the procedures for this may vary significantly between institutions772

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the773

guidelines for their institution.774

• For initial submissions, do not include any information that would break anonymity (if775

applicable), such as the institution conducting the review.776
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