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ABSTRACT

Instant reconstruction of dynamic 3D humans from uncalibrated sparse-view
videos is critical for numerous downstream applications. Existing methods, how-
ever, are either limited by the slow reconstruction speeds or incapable of generat-
ing novel-time representations. To address these challenges, we propose Forge4D,
a feed-forward 4D human reconstruction and interpolation model that efficiently
reconstructs temporally aligned representations from uncalibrated sparse-view
videos, enabling both novel view and novel time synthesis. Our model simpli-
fies the 4D reconstruction and interpolation problem as a joint task of streaming
3D Gaussian reconstruction and dense motion prediction. For the task of stream-
ing 3D Gaussian reconstruction, we first reconstruct static 3D Gaussians from
uncalibrated sparse-view images and then introduce learnable state tokens to en-
force temporal consistency in a memory-friendly manner by interactively updating
shared information across different timestamps. For novel time synthesis, we de-
sign a novel motion prediction module to predict dense motions for each 3D Gaus-
sian between two adjacent frames, coupled with an occlusion-aware Gaussian fu-
sion process to interpolate 3D Gaussians at arbitrary timestamps. To overcome
the lack of the ground truth for dense motion supervision, we formulate dense
motion prediction as a dense point matching task and introduce a self-supervised
retargeting loss to optimize this module. An additional occlusion-aware optical
flow loss is introduced to ensure motion consistency with plausible human move-
ment, providing stronger regularization. Extensive experiments demonstrate the
effectiveness of our model on both in-domain and out-of-domain datasets.

1 INTRODUCTION

Instant 4D human reconstruction from uncalibrated sparse-view video streams is essential for vari-
ous application scenarios, including real-time livestreaming (Xu et al., 2020), sports broadcasting,
augmented/virtual reality (AR/VR) (Carmigniani & Furht, 2011), articulation modeling (Chen et al.,
2023; Guo et al., 2025; Liu et al., 2025a; Zhang et al., 2025a), and immersive holographic commu-
nication (Tu et al., 2024). However, this task remains challenging due to the inherent difficulty of
simultaneously recovering accurate human body geometry and dense motion trajectories from un-
posed sparse-view video streams, while maintaining the real-time interactivity required for practical
applications. For example, holographic communication systems demand high interactability, while
sports broadcasting requires the ability to present novel views at any time for enhanced viewing
experiences and precise evaluation of athletic performance.

Existing works (Zhang et al., 2024; Li et al., 2024b; Jiang et al., 2024) typically rely on iterative
optimization over entire dense-view video sequences for each scene. These approaches depend
heavily on calibrated camera parameters and suffer from prolonged training durations required for
4D representation convergence. Meanwhile, recent advances in large-scale visual geometry mod-
els (Wang et al., 2025a; 2024a; 2025d) have enabled intermediate 3D point cloud reconstruction and
camera pose estimation from arbitrary long uncalibrated image sequences in a feed-forward man-
ner. However, the inherent limitations of point cloud representations restrict their ability to achieve
photorealistic novel view synthesis. Subsequent works (Jiang et al., 2025; Ye et al., 2024) have ex-
tended feed-forward reconstruction models to predict static 3D Gaussians, enabling photorealistic
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novel view synthesis. Nevertheless, these methods remain incapable of handling dynamic scenes
and synthesizing novel-time images.

In this work, we propose Forge4D, the first feed-forward model for 4D human reconstruction that
enables novel-view and novel-time synthesis from fixed multi-view uncalibrated sparse-view videos
in an efficient streaming manner. Our framework enables: 1) efficient reconstruction of temporally
consistent 3D Gaussian assets from streaming sparse-view video inputs, and 2) accurate frame-wise
dense 3D motion prediction for human subjects and 4D interpolation for novel-time synthesis. To
achieve these goals, we decompose the 4D reconstruction and interpolation problem into two tasks:
streaming 3D Gaussian reconstruction and dense human motion prediction. This design offers two
advantages: 1) it simplifies the problem for feed-forward regression, and 2) the reconstructed stream-
ing 3D Gaussians provide visual supervision for accurate dense motion prediction. Specifically, for
streaming 3D Gaussian reconstruction, we leverage the pretrained knowledge prior from the large
3D reconstruction model VGGT (Wang et al., 2025a) and adapt it to predict streaming key-frame
3D human Gaussian assets. This adaptation is non-trivial due to two major challenges. First, a scale
discrepancy exists between VGGT’s output and the real-world metric scale inherent in ground-truth
camera extrinsics, causing fundamental misalignment and unstable optimization with novel view
photometric loss. Second, naively feeding VGGT with multiple video frames suffers from long re-
construction duration, low interactivity, and out-of-memory (OOM) issues due to increasing image
tokens for global attention. To address the scale issue, we propose to maintain a metric gauge and
force the model to generate a temporally consistent scale in Sec. 3.2, which not only improves the
stability under novel view supervision, but also enables metric measurement. For the efficiency and
OOM problem, we decompose the spatial and temporal dimensions of sparse-view videos and pro-
pose state tokens in Sec. 3.3 to iteratively incorporate temporal information in a streaming manner.

For dense human motion prediction and novel-time synthesis, we propose a dense human motion
prediction module in Sec. 3.4 to facilitate 3D representation synthesis at arbitrary intermediate times-
tamps. In contrast to prior approaches that depend on merely middle-frame photometric supervision,
the key insight of our approach is that we formulate the task of dense motion prediction as a 3D
Gaussian point-matching problem. However, there is no ground truth dense 3D human motion for
supervision of this module. Therefore, we propose a novel retargeting loss that projects current 3D
Gaussians to adjacent frames with the predicted dense motion and supervises the rendered images
against ground truth. This regularization optimizes the dense motion in a self-supervised manner.
For a stronger regularization, we also propose an occlusion-aware optical flow loss, which projects
the 3D dense motion into 2D optical flows and explicitly aligns them with optical flows from a prior
model to enhance the plausibility of predicted human motions. Given the dense motion between two
timestamps, we deform the dynamic 3D Gaussians from the two nearest frames under a constant ve-
locity assumption. These deformed representations are then merged using a lightweight fusion MLP
that explicitly accounts for occlusion through a dual matching mechanism. Experimental results on
benchmark datasets demonstrate the efficiency and effectiveness of the proposed framework.

The main contributions of this work are summarized as follows:

• We propose the first feed-forward model for 4D human reconstruction in real-world metric scale
from uncalibrated sparse-view videos, enabling novel view synthesis and novel-time 4D interpo-
lation in an efficient streaming manner.

• Our model simplifies this task by decomposing it into subsequent streaming 3D Gaussian predic-
tion and dense human motion estimation tasks. The novel metric gauge regularization, retargeting
loss, and occlusion-aware optical flow loss stabilize the optimization and significantly improve
motion prediction, photorealistic novel-view and novel-time synthesis.

• We introduce a novel motion-guided, occlusion-aware Gaussian fusion method for 3D Gaussian
interpolation, enabling novel-time synthesis and effectively mitigating flickering and jittering ar-
tifacts caused by temporal redundancy in dynamic 3D Gaussian representations.

2 RELATED WORK

Dynamic Scene Reconstruction and Streaming. Dynamic scene reconstruction from multi-view
videos is crucial for numerous real-world applications. Prior methods primarily focus on optimizing
a unified 4D representation to match dense multi-view 2D observations either by incorporating tem-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Motion Block

Q

KV

KV

Q

C
ro

ss
 

A
tt

en
tio

n

…

…

…
…

C
ro

ss
 

A
tt

en
tio

n

M
ot

io
n

Fe
at

ur
es

 t-
1

M
ot

io
n

Fe
at

ur
es

 t 

Intermediate 
Features t-1

Intermediate 
Features t 

Frame 
Attention

Global 
Attention

Frame 
Attention

……

M
ot

io
n 

B
lo

ck

×24×24

GS HeadGS Head Motion 
Head

3DGS3DGS

Gaussian Fusion

…
St

at
e 

To
ke

n

GS 
Head

Pose 
Head

metric gauge 
alignment

3DGS

Frame 
Attention

Global 
Attention

×24

Pred. Cams.

…
St

at
e 

To
ke

n

State 
Attention

Frame 
Attention

Global 
Attention

GS 
Head

Pose 
Head

…

State 
Attention

×24

3D Motions

3DGS3DGS 3D Motions

Deformed 3DGS Deformed 3DGS

2D Motions

GT Flow

DINO

Global 
Attention

DINO DINO DINO

Stage 1 Stage 2 Stage 3
Sparse View Input Frame t Frame t-1 Frame t

… … … …

… …

ℒcam

ℒinput+ ℒnovel

Render

GT

GT Rendered 
Retarget

GT Rendered 
Retarget

ℒretarget ℒretarget

ℒflow

retargetretarget

project

…

M
ot

io
n 

B
lo

ck

Free-time 4DGS

ℒfusion

Scale 
Head

Pred. Scale

Scale
Align

State 
Attention

Scale 
Head

Shared Weight

Figure 1: The overall pipeline of Forge4D. It is trained in three stages: (1) static feed-forward
3D Gaussian reconstruction stage; (2) a streaming stage temporally aligned via state tokens; and
(3) a feed-forward 4D reconstruction stage that predicts dense motion for each 3D Gaussian and
interpolates free-time 3D Gaussians using an occlusion-aware fusion process.

poral dimensions into spatial coordinates (Jin et al., 2025; Zhang et al., 2024; Wu et al., 2024; Duan
et al., 2024; Lee et al., 2024) or by deforming 3D representations from keyframes using dynamic
factors (Luiten et al., 2024; Lin et al., 2024; Jiang et al., 2024; Wang et al., 2025c; Sun et al., 2024b).
Another line of research assumes causal inputs and reconstructs per-frame 3D representations in a
streaming manner (Girish et al., 2024; Liu et al., 2025c; Yan et al., 2025; Sun et al., 2024a). However,
these methods suffer from a limited reconstruction speed and are sensitive to the number of input
views. In contrast to these iterative optimization-based approaches, Forge4D introduces an efficient
feed-forward model that reconstructs the entire 4D scene in a single forward pass from uncalibrated
sparse videos, significantly enhancing interactivity and applicability to downstream tasks.

Feed Forward Reconstruction. Recent advances in visual geometry models have demonstrated
the capability of deep neural networks for 3D reconstruction from multi-view images in a feed-
forward manner. DUSt3R (Wang et al., 2024a), VGGT (Wang et al., 2025a), and π3 (Wang et al.,
2025d) enable direct regression of camera poses and 3D point maps in the first frame’s coordinate
space. To enable photorealistic novel view synthesis, another line of works (Charatan et al., 2024;
Chen et al., 2024b; Zheng et al., 2024; Hu et al., 2024; Chen et al., 2024a; Tu et al., 2025) di-
rectly predict static 3D Gaussians (Wang et al., 2024c; Shen et al., 2024; Yi et al., 2024; Xu et al.,
2025a; Zhang et al., 2025b; Liu et al., 2025b) or textured meshes (Li et al., 2024a) from calibrated
multi-view images. To alleviate the reliance on camera calibration, NoPosplat (Ye et al., 2024) and
AnySplat (Jiang et al., 2025) propose to reconstruct 3D Gaussians from uncalibrated multi-view
images. However, all these methods are limited to per-timestamp static reconstruction and cannot
synthesize novel-time 3D representations. Although L4GM (Ren et al., 2024) extends the static
Gaussian reconstruction framework (Tang et al., 2024) to feed-forward 4D reconstruction, it suffers
from low-resolution reconstructions and poor generalization on real-world subjects. Concurrent to
our work, recent methods (Xu et al., 2025b; Lin et al., 2025b;a) target 4D Gaussian reconstruction
from monocular calibrated videos, and StreamSplat (Wu et al., 2025) further extends to uncalibrated
ones. However, these methods neither explore the critical connection between 4D reconstruction and
3D point matching nor formulate motion learning as an explicit geometric correspondence problem,
resulting in suboptimal performance. In contrast, our model is specifically designed to recover
detailed geometry, appearance, and dense frame-wise motion for human performance from uncal-
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ibrated multi-view videos. By reformulating 4D reconstruction as a 3D Gaussian point matching
task and introducing specialized losses for motion retargeting and occlusion-aware flow alignment,
our approach achieves superior reconstruction quality and temporal consistency.

3 METHOD

3.1 OVERVIEW

This work utilizes a transformer-based model D4D for feed-forward reconstruction and novel-time
interpolation of dynamic 4D Gaussian G4D from n sparse uncalibrated videos {It

i}
n,k
i=0,t=0 with a

consistent video length of k and no camera motion, which can be expressed in the form of:
G4D = D4D({It

i}
n,k
i=0,t=0). (1)

However, the strong entanglement between object geometry and motion makes the direct regression
of 4D Gaussians challenging. To address this issue, we propose to decompose the problem into
a streaming 3D Gaussian reconstruction task and a dense motion prediction task, and develop a
progressive training pipeline. As shown in Fig. 1, the proposed pipeline is composed of three stages:
1) a feed-forward static 3D reconstruction stage to reconstruct static 3D Gaussians in the real-world
metric scale, 2) a streaming dynamic reconstruction stage to reconstruct streaming 4D Gaussians
in an efficient and memory-friendly way, and 3) a dense motion prediction and Gaussian fusion
stage to enable novel-time synthesis. In the first stage, a novel metric gauge calculation method is
proposed to align the backbone output scale with the real-world scale, which is critical to more stable
supervision of novel views. While directly applying the 3D Gaussian reconstruction pipeline to each
time stamp suffers from scale misalignment between different times, the main purpose of the second
stage is to align different scales across different time stamps. To this end, we propose to use a state
token to encode information from former frames and interact with the immediate frame efficiently,
while being memory-friendly. In the final stage, a novel motion prediction module is proposed,
together with a novel dual frame retargeting loss and occlusion-aware optical flow loss that marry
the task of dynamic Gaussian motion prediction to the task of point matching. To enable novel-time
synthesis, an additional occlusion-aware Gaussian fusion procedure is proposed for better dynamic
3D Gaussian interpolation and to resolve the jittering and flashing problem.

3.2 STAGE 1: FEED-FORWARD 3D GAUSSIAN RECONSTRUCTION

Recent advances in large 3D reconstruction models have demonstrated remarkable capabilities in
recovering colored point maps and camera poses from a set of uncalibrated images. However,
the point cloud representation limits the capability for photorealistic synthesis. To address this
issue, we propose a feed-forward 3D Gaussian reconstruction model D3D that leverages the ge-
ometry prior within these foundations, while introducing a 3D Gaussian prediction branch for
photorealistic rendering. Specifically, we use a pre-trained VGGT as our backbone and pre-
dict pixel-aligned 3D Gaussians with an additional DPT (Ranftl et al., 2020) head as Gt

3D =

D3D({It
i}ni=0), where Gt

3D = {P t
i ,O

t
i ,C

t
i ,Q

t
i,S

t
i}ni=0, with P t

i ∈ R3×H×W , Ot
i ∈ R1×H×W

i ,
Ct ∈ R3×H×W , Qt

i ∈ R4×H×W , and St
i ∈ R3×H×W representing the Gaussian position, opac-

ity, color, rotation, and scale attribute maps, respectively, from view i of size H × W at time t.
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Figure 2: Gauge illustration.

To supervise this branch, photometric losses (e.g., L2,
SSIM, LPIPS) are applied between the rendered and
ground-truth (GT) images. However, a fundamental
scale ambiguity occurs between the output scale of
VGGT (i.e., normalized point clouds) and the real-
world metric scale. Directly applying photometric su-
pervision without addressing this scale discrepancy re-
sults in an unstable optimization trajectory and fails to
converge to a coherent 3D structure, as further evalu-
ated in Sec. 4.3. To resolve this issue, we introduce
a metric gauge regularization term pgauge to align the
scale of the GT novel-view camera extrinsics with the
model’s internal coordinate system, thereby stabilizing
training. This approach is grounded in the key insight that if the model’s predicted camera poses
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and intrinsics are accurate, their difference from the GT poses should be primarily a consistent trans-
lation scaling factor, as visualized in Fig. 2. Formally, for n input cameras, we calculate the ratio
pi = ∥Ti∥2/∥T̂i∥2 of translation magnitudes between each predicted camera and its GT counter-
part. The novel view cameras are then scaled using the mean of these ratios, pgauge =

1
n−1

∑n
i=1 pi.

This factor is also utilized for scale head supervision, which predicts p̂gauge for metric scale recovery
during evaluation. To ensure that the metric gauge accurately represents the scale difference and to
simultaneously refine the predicted camera parameters, we propose a comprehensive camera loss:

Lcam =

n∑
i=0

∥qi − q̂i∥2 +
n∑

i=1

∥∥∥∥∥ Ti

∥Ti∥2
− T̂i

∥T̂i∥2

∥∥∥∥∥
2

+

n∑
i=1

|pi − pgauge|+ |p̂gauge − pgauge|, (2)

which supervises the model for accurate rotation qi, translation direction, consistent relative scaling.
and the scale prediction header. Our full training objective then combines this metric-aware camera
loss with multi-view photometric supervision. The photometric loss Linput =

∑n
i=0(∥Ii − Îi∥2 +

λSSIMSSIM(Ii, Îi) + λLPIPSLPIPS(Ii, Îi)) is applied to the n input views, and a corresponding
loss Lnovel is applied to m held-out novel views, ensuring high-fidelity reconstruction across all
perspectives. Thus, the total loss for our feed-forward 3D Gaussian reconstruction model is L3D =
Lcam + Linput + Lnovel. Supervised by this combined objective, our model not only infers coherent
3D Gaussians from uncalibrated RGB inputs, but also enables metric measuring, which we discuss
thoroughly in Appendix C.

3.3 STAGE 2: DYNAMIC HUMAN STREAMING WITH STATE-TOKEN GUIDED ALIGNMENT

In stage one, we obtain a feed-forward network for static 3D Gaussian reconstruction from sparse-
view images. However, to apply for video scenarios, the output scale of this network is not aligned
across timestamps, leading to temporal inconsistency. To address this, one vanilla way is to stack
all sparse video tokens for global attention in VGGT, which results in OOM and low reconstruction
speed issues. Instead, we decompose the spatial and temporal dimensions of sparse-view videos
and introduce a state token to enforce the temporal consistency in an efficient and memory-friendly
way. Specifically, we employ a learnable state token that iteratively encodes information from all
previous frames and broadcasts it to the current frame. These tokens inject temporal information
by serving as the Key and Value in a cross-attention layer applied to the current frame’s features.
Conversely, the token itself is updated by attending to the current frame’s features, where it serves
as the Query. To further enhance the temporal stability, we extend the metric gauge regularization
in Sec. 3.2 to a temporal form. The global scale factor is now computed over all n cameras and k

timestamps as pgauge = 1
(n−1)(k−1)

∑k
t=1

∑n
i=1 p

t
i, which is also utilized to supervise the general

gauge p̂tgauge prediction in the scale prediction header. Consequently, we generalize the camera loss
to supervise the temporal cross-attention layers across the entire sequence as:

Lcam =

k∑
t=0

n∑
i=0

∥qt
i−q̂t

i∥2+
k∑

t=0

n∑
i=1

∥∥∥∥∥ T t
i

∥T t
i ∥2

− T̂ t
i

∥T̂ t
i ∥2

∥∥∥∥∥
2

+

k∑
t=0

n∑
i=1

|pti−pgauge|+
k∑

t=0

|p̂tgauge−pgauge|.

(3)
This ensures consistent camera rotation, translation direction, and global scale across time.

3.4 STAGE 3: DENSE HUMAN MOTION PREDICTION AND DYNAMIC GAUSSIAN FUSION

A general 4D representation should enable the synthesis of 2D images from arbitrary camera view-
points at any moment in time. This requires the capability to interpolate the representation to in-
termediate timestamps beyond the input frames. In this work, we adopt dynamic 3D Gaussians as
our fundamental 4D representation and assume a linear motion model that propagates 3D Gaussians
between consecutive frames, following previous 4D Gaussian reconstruction works (Wang et al.,
2025c). Mathematically, we formulate our 4D Gaussian representation as:

G4D = {{Gt
3D}kt=0, {M t

i,{1,2}}
n,k
i=0,t=0,Fθ}, (4)

where Gt
3D denotes the 3D Gaussian attribute maps at time t, M t

i,{1,2} ∈ R2×3×H×W represents the
associated 3D motion field for view i, and Fθ is a learnable fusion function that adaptively combines
Gaussian attributes at novel timestamps in account of occlusion relationships.

To predict the 3D motion map M t
i,{1,2}, we introduce a dense motion prediction block that operates

on the static streaming reconstruction described in Sec. 3.2. This block predicts a dense, pixel-
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aligned dual motion field for each 3D Gaussian. Specifically, when processing a new frame at time t,
the block infers: (1) a backward 3D motion M t

i,1 ∈ R3×H×W that warps the current 3D Gaussians
(time t) to the previous timestamp t − 1, and (2) a forward 3D motion M t−1

i,2 ∈ R3×H×W that
warps the 3D Gaussians from the previous frame (time t− 1) to the current frame t. This process is
repeated symmetrically when the subsequent frames arrive. The motion prediction block comprises
the same number of attention blocks as the backbone model. Each motion attention block takes as
input the corresponding intermediate features from frames t and t − 1 produced by the backbone.
The output features from all motion attention blocks are aggregated and passed to a motion DPT
head to produce the final dual motion prediction M t

i,{1,2}.

Given 3D Gaussian assets at two successive frames t and t − 1, along with their corresponding
motions, the 3D Gaussians at the middle timestamp t′ can be acquired by warping these two frames
with a consistent velocity assumption. To be specific, for each 3D Gaussian in frame t, it is deformed
to the middle timestamp by adding a displacement proportional to its temporal distance to time t.
The 3D Gaussians in frame t − 1 are also deformed to this middle timestamp t′ in the same way.
This deforming process can also be represented as:

P t→t′

i = P t
i + |t′ − t| ·M t

i,1,P
t−1→t′

i = P t−1
i + |t′ − (t− 1)| ·M t−1

i,2 . (5)

However, there are no ground truth dense human motions for supervision. To effectively train this
block and the deformation process, we introduce a novel retargeting loss that optimizes the pre-
dicted 3D motion using 2D photometric constraints in a self-supervised manner. Specifically, for
3D Gaussians at time t, we deform their positions to time t− 1 with the prediction dense motion as
P t→t−1

i = P t
i + M t

i,1, while retaining other attributes. This forms an intermediate 3D Gaussian
representation Gt→t−1

3D = {P t→t−1
i ,Ot

i ,C
t
i ,Q

t
i,S

t
i}ni=0. Since M t

i,1 aims to recover the true mo-
tion between frames, Gt→t−1

3D should closely align with the ground-truth Gaussians Gt−1
3D . which can

be supervised with rendering consistency. The retargeting loss is defined as:

Lretarget =

n∑
i=0

(||Ît→t−1
i −Ît−1

i ||2+λSSIMSSIM(Ît→t−1
i , Ît−1

i )+λLPIPSLPIPS(Ît→t−1
i , Ît−1

i )), (6)

where Ît→t−1
i = R(Gt→t−1

3D ,Ei,Ki) and Ît−1
i = R(Gt−1

3D ,Ei,Ki) denote rendered images for
view i, with R representing the rendering function for 3D Gaussian Splatting, and Ei, Ki denoting
camera extrinsics and intrinsics, respectively.

To ensure real-world plausibility and resolve ambiguities, we incorporate an occlusion-aware optical
flow loss for a stronger regularization. We compute pseudo-ground-truth flow µt→t−1

i using SEA-
RAFT (Wang et al., 2024b) and project the predicted 3D motion M t

i,1 to 2D scene flow as µ̂t→t−1
i .

A cyclic consistency mask 1cyc penalizes inconsistencies between forward and backward flows and
removes occluded regions. The flow loss is defined as:

Lflow =

n∑
i=0

1cyc(µ
t→t−1
i ,µt−1→t

i ) · ||µt→t−1
i − µ̂t→t−1

i ||2, (7)

where 1cyc(µ
t→t−1
i ,µt−1→t

i ) = exp(−rti · ||µt→t−1
i + µt−1→t

i [pt
i + µt−1→t

i ]||2) acts as an
occlusion-aware weighting term, rti is a hyperparameter related to the length of each flow, and
µt−1→t

i [pt
i+µt−1→t

i ] represents a pixel-wise indexing process. The retargeting loss and occlusion-
aware optical flow loss are combined together as a matching supervision: Lmatching = Lflow+Lretarget.

frame t frame t-1

3D
M

otion

Projected 2D Motion

𝒅𝒉

𝒅𝒉 > 𝝉,	point occluded, not fuse

𝒅𝒉 < 𝝉,	point not occluded, fuse
𝒅𝒉𝑫𝑖

𝑡

Figure 3: Dual consistency factor.

Additionally, to naturally fuse the two sets of deformed
3D Gaussians Gt→t′

3D , Gt−1→t′

3D while preserving 3D Gaus-
sians from occluded regions, we further deform the 3D
Gaussian with a dual consistency factor Dt

i (or Dt−1
i for

frame t − 1). This factor is calculated by measuring the
distance of the deformed concurrent 3D Gaussian point
to the retrieved 3D Gaussian point at the retargeted frame
via the projected 2D flow, as shown in Fig. 3. This factor
serves as the guidance of areas masked in the next frame.
3D Gaussians with a factor larger than a threshold τ will
be kept as occluded 3D Gaussians {Ḡt

3D, Ḡt−1
3D }, while the

other 3D Gaussians {Ĝt
3D, Ĝt−1

3D } from two nearby timestamps will be merged into one by a two-
layer MLP Fθ to eliminate temporal redundancy. The final 3D Gaussian assets Gt′

3D are merged with
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the remaining occluded 3D Gaussians and the fused 3D Gaussians as:
Gt′

3D = {Ḡt→t′

3D , Ḡt−1→t′

3D ,Fθ(Ĝt→t′

3D , Ĝt−1→t′

3D )}. (8)
This fusion process is supervised by the photometric loss at novel time t′, which is defined as
Lfusion =

∑n
i=0(∥It′

i − Ît′

i ∥2 + λSSIMSSIM(It′

i , Î
t′

i ) + λLPIPSLPIPS(It′

i , Î
t′

i )). We supervise stage
3 with the loss function L4D = Lmatching + Lfusion.

In this way, our model achieves the task of generalized 4D human reconstruction by decomposing
it into a task of static 3D Gaussian streaming and a task of dense human motion prediction. High-
quality novel view images at any novel time can be acquired by interpolating the predicted dynamic
3D Gaussians and then rendering onto the corresponding image planes.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Datasets. Forge4D is trained on the DNA-Rendering (Cheng et al., 2023) training set, which com-
prises 2,078 human video sequences that exhibit diverse subject ages, appearances, and motion
patterns. 4D synthesis is evaluated on two benchmarks: 1) an in-domain held-out test set that con-
tains all sequences from 10 distinct identities in DNA-Rendering, and 2) the out-of-domain complete
Genebody (Cheng et al., 2022) dataset. For motion prediction and metric measurement, due to a lack
of ground truth annotations in real-world datasets, we construct a synthetic dataset, MetaHuman4D,
with ground truth annotations for evaluation. The details of MetaHuman4D are in the Appendix B.

Evaluation Metrics. The synthesized image quality is measured using standard metrics: PSNR,
SSIM, and LPIPS at a resolution of 518 × 518, unless specific ones are required by architectural
constraints, such as 512 × 512 for GPS-Gaussian and L4GM. All models are trained and evaluated
using 4 input views with a camera angle of around 45◦, which ensures sufficient coverage of the
frontal human appearance. The dense motion prediction task is benchmarked using the L2 distance
and the retargeted point distance. The metric scale prediction is evaluated by computing the L2
distance between predicted 3D points and their nearest corresponding points on the GT scale mesh.

Baselines. We establish comparisons under two experimental settings. For novel view synthe-
sis at input timestamps, we compare against optimization-based methods (DualGS (Jiang et al.,
2024), Queen (Girish et al., 2024), D-3DGS (Yang et al., 2023)) and feed-forward models (GPS-
Gaussian (Zheng et al., 2024)), along with pose-free feed-forward methods (NoPosplat (Ye et al.,
2024), AnySplat (Jiang et al., 2025)). For novel time interpolation quality, we compare exclusively
with methods capable of generating 3D representations at non-input timestamps: SpaceTimeGS (Li
et al., 2024b), D-3DGS (Yang et al., 2023), and L4DM (Ren et al., 2024).

Implementation Details. We initialize the backbone, camera heads, and 3D point heads using pre-
trained weights from VGGT. The scale head, 3D Gaussian position offset head, color offset head,
scene attention blocks, and motion blocks are zero-initialized. See more details in the Appendix C.

Posed Unposed Posed Unposed
OursNoPoSplatGPS-GaussianDualGS GPS-Gaussian OursNoPoSplatGT GTDualGSAnySplat AnySplat

Figure 4: Qualitative results of 3D reconstruction on test sets. Our Forge4D exhibits more stable
synthesized novel view images against artifacts, including blur, ghosting, and shape distortion.
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Table 1: Quantitative results of novel-view synthesis of static reconstruction with 4 input views.
Dataset DNA-Rendering Genebody
Method Type w. Cam. pose PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
DualGS Optimization 4D* Yes 18.7408 0.8932 0.1515 16.1721 0.7663 0.1891
D-3DGS Optimization 4D Yes 20.7767 0.8944 0.1162 15.7067 0.7981 0.1790
Queen Streaming 3D Yes 15.4966 0.8941 0.1213 16.4514 0.9484 0.0710

GPS-Gaussian Feed-Forward 3D Yes 24.2963 0.9247 0.0867 25.1734 0.9346 0.0756
NoPoSplat Feed-Forward 3D No 11.7632 0.8092 0.2846 13.9554 0.8721 0.1664
AnySplat Feed-Forward 3D No 26.1157 0.9430 0.1513 25.8010 0.9287 0.1355

Ours Feed-Forward 4D No 29.8167 0.9606 0.0542 28.0819 0.9523 0.0548

4.2 EVALUATION

Evaluation on 3D Reconstruction and Novel View Synthesis. As demonstrated in Tab. 1, our
model outperforms all baseline methods across all metrics. Specifically, Forge4D surpasses previ-
ous pose-free feed-forward 3D reconstruction models, i.e., NoPoSplat and AnySplat, by up to +2.28
dB in PSNR. This significant performance gap stems not only from artifacts caused by multi-view
mismatches and geometric inaccuracies but also from the inability of these methods to generate 3D
models and camera configurations that align with the ground-truth scale and camera parameters.
Moreover, the extensive white background in human images further complicates the synthesis of
plausible renderings, even with the camera optimization procedure described in Sec. C. Compared
to posed feed-forward 3D reconstruction models, Forge4D also exceeds the previous state-of-the-art
method, GPS-Gaussian, by up to +2.90 dB in PSNR, which originates from Forge4D’s ability to pro-
duce more geometrically faithful reconstructions of challenging regions such as hands, heads, and
accessories. Qualitative results in Fig. 4 further confirm that Forge4D delivers more photorealistic
novel views without artifacts such as blur, ghosting, or shape distortion.

Evaluation on 4D Reconstruction and Novel Time Synthesis. Quantitative and qualitative results
in Tab. 2 and Fig. 5 demonstrate Forge4D’s effectiveness in novel time synthesis. The model exhibits
strong capabilities in both generating 3D Gaussian assets and interpolating 3D Gaussians for arbi-
trary intermediate timestamps between key frames. Our approach outperforms the previous state-
of-the-art feed-forward 4D reconstruction model L4GM on both datasets with performance gains of
up to +12.57 dB in PSNR. In comparison with optimization-based methods, our method surpasses
all previous approaches, as these methods fail to generate reasonable novel views under such sparse-
view conditions. The optimization-based techniques struggle with the limited input views, while our
feed-forward approach maintains robust performance even with sparse camera arrangements.

Table 2: Quantitative results of novel-time and novel-view synthesis with 4-view videos.
Dataset DNA-Rendering Genebody
Method Type w. Cam. pose PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
D-3DGS Optimization Yes 20.9158 0.8994 0.1163 15.5823 0.8002 0.1502

SpaceTimeGS Optimization Yes 17.2189 0.8879 0.1247 14.6119 0.8488 0.1805
L4GM Feed-Forward Yes 18.0325 0.9152 0.1367 14.8572 0.9144 0.1727
Ours Feed-Forward No 29.0378 0.9566 0.0535 27.4247 0.9459 0.0601

Table 3: Motion prediction evaluation.
Method Motion Error Point Distance

POMATO 0.01274 0.7555
Ours 0.00953 0.0215

Evaluation on Dense Human Motion Prediction. We
evaluate our motion prediction module using our MetaHu-
man4D dataset containing multi-view images and dense
ground-truth motions derived from mesh correspondences
for each frame. The predicted 3D motions are compared against the GT 3D motions using
L2 distance, and benchmarked against the state-of-the-art dense motion prediction model PO-
MATO (Zhang et al., 2025c). Additionally, we report the retargeted point distance to the GT target-
time mesh, where Forge4D consistently generates plausible outputs while POMATO fails to produce
reasonable human geometry. Quantitative results in Tab. 3 demonstrate the effectiveness of our mo-
tion prediction framework. Further details are provided in Appendix B.

Table 4: Metric Scale
prediction evaluation.

Method Point Distance
MoGe-2 0.3309m

Ours 0.0264m

Evaluation on Metric Scale Prediction. Forge4D is able to recover
real-world metric scale points as a byproduct of the scale prediction
header supervised with metric gauge. We evaluate the performance of
Forge4D in metric scale recovering by measuring the mean distance of
the predicted points to the GT human mesh on MetaHuman4D, which
results in a 0.02 m error on average. A comparison with MoGe-2 is made in the same metric, with
the results presented in Tab. 4. Forge4D outperforms MoGe-2 in mean distance to ground-truth
mesh, primarily due to MoGe-2’s inability to effectively align multi-view point correspondences.
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Ours

L4GM

GT

Novel View
Images

L4GM

Ours

t=0 t=1 t=2 t=3t=0.5 t=1.5 t=2.5 t=0 t=1 t=2 t=3t=0.5 t=1.5 t=2.5 t=0 t=1 t=2 t=3t=0.5 t=1.5 t=2.5

Figure 5: Qualitative results of 4D reconstruction on novel-view and novel-time synthesis. Our
model accurately reconstructs 3D Gaussians for input timestamps while generating plausible inter-
mediate 3D Gaussians at any time with high-fidelity rendering quality (images in dashed boxes).

4.3 ABLATION STUDY

Table 5: Ablation study on different components.
Evaluation Mode Variants PSNR↑ SSIM↑ LPIPS↓

Static Novel View Full Model 29.8167 0.9606 0.0542
w/o gauge aligning 13.2884 0.1194 0.2184

Dynamic
Novel Time

+ Novel View

Full Model 29.0378 0.9566 0.0535
w/o state token 28.5555 0.9513 0.0592
w/o retargeting loss 28.4124 0.9530 0.0573
w/o optical flow loss 28.8676 0.9551 0.0563
w/o Gaussian Fusion 29.0307 0.9556 0.0556

Ablations on Methodology. We show the ef-
fectiveness of the proposed metric gauge, the re-
targeting loss, the occlusion-aware optical flow
loss, and the Gaussian fusion process in Tab. 5.
A significant performance gap is observed when
the retargeting loss and the occlusion-aware op-
tical flow loss are replaced with direct supervi-
sion on the novel timestamps, and the training process will lead to a collapse when the metric gauge
alignment is missing. Additionally, directly concatenating the 3D Gaussians from the nearby 2
frames will also lead to a suboptimal novel view image quality. While the quantitative improvement
in metrics may appear modest, the Gaussian fusion process plays a critical role in removing redun-
dant 3D Gaussians and eliminating perceptually disruptive artifacts such as jittering and flickering,
which are clearly visible in the video results shown in the supplementary materials.

Table 6: Ablation on model speed.
Module Delay Frame Rate
Key-frame Reconstruction 176.50 ms -
Motion Prediction 47.77 ms -
Interpolation (10 Steps) 1.46 ms -
Full Model 224.27 ms 4.45 FPS
+Interpolate 10 Steps 225.10 ms 44.42 FPS
+Interpolate 20 Steps 226.01 ms 88.48 FPS

Ablations on Model Speed. We evaluate the inference
speed of Forge4D on a NVIDIA H200 Tensor Core GPU,
with the results reported in Tab. 6. The key-frame re-
construction requires 176.50 ms per inference, the motion
prediction module takes 47.77 ms, and the intermediate-
time interpolation for 10 frames adds 1.46 ms, resulting
in a total latency of 224.27 ms per input frame pair. Given
our model’s capability for arbitrary-length interpolation, the effective output frame rate reaches 44
FPS when generating 10 interpolated frames per input interval.

5 CONCLUSION

We propose Forge4D, the first feed-forward model for 4D human reconstruction from uncalibrated
sparse-view videos. Our approach simplifies the problem by decomposing it into two tasks: stream-
ing real-world metric-scale 3D Gaussian reconstruction and a dense human motion prediction for
novel time synthesis. Forge4D achieves state-of-the-art novel view synthesis quality and enables in-
terpolation to arbitrary timestamps while maintaining plausible intermediate representations. Nev-
ertheless, Forge4D exhibits certain limitations. In particular, the performance degrades in the pres-
ence of large motions or longer inter-frame intervals, primarily due to reduced inter-frame corre-
spondences and violations of the consistent motion assumption. We identify these limitations as
directions for future work, focusing on improving motion modeling under extreme displacements
and optimizing computational efficiency for better interactivity.
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Ethics Statement. The research utilizes DNA-Rendering, Genebody, and the synthesized MetaHu-
man4D datasets, all employing properly consented data or synthetic human models to avoid privacy
concerns. Although developed for beneficial applications, we acknowledge the potential misuse
of this technology for creating synthetic media without consent and encourage the development of
corresponding ethical guidelines and detection mechanisms. We believe the primary impact of this
research will be positive, enabling new forms of human communication and content creation, while
emphasizing the need for responsible development and deployment.

REFERENCES

Julie Carmigniani and Borko Furht. Augmented reality: an overview. Handbook of augmented
reality, pp. 3–46, 2011.

David Charatan, Sizhe Li, Andrea Tagliasacchi, and Vincent Sitzmann. pixelsplat: 3d gaussian
splats from image pairs for scalable generalizable 3d reconstruction. In CVPR, 2024.

Jinnan Chen, Chen Li, and Gim Hee Lee. Weakly-supervised 3d pose transfer with keypoints. arXiv
preprint arXiv:2307.13459, 2023.

Jinnan Chen, Chen Li, Jianfeng Zhang, Lingting Zhu, Buzhen Huang, Hanlin Chen, and Gim Hee
Lee. Generalizable human gaussians from single-view image. arXiv preprint arXiv:2406.06050,
2024a.

Yuedong Chen, Haofei Xu, Chuanxia Zheng, Bohan Zhuang, Marc Pollefeys, Andreas Geiger, Tat-
Jen Cham, and Jianfei Cai. Mvsplat: Efficient 3d gaussian splatting from sparse multi-view
images. arXiv preprint arXiv:2403.14627, 2024b.

Wei Cheng, Su Xu, Jingtan Piao, Chen Qian, Wayne Wu, Kwan-Yee Lin, and Hongsheng Li. Gener-
alizable neural performer: Learning robust radiance fields for human novel view synthesis. arXiv
preprint arXiv:2204.11798, 2022.

Wei Cheng, Ruixiang Chen, Wanqi Yin, Siming Fan, Keyu Chen, Honglin He, Huiwen Luo, Zhon-
gang Cai, Jingbo Wang, Yang Gao, Zhengming Yu, Zhengyu Lin, Daxuan Ren, Lei Yang, Ziwei
Liu, Chen Change Loy, Chen Qian, Wayne Wu, Dahua Lin, Bo Dai, and Kwan-Yee Lin. Dna-
rendering: A diverse neural actor repository for high-fidelity human-centric rendering. arXiv
preprint, arXiv:2307.10173, 2023.

Yuanxing Duan, Fangyin Wei, Qiyu Dai, Yuhang He, Wenzheng Chen, and Baoquan Chen. 4d-
rotor gaussian splatting: Towards efficient novel view synthesis for dynamic scenes. In Proc.
SIGGRAPH, 2024.

Zhiwen Fan, Kairun Wen, Wenyan Cong, Kevin Wang, Jian Zhang, Xinghao Ding, Danfei Xu, Boris
Ivanovic, Marco Pavone, Georgios Pavlakos, Zhangyang Wang, and Yue Wang. Instantsplat:
Sparse-view gaussian splatting in seconds, 2024.

Sharath Girish, Tianye Li, Amrita Mazumdar, Abhinav Shrivastava, David Luebke, and Shalini De
Mello. QUEEN: QUantized efficient ENcoding for streaming free-viewpoint videos. In The
Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL
https://openreview.net/forum?id=7xhwE7VH4S.

Jingfeng Guo, Jian Liu, Jinnan Chen, Shiwei Mao, Changrong Hu, Puhua Jiang, Junlin Yu, Jing
Xu, Qi Liu, Lixin Xu, Zhuo Chen, and Chunchao Guo. Auto-connect: Connectivity-preserving
rigformer with direct preference optimization. arXiv preprint arXiv:2506.11430, 2025.

Yingdong Hu, Zhening Liu, Jiawei Shao, Zehong Lin, and Jun Zhang. Eva-gaussian: 3d gaussian-
based real-time human novel view synthesis under diverse camera settings. arXiv preprint
arXiv:2410.01425, 2024.

Lihan Jiang, Yucheng Mao, Linning Xu, Tao Lu, Kerui Ren, Yichen Jin, Xudong Xu, Mulin Yu,
Jiangmiao Pang, Feng Zhao, et al. Anysplat: Feed-forward 3d gaussian splatting from uncon-
strained views. arXiv preprint arXiv:2505.23716, 2025.

10

https://openreview.net/forum?id=7xhwE7VH4S


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yuheng Jiang, Zhehao Shen, Yu Hong, Chengcheng Guo, Yize Wu, Yingliang Zhang, Jingyi Yu, and
Lan Xu. Robust dual gaussian splatting for immersive human-centric volumetric videos. ACM
Transactions on Graphics (TOG), 43(6):1–15, 2024.

Yudong Jin, Sida Peng, Xuan Wang, Tao Xie, Zhen Xu, Yifan Yang, Yujun Shen, Hujun Bao, and
Xiaowei Zhou. Diffuman4d: 4d consistent human view synthesis from sparse-view videos with
spatio-temporal diffusion models. In International Conference on Computer Vision (ICCV), 2025.

Junoh Lee, ChangYeon Won, Hyunjun Jung, Inhwan Bae, and Hae-Gon Jeon. Fully explicit dynamic
guassian splatting. In Proceedings of the Neural Information Processing Systems, 2024.

Peng Li, Wangguandong Zheng, Yuan Liu, Tao Yu, Yangguang Li, Xingqun Qi, Mengfei Li, Xi-
aowei Chi, Siyu Xia, Wei Xue, et al. Pshuman: Photorealistic single-view human reconstruction
using cross-scale diffusion. arXiv preprint arXiv:2409.10141, 2024a.

Zhan Li, Zhang Chen, Zhong Li, and Yi Xu. Spacetime gaussian feature splatting for real-time
dynamic view synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 8508–8520, June 2024b.

Chenguo Lin, Yuchen Lin, Panwang Pan, Yifan Yu, Honglei Yan, Katerina Fragkiadaki, and
Yadong Mu. Movies: Motion-aware 4d dynamic view synthesis in one second. arXiv preprint
arXiv:2507.10065, 2025a.

Chieh Hubert Lin, Zhaoyang Lv, Songyin Wu, Zhen Xu, Thu Nguyen-Phuoc, Hung-Yu Tseng,
Julian Straub, Numair Khan, Lei Xiao, Ming-Hsuan Yang, Yuheng Ren, Richard Newcombe,
Zhao Dong, and Zhengqin Li. Dgs-lrm: Real-time deformable 3d gaussian reconstruction from
monocular videos. arXiv preprint arXiv:2506.09997, 2025b.

Youtian Lin, Zuozhuo Dai, Siyu Zhu, and Yao Yao. Gaussian-flow: 4d reconstruction with dy-
namic 3d gaussian particle. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 21136–21145, 2024.

Isabella Liu, Zhan Xu, Wang Yifan, Hao Tan, Zexiang Xu, Xiaolong Wang, Hao Su, and Zifan
Shi. Riganything: Template-free autoregressive rigging for diverse 3d assets. arXiv preprint
arXiv:2502.09615, 2025a.

Tianqi Liu, Guangcong Wang, Shoukang Hu, Liao Shen, Xinyi Ye, Yuhang Zang, Zhiguo Cao,
Wei Li, and Ziwei Liu. Mvsgaussian: Fast generalizable gaussian splatting reconstruction from
multi-view stereo. In European Conference on Computer Vision, pp. 37–53. Springer, 2025b.

Zhening Liu, Yingdong Hu, Xinjie Zhang, Rui Song, Jiawei Shao, Zehong Lin, and Jun Zhang.
Dynamics-aware gaussian splatting streaming towards fast on-the-fly 4d reconstruction, 2025c.
URL https://arxiv.org/abs/2411.14847.

Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and Deva Ramanan. Dynamic 3d gaussians:
Tracking by persistent dynamic view synthesis. In 3DV, 2024.
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Figure 6: Sampled examples of our MetaHuman4D test set.

A OVERVIEW

In Section B, we detail the synthetic MetaHuman4D dataset, including its composition and our
ground-truth motion annotation methodology. Section C provides additional training and evaluation
specifics, along with visualizations of Forge4D’s motion prediction results. Further ablations con-
cerning video duration, temporal intervals, and camera count are presented in Section D. Section E
illustrates Forge4D’s metric scale prediction capabilities. Section F states how LLM participates in
this work.

B OUR SYNTHESIS METAHUMAN4D DATASET

Since there are no ground truth annotations of dense human motion and metric scale in the captured
real-world dataset, we construct a synthesis dataset with ground truth annotations for the evaluation
of different methods on these two tasks.

Dataset details. Our synthesized test set contains 11 different identities and 7 motion types. For
each person, we select a motion sequence to animate it and render dynamic videos from 48 views
with the Unreal rendering engine and save the GT mesh model of the human at each given timestamp.
The diversity of this dataset is at the same scale as the commonly used test set from DNA-rendering,
which covers 10 identities. We visualize some samples in Fig. 6.

Ground truth motion annotation. We derive ground-truth motion from sequential human meshes
by computing the displacement of corresponding points between consecutive timestamps. Specifi-
cally, for a point x̄t

i on the mesh at time t, we obtain its backward motion as m̄t
1 = x̄t−1

i − x̄t
i and

its forward motion as m̄t
2 = x̄t+1

i − x̄t
i. During evaluation, we establish correspondences between

predicted points and ground-truth mesh points, then compute the motion error between the predicted
motions mt

1,2 and the ground-truth motions m̄t
1,2 for each matched point pair.

C IMPLEMENTATION DETAILS

Training detail of the three training stages. Stage 1 employs a learning rate initialized at 5×10−5

for the Gaussian and scale heads, and 1 × 10−5 for other components. Stage 2 initializes with
Stage 1 weights, except for the randomly initialized state attention module and state tokens. During
this stage, the state attention module, state tokens, scale head, Gaussian head, and pose head are
optimized with a 5 × 10−5 initial learning rate, while other components remain frozen. Stage 3
initializes with Stage 2 weights, with randomly initialized motion blocks, Gaussian fusion, and
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zero initialized motion head module, all trained at 5 × 10−5 initial learning rate, while all other
parameters remain frozen. All stages use a consistent batch size of 8 and are trained on 8 H20 GPUs
for 100,000 iterations each, and the learning rate is linearly decreasing to 1× 10−5 at the end of the
training stage. Hyperparameters are empirically set as: λSSIM = 0.25, λLPIPS = 0.25, τ = 0.05,
rti = 0.1 · ||µt→t−1

i ||2,2+0.5. || · ||2,2 represents the L2 norm on the second dimension of the tensor.

Metric scale recovery during inference. During inference, metric-scale 3D points are recovered
by dividing the output 3D points by the predicted metric gauge p̂gauge, with the corresponding ad-
justments applied to the scale and motion attributes of 3D Gaussians for novel-view and novel-time
rendering.

Evaluation of pose-free methods. Same with previous works (Ye et al., 2024; Fan et al., 2024;
Wang et al., 2021), we optimize novel view camera positions while keeping the 3D Gaussians fixed
for pose-free methods (NoPosplat (Ye et al., 2024), AnySplat (Jiang et al., 2025), Forge4D) to ad-
dress the inherent ambiguity that multiple 3D configurations can explain the same 2D observations.
Importantly, this optimization is solely performed for evaluation and is not required during actual
deployment for novel-view and novel-time rendering.

Evaluation details of different baselines on novel-view synthesis of static reconstruction. In
Tab. 1, all 3D methods are evaluated using frame-wise reconstruction and rendering, while DualGS
and Queen are optimized using full video sequences. We disable state tokens and state attention
blocks in Forge4D for fair comparisons. Note that DualGS cannot synthesize novel-time 3D scenes.

Evaluation details of different baselines on novel-time and novel-view synthesis. All 4D meth-
ods are evaluated at a sampling rate of 2, which is holding out 1 timestamp between every 2 input
timestamps for novel-time and novel-view evaluation. Since L4GM can only take a maximum input
length of 8 timestamps due to the GPU memory limitation, we compare it with our model at a same
input video length of 8 timestamps for fair comparison. However, we claim that our model can be
extended to arbitrary length of videos without suffering from memory accumulation issues, thanks
to the effectiveness of the state token embeddings.

Evaluation details of dense motion prediction. For our experimental setup, we select 4 sparse
views from the rendered videos as input to each compared method for human reconstruction. To
ensure a fair quantitative evaluation, we first align the predicted 3D points at the initial timestamp
with the ground-truth mesh from the MetaHuman4D dataset using scaling, translation, and rotation
transformations. This alignment step eliminates errors arising from scale and coordinate system
discrepancies, especially for POMATO. Subsequently, for each predicted 3D point, we identify
the closest point on the ground-truth mesh, establishing a correspondence for motion evaluation.
The motion accuracy is quantified by computing the L2 distance between the motion vectors of
each predicted point and its matched ground-truth point. Additionally, we report the mean distance
between the deformed predicted 3D points and their corresponding ground-truth points at the target
timestamp. We visualize the predicted 3D points and sampled motions in Fig. 7.

Evaluation details of metric measurement. We evaluate Forge4D and MoGe-2 (Wang et al.,
2025b) using identical videos with dense motion annotations. For each predicted 3D point, we com-
pute its minimum distance to the ground-truth mesh surface as the per-point prediction error. The
mean distance is calculated directly without additional alignment procedures, beyond the necessary
transformation of predicted points from camera coordinates to world coordinates. For MoGe-2, we
independently calculate the prediction error for each view, and make an average on 4 input views.

D MORE ABLATIONS

Table 7: Ablation on the video length.
Timestamps 8 16 32

PSNR↑ 29.0378 29.3932 29.3615
SSIM↑ 0.9566 0.9591 0.9591
LPIPS↓ 0.0535 0.0519 0.0519

Ablations on Video Duration. We evaluate our model
under different video durations and report the metrics of
novel view and novel time image quality, in terms of
PSNR, SSIM, and LPIPS. The results in Tab. 7 show
that the duration of the video has a limited impact on the
model performance.

Ablations on Time interval and Interpolation rate. Forge4D is trained by sampling a timestamp
every two timestamps as novel time supervision frames, which we refer to as a sampling rate of two.
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Forge4D

POMATO

Points and Motions Points and Motions3DGS render 3DGS render

Forge4D

t=0 t=1

Points and Motions 3DGS render

t=2 t=3 t=4 t=5 t=6 t=7 t=8

Figure 7: Dense motion prediction visualization. Zoom in to see more details.

Table 8: Ablation on the sampling rate.
Sampling Rate 2 4 8

PSNR↑ 29.0378 27.9129 25.9673
SSIM↑ 0.9566 0.9538 0.9344
LPIPS↓ 0.0535 0.0604 0.0767

We show that this supervision strategy is sufficient
and that Forge4D can generalize to longer time inter-
vals. In addition, more plausible intermediate frames
can be acquired by adjusting the interpolation rate.
We carried out metric calculations for larger sam-
pling rates of 4 and 8. The quantitative result in Tab.8 indicates that the rendered novel view quality
is preserved even when a longer duration is held between the two input timestamps. There is only a
reasonable drop in PSNR of at most 3.04 dB, which is mainly because the linear velocity assumption
is hard to maintain under a longer duration.

Table 9: Ablation on camera settings.
Cam. Num. 2 4 5

PSNR↑ 27.1316 29.0378 28.1337
SSIM↑ 0.9384 0.9566 0.9471
LPIPS↓ 0.0648 0.0535 0.0613

Ablations on Camera number. Although Forge4D
is trained with a consistent configuration of 4 input
views, the model demonstrates strong generalization
capability to arbitrary numbers of input cameras. As
shown in Table 9, which evaluates novel view and
novel time synthesis quality with 2, 4, and 5 input
views, the performance degradation remains minimal, with a maximum decrease of only 1.90 dB in
PSNR. This robustness stems from the inherent stability of our backbone architecture and the fact
that cross-frame information aggregation is largely decoupled from the final 3D Gaussian prediction
heads, allowing the model to adapt effectively to varying numbers of input views.

E METRIC MEASUREMENT

We provide additional human body metric measurement results in Figure 8, demonstrating that
Forge4D achieves accurate metric-scale reconstruction across both synthetic datasets and real-world
captures, validating its robustness in practical measurement applications.
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Forge4DGT MoGe-2

Forge4D

Figure 8: Samples of points prediction in metric scale.
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F STATE OF LLM USAGE

We use LLM to assist in coding and paper polishing. There is no further use of LLM for the idea
formulation, experiments, and main paper writing.
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