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Abstract

Radiology reports are detailed text descriptions
of the content of medical scans. Each report
describes the presence/absence and location of
relevant clinical findings, commonly includ-
ing comparison with prior exams of the same
patient to describe how they evolved. Radiol-
ogy reporting is a time-consuming process, and
scan results are often subject to delays. One
strategy to speed up reporting is to integrate
automated reporting systems, however clinical
deployment requires high accuracy and inter-
pretability. Previous approaches to automated
radiology reporting generally do not provide
the prior study as input, precluding comparison
which is required for clinical accuracy in some
types of scans, and offer only unreliable meth-
ods of interpretability. Therefore, leveraging
an existing visual input format of anatomical
tokens, we introduce two novel aspects: (1) lon-
gitudinal representation learning – we input
the prior scan as an additional input, propos-
ing a method to align, concatenate and fuse
the current and prior visual information into
a joint longitudinal representation which can
be provided to the multimodal report genera-
tion model; (2) sentence-anatomy dropout – a
training strategy for controllability in which the
report generator model is trained to predict only
sentences from the original report which corre-
spond to the subset of anatomical regions given
as input. We show through in-depth experi-
ments on the MIMIC-CXR dataset (Johnson
et al., 2019a,b; Goldberger et al., 2000) how
the proposed approach achieves state-of-the-art
results while enabling anatomy-wise control-
lable report generation.

1 Introduction

A chest X-Ray (CXR) is a frequently performed
radiology exam (NHS England and NHS improve-
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Figure 1: Illustration of our controllable automated re-
porting system using longitudinal representations. The
report generator is trained to generate only sentences
corresponding to the selected input anatomical regions.
LL indicates the left lung and RL the right lung and
we colour-match each region with the corresponding
sentence. Strikethrough text represents the section of
the report that we do not want the generated report to
include when only the LL and RL are selected as inputs.

ment, 2022), used to visualise and evaluate the
lungs, the heart, and the chest wall. Given a CXR,
a radiologist or a trained radiographer will diagnose
disease (e.g. lung cancer, scoliosis), and assess the
position of treatment devices (e.g. tracheostomy
tubes, pacemakers). They record their findings in a
radiology report, writing a detailed text description
of the presence/absence and location of relevant
clinical findings. When a prior image is available,
the radiologist commonly compares the current
clinical findings of a patient with the prior clinical
findings to assess their evolution over time (e.g.
“the heart remains enlarged”, “the catheter has been
removed”); this is especially critical in follow-up
exams performed for monitoring.

Radiology reporting is a time-consuming pro-



cess, and scan results are often subject to delays.
In many countries, this reporting backlog is only
likely to worsen due to increasing demand for
imaging studies as the population ages, and to the
shortage of radiologists (Rimmer, 2017; Cao et al.,
2023). One strategy to speed up reporting is to
integrate automated reporting systems. However,
to be employed in real-world clinical scenarios, an
automated system must be accurate, controllable
and explainable; these criteria are difficult to meet
on a task requiring sophisticated clinical reasoning
across multiple input image features, and targeting
an ill-defined and complex text output.

Previous works on CXR automated reporting
have mostly focused on solutions to improve clin-
ical accuracy, e.g. Miura et al. (2021). However,
they generally use a single radiology study as input
to generate the full report, precluding comparison
with prior scans. They also do not allow the end
user control over what parts of the image are re-
ported on, leading to limited transparency on which
image features prompted a specific clinical finding
description; interpretability is currently achieved by
generating heatmaps that are often dubious (Chen
et al., 2020, 2021). In this work, we hence focus
on two novel aspects: (1) longitudinal represen-
tations – the most recent previous CXR from the
same patient is passed as an additional anatomi-
cally aligned input to the model to allow effective
comparison of current and prior scans; (2) control-
lable reporting – to encourage the language model
to describe only the subset of anatomical regions
presented as input: this might be single anatomi-
cal regions (e.g. {cardiac silhouette}→ “the
cardiac silhouette is enlarged”), multiple anatom-
ical regions (e.g. {left lung, right lung} →
“low lung volumes”) or the full set of anatomical
regions (in which case the target regresses to the
full report, as in previous methods). A high-level
representation is shown in Figure 1.

To summarise, our contributions are to:

1. propose a novel method to create a longitudi-
nal representation by aligning and concatenat-
ing representations for equivalent anatomical
regions in prior and current CXRs and project-
ing them into a joint representation;

2. propose a novel training strategy, sentence-
anatomy dropout, in which the model is
trained to predict a partial report based on
a sampled subset of anatomical regions, thus

training the model to associate input anatom-
ical regions with the corresponding output
sentences, giving controllability over which
anatomical regions are reported on;

3. empirically demonstrate state-of-the-art per-
formance of the proposed method on both full
and partial report generation via extensive ex-
periments on the MIMIC-CXR dataset (John-
son et al., 2019a,b; Goldberger et al., 2000).

2 Related Works

2.1 Automated Reporting
The task of generating a textual description from
an image is generally referred to as image caption-
ing. Advancements in the general domain have
often inspired radiological reporting approaches
(Anderson et al., 2018; Cornia et al., 2020; Li et al.,
2020; Zhang et al., 2021). However, the two tasks
differ; the target of image captioning is usually a
short description of the main objects appearing in
a natural image, whereas the target of radiologi-
cal reporting is a detailed text description referring
to often subtle features in the medical image. Re-
search on CXR automated reporting has focused
on improving the clinical accuracy of the gener-
ated reports by proposing novel model architectures
(Chen et al., 2020, 2021), integrating reinforcement
learning to reward factually complete and consis-
tent radiology reports (Miura et al., 2021; Qin and
Song, 2022), grounding the report generation pro-
cess with structured data (Liu et al., 2021; Yang
et al., 2022; Dalla Serra et al., 2022), and by replac-
ing global image-level features extracted from con-
volutional neural networks (He et al., 2016; Huang
et al., 2017) as the input visual representations with
anatomical tokens (Dalla Serra et al., 2023).

2.2 Longitudinal CXR Representation
The problem of tracking how a patient’s clinical
findings evolve over time in CXRs has received
limited attention either generally or for the appli-
cation of CXR reporting, despite this being a crit-
ical component of a CXR report. Ramesh et al.
(2022) avoid the problem by proposing a method
to remove comparison references to priors from
the ground truth radiology reports to alleviate hal-
lucinations about unobserved priors when train-
ing a language model for the downstream report
generation task. Bannur et al. (2023) introduce
a self-supervised multimodal approach that mod-
els longitudinal CXRs from image-level features
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Figure 2: Architecture overview. The anatomical region representations of the current and prior CXRs are extracted
from Faster R-CNN (visual anatomical token extraction). These are aligned, concatenated and projected into a joint
representation (longitudinal projection module), then passed alongside the tokenised indication field as input to
the language model to generate the report for the current scan. The Report Generator is trained end-to-end using
sentence-anatomy dropout.

as a joint temporal representation to better align
text and image. Karwande et al. (2022) have pro-
posed an anatomy-aware approach to classifying if
a finding has improved or worsened by modelling
longitudinal representations between CXRs with
graph attention networks (Veličković et al., 2018).
Similar to Karwande et al. (2022), we project longi-
tudinal studies into a joint representation based on
anatomical representations rather than image-level
features. However, we extract the anatomical rep-
resentations from Faster R-CNN (Ren et al., 2015),
as in Dalla Serra et al. (2023).

2.3 Controllable Automated Reporting

We define a controllable automated reporting sys-
tem as one which allows the end users to select
what regions in the image they want to report on,
giving a level of interpretability. This has par-
tially been tackled using hierarchical approaches
(Liu et al., 2019), by introducing a multi-head
transformer with each head assigned to a specific
anatomical region and generating sentences exclu-
sively for that region (Wang et al., 2022), and con-
temporaneously to our work by Tanida et al. (2023)
who (similarly to us) generate sentences based on
region-level features extracted through Faster R-
CNN (Ren et al., 2015).

Tanida et al. (2023) make the assumption that
each sentence in the report describes at most one
anatomical region. Conversely, we acknowledge
that there may be multiple anatomical regions
which are relevant to the target text output, e.g.,

a sentence “No evidence of emphysema.” requires
information from both left and right lungs; this
requires us to identify valid subsets of anatomical
regions in each CXR report for our dropout training
strategy (Section 3.4).

3 Method

We first extract anatomical visual feature represen-
tations v⃗ ∈ Rd with d dimensions for N predefined
anatomical regions A = {an}Nn=1 appearing in a
CXR. To model longitudinal relations, we perform
feature extraction for both the scan under consider-
ation and for the most recent prior scan, and then
combine region-wise using our proposed longitudi-
nal projection module. We then input the features
to the language model (LM) alongside the text in-
dication field, which is trained using our anatomy-
sentence dropout strategy. We show the proposed
architecture in Figure 2 and describe these steps in
more detail below.

3.1 Visual Anatomical Token Extraction

For the anatomical representations, we extract the
bounding box feature vectors from the Region of
Interest (RoI) pooling layer of a trained Faster
R-CNN model. Faster R-CNN is trained on the
tasks of anatomical region localisation in which
the bounding box coordinates of the N=36 anatom-
ical regions (e.g. abdomen, aortic arch, cardiac
silhouette) are detected in each CXR image,
and finding detection in which presence/absence is
predicted in each proposed bounding box region



Original Report Anatomical region Target output Mapping type

“The mediastinum is mildly
enlarged. Blunting of
right costophrenic angle
noted. No suspicious
nodules seen. No
pneumothorax or infective
consolidation. Bilateral
atelectasis, likely post
-operative. Degenerative
changes seen in both
shoulders. NG tube tip
positioned correctly
in stomach. No free
air under diaphragm”

mediastinum
“The mediastinum is

mildly enlarged.”
one-to-one

abdomen

“NG tube tip
positioned correctly
in stomach. No free

air under diaphragm.”

one-to-many

left clavicle,
right clavicle

“Degenerative changes
seen in both shoulders.”

many-to-one

right lung,
left lung

“Blunting of right
costophrenic angle noted.

No suspicious nodules seen.
No pneumothorax

or infective consolidation.
Bilateral atelectasis,

likely post-operative.”

many-to-many

Table 1: Example correspondences between anatomical regions and target output, for a synthesised CXR “Original
Report” (Findings section). Note the different types of correspondence mapping.

for a set of 71 predefined findings (e.g. pleural
effusion, lung cancer, scoliosis).1 Specifi-
cally, we augment the standard Faster R-CNN ar-
chitecture head — comprising an anatomy classi-
fication head and a bounding box regression head
— with a multi-label classification head, following
Dalla Serra et al. (2023), to extract finding-aware
anatomical tokens V = {v⃗n}Nn=1 with v⃗n ∈ Rd

where d=1024. Then, for each anatomical region
we select the bounding box representation pro-
posal with the highest confidence score. When the
anatomical region is not detected, we assign a d-
dimensional vector of zeros. For more details about
the model architecture, the loss term and other im-
plementation details, we refer to Dalla Serra et al.
(2023).

3.2 Longitudinal Projection Module

Taking the current scan (the most recent scan at a
specific time point) and the CXR from the most re-
cent study (prior scan)2, we extract from Faster R-
CNN the anatomical tokens of both CXRs. There
is one token for each of the N anatomical regions:
Vcurrent = {v⃗c,n}Nn=1 and Vprior = {v⃗p,n}Nn=1.
When the current scan is part of an initial exam:
v⃗p,n := 0⃗ ∈ Rd ∀n = 1, . . . , N . We select indices
for the subset of regions that we want to report on

1Full lists of anatomical regions and clinical findings are
provided in Appendix A.

2A prior scan is only available if the current scan is not
part of an initial exam.

Atarget ⊆ A, and we obtain the longitudinal repre-
sentation by concatenating the anatomical tokens
for each anatomical region an of the two CXRs,
and passing them through the longitudinal projec-
tion module f :

v⃗joint,n =

{
f([v⃗c,n, v⃗p,n]) if an ∈ Atarget

f([⃗0, 0⃗]), otherwise.

The projection layer f is a Multi-Layer Perceptron
(MLP) consisting of a stack of a Fully-Connected
layer (FC1), a Batch Normalization layer (BN) and
another Fully-Connected layer (FC2). We refer
to the resulting output as the current-prior joint
representation Vjoint = {v⃗joint,n}Nn=1.

3.3 Language Model (LM)
This consists of a multimodal Transformer encoder-
decoder, which takes the current-prior joint repre-
sentation Vjoint and the indication field3 I as the
visual and textual input respectively, to generate
the output report Y :

Y = LM(Vjoint, I)

where Y corresponds to the partial report if
Atarget ⊂ A or the full report if Atarget = A.

Similarly to Devlin et al. (2019), the input to the
LM corresponds to the sum of the textual and visual

3The indication field contains relevant medical history in
the form of free text and it is available at imaging time.



token embeddings, the positional embeddings (for
position of tokens) and the segment embeddings
(for modality type: vision or text).

3.4 Training with Sentence-Anatomy Dropout
During training, for each instance in each batch,
we randomly drop a subset of anatomical tokens
from the input and omit the corresponding sen-
tences from the target radiology report; we term
this training strategy sentence-anatomy dropout.
In practice, for each training sample not all combi-
nations of anatomical regions will be fit for dropout,
since they must satisfy the following conditions:

1. Given a subset of anatomical tokens as input,
the target output must be the full subset of
sentences in the report that describe the corre-
sponding anatomical regions;

2. Given a subset of sentences as the target out-
put, anatomical tokens must be input for the
full subset of described anatomical regions.

The above conditions are necessary since we reject
the assumption that each sentence in the report
describes only one anatomical region, as made by
Tanida et al. (2023). We illustrate with examples
of the different mappings in Table 1.

Let us consider a radiology report as a set of L
sentences S = {sl}Ll=1, each one describing the
findings appearing in a different subset of anatomi-
cal regions Al ⊆ A; and P = {⟨sl, Al⟩}Ll=1 the set
of sentence-anatomy pairs of a report. To satisfy
the two conditions above, we seek to discover the
connected components in a graph where sentences
are the nodes and an edge between two nodes repre-
sents an overlap of described anatomical regions be-
tween the two sentences. We describe in Appendix
B the algorithm to identify the connected compo-
nents for each CXR report and how we group the
corresponding sentence-anatomy pairs to each con-
nected component into Pk ⊆ P . We then define as
F = {Pk}Kk=1 the set of valid sentence-anatomy
subsets (see Appendix C for an example). During
training, we randomly select one or more elements
of F and then use the anatomical tokens as input
and concatenate the corresponding sentences to
create the target output.

4 Experiments

4.1 Datasets
We consider two open-source CXR imaging
datasets: MIMIC-CXR (Johnson et al., 2019a,b;

Goldberger et al., 2000) and Chest ImaGenome
(Wu et al., 2021; Goldberger et al., 2000). The
MIMIC-CXR dataset comprises CXR image-report
pairs. The Chest ImaGenome dataset includes ad-
ditional annotations based on the MIMIC-CXR
images and reports. In this paper, we train Faster R-
CNN with the automatically extracted anatomical
bounding box annotations from Chest ImaGenome,
provided for 242,072 AnteroPosterior (AP) and
PosteroAnterior (PA) CXR images. Chest Im-
aGenome also contains sentence-anatomy pairs an-
notations that we use to perform sentence-anatomy
dropout. The longitudinal scans of each patient are
obtained by ordering different studies based on the
annotated timestamp and for each study, taking the
most recent previous study as the prior. For this pur-
pose, we only select AP or PA scans as priors (i.e.
ignore lateral views). If multiple scans are present
in a study, we consider the one with the highest
number of non-zero anatomical tokens. In case of
a tie, we select it randomly. In all experiments, we
follow the train/validation/test split proposed in the
Chest ImaGenome dataset.

4.2 Data pre-processing

We extract the Findings section of each report as
the target text4. For the text input, we extract the
Indication field from each report5.

When training Faster R-CNN, CXRs are resized
by matching the shorter dimension to 512 pixels
(maintaining the original aspect ratio) and then
cropped to a resolution of 512× 512.

4.3 Metrics

We assess the quality of our model’s predicted re-
ports by computing three Natural Language Gener-
ation (NLG) metrics: BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004) and METEOR (Banerjee and
Lavie, 2005). To better measure the clinical cor-
rectness of the generated reports, we also compute
Clinical Efficiency (CE) metrics (Smit et al., 2020),
derived by applying the CheXbert labeller to the
ground truth and generated reports to extract 14
findings — and hence computing F1, precision and
recall scores. In line with previous studies (Miura
et al., 2021), this is computed by condensing the
four classes extracted from CheXbert (positive,
negative, uncertain, or no mention) into binary

4https://github.com/MIT-LCP/mimic-cxr/blob/
master/txt/create_section_files.py

5https://github.com/jacenkow/mmbt/blob/main/
tools/mimic_cxr_preprocess.py

https://github.com/MIT-LCP/mimic-cxr/blob/master/txt/create_section_files.py
https://github.com/MIT-LCP/mimic-cxr/blob/master/txt/create_section_files.py
https://github.com/jacenkow/mmbt/blob/main/tools/mimic_cxr_preprocess.py
https://github.com/jacenkow/mmbt/blob/main/tools/mimic_cxr_preprocess.py


classes of positive (positive, uncertain) versus
negative (negative, no mention).

4.4 Implementation
We adopt the torchvision Faster R-CNN imple-
mentation, as proposed in Li et al. (2021). This
consists of a ResNet-50 (He et al., 2016) and a
Feature Pyramid Network (Lin et al., 2017) as the
image encoder. We modify it and select the hyper-
parameters following Dalla Serra et al. (2023).

The two FC layers in the MLP projection layer
have input and output feature dimensions equal to
2048 and include the bias term.

The encoder and the decoder of the Report Gen-
erator consist of 3 attention layers, each composed
of 8 heads and 512 hidden units.

The MLP and the Report Generator are trained
end-to-end for 100 epochs using a cross-entropy
loss with Adam optimiser (Kingma and Ba, 2014)
and the sentence-anatomy dropout training strategy.
We set the initial learning rate to 5 × 10−4 and
reduce it every 10 epochs by a factor of 10. The
best model is selected based on the highest F1-CE
score.

We repeat each experiment 3 times using dif-
ferent random seeds, reporting the average in our
results.

4.5 Baselines
We compare our method with previous SOTA
works in CXR automated reporting, de-
scribed in Section 2.1: R2Gen (Chen et al.,
2020), R2GenCMN (Chen et al., 2021), M2

Transformer+factENTNLI (Miura et al., 2021),
Atok+TE+RG (Dalla Serra et al., 2023) and RGRG
(Tanida et al., 2023). For all baselines, we keep the
hyperparameters as the originally reported values.
For a fair comparison, we use the same text and
image pre-processing as proposed in this work
and we re-train the baselines based on the Chest
ImaGenome dataset splits.6

5 Results

5.1 Automated Reporting
Table 2 shows the effectiveness of the proposed
method over the baselines, showing superior perfor-
mance for most NLG and CE metrics. Compared
to Dalla Serra et al. (2023), our method can achieve
similar BLEU metrics and superior scores on the

6We did not re-train Dalla Serra et al. (2023) and Tanida
et al. (2023), as they already use that same dataset split.

remaining metrics, whilst providing also better con-
trollability (and interpretability). Whilst both our
method and that proposed by Tanida et al. (2023)
tackle the controllability aspect, we show superior
results in all metrics.

5.2 Ablation Study

We investigate the effect of incorporating prior
CXR scans as input (Priors) and adopting sentence-
anatomy dropout during training (SA drop).

Full Reports We evaluate the different configura-
tions of our method using the full set of anatomical
regions as input (Atarget = A) and the full report
as the target text. Table 3 shows the results; it can
be seen that both adding priors and using sentence-
anatomy dropout during training boost most met-
rics, with best overall performance obtained when
combining the two mechanisms. This is illustrated
qualitatively in Figure 3.

Initial vs Follow-up Scans We study the effect of
the different components by dividing the test set
into initial scans versus follow-up scans, resulting
in 11,951 and 20,735 CXR report pairs respectively.
The results are shown in Table 4. We note the
improvement of our method over the baseline on
both subsets, with the best results obtained when
adding the priors alone or in combination with the
sentence-anatomy dropout. It is worth noting that
the benefit of including priors is also present for
initial studies with no prior scans. We hypothe-
sise that since the model can infer which are initial
scans (using the fact that the prior anatomical to-
kens are all zero-vectors), it will correctly generate
a more comprehensive report rather than focussing
on progression or change of known findings.

Partial Reports To measure the controllability of
our method, we evaluate the ability of the differ-
ent configurations to generate partial reports given
a subset of anatomical regions. For this purpose,
we divide each report in the test set into its set of
valid sentence-anatomy subsets F (Algorithm 1).
We take the anatomical regions contained in each
subset χ ⊂ F as input and the corresponding sen-
tences as the target output. We then obtain a total
of 71,698 partial reports. The results in Table 5
show how adopting sentence-anatomy dropout en-
ables a controllable method which correctly reports
only on the anatomical regions presented as input
and does not hallucinate the missing anatomical
regions; this is further illustrated in Figure 4.



Method NLG Metrics CE Metrics
BL-1 BL-2 BL-3 BL-4 MTR RG-L F1 P R

R2Gen (Chen et al., 2020) 0.381 0.248 0.174 0.130 0.152 0.314 0.431 0.511 0.395
R2GenCMN (Chen et al., 2021) 0.365 0.239 0.169 0.126 0.145 0.309 0.371 0.462 0.311
M2 Tr. + factENTNLI (Miura et al., 2021) 0.402 0.261 0.183 0.136 0.158 0.300 0.458 0.540 0.404
Atok + TE + RG (Dalla Serra et al., 2023) 0.490 0.363 0.288 0.237 0.213 0.406 0.537 0.585 0.496
RGRG (Tanida et al., 2023) 0.400 0.266 0.187 0.135 0.168 - 0.461 0.475 0.447
Ours 0.486 0.366 0.295 0.246 0.216 0.423 0.553 0.597 0.516

Table 2: Comparison of our proposed approach with previous methods. We show the best results in bold.

Configuration NLG Metrics CE Metrics
Priors SA drop BL-1 BL-2 BL-3 BL-4 MTR RG-L F1 P R

- - 0.430 0.327 0.266 0.224 0.202 0.420 0.534 0.593 0.485
✓ - 0.456 0.347 0.283 0.239 0.210 0.428 0.548 0.577 0.522
- ✓ 0.473 0.358 0.289 0.243 0.213 0.426 0.550 0.597 0.510
✓ ✓ 0.486 0.366 0.295 0.246 0.216 0.423 0.553 0.597 0.516

Table 3: Ablation study on incorporating prior CXR scans as input and adopting sentence-anatomy dropout during
training. We report the NLG and CE results on the MIMIC-CXR test set.

Configuration NLG Metrics CE Metrics
Priors SA drop BL-4 MTR RG-L F1 P R

Initial Scans
- - 0.283 0.234 0.479 0.532 0.570 0.499
✓ - 0.303 0.244 0.490 0.543 0.563 0.524
- ✓ 0.303 0.244 0.485 0.541 0.582 0.507
✓ ✓ 0.306 0.245 0.479 0.542 0.589 0.502

Follow-up Scans
- - 0.194 0.187 0.377 0.533 0.600 0.479
✓ - 0.206 0.194 0.383 0.550 0.583 0.521
- ✓ 0.210 0.197 0.378 0.552 0.602 0.510
✓ ✓ 0.216 0.202 0.382 0.557 0.599 0.520

Table 4: NLG and CE results on the Initial and the
Follow-up subsets of the MIMIC-CXR test set.

Configuration NLG Metrics CE Metrics
Priors SA drop BL-4 MTR RG-L F1 P R

- - 0.113 0.187 0.291 0.549 0.519 0.583
✓ - 0.127 0.182 0.301 0.587 0.604 0.571
- ✓ 0.225 0.226 0.467 0.667 0.651 0.683
✓ ✓ 0.223 0.225 0.462 0.672 0.663 0.680

Table 5: NLG and CE results computed on partial
reports of the MIMIC-CXR test set, by dividing each
report into its set of valid sentence-anatomy subsets.

To further assess the quality of our method and
each of its components, we measure the length dis-
tribution of the predicted reports, similar to Chen
et al. (2020), showing that our method more closely
matches the ground truth distribution than baseline
methods; see results in Appendix D.

6 Limitations

While the proposed method shows state-of-the-art
results on CXR automated reporting, end-to-end re-
port generation from CXR images requires further
research to reach the clinical accuracy needed to be
useful as a diagnostic tool. We note that our eval-

uation is itself limited since the CheXbert labeller
reportedly has an accuracy of only 0.798 F1 (Smit
et al., 2020) and thus we do not expect to measure
perfect scores on our clinical efficiency metrics.

Our method focuses only on CXR and adapting
it to other types of medical scans might be challeng-
ing. First, due to the 2D nature of CXRs compared
to other types of 3D scans (e.g., CT, MRI). Sec-
ond, we strongly rely on the Chest ImaGenome
dataset and its annotations. These are automati-
cally extracted and similar sentence-anatomy an-
notations could be extracted for radiology reports
from other types of scans. However, as the same au-
thors pointed out, there are some known limitations
of their NLP and the region extraction pipelines;
for instance, clinical findings may not be properly
extracted from a follow-up report which may be as
simple as “No change is seen”. Hence, some re-
finement of the pipelines with or without additional
manual input might be required.

7 Conclusion

This work focussed on two key aspects of CXR
automated reporting: controllability and longitudi-
nal CXR representation. We proposed a simple yet
effective solution to align, concatenate and fuse the
anatomical representations of two subsequent CXR
scans into a joint representation used as the visual
input to a language model for automated reporting.
We then proposed a novel training strategy termed
sentence-anatomy dropout, to supervise the model
to link each anatomical region to the corresponding
output sentences. This gives the user more control
and easier interpretability of the model predictions.



Ground Truth Baseline Ours Comments

There are persisting small to
moderate bilateral pleural effusions with

subjacent atelectasis as well as
pulmonary vascular engorgement and

mild interstitial septal thickening. The right
infrahilar opacity is unchanged. There is
enlargement of the cardiac silhouette

unchanged. Calcification of the aortic arch
is present.

Moderate to severe cardiomegaly is
stable. Moderate bilateral pleural

effusions are unchanged. There is mild
pulmonary edema. There is no focal
consolidation or pneumothorax.

Moderate to large right and small left
pleural effusions are unchanged. There is
mild pulmonary vascular congestion and
interstitial edema. There is a moderate

right pleural effusion with associated right
lower lobe atelectasis. Moderate

cardiomegaly is stable. The aortic knob is
calcified. No pneumothorax. No acute

osseous abnormalities.

The report predicted by our method
shows a more accurate description of the
findings and higher recall compared to the

baseline.

In comparison to the prior chest
radiograph all lines and tubes have been
removed. The bilateral lung aeration has
improved dramatically. There is a small

left pleural effusion. There is a subtle right
basilar opacity. Heart size is normal. The
mediastinal and hilar contours are normal.
The pulmonary vasculature is normal. No

pneumothorax is seen.

Compared to the prior study there is no
significant interval change.

Interval removal of the endotracheal tube.
The feeding tube has been removed. The
right internal jugular catheter has been

removed. The cardiomediastinal and hilar
contours are within normal limits. The
aorta is tortuous. There is a small left

pleural effusion with adjacent atelectasis.
There is no pneumothorax.

The report predicted by our method
correctly describes the removal of the

different tubes.

Stable chronically elevated right
hemidiaphragm with moderate right lower

lobe atelectasis. Small stable breast
calcification projects adjacent to the left

ventricle as is seen on ct. No
pneumothorax or pleural effusion. Left

lung clear. Heart size mediastinal contour
and hila appear normal. No bony

abnormality.

No focal consolidation pleural effusion
pneumothorax or pulmonary edema is
seen. Heart size is normal. Mediastinal

contours are normal.

Elevation of the right hemidiaphragm is
unchanged from prior. The lungs are clear
without focal consolidation. No pleural
effusion or pneumothorax is seen. Heart
and mediastinal contours are within

normal limits with tortuous aortic contour.
There is elevation of the right

hemidiaphragm.

Our proposed method shows an
improvement compared to the baseline,
but there is still missing information such
as a comparison with a previous CT scan.

Figure 3: Qualitative results of full reports generation. We compare the reports generated by the baseline (without
adding prior scans and sentence-anatomy training) and the proposed solution with the ground truth. We highlight
using different colours the segments of the reports that are commented on in the right column.

Anat. Regions Ground Truth Baseline Ours

spine Moderate anterior osteophytes along the
lower thoracic spine appear unchanged.

The heart is at the upper limits of normal size. The aortic arch
is calcified. The mediastinal and hilar contours appear

unchanged. There is no pleural effusion or pneumothorax.
The lungs appear clear.

Mild degenerative changes are
similar along the thoracic

spine.

cardiac silhouette Moderate to severe enlargement of the
cardiac silhouette is unchanged.

Moderate enlargement of the cardiac silhouette is
re-demonstrated. Mediastinal and hilar contours are

unchanged. Pulmonary vasculature is not engorged. No focal
consolidation pleural effusion or pneumothorax is
present.There are no acute osseous abnormalities.

Moderate to severe
cardiomegaly is
re-demonstrated.

abdomen,
cardiac silhouette,

mediastinum,
upper mediastinum

The nasogastric tube has been removed. The
heart and mediastinum are within normal

limits.

The heart size is normal. The hilar and mediastinal contours are
normal. There has been interval resolution of the previously
seen small left-sided pneumothorax. There has been slight
interval improvement of the previously seen small right

pleural effusion. There is no evidence of focal consolidations
concerning for pneumonia.

The nasogastric tube has
been removed. The

cardiomediastinal silhouette is
unremarkable.

left lung,
left lower lung zone

left costophrenic angle,
left hilar structures,

right lung,
right lower lung zone,

right costophrenic angle,
right hilar structures

There are areas of streaky atelectasis at the
bilateral lung bases. There are persistent

prominent interstitial markings which suggest
chronic interstitial abnormality versus mild

interstitial edema. The lungs remain
hyperinflated. There is no pleural effusion or
pneumothorax. No focal consolidation is

seen.

Lung volumes are low. Linear opacities in the bilateral lower lungs
are most consistent with subsegmental atelectasis. There is no

focal consolidation pleural effusion or pneumothorax. The
cardiomediastinal silhouette is unchanged.

There is pulmonary vascular
congestion and mild interstitial

pulmonary edema. Linear
bibasilar opacities are most
consistent with atelectasis.

There is no pleural effusion or
pneumothorax.

Figure 4: Qualitative results of partial reports generation. From left to right: the subset of anatomical regions
Atarget we want to report, the ground truth partial reports, the reports generated by the baseline (without adding
prior scans and sentence-anatomy training) based on Atarget and those generated by our proposed method. We
indicate in red the hallucination on the missing anatomical regions.

We showed the effectiveness of the proposed so-
lution on the MIMIC-CXR dataset where it gives
state-of-the-art results. Moreover, we evaluated
through extensive ablations how the different com-
ponents help to generate better reports in different
setups: full report generation, partial report gener-
ation, and Initial vs. Follow-up report generation.

In future, this method could be integrated with
more advanced language models such as Touvron

et al. (2023) or OpenAI (2023), or alternative tech-
niques such as Dalla Serra et al. (2023). Further,
when considering the patient history, the prior CXR
scan might usefully be augmented with other types
of imaging and associated radiology reports, clin-
ical notes, clinical letters, and lab results. In fu-
ture work, we will look to extend our method to
a broader multimodal approach considering more
data inputs.
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A Anatomical Regions & Findings

Below we show the lists of 36 anatomical regions and 71 clinical findings used in this paper.

Anatomical Regions

abdomen left clavicle mediastinum right lower lung zone
aortic arch left costophrenic angle right apical zone right lung
cardiac silhouette left hemidiaphragm right atrium right mid lung zone
carina left hilar structures right cardiac silhouette right upper abdomen
cavoatrial junction left lower lung zone right cardiophrenic angle right upper lung zone
descending aorta left lung right clavicle spine
left apical zone left mid lung zone right costophrenic angle svc
left cardiac silhouette left upper abdomen right hemidiaphragm trachea
left cardiophrenic angle left upper lung zone right hilar structures upper mediastinum

Findings

airspace opacity cyst/bullae linear/patchy atelectasis pneumothorax
alveolar hemorrhage diaphragmatic eventration (benign) lobar/segmental collapse prosthetic valve
aortic graft/repair elevated hemidiaphragm low lung volumes pulmonary edema/hazy opacity
artifact endotracheal tube lung cancer rotated
aspiration enlarged cardiac silhouette lung lesion scoliosis
atelectasis enlarged hilum lung opacity shoulder osteoarthritis
bone lesion enteric tube mass/nodule (not otherwise specified) spinal degenerative changes
breast/nipple shadows fluid overload/heart failure mediastinal displacement spinal fracture
bronchiectasis goiter mediastinal drain sub-diaphragmatic air
cabg grafts granulomatous disease mediastinal widening subclavian line
calcified nodule hernia multiple masses/nodules superior mediastinal mass/enlargement
cardiac pacer and wires hydropneumothorax pericardial effusion swan-ganz catheter
chest port hyperaeration picc tortuous aorta
chest tube ij line pigtail catheter tracheostomy tube
clavicle fracture increased reticular markings/ild pattern pleural effusion vascular calcification
consolidation infiltration pleural/parenchymal scarring vascular congestion
copd/emphysema interstitial lung disease pneumomediastinum vascular redistribution
costophrenic angle blunting intra-aortic balloon pump pneumonia

Table 6: Complete set of 36 anatomical regions and 71 findings used to supervise the anatomy localisation and
the finding detection tasks, as annotated in the Chest ImaGenome dataset (https://physionet.org/content/
chest-imagenome/1.0.0/).

https://physionet.org/content/chest-imagenome/1.0.0/
https://physionet.org/content/chest-imagenome/1.0.0/


B Algorithm for discovering valid sentence-anatomy subsets

Algorithm 1 Find set of valid sentence-anatomy subsets.

Input: set of ⟨sentence, regions⟩ pairs from a single CXR report, P
Output: set of valid sentence-anatomy subsets, F

1: function FINDVALIDSUBSETS(P )
2: F ← empty set
3: Pi ← set populated with the first ⟨sentence, regions⟩ pair in P
4: Premaining ← set of ⟨sentence, regions⟩ pairs in P not assigned to Pi

5: R(Pi)← regions in Pi

6: R(Premaining)← regions in Premaining

7: while Premaining ̸= {} do
8: while R(Pi) ∩R(Premaining) ̸= {} do
9: for ⟨sentence, regions⟩ ∈ Premaining do

10: if regions ∩ R(Pi) ̸= {} then
11: Pi ← include ⟨sentence, regions⟩
12: end if
13: end for
14: Premaining ← set of ⟨sentence, regions⟩ pairs in P not assigned to Pi nor any Pk ∈ F
15: R(Pi)← regions in Pi

16: R(Premaining)← regions in Premaining

17: end while
18: F ← include Pi

19: Pi ← set populated with the first ⟨sentence, regions⟩ pair in Premaining

20: end while
21: return F
22: end function



C Example of Report as Sentence-Anatomy Pairs

 GT Report 

 'The  lungs  are  hyperinflated  with  flattening  of  the  diaphragms  suggestive  of  underlying  COPD.  The  heart  is  mildly  enlarged.  The  aorta  is  tortuous  and  diffusely 
 calcified.  Mediastinal  and  hilar  contours  otherwise  are  unremarkable.  Pulmonary  vascularity  is  not  engorged.  No  focal  consolidation,  pleural  effusion  or 
 pneumothorax  is  identified.  There  are  minimal  streaky  bibasilar  atelectatic  changes.  No  acute  osseous  abnormalities  are  present.  Mild  multilevel  degenerative 
 changes are seen in the thoracic spine.' 

 Chest ImaGenome sentence-anatomies pairs: 

 Sentence  Anatomical Regions 

 ‘The lungs are hyperinflated with flattening of the diaphragms suggestive of underlying COPD.'  ['right lung',  'left lung', 'right hemidiaphragm', 'left hemidiaphragm'] 

 'Pulmonary vascularity is not engorged.’  ['right lung',  'right hilar structures', 'left lung', 'left hilar structures'] 

 'No focal consolidation, pleural effusion or pneumothorax is identified.'  ['right lung',  'right costophrenic angle', 'left lung', 'left costophrenic angle'] 

 'There are minimal streaky bibasilar atelectatic changes.'  ['right lung',  'right lower lung zone',  'left lung',  'left lower lung zone'] 

 'Mediastinal and hilar contours otherwise are unremarkable.'  ['right hilar structures',  'left hilar structures',  'mediastinum',  'upper mediastinum'] 

 'The aorta is tortuous and diffusely calcified.'  ['mediastinum', 'aortic arch'] 

 'The heart is mildly enlarged.'  ['cardiac silhouette'] 

 'No acute osseous abnormalities are present.'  ['right clavicle', 'left clavicle', 'spine'], 

 'Mild multilevel degenerative changes are seen in the thoracic spine.'  ['spine'] 

 Set of valid sentence-anatomy subsets: 

 Sentences  Anatomical Regions 

 'The lungs are hyperinflated with flattening of the diaphragms suggestive of underlying COPD.', 

 'Pulmonary vascularity is not engorged.', 

 'No focal consolidation, pleural effusion or pneumothorax is identified.', 

 'There are minimal streaky bibasilar atelectatic changes.', 

 'Mediastinal and hilar contours otherwise are unremarkable.', 

 'The aorta is tortuous and diffusely calcified.' 

 ['right lung',  'left lung', 'right hemidiaphragm', 'left hemidiaphragm'] 

 ['right lung',  'right hilar structures', 'left lung', 'left hilar structures'] 

 ['right lung',  'right costophrenic angle', 'left lung', 'left costophrenic angle'] 

 ['right lung',  'right lower lung zone',  'left lung',  'left lower lung zone'] 

 ['right hilar structures',  'left hilar structures',  'mediastinum',  'upper mediastinum'] 

 ['mediastinum', 'aortic arch'] 

 'No acute osseous abnormalities are present.', 

 'Mild multilevel degenerative changes are seen in the thoracic spine.' 

 ['right clavicle', 'left clavicle', 'spine'] 

 [‘spine’] 

 'The heart is mildly enlarged.'  ['cardiac silhouette'] 

Figure 5: Example of sentence-anatomy annotations of a report and its set of valid sentence-anatomy subsets.



D Report Length

The length of a report corresponds to the number of words contained. We compute this for the full reports
generated from the full set of anatomical regions and for the partial reports derived from the set of valid
sentence-anatomy subsets. In Figure 6 (left) we see that the distribution of the proposed method is closer
to the distribution of the GT reports. In Figure 6 (right), we note that adopting the sentence-region dropout
strategy allows the method to generate partial reports with a length distribution closer to the GT partial
reports. These results provide further evidence of the improvement of the proposed method over the
baseline (without adding prior scans and sentence-anatomy training).

Figure 6: Length distribution of the predicted reports compared to the GT reports. The length of a report corresponds
to the number of words.


