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Abstract

We present a novel approach to multilingual
audio-visual speech recognition tasks by intro-
ducing a single model on a multilingual dataset.
Motivated by a human cognitive system where
humans can intuitively distinguish different lan-
guages without any conscious effort or guid-
ance, we propose a model that can capture
which language is given as an input speech
by distinguishing the inherent similarities and
differences between languages. To do so, we
design a prompt fine-tuning technique into the
largely pre-trained audio-visual representation
model so that the network can recognize the
language class as well as the speech with the
corresponding language. Our work contributes
to developing robust and efficient multilingual
audio-visual speech recognition systems, reduc-
ing the need for language-specific models.

1 Introduction

With the great advancements of deep learning, au-
tomatic audio-visual speech recognition (AVSR)
technology has achieved remarkable progress
(Mroueh et al., 2015; Afouras et al., 2018a; Baevski
et al., 2020; Kim et al., 2022; Ma et al., 2021;
Hong et al., 2023). It utilizes multimodal inputs,
including both audio and visual cues, providing sev-
eral advantages to the deep learning-based speech
recognition branch. One of the benefits is that it
can accurately recognize speech in noisy environ-
ments, such as crowded restaurants or corrupted
video conferencing situations. This capability is
critical for advancing the field of automatic speech
recognition technology in the future.

Nevertheless, outstanding performances in
audio-visual speech recognition have been mostly
shown in monolingual datasets, particularly in En-
glish. Few recent studies have started focusing
on multilingual speech recognition tasks, but they
are still in their infancy. One work (Zinonos et al.,
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2023) has presented cross-lingual visual speech rep-
resentation learning and shows multilingual models
with more data outperform monolingual ones. The
other works, MuAViC (Anwar et al., 2023) and
MixSpeech (Cheng et al., 2023), have newly intro-
duced a multilingual audio-visual corpus for speech
recognition and speech-to-text translation task.

While the recent multilingual speech recogni-
tion studies have shown remarkable advances, they
have only focused on pre-training the multilingual
speech recognition model or audio-visual speech
representation model, followed by fine-tuning with
the specific language (Zinonos et al., 2023). This is
due to the imbalance of dataset language distribu-
tion and each language’s distinctive characteristic.
However, producing a language-specific speech
recognition model can be time-consuming and in-
efficient. Most importantly, it does not correspond
to a real-life situation, where humans intuitively
recognize the language when others are speaking.

Inspired by the human understanding perspec-
tive, in this paper, we design a single model multi-
lingual audio-visual speech recognition framework
that the model can not only determine which lan-
guage is taken into the input speech but also recog-
nize the speech correctly. To do so, we newly intro-
duce an audio-visual guiding linguistic representa-
tion extractor. With the largely trained audio-visual
speech representation model (Shi et al., 2022), we
fine-tune the model by utilizing prompts so that the
model can extract comprehensive linguistic infor-
mation from the audio and video inputs. We set
only a small amount of downstream task-specific
parameters as the learnable parameters for extract-
ing linguistic representation into the input space
so that comprehensive linguistic information can
be produced. Furthermore, we consider the im-
balanced distribution issue that the multilingual
datasets contain, with some languages having sig-
nificantly fewer samples than others. Inspired by
(Li et al., 2022), we suggest a weighted objective
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Figure 1: Overall architecture of the proposed multilingual audio-visual speech recognition model.

function in order to balance each language distribu-
tion. By training our model on a diverse set of lan-
guages, we aim to capture their inherent similarities
and differences, allowing our model to recognize
and transcribe speech in multiple languages with
greater accuracy and efficiency. We validate the ef-
fectiveness of our proposed model using MuAViC
(Anwar et al., 2023), a multilingual audio-visual
corpus for robust speech recognition and robust
speech-to-text translation providing 1200 hours of
audio-visual speech in 9 languages. Therefore, our
work contributes to developing efficient and robust
multilingual audio-visual speech recognition sys-
tems. We also believe that our proposed approach
has several potential benefits: reducing the need
for language-specific models, improving the per-
formance of speech recognition in low-resource
languages, and enabling more effective multilin-
gual communication.

2 Methodology
Given the input multilingual video sequence, xv =
{x1, . . . , xL} ∈ RL×H×W×C where L, H , W ,
and C are the frame length, height, width, and
channel sizes, respectively, and the paired input
audio sequence, xa ∈ RS , where S represents the
length of audio, we design a model that properly
recognizes the given input video and audio with the
correct language. We aim to utilize both visual and
audio information so that the proposed architecture
can successfully recognize not only the language
but also the content of the input video. To this end,
we initially propose a language prompt adopted
from the largely pre-trained audio-visual speech
representation model (Shi et al., 2022), which we
call it linguistic representation extractor. Further,
we design a multilingual transformer decoder given
the inputs of language class, linguistic representa-
tion, and the combined features from the audio and

visual transformer encoders. We will explain the
detailed aforementioned techniques in the follow-
ing subsections.

2.1 Linguistic Representation Extractor

The first thing when recognizing one’s speech in a
multinational society is to distinguish the language
the speaker is presenting. When identifying the
language of the speech, it is important to verify the
speaker’s accent, pronunciation, and representative
vocabulary from the speaker’s facial movements
and audio information. Inspired by the intuitive
human understanding procedure, we design a lin-
guistic representation extractor from the largely pre-
trained audio-visual speech representation model.
We add trainable continuous embeddings, so-called
prompts, to the original sequence of input features
in order to fine-tune the pre-trained model relevant
to recognizing multilingual input signals.

2.1.1 Prompt fine-tuning for Linguistic
Representation Extractor

For the input multilingual video sequence xv and
audio sequence xa, audio features fa ∈ RT×D

and visual features fv ∈ RT×D, are extracted from
through Audio Front and Visual Front, respectively.

fv = Fv(xv) and fa = Fa(xa). (1)

The audio features fa and the visual features fv are
concatenated followed by layer normalization and
linear projection, producing the audio-visual fea-
tures fav ∈ RT×D. Then, we apply Audio-Visual
prompts into every layer of the Audio-Visual Trans-
former Encoder Ψ, along with the audio-visual
features fav. For each audio-visual prompt, we as-
sign language-representative prompts, P ∈ Rn×d,
which are trained to extract linguistic-relative fea-
tures from the pre-trained audio-visual representa-



tion model. Here, n is the number of prompts.

(_, fav,i) = Ψi(Pav,i−1, fav,i−1) (2)

(P̂av,L, fav,L) = ΨL(Pav,L−1, fL−1), (3)

for the i-th layer Ψi, where i = 1, 2, . . . , L. We
now call eav = (P̂av,L, fav,L) ∈ R(n+T )×d, audio-
visual prompt embedding feature.

2.1.2 Multilingual Classifier for Linguistic
Class Prompt

After extracting the audio-visual prompt embed-
ding feature eav, we firstly train the prompt tuning
module by updating the gradient of the learnable
parameters of the prompts with the classification
loss. As indicated in Figure 1, we propose a mul-
tilingual classifier in order to distinguish the input
language class. The multilingual classifier C con-
sists of four blocks of 1D convolution layer, batch
normalization, and Relu activation, followed by
two linear layers with Relu activation.

logitpred = C(eav). (4)

The output language class is logitpred ∈ Rm,
where m represents the number of languages for
training. Then, the logit is updated through cross-
entropy objective function:

Lclass = CE(logitpred, logitgt). (5)

Therefore, by updating the correct language label,
the model can be provided with guidance when
recognizing the multilingual speech correctly in
the backbone network that will be expressed in
further sections.

2.2 Objective Functions
The proposed multilingual AVSR framework is
trained in an end-to-end manner. For the objec-
tive function, we utilize joint CTC/attention (Kim
et al., 2017). CTC (Graves et al., 2006) loss is
defined as:

pc(y|x) ≈ ΠT
t=1p(yt|x), (6)

with an independent assumption of each output,
and attention-based loss is defined as:

pa(y|x) = ΠN
j=1p(yj |y<j , x). (7)

Here, the current prediction is determined by
previous predictions and inputs, thus including the
learning of the internal language model, where

N represents the total length of ground-truth text.
Then, the total objective can be written as follows,

Lctc = log pa(y|x), (8)

Latt = log pc(y|x), (9)

Ltotal = α · Lctc + (1− α) · Latt + β · Lclass,
(10)

where α and β are weight parameters for balancing
three loss terms.

2.2.1 Objective Functions for Balancing the
Language Distribution

An objective function weight is designed to balance
the distribution of language data, due to the issue
of language imbalance in the multilingual dataset.
This weight γ is calculated as the inverse root of
the data distribution ratio r for each language in
each mini-batch:

γ =
1√
r
. (11)

Therefore, the updated total objective function can
be re-written as follows,

Ltotal = γ · (α · Lctc + (1− α) · Latt + β · Lclass).
(12)

The rationale behind this design comes from the ob-
servation that the multilingual dataset often exhibits
an uneven distribution of samples across different
languages. Thus, when updating the loss during
training, it becomes crucial to employ a balancing
loss function with a smaller weight for languages
that contain a larger number of samples and a larger
weight for languages that have fewer samples.

By incorporating this weight into the objective
function, the model is encouraged to assign greater
importance to underrepresented languages during
the learning process. This approach aims to miti-
gate the adverse effects of language imbalance and
prevent the model from being biased toward dom-
inant languages. Thus, the model becomes more
capable of effectively recognizing and transcribing
speech in languages with limited available data.

3 Experimental Setup
3.1 Datasets
The MuAViC dataset (Anwar et al., 2023) is a mul-
tilingual audio-visual corpus consisting of roughly
1,200 hours of transcribed data spanning 9 lan-
guages: English, Arabic, German, Greek, Spanish,
French, Italian, Portuguese and Russian. It is col-
lected from TED and TEDx talk recordings, where



Type Model Ar De El En Es Fr It Pt Ru Avg

Clean

Monolingual [R6] 99.24 53.93 25.85 2.21 16.66 26.26 20.07 19.97 32.77 33.00
Multilingual [R6] 90.49 56.01 37.96 – 18.99 22.97 21.82 22.34 45.50 39.51

Proposed Model (Latt) 91.48 52.60 45.84 3.39 20.28 23.76 21.45 23.58 57.36 37.75
Proposed Model (Latt + Lctc) 90.94 48.10 42.41 2.47 18.04 21.52 19.67 20.80 54.12 35.34

Noisy

Monolingual [R6] 100.19 70.49 50.81 6.50 40.72 44.87 47.90 42.30 49.48 50.36
Multilingual [R6] 98.65 74.41 62.98 – 42.11 41.86 47.22 44.86 65.93 59.75

Proposed Model (Latt) 100.017 70.56 66.43 10.68 43.48 41.87 47.98 46.73 74.00 55.75
Proposed Model (Latt + Lctc) 99.66 65.92 61.94 9.01 38.94 37.37 42.48 42.13 68.99 51.83

Table 1: WER (%) comparisons with the previous multilingual audio-visual speech recognition methods on clean
and noisy settings.

native or non-native speakers (only one speaker
most of the time) deliver public speech on stage
and cameras capture stage scenes switching among
different viewpoints.

3.2 Implementation Details

We use largely pre-trained visual frontend, audio
frontend, and audio-visual transformer encoder
(Shi et al., 2022), trained on LRS3-TED (Afouras
et al., 2018b) and VoxCeleb2 English (Chung et al.,
2018). We fine-tune the encoding models guided
by the prompts and the multilingual classifier in an
end-to-end manner, such that the prompts learn the
meaningful content, i.e., the language class of the
input speech and how the speech is delivered, for
making the correct prediction in the multilingual
scheme. We set α = 0.1 and β = 10.0. For train-
ing and testing, we follow the same noise injection
protocol as (Anwar et al., 2023).

4 Experimental Result
In the experimental result in Table 1, we report the
performances of our proposed model with attention
loss only and both attention and CTC loss along
with the previous multilingual model (Anwar et al.,
2023) performance. The monolingual model refers
to the model that is separately trained on each lan-
guage and the multilingual refers to the model that
is jointly trained on all the 8 non-English languages.
The previous model did not include En in their mul-
tilingual model, so it remains blank. Note that
we test the provided trained model for reporting
previous work performance.

Clean Environment. We evaluate audio-visual
speech recognition in a clean environment. As
shown in the first section of Table 1, our proposed
model outperforms the previous model (Anwar
et al., 2023) in several languages, where the great-
est improvement (7.91 WER reduction, 14% rel-

ative) has been made in one of the low-resourced
language, German (DE). Such results demonstrate
that the proposed method effectively enables mul-
tilingual audio-visual speech recognition in a uni-
fied framework, improving the performance in low-
resource languages.

Noisy Environment. In the second section of Ta-
ble 1, we evaluate the proposed method in a noisy
setup. The proposed model achieves average WER
of 47.18, excluding English while the previous mul-
tilingual model achieves 59.75 WER, which is a
4.31% relative improvement. The performance gap
between the previous monolingual model (Anwar
et al., 2023) is even smaller with an average of
2.4% relative WER. We contribute such improve-
ment to the language-representative prompt which
allows the model to embed language-specific fea-
tures from the audio-visual input, simulating the
monolingual framework.

5 Conclusion

We introduce the multilingual audio-visual speech
recognition model by training a single model on
a diverse set of languages. The proposed model
finetunes a largely trained audio-visual represen-
tation model with prompts to provide meaningful
language information. It has presented a promising
starting point for future research endeavors.
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